cancel
Showing results for 
Search instead for 
Did you mean: 
cancel
Showing results for 
Search instead for 
Did you mean: 

Community Tip - Help us improve the PTC Community by taking this short Community Survey! X

All distances of the points on the sphere to be Integer

ttokoro
20-Turquoise

All distances of the points on the sphere to be Integer

All distances of the points on the sphere to be Integer

 

n=2, r=0.5, l=1 (0.5,0,0),(-0,5,0,0)

n=3, image.pngimage.pngimage.pngimage.png

 

10 REPLIES 10
ttokoro
20-Turquoise
(To:ttokoro)

n=4

image.pngimage.pngimage.pngimage.png

How about other points n>4?

ttokoro
20-Turquoise
(To:ttokoro)

n=4 of 2D;

image.png

The one of 3D;

image.png

n=5 of 2D; by terryhendicott

ttokoro_0-1613891614210.png

The one of 3D;

ttokoro_1-1613891706258.png

image.pngimage.png

 

ttokoro
20-Turquoise
(To:ttokoro)

n=5 with new 2D n=4 results.

image.pngimage.pngimage.pngimage.pngimage.png

ttokoro
20-Turquoise
(To:ttokoro)

n=6, r2D6p=image.pngimage.png

image.pngimage.png

ttokoro
20-Turquoise
(To:ttokoro)

image.pngimage.pngimage.png

ttokoro
20-Turquoise
(To:ttokoro)

image.pngimage.pngimage.png

ttokoro
20-Turquoise
(To:ttokoro)

image.pngimage.pngimage.pngimage.png


@ttokoro wrote:

All distances of the points on the sphere to be Integer

 

n=2, r=0.5, l=1 (0.5,0,0),(-0,5,0,0)

n=3, image.pngimage.pngimage.pngimage.png

 


The problem of the precise number that lies on the surface is of a number theoretic nature. It has to do with the number of ways we can express an integer as the sum of n squares. A lot of modern and classical work in number theory relates to this question.

The other problem, where we count all the points inside instead of just those on the boundary, is of a different flavour. If ar denotes the number of lattice points on the surface of the 3-d sphere with radius r centered at the origin, then each individual ar fluctuates quite erratically. If we study the sum a1+a2+⋯+ar instead, then we get smoother behavior and analytic methods can be applied.

ttokoro
20-Turquoise
(To:CM_9836556)

Thanks to reply my subject.

Solved: All distances of the points to be Integer - PTC Community

Above is the one of 2D. I am solving the n points answer for both 2D and 3D.

If you know any study corresponds these puzzles, please let me know it. 

Tokoro.

ttokoro
20-Turquoise
(To:ttokoro)

This is not the answer of n=8.

image.png 

image.pngimage.png

Announcements

Top Tags