Get Help

Turn on suggestions

Auto-suggest helps you quickly narrow down your search results by suggesting possible matches as you type.

Showing results for

- Community
- :
- Creo Parametric
- :
- Part Modeling
- :
- Epicyclic Gear Verification/Measurement Failure, N...

Options

- Subscribe to RSS Feed
- Mark Topic as New
- Mark Topic as Read
- Float this Topic for Current User
- Bookmark
- Subscribe
- Printer Friendly Page

Auto-suggest helps you quickly narrow down your search results by suggesting possible matches as you type.

Showing results for

Highlighted

- Mark as New
- Bookmark
- Subscribe
- Subscribe to RSS Feed
- Permalink
- Email to a Friend
- Notify Moderator

03-08-2015
02:06 PM

03-08-2015
02:06 PM

Hi,

I'm doing a standard planetary gear system analysis (pictured), however when verifying the results I find my planetary gear speed is coming up as 378 deg/sec when by hand calculations it should be 270 deg/sec.

However what I did notice while writing this is that the given answer of 378 deg/sec - 108 deg/sec (the mechanisms calculated arm rotation) = 270 deg/ sec. So I think my measurement is adding the rotation of the arm and the rotation of the planetary gear, otherwise that's a huge coincidence.

For the measurement I have chosen Type->Velocity and for the Motion Axis as one of the rotation axes that the pin joint connects the planetary gear.

So my question is; does anyone know how to measure the local rotational velocity of the planetary gear (assuming that it's not a coincidence)? The answer should be 270 deg/sec

Many Thanks,

Cameron

Solved! Go to Solution.

Labels:

1 ACCEPTED SOLUTION

Accepted Solutions

- Mark as New
- Bookmark
- Subscribe
- Subscribe to RSS Feed
- Permalink
- Email to a Friend
- Notify Moderator

03-08-2015
05:13 PM

03-08-2015
05:13 PM

I come up with 378 as well on the hand calculation.

Input to planet:ratio 3:2

Back rotation on the ring: 108 = 0.3*360

360 input to planet = 540 (360*1.5) - if stationary

cycles along the input is 0.7 (1 rotation - 0.3 back rotation)

540*.7=378

I'm no math wiz, but if I input this in my planetary system, I'm pretty sure that is what I get.

A quick test is to put a servo motor to each axis and confirm visually.

4 REPLIES 4

- Mark as New
- Bookmark
- Subscribe
- Subscribe to RSS Feed
- Permalink
- Email to a Friend
- Notify Moderator

03-08-2015
03:02 PM

03-08-2015
03:02 PM

Re: Epicyclic Gear Verification/Measurement Failure, Needing Help Please?

I think you answered your own question.

The velocity of any of the 3 axes, (stationary, input and output) is measures at the sun gear's axis.

What you are seeing is the planetary axis which is over-driven in this arrangement.

Here is a good formula and calculator site for this.

http://www.torcbrain.de/uebersetzungsrechner-planetengetriebe/?lang=en

- Mark as New
- Bookmark
- Subscribe
- Subscribe to RSS Feed
- Permalink
- Email to a Friend
- Notify Moderator

03-08-2015
05:13 PM

03-08-2015
05:13 PM

I come up with 378 as well on the hand calculation.

Input to planet:ratio 3:2

Back rotation on the ring: 108 = 0.3*360

360 input to planet = 540 (360*1.5) - if stationary

cycles along the input is 0.7 (1 rotation - 0.3 back rotation)

540*.7=378

I'm no math wiz, but if I input this in my planetary system, I'm pretty sure that is what I get.

A quick test is to put a servo motor to each axis and confirm visually.

- Mark as New
- Bookmark
- Subscribe
- Subscribe to RSS Feed
- Permalink
- Email to a Friend
- Notify Moderator

03-09-2015
07:22 AM

03-09-2015
07:22 AM

Re: Epicyclic Gear Verification/Measurement Failure, Needing Help Please?

Thank you.

See the 0.3 you have, is that from the website you linked in the previous message where the ratio= 1 + Nring/Nsun = 1 + 42/18 = 3.333

-> so 360/3.333 = 108

or is it to do with 12/42?

- Mark as New
- Bookmark
- Subscribe
- Subscribe to RSS Feed
- Permalink
- Email to a Friend
- Notify Moderator

03-09-2015
12:06 PM

03-09-2015
12:06 PM

Re: Epicyclic Gear Verification/Measurement Failure, Needing Help Please?

It was from the inverse of the 3.3333... 1/3.333333...Essentially the 108 was also given in the calculator. So the 108 (carrier) divided by 360 (sun) gave me the .3.

Announcements

**Upcoming October 2019 Regional User Groups**

Middleburg Heights, OH Oct. 16th

Monroeville, PA Oct. 24th

Top Tags

- ptcuser_portal
- creo_parametric_proengi…
- creo
- creo_machining_proengin…
- modeling
- creo_simulate_proengine…
- parametric
- renderings
- drawing
- design
- creo_system_administrat…
- rendering
- creo_customization_proe…
- 3d
- pro/engineer
- cad
- proengineer
- assembly
- material
- arx
- parameters
- sheetmetal
- library
- pro/e
- creo_parametric
- ptc
- graphic
- part
- wildfire5
- creo_2.0