$$
\operatorname{cyl}_{\mathrm{X}}(\mathrm{r}, \mathrm{l}, \varphi):=\left(\begin{array}{c}
\mathrm{l} \\
\mathrm{r} \cdot \cos (\varphi) \\
\mathrm{r} \cdot \sin (\varphi)
\end{array}\right) \quad \operatorname{cyl}_{\mathrm{y}}(\mathrm{r}, \mathrm{l}, \varphi):=\left(\begin{array}{c}
\mathrm{r} \cdot \cos (\varphi) \\
\mathrm{l} \\
\mathrm{r} \cdot \sin (\varphi)
\end{array}\right) \quad \operatorname{cyl}_{\mathrm{Z}}(\mathrm{r}, \mathrm{l}, \varphi):=\left(\begin{array}{c}
\mathrm{r} \cdot \cos (\varphi) \\
\mathrm{r} \cdot \sin (\varphi) \\
\mathrm{l}
\end{array}\right)
$$

$$
\mathrm{R}:=20 \quad \mathrm{~d}:=\frac{\text { FRAME }}{2}+15
$$

For animations delete the "15"

First attempt was $\mathrm{d}=0$ meaning that the axis intersect. So later every d was replaced by R - d to duplicate the situation in the posting
$\operatorname{Zyl1}(\mathrm{a}, \mathrm{b}):=\operatorname{cyl}_{\mathrm{Z}}(\mathrm{R}, \mathrm{a}, \mathrm{b}) \quad \operatorname{Zyl2}(\mathrm{a}, \mathrm{b}):=\operatorname{cyl}_{\mathrm{y}}(\mathrm{R}, \mathrm{a}, \mathrm{b})+\left(\begin{array}{c}\mathrm{R}-\mathrm{d} \\ 0 \\ 0\end{array}\right)$
$D(r, d, \varphi):=\left[\begin{array}{c}r \cdot \cos (\varphi) \\ r \cdot \sin (\varphi) \\ i f\left[r^{2}-(r \cdot \cos (\varphi)-r+d)^{2} \geq 0, \sqrt{r^{2}-(r \cdot \cos (\varphi)-r+d)}{ }^{2} \cdot[2 \cdot(\varphi>0)-1], 1000\right]\end{array}\right]$
This is very quick and very dirty - nothing you should learn from. If z would be complex the value is set to 1000 , out of sight. Therfore we should not connect the points
$\mathrm{P}(\psi):=\mathrm{D}(\mathrm{R}, \mathrm{d}, \psi)$

$$
\operatorname{vereb}(r, d, x):=\sqrt{r^{2}-\left(r \cdot \cos \left(\frac{x}{r}\right)-r+d\right)^{2}}
$$

$$
R=20 \quad d=15.0
$$

Zyl1,Zyl2,P

