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Instability of Elastiolly Suspended 
Tainter-Gate System Caused by Surface 
Waves on the Reservoir of a Dam 
In this study, it is theoretically shown that an elastically suspended Tainter-gate sys­
tem with damping effects possesses the property of a self-excited oscillation, provided 
that the center of the curved weir plate is not in agreement with the location of the trun­
nion pin. Moreover, the theoretically obtained characteristics for the self-excited oscil­
lation are confirmed with experiments, and it is shown that the theoretical results are in 
good agreement with experiments. It is concluded that when designing a dam system 
with Tainter-gates or other similar devices, more interest and attention to the dynamical 
behavior of Tainter-gates should be taken in order to prevent disasters such as that 
which occurred in Japan. 

Introduction 
At present, Tainter-gates [2, 3]1 are being used with increased 

frequency in Japan, in order to control the water level of reser­
voirs. Vertical-lift gates also are being used for the same purpose. 
In this type, however, as the frame of the gate bears directly on 
the downstream guide member, a great f rictional resistance occurs 
at the contact plane between the two. Therefore, a large hoist 
capacity is required not only for raising but for lowering as well. 
This fact limits its use to the smaller sizes. In the type of Tainter-
gates, on the contrary, as the resultant of the hydraulic pressure 
exerted on the weir plate generally passes near the trunnion pin 
and is nearly borne at the trunnion pin as shown in Fig. 1, the 
effect of mechanical frictions in the Tainter-gate system is much 
less than in the type of vertical-lift gates, therefore providing 
a small hoisting load and a smooth operation of the gate. Hence 
the Tainter-gate is suited for the larger sizes. Though Tainter-
gates have such advantages, there is concern that Tainter-gates 
may oscillate owing to some fluid-induced structural load, i.e. the 
operation of the Tainter-gates may tend to become unstable. 

In Japan, several years ago, a Tainter-gate collapsed while the 
gate was being opened to discharge water [4]. This accident 
caused a sudden rise in the water level of the lower reaches of a 
stream and took a toll of human lives. Although the collapse of 
the Tainter-gate occurred by the buckling of the stays, very 
careful consideration had been given to the static strength of the 
structure in designing. Therefore it has been considered that the 
buckling of the stays was caused by some fluid-induced dynamical 
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load. Many studies have been made for Tainter-gates under a 
steady discharge [5-7]. Little, however, has been known about 
the dynamical characteristics of Tainter-gates. 

One of the subjects for the dynamic behavior of Tainter-gates 
is that they may essentially possess the property of a self-excited 
oscillation. Tainter-gates are usually suspended with chains or 
cables attached near the bottom of the weir plate. Such chains 
or cables act as an elastic support. Therefore an oscillatory sys­
tem interfering with fluid-induced loads is formed. For example, 
when the weir plate is slightly displaced from its equilibrium 
position, a change of discharge rate is caused, wave motions are 
induced on the reservoir surface and the wave motions exert a 
transient hydrodynamical force on the weir plate. It is not 
always expected that the hydrodynamical force makes the os­
cillatory displacement of the weir plate decay, but may be dy­
namically increased by the hydrodynamical force since the damp­
ing effect in the mechanism is comparatively small. In such a 
case, a self-excited oscillatory system is formed. Careful con­
siderations should be given to the possibility of such a self-excited 
oscillation in designing Tainter-gates. 

The characteristics of surface waves and structural loads in­
duced by a forced and periodical change of discharge quantity 
were theoretically analyzed, as the first approach for analyzing 
the dynamical characteristics of Tainter-gates [8]. It was con­
cluded as follows: A basic parameter determining the charac­
teristics of surface waves and structural loads is the Froude 
number F'o = y'da/g • co. The characteristics of surface waves 
are very analogous to the resonance characteristics of the forced 
oscillatory system consisting of a mass, a spring and a damper. 
When the Froude number is equal to about 0.8, wave motions 
fall into a resonance state. Moreover, the characteristics of fluid-
induced structural loads suggested the possibility of a self-
excited oscillation for Tainter-gates. These theroetical results 
were proved by experiments. The stability of an idealized 
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Tainter-gate system without damping effects was theoretically 
analyzed, as the second approach, but the analysis was restricted 
to the case that the resultant of the hydraulic pressure exerted 
on the weir plate passes under the trunnion pin [9]. It was con­
cluded as follows: Tainter-gates fundamentally possess the prop­
erty of a self-excited oscillation. 

In this study, the stability of an actual Tainter-gate system 
with damping effect is theoretically analyzed, for the general 
case that the resultant of the hydraulic pressure exerted on the 
weir plate does not pass through the trunnion pin, but the 
analysis is restricted to the case that a steady discharge is com­
paratively small. It is concluded as follows: The Tainter-gate 
system grows up to a self-excited oscillatory system under an 
appropriate condition, even if there exist comparatively large 
damping effects in the system. A model experiment for Tainter-
gates is made in order to confirm the theoretical results. It is 
concluded that the Tainter-gate system actually grows up to a 
self-excited oscillatory system, and the theoretically obtained 
results for the self-excited oscillation are in good agreement with 
the experiments. 

The Transient Hydrodynamical Pressure Exerted 
on the Weir Plate and the Equation of Motion of 
the Tainter-Gate System 

The Tainter-gate system shown in Fig. 1 is assumed to be 
represented by the two-dimensional model shown in Fig. 2. The 
Tainter-gate OAB is elastically suspended from a concrete bridge 
and is able to rotate on the trunnion pin 0. When the equilibrium 
state shown in Fig. 2 is kept, the moment about the trunnion pin 
0 due to the weight of the Tainter-gate itself and the hydraulic 
pressure exerted on the weir plate is equal to that due to the re­
storing force of an elastic support. In this paper, the dynamical 
stability of such an equilibrium state of the Tainter-gate system 
is analyzed. In this section, the equation of motion to which the 
small oscillation of the Tainter-gate from the equilibrium state 
is subject, is derived. 

To analyze the oscillation of the Tainter-gate, the X, Y, in­
coordinate system with the X-axis taken horizontally, the Y-
axis vertically upward and the Z-hxis in the rotatory axis of the 
Tainter-gate is used. 9(t) denotes the small rotatory angle from 
the equilibrium state of the Tainter-gate about the Z-axis. 6{t) is 
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Fig. 1 A Tainter-gate system 

defined as positive when the Tainter-gate rotates in the direction 
of the arrow shown in Fig. 2. To analyze the transient hydro-
dynamical pressure exerted on the weir plate, the x, ^-coordinate 
system with the y-axis taken vertically upward through the point 
B and the z-axis in the original undisturbed horizontal free sur­
face of the reservoir is used. To simplify the treatment of the 
problem, the distance between the vector of the hydrodynamical 
pressure exerted on the weir plate and the trunnion pin 0 is 
assumed to be approximately constant B*. Furthermore, it is 
assumed that all of the damping effects in the Tainter-gate sys­
tem, for example, due to the mass of the fluid added to the move­
ment of the weir plate and the hydraulic or mechanical frictions 
arising at the pairs of elements in the mechanism, are represented 
by a viscous damper vertically attached to the point B, as 
shown in Fig. 2. 
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Fig. 2 A two-dimensional model for the Tainter-gate system 
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Fig. 3 A two-dimensional model for the flow in the reservoir 

The Transient Hydrodynamical Pressure Exerted on the Weir Plate. 
It is assumed that the fluid in the reservoir is incompressible, 
the flow in the reservoir two-dimensional, the depth of the reser­
voir infinite and there are no obstacles obstructing the progress of 
surface waves at the upper reaches of the reservoir. Furthermore, 
the subject is restricted to the case that the height b of the dis­
charge opening is very small compared with the depth do of the 
discharge opening. When this condition is satisfied, the effect 
of a steady discharge is entirely negligible in deriving the tran­
sient hydrodynamical pressure exerted on the weir plate. 

When some disturbance is given to the Tainter-gate under a 
steady discharge and the Tainter-gate rotates by a small angle 
8(t) from the equilibrium state, the change AQ{t) of the discharge 
quantity from the discharge opening is given by the following 
form: 

AQ(t) = g • 6{t), (1) 

where, since the natural frequency of the Tainter-gate system is 
comparatively small, it may be assumed that there is no delay 
of phase between the movement of the weir plate and the change 
of discharge quantity. Since the rotatory motion of the Tainter-

gate has been assumed to be comparatively small, the amplitude 
q of the fluctuating discharge quantity AQ(t) may be given by 

q = Cf\/2dga • Ba cos Go, (2) 

where c/ is a discharge coefficient for the Tainter-gate. The 
velocity potential 4>(x, y; t) must be a solution of the Laplace 
equation: 

4>x* + <I>VV = 0 . (3) 

Since the dam wall and the weir plate are generally curved as 
shown in Fig. 2, the equation (3) should be solved under such 
curved boundaries to be exact. To simplify the analysis of the 
subject, however, it is assumed that the dam wall and the weir 
plate can be replaced with the linear boundaries as shown in Fig. 
3. Furthermore, it is assumed that the movement of the boundary 
in the neighborhood of the discharge opening can be neglected, 
and the change of the discharge quantity is concentrated at 
the point (x, y) = (0, — da): one need only suppose that the 
height of discharge 2a —> 0 while the discharge velocity <t>z(0, 
y: t) —> co in such a way that the total change of discharge 

quantity 

from (1): 

ity - r d°+° 
J -dO-a 

<f>x(0, y, t)dy tends to the finite limit AQ(t) 

AQ(t) = - lim f #.(0, V, t)dy. (4) 

To represent in a rough way the effect of small dissipative forces 
in the fluid, the damping force first given by J. W. S. Rayleigh 
[10, 11] and H. Lamb [12, 13] which is proportional to the 
velocity of the fluid particles is assumed. Then the boundary 
condition on the free surface is given by the following form: 

[<£« + n4>t + 9<t>v]v-° = ° . (5) 

where the coefficient fi in the dissipative force is a small positive 
constant. Since the velocity potential 4>(x, y; t) represents a 
small change from the equilibrium state, the small quantities of 
the second order have been neglected. The boundary conditions 
on the other boundaries except for the discharge opening and the 
free surface are given as follows: 

<£*(0> V\ t) = 0 w h e n — oo < y < — do + a, 

— da + a < y S 0(a • 0 ) , 

<M °°, v, i) = o, <P( <*>, y , t) = o, 

<I>V(X, - co ; t) = 0, 4>{X, - co ; t) = 0, (6) 

where the boundedness conditions have been imposed on the 
boundaries at x = co and at y = — <». At the time t = 0 the 
following initial conditions are prescribed for the velocity 
potential (j>(x, y; t): 

<t>(x, 0; 0) = 0, 4>((x, 0; 0) = 0, (7) 

which state that the free surface is initially at rest in its horizontal 
equilibrium position. Furthermore, at the time t = 0 the follow­
ing initial conditions are prescribed for the rotatory angle d(t): 

0(0) = 0, 6,(0) = 0o, (8) 

which state that the Tainter-gate suddenly begins to rotate with 
the angular velocity 6a from the equilibrium state. 

To obtain a solution of the Laplace equation (3) satisfying the 
boundary conditions (4), (5), (6) and the initial conditions (7) 
and (8), the Fourier cosine transform in the variable x is applied 
to (3): 

$v«(s, V, t) - s*$(s, y; t) = v ^ / m ^ O , y; t), (9) 

in which </>(s, y; t) is the Fourier cosine transform of 4>(x, y; t) 
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and use has been made of the boundary conditions at x = &> in 
(6). The solution of (9) is given by the following form: 

0(s, y; t) = <£<*>>(s, V, 0 + Ms; t)e>K (10) 

The particular solution fo^is, y; t) must satisfy the following 
boundary conditions corresponding to the conditions at y = — °° 
in (6): 

$vM(s, - »;«) = 0, $M(s, - »;«) = 0. (11) 

The following boundary condition at y = 0 may be imposed for 
$M(8,y;t): 

&<»>(•, 0; 0 = 0. (12) 

To obtain the particular solution $<»>(», y; t) the Fourier cosine 
transform in the variable y is applied to (9): 

+ 
2 rc 

~qg I 
0o(s) 

cos sz • ds 
«/ o 

0(r)e 

• sin <̂ >o(s)(( - r)dr, (20) 

Therefore, the transient hydrodynamical pressure p(x, y; OU-o 
exerted on the weir plate is given by the following integral rep­
resentation : 

P(*, V,t)U - p<i>i(x> y;t)U-a 

— — qp • lim 
IT x-*D 0 S 

• sin da s • sin \ 

(m2 + s2)0<*>(s, m;t) = - (2/; 
1 / _co 

$*(0, y; t) cos my 
" f fJ 

«/ o 

e(»-d0)» c o s sx . fa f 
U o 

0(T)6 cos <j>o(s)(t 

et(t) 

r)dr 

(21) 

^ ' where p is the specific mass of the fluid. 

in which <j<»>(s, m; 0 is the Fourier cosine transform of f-p\s, y; t) 
and use has been made of the boundary conditions (11) and (12). 
Carrying out the integration on y by making use of (1), (4) and 
the boundary condition at x = 0 in (6) and by applying the first 
mean value theorem, <J(!I)(S> TO; 0 is obtained in the form: 

#<»>(«, TO; 0 = (2/ir)g 
cos mdo 

m? + s2 0(0, (14) 

The Equation of Motion of the Tainter-Gate System. The tran­
sient hydrodynamical pressure p(0, y; t) exerted on the weir 
plate turns the Tainter-gate about the Z-axis. Since the distance 
between the vector of the transient hydrodynamical pressure 
exerted on the weir plate and the .Z-axis is assumed to be approxi­
mately constant Rt, the moment M{i) which turns the Tainter-
gate in the direction of the arrow shown in Fig. 2 is given by 

Applying the inverse transform in m, the following expression 
for 0(*>)(s, y, 0 is obtained: 

M(t) = - c„B* f 
O -c 

p(0, y; t)dy 

<t>iT)<,s, V, 0 = (2/5r)3'2g f cos mdo • cos my 

m2 + s2 0(0. (15) 
2 z*0 r r1* i 

= qpc„R* lim I I — e-«* sin d0$ • sin ys • ds • 0,(0 
T *-*> J -do J o s 

The Fourier cosine transform in x is now applied to the free 
surface condition (5). By inserting (10) and (15) in the result, 
the equation determining the arbitrary function A(s; t) is ob­
tained in the form: 

•r. e<»-'V* cos sx • ds s: -fV-T) 
(T) e cos <po(s)(t — r)dr 

A„(s;t) + At(s; t) + gsA(s;t) 

•*° cos mdo 
- (2/TTfltq f 

m? + s2 dm{8u(t) + n6t{t)}. (16) 

The initial conditions for A(s; t) is derived from (7) by applying 
the Fourier cosine transform in a; to (7) and by making use of 
(8), (10), and (15): 

A(s; 0) = 0, At(s; 0) = - (2/7r)3'2g0( 
/ * 

cos mdo 

m H - S2 
dm. (17) 

Applying the Laplace transform to (16), and applying the in­
verse transform based on the convolution theorem to the result, 
the arbitrary function A(s; t) satisfying the initial condition (17) 
is obtained in the form: 

dy, (22) 

where it has been considered for the boundary values of the def­
inite integral tha t both of the amplitude of surface waves and 
the change of the height of the discharge opening are very small 
compared with the depth do of the discharge opening. R* is 
defined as positive when the vector of the transient hydrody­
namical pressure passes under the Z-axis and as negative when 
the vector passes over the Z-axis. c„ is a modification factor of 
area when the curved weir plate is replaced with a linear bound­
ary. 

The equation of motion to which the small oscillation of the 
Tainter-gate system from the equilibrium state is subject, is 
given by the following form: 

G„(0 + 2wof0<(O + Oo20(O = M(t)/Io, (23) 

A(s; 0 = - (2/TT)3 '2? 

gs f* 
M>) Jo 

S. 
0 cos mdo 

m2 + s2 dm • 0(0 

where f is the damping ratio and Wo the natural frequency as 
follows: 

001 
0 ( T ) exp { - ^ (f - T ) } sin 0o(s)(f - r )dr |, (18) ]' 

f -
To 

2J0Wo' 
wo = VKoRiVU (24) 

where the phase function <j>o(s) is given by 
On substitution of (22) into (23), the equation of motion of the 
Tainter-gate system is obtained as follows: 

»(«) M74. (19) 
0«(O + 

The expressions (15) and (18) are now inserted in (10), the 
inverse transform in s is applied to the result and the integration 
on s and TO is carried out to obtain the following integral rep­
resentation for the velocity potential <j>{x, y; t)\ 

4>{x, V, 0 = — ~~q I sin dos • sin ys • ds • 0(0 
IT J0 s 
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Since the integral term in the coefficient of 9i(t) takes a negative 
value, the second term in the coefficient of 8t{t) is always negative 
when R* is positive. Therefore, it may be concluded from the 
above equation that the Tainter-gate system essentially possesses 
the primary factor of a self-excited oscillation. If the damping 
effects in the Tainter-gate system are very small, the coefficient 
of 6t{t) takes a negative value. Therefore, when such a condition 
is at least satisfied, it seems that the Tainter-gate system easily 
grows up to a self-excited oscillatory one. However, since the 
terms of positive or negative damping are included also in the 
right-hand side of the above equation, more forcible discussions 
about this point cannot be made here. An exact analysis for the 
dynamical stability should be given. 

The Dynamical Stability of the 
Tainter-Gate System 

To analyze the dynamical stability of the Tainter-gate sys­
tem which is subject to the equation of motion (25), the Nyquist 
stability theorem is applicable. The dimensions charac­
teristic function w'(p') of the equation of motion (25) is given by 
the following integral representation: 

w'(p') = 1 + p'a 

+ 

+ 

*' B'<P po I 1 1 + « ' 

f. s'2 + sV 
(s' cos (1 — y')s' — s'0 sin (1 — y')s')ds'\dy 

(26) 

in which use has been made of the Kelvin's method of stationary 
phase [14, 15] to neglect the time dependent terms. p'( = £'» 
+ r/V) is the dimensionless complex variable and y'( = y/do) the 
dimensionless water depth. The parameter R'd, k' and F'o are 
given by 

R'd = do/Ra sin 90, h' = 1\f2cscQp 
,Ra

s • B. 

h 

F'o = Vdjg 

sin2 Go • cos 9o, 

(27) too. 

Since R'd represents the ratio of the depth of the discharge 
opening to the height of the trunnion pin 0 from the discharge 
opening, it is called the dimensionless depth of the discharge 
opening. Since k' depends upon the moment of inertia, the shape 
and the size of the Tainter-gate, it is called the design factor of 
the Tainter-gate. F'o is the basic Froude number by which the 
flow pattern in the reservoir is determined fundamentally. The 
function G(x) of the variable x is due to s\ which is given by 

s'„ = - F '„V 2 + HV) (28) 

:_o is given by 

- 1 when ij'j, = 0, r)'„ > OA 

0 when £'„ = 0, 17'„ = 0,> (29) 

\ + 1 when £'„ = 0, i/'p < 0.) 

To analyze the stability of the Tainter-gate system by making 
use of the Nyquist stability criterion, the characteristic function 
w'(p') from (26) is selected for a mapping function and the 
mapping from the p'-plane to the u>'-plane is considered. The 
w'-plane is expressed as follows: 

When £'„ = 0, G(x) 

G(x) 

«'(?') = M'tf'w v\) + &*(£'„ I?',), (30) 

When £'„ = 0 in the equation (26), the Nyquist functions u'(0( 

•q'p) and v'(0, n'p) representing the Nyquist curve w'(ir)'p) in the 
lo'-plane are obtained in the following form: 
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Fig. 4 Nyquist characteristic functions u»'(Fo), v»'(Fo) 

»'(0, V'P) = 2f 
k'Rd'* 

F'o 
»*'(F0) V, (31) 

where the functions w*'(Fo) and w'*(Fo) of the variable Fo are 
given by 

. ( F o ) = £ [ - l l n ^ 

+ r— + F0< 
s' cos (1 - y')s' - F0

2sin (1 - y')s'\ dy\ 

(32) 

where the variable F0 is the general Froude number with the 
general frequency rjp and is defined as follows: 

F„ = F'< VP- (33) 

The small constant M ' ( = M/WO) representing the effect of small 
dissipative force in the fluid is replaced with zero in the equations 
(31) and (32). Since the functions u'*(F0) and «'*(F0) are the 
fundamental functions determining the characteristics of the 
Nyquist curve, these are called Nyquist characteristic functions. 
These functions are shown in Fig. 4, in which the abscissa is the 
general Froude number ¥<,. 

Consider the contour V in the p'-plane, as shown in Fig. 5(a). 
It is easily known from (31) that the origin 0 of the p'-plane cor­
responds to the point 0' (1, iO) in the w'-plane. Considering the 
properties of the Nyquist characteristic functions, it is known 
that when the roving point p' in the p'-plane proceeds from 
(0, — i <x> ) to (0, + i <») on the imaginary axis, the Nyquist 
curve w'(ir]'p) for k' > 0 traces out the curve (5'0'1') shown in 
Fig. 5(6), and that for k' < 0 traces out the curve (5'0'lr) shown 
in Fig. 5(c). When the roving point p' travels clockwise along 
the infinite semi-circular portion of T, the characteristic function 
w'(p') for k' > 0 traces out the circle (l'2'3'4'5r) shown in Fig. 
5(6), and that for h' < 0 traces out the curve (Ti2T3T4i50 shown 
in Fig. 5(c). The dotted portions of the lines shown in Fig. 5 
correspond to negative values of JJ'W while the solid portions cor-
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(fa) Nyquist plot for k' >0 (H, >0) (c) Nyquist plot for k' <0 (ff. <0) 

Fig. 5 Illustration showing the contour r in the p'- plane and its map­
ping- in the w' -plane. 
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Fig. 6 Stability diagram of the Tainter-gate system for k' = 1.0 

respond to positive values of -q'p. The plot in Figs. 5(6) and (c) 
illustrates a stable condition (A) and an unstable condition (B). 
For the curve B, the vector R makes two clockwise revolutions 
about the origin 0, whereas for the curve A it makes no net rota­
tions. The difference between the curve A and B depends upon 
the dimensionless depth R'd of the discharge opening, the basic 
Froude number F'o, the design factor k' and the damping ratio 
f, which are contained in (31) as parameters. In this study, the 
stability diagram is expressed by R'd as ordinate, F'o as abscissa 
and k' and f as parameters. 

For the design factor k' > 0, i.e. R* > 0: The stability diagram 
for k' = 1.0 is shown in Fig. 6. This stability diagram shows the 
values of R'd and F'0 which yield stable, unstable and periodic 
solutions of the equation (25). If the point (R'd, F'o) lies in the 
lower region of the curves, bounded solutions of (25) are ob­
tained. If the point (R'd, F'o) lies in the upper region of the 
curves, the solutions are unbounded. If the point (R'd, F'0) 
lies on the curves, the solutions are periodic. When £" = 0, the 
stable region is restricted within the narrow region in the neigh­
borhood of F'o = 1.0. The unstable region is wide. As f increases, 
however, the stable region grows wide. The rate tha t the stable 
region grows wide for F ' 0 > 1.0 is far larger than for F'o < 1.0. 
When f is larger than about 0.07, there exists no unstable region 
in F'o > 1.0, whereas the considerably wide region of unstable 
remains in F'o < 1.0, even if f has a fairly large value. In order 
to examine the influence tha t the design factor exerts the stability 

of the Tainter-gate system, the stability diagram for f = 0.03 
is shown in Fig. 7. I t is known in this figure that as k' increases, 
the stable region becomes narrow rapidly, whereas the unstable 
region extends toward the region of small R'd. For example, the 
stability diagram for k' — 5.0 is as shown in Fig. 8. 

For the design factor k' < 0, i.e. R* < 0: The stability dia­
gram for V = — 1.0 is shown in Fig. 9. On the contrary to the 
previous case, the stable region is far wide. As f increases, the 
stable region becomes more wide. When f is larger than about 
0.02, there exists no unstable region in Fig. 9. As \k'\ increases, 
however, the unstable region becomes wide, as seen from the 
stability diagram for f = 0.003 shown in Fig. 10. This property 
is the same as that for k' > 0. The stability diagram for k' 
— — 5.0 i sas shown in Fig. 11. There exists some unstable region, 
even if f has fairly large value. 

Model Experiments for the Stability 
of the Tainter-Gate System 

In order to confirm the theoretically obtained characteristics 
of self-excited oscillation, the following model for the Tainter-
gate system and the reservoir was made: The model used for 
experiments is shown in Fig. 12. The Tainter-gate system is 
situated at the left-hand side. The size of the reservoir is 1500 
mm long, 500 mm high and 40 mm wide. Since water is supplied 
from a circulation system, the water level of the reservoir is able 
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Fig.7 Stability diagram of the Tainter-gate system for k' >O,! = 0.03

BASIC FROUDE NUMBER Fa
Fig.8 Stability diagram for the Tainter-gate system for k' = 5.0
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Fig. 1Z A model for the Tainter-gate system and the reservoir
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(b) The Tainter-gate system under a steady discharge
(a) The model of the Tainter-gate system

(c) The Tainter-gate system under being self-excited and the surface
wavos ind uced on the reservoir surface

Flg.13 A mode' for the Tainter-gate system

Table 1 The dimensions, the modification factor of area and the
coefficient of discharge for the model

Examples of the experimental records for the model are shown
in Fig. 14. An example for (RId, F'o) = (1.88, 1.66), Le. the
stable Tainter-gate system is shown in (a) of Fig. 14. The motion
stops entirely in about 2 seconds after an initial disturbance.
As is to be expected from the previous study [8], the surface

excited and the surface waves induced on the back water are
shown in (c) of Fig. 13. Surface waves are measured with a
handmade resistance wire gage, the transient hydrodynamical
pressure with a pressure pick-up vertically attached to the wall
of the reservoir and the behavior of the Tainter-gate with a di~­

placement pickup which is noncontacting.

to be kept constant. The height of the discharge opening from
the bottom of the reservoir is 330 mm and that of the trunnion
pin is 422 mm. The model of the Tainter-gl\-te system is shown in
(a) of Fig. 13. The center of the weir plate with a radius of 135
mm is situated under the trunnion pin. As the position of sup­
port of a coiled spring is able to be traversed, the natural fre­
quency of the model is adjustable. The vertical position of its
support is also adjustable, to set the upper stay of the model
always horizontally. The dimensions, the modification factor of
area c. and the coefficient of discharge Cf for the model are
shown in Table 1, where the coefficient of discharge was quoted
from the experiments of Toch [6]. Then, the design factor k'
for the model is 1.19. The Tainter-gate system under a steady
discharge is shown in (b) of Fig 13. As the vertical position of
the model is adjustable, the height b of the discharge opening
was set down to 5 mm, in order to satisfy the assumption in the
theory that the steady discharge quantity is comparateively
smalL The weir plate has a width of 40 mm and the clearance
between the sidewall of the weir plate and the acryloylpiel'was
set down to about 0.02 mm. The Tainter-gate system being self-

Ra

(em)

13.8

Rb
(em)

11.7

R.
(em)

3.01

80
(deg)

39.2

10(g.::.S2)
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Fig. 14 Experimental records for the stable and the unstable Tainter-
gate system. The measured position of surface waves: (x ,y ) = 
(0.16 ± 0.01, 0), that of transient hydrodynamical pressure: ( x , y ) 
= (0.15 J- 0.01, —0.74 + 0.03) 
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Fig. 15 The experimentally evaluated characteristics of the damping 
ratio in the model for the Tainter-gate system (the uncertainity 
band for Rd' is + 0.03, that for f + 0.003) 
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Fig. 16 Boundary values of the stable and the unstable region for 
the model of the Tainter-gate system which design factor k = 1.19 
± 0.05 (the uncertainty band for Rd' is + 0.03, that for Fo + 0.05, that 
for the damping ratio + 0.003) 

waves with comparatively large amplitudes are induced. The 
kinetic energy of the gate itself is being rapidly absorbed in the 
waves. An example for (R\i, F\>) = (1.88, 3.52), i.e. the unstable 
Tainter-gate system is shown in (6) of Fig. 14. The Tainter-
gate system is growing up to a self-excited oscillatory system, 
with the negative damping ratio —0.013. The growth is com­
pleted in about 2 seconds after an initial disturbance and the 
lower edge of the weir plate begins to collide with acryloyly pier. 
The strains in the pressure wave are caused by this fact. The 

surface waves induced on the headwater have comparatively 
small amplitudes. Therefore, the energy that the fluid supplies 
to the Tainter-gate becomes larger than that absorbed in the 
surface waves. 

As the dimensionless depth R'd of the discharge opening in­
creases, the mass added of the fluid and the hydraulic friction 
exerted on the gate become larger. Therefore, the damping ratio 
f in the system becomes larger, as R'd increases. In order to 
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compare the experimental results with the theoretical ones, the 
relation of R'd and f must be previously obtained. Fig. 15 
shows its relation which was experimentally obtained, based on 
the following simple consideration: When the Tainter-gate 
under a boundary state of the stable and the unstable region is 
periodically oscillating, all of the energies that the fluid supplies 
to the Tainter-gate are absorbed in the damper. Therefore, the 
experimentally obtained damping ratio f represents all of the 
damping effects in the system. The solid portions of the lines 
in Fig. 16 show the theoretical boundary curves for stability 
corresponding to this characteristics for the damping ratio. The 
dotted portions show the theoretical boundary curves for the 
constant damping ratios. The signs ( • ) show the experimentally 
obtained boundary values for stability. Since the size of the 
reservoir used for the experiments was not so large, the natural 
frequency of the water in the reservoir was comparatively high. 
For this reason, the experimental values for the theoretical 
boundary curve in the lower region of F'o could not be obtained. 
The theoretical boundary curve in higher region of F'o, however, 
is in good agreement with the experimental results. Hence, the 
assumptions in the theoretical analysis for the Tainter-gate sys­
tem should be considered to be reasonable. 

Conclusions 
I t is considered that Tainter-gates are the most reliable type 

of crest gate for passage of large floods. If the fundamental 
principle of the gate tha t the weir plate is made concentric to the 
trunnion pin is satisfied, Tainter-gates may be surely the most 
reliable. However, if this fundamental principle is not satisfied, 
one is no longer able to expect that Tainter-gates are the most 
reliable. To lighten the hoisting load of the gate, Tainter-gates 
are often designed so that the center of the weir gate is situated 
over the trunnion pin. On the contrary, to raise the static sta­
bility of Tainter-gates, they are sometimes designed so that the 
center of the weir plate is situated under the trunnion pin. 
Furthermore, even if Tainter-gates are designed so that the weir 
plate is concentric to the trunnion pin, they are not always made 
as designed. 

This study made clear that Tainter-gates possess unstable 
characteristics, provided tha t the center of the weir plate is not 
in agreement with the trunnion pin. Such dynamical charac­
teristics for Tainter-gates were confirmed with experiments. 
The characteristics for the stability are as follows: Though an 
economical design in structural strength tends to be made with 
no fear in designing Tainter-gates, it makes the design factor 
\k'\ large. As the rate \R*\ tha t the center of the weir plate is 
not in agreement with the trunnion pin increases, the deisgn 
factor \k'\ becomes larger. Therefore, these primary factors 
fostor the dynamical instability of Tainter-gates. The stability 
for R* > 0 and R* < 0 is different as follows: When R* > 0, 
i.e. the center of the weir plate is situated under the trunnion 
pin, the static stability is raised. However, there exists a con­
siderably wide region of instability, and Tainter-gates fall into 
a very dangerous state. I t is impossible to entirely avoid such 
an instability, even if there exists a large damping effect in the 

Tainter-gate system. When R* < 0, i.e. the center of the weir 
plate is situated over the trunnion pin, the hoisting load of the 
gate becomes light. Tainter-gates, however, are unstable in some 
restricted region. This instability is entirely avoidable, provided 
that the natural frequency of the system and the depth of dis­
charge opening is so large that the basic Froude number F'o is 
larger than about 1.1. Especially when the design factor |fc'| 
is comparatively small, the existence of a moderate damping ef­
fect mades Tainter-gates unconditionally stable. When the de­
sign factor \k'\ is comparatively large, however, there exists some 
unstable region for the small F'o, even if the damping effect is 
comparatively large. 

In designing Tainter-gates, the fundamental design that the 
weir plate is made concentric to the trunnion pin is the best. 
This fundamental policy for design should be exactly kept. 
However, the careful considerations for the dynamical charac­
teristics of Tainter-gates make a design for lightening the hoisting 
load possible. I t should be absolutely avoided to design Tainter-
gates so that the center of the weir plate is situated under the 
trunnion pin. I t is very dangerous to make an economical design 
in structural strength of Tainter-gates, with no fear. 
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