
      UTILITIES

Maxima and Minima

localmax(x, y, [w]) localmax(x, y, M, [w]) 

localmin(x, y, [w]) localmin(x, y, M, [w]) 

The routines localmax and localmin compare adjacent

values in a data set to determine local maxima and

minima. The optional window value, w, determines how

many points on each side of the point in question must

also be smaller or larger for the point to be considered

maximum or minimum. Larger windows will help give true

maxima for noisy data sets. These functions work for both

2D and 3D data sets.

Local peaks

It's sometimes useful to know where the local maxima

and minima are in a data set before doing subsequent

processing. Consider the following noisy data mimicking

radar antenna response:
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w := w floor w( ):= w 1=

Set the window width to the

place where only real maxima

and minima are found.
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The graph shows the local maxima and minima using the actual

data values. If you wish to know the absolute maximum for

approximate interim values, take the numerical derivative of

the  interpolated curve and find the places where it is zero.

Finding functional peaks and troughs

If you know a functional form for your data, perhaps by using

 regression techniques, you can find maxima and minima by

searching for the roots of the first derivative:
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There are numerous ways to do this in Mathcad. The

method shown below is applicable to polynomials. First, find

the polynomial coefficients using live symbolics:
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Use the vector of coefficients as an argument to the

polyroots function:
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Bump points on the graph of the function f(x) are zero

crossings for the derivative, which are found by polyroots. You

could use the root function for any functional form to find roots

one at a time, or you can try the following program, based on

the symbolic processor's root finder:
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Finding local and global maxima and minima in 3D

Using a demonstration function with one local maximum and 4

local minima, we can use the same empirical localmax and

localmin functions for 3D matrices:
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If there is a known analytic function, you can use the Maximize

or Minimize functions to find maxima or minima analytically.

First, provide guess values to give the solver a place to start

seeking a solution.
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Pass the name of the objective function and the guess values to

Maximize.
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Maximize g x, y, ( ):= xmax 1.5= ymax 0.188−=

When optimizing a function of more than one parameter, Mathcad

will return a vector of results. The first element in this vector

corresponds to the first variable after the function name in the

call to Maximize or Minimize (x in this case), and so on. 
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You can also find maxima and minima in a constrained way using

solve blocks. Provide guess values for any unknowns:
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When optimizing a function in Mathcad, guess values play an

extremely important role in the solution which is found. Guesses

far from the desired values may cause the solver to converge to

a local maximum or minimum. For example, consider the function

H, which has two peaks:
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If you compare the results of Maximize with two different sets of

guesses, you can see that one set of guesses finds the global

maximum, while the other converges to the local maximum.
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