Problem 1. (Problem 2.1 on page 47 of the text.) In Figure 2.1,

$$
v(t)=\sqrt{2} \cdot 120 \cdot \cos (\omega \cdot t+30 \cdot \operatorname{deg}) \quad i(t)=\sqrt{2} \cdot 10 \cdot \cos (\omega \cdot t-30 \cdot \operatorname{deg})
$$

a. Find $p(t), S, P$, and Q into the network.
b. Find a simple, two element, series circuit consistent with the prescribed terminal behavior as described in this problem.

$$
\begin{aligned}
& p(t)=v(t) \cdot i(t) \\
& p(t)=2400 \cdot \cos (\omega \cdot t+30 \cdot \operatorname{deg}) \cdot \cos (\omega \cdot t-30 \cdot \operatorname{deg}) \\
& p(t)=1200 \cdot(\cos (60 \cdot \operatorname{deg})+\cos (2 \cdot \omega \cdot t)) \\
& p(t)=600+1200 \cdot \cos (2 \cdot \omega \cdot t)
\end{aligned}
$$

Use RMS Phasors

$V:=120 \cdot e^{j \cdot 30 \cdot d e g} \cdot$ volt $\quad I:=10 \cdot e^{-j \cdot 30 \cdot d e g} \cdot A$

Calculate the power quantities
VAr:= volt•amp

$$
\begin{array}{lc}
\mathrm{S}:=\mathrm{V} \cdot \overline{\mathrm{I}} & \mathrm{~S}=600+1039 \mathrm{i} \text { volt } \cdot \mathrm{amp} \\
\mathrm{P}:=\operatorname{Re}(\mathrm{S}) & \mathrm{P}=600 \mathrm{~W} \\
\mathrm{Q}:=\operatorname{Im}(\mathrm{S}) & \mathrm{Q}=1.039 \times 10^{3} \mathrm{VAr}
\end{array}
$$

To find the series circuit, first find the equivalent impedance. The series circuit will be two elements, a resistor to model the real part of the impedance and a reactance (in this case, an inductive reactance, to model the reactive portion.

$$
\mathrm{Z}:=\frac{\mathrm{V}}{\mathrm{I}} \quad \mathrm{Z}=6+10.392 \mathrm{iohm}
$$

6 ohms 10.39 ohms
$\rightarrow \mathrm{W}-\mathrm{m}$

Problem 2. (problem 2.4 on page 48). A 3phase load draws 200 kW at a PF of 0.707 lagging froma $440-\mathrm{V}$ line. in parallel is a 3phase capacitor bank which suppoies 50 kVAr . Find the resultant power factor and current into the parallel combination.

$$
\mathrm{P}_{\mathrm{i}}:=200 \cdot \mathrm{~kW} \quad \mathrm{PF}_{\mathrm{i}}:=0.707 \quad \mathrm{~V}_{\mathrm{LLi}}:=440 \cdot \mathrm{volt} \quad \mathrm{Q}_{\mathrm{cap}}:=50 \cdot \mathrm{kV} \cdot \mathrm{~A}
$$

Find the initial values of apparant power S and reactive power Q

$$
S_{i}:=\frac{P_{i}}{P_{i}} \quad Q_{i}:=\sqrt{S_{i} \cdot S_{i}-P_{i} \cdot P_{i}} \quad Q_{i}=200.060 \mathrm{kV} \cdot \mathrm{~A}
$$

Real power P is unchanged by addition or deletion of reactive power Q.

$$
\mathrm{P}_{\mathrm{f}}:=\mathrm{P}_{\mathrm{i}} \quad \mathrm{P}_{\mathrm{f}}=2 \cdot 10^{5} \mathrm{~W}
$$

Add the two reactive power components together. Capacitive reactive power is negative under the convention assumed in the text.
$\mathrm{Q}_{\mathrm{f}}:=\mathrm{Q}_{\mathrm{i}}+\left(-\mathrm{Q}_{\mathrm{cap}}\right) \quad \mathrm{Q}_{\mathrm{f}}=150.06 \mathrm{kV} \cdot \mathrm{A}$
Calculate the new apparent power. The power factor is the ratio of real power to apparent power.
$\mathrm{S}_{\mathrm{f}}:=\sqrt{\mathrm{P}_{\mathrm{f}} \cdot \mathrm{P}_{\mathrm{f}}+\mathrm{Q}_{\mathrm{f}} \cdot \mathrm{Q}_{\mathrm{f}}} \quad \mathrm{S}_{\mathrm{f}}=250.0360 \mathrm{kV} \cdot \mathrm{A}$

$$
\mathrm{PF}_{\mathrm{f}}:=\frac{\mathrm{P}_{\mathrm{f}}}{\mathrm{~S}_{\mathrm{f}}} \quad \quad \mathrm{PF}_{\mathrm{f}}=0.8 \quad \text { lagging }
$$

Use a three phase power formula to find the line current.

$$
\mathrm{I}_{\mathrm{a}}:=\frac{\mathrm{S}_{\mathrm{f}}}{\sqrt{3} \cdot \mathrm{~V}_{\mathrm{LLi}}} \quad \mathrm{I}_{\mathrm{a}}=328 \mathrm{~A}
$$

Problem 3. (Problem 2.6 on page 47) The system shown in the Figur below is balanced and positive sequence. Assume that $Z=10$ at 15 deg and Vca=208 at -120 deg. Find Vab, Vbc, Van, Vbn, Vcn, la, lb , Ic, and S3phase.

Use a phasor diagram with a horizontal zero reference and counterclockwise positive direction:

Phase angles, by inspection:
given $\quad \theta_{\text {ca }}:=-120 \cdot \operatorname{deg}$

$$
\begin{array}{ll}
\theta_{\mathrm{ab}}:=120 \cdot \mathrm{deg} & \theta_{\mathrm{an}}:=90 \cdot \mathrm{deg} \\
\theta_{\mathrm{bc}}:=0 \cdot \mathrm{deg} & \theta_{\mathrm{bn}}:=-30 \cdot \mathrm{deg}
\end{array}
$$

$\theta_{\mathrm{cn}}:=-150 \cdot \mathrm{deg}$

A balanced system has the given 208 V between any pair of lines; So, between line and neutral,

$$
\mathrm{V}_{\mathrm{an}}:=\left[\frac{208}{\sqrt{3}} \cdot\left(\cos \left(\theta_{\mathrm{an}}\right)+\mathrm{j} \cdot \sin \left(\theta_{\text {an }}\right)\right)\right] \text { volt } \quad\left|\mathrm{V}_{\text {an }}\right|=120.1 \text { ovolt } \quad \mathrm{j}:=\sqrt{-1}
$$

The other two line-to-neutral voltages have the same magnitude. The phase angle of Van, from the phasor diagram, is 90 degrees. The other two line-to-neutral voltages have phase angles as given beside the diagram above. Therefore, the balanced system has 120.1 V line to neutral in each phase.

Current is voltage divided by impedance.

$$
\mathrm{Z}:=10 \cdot \mathrm{e}^{-\mathrm{j} \cdot 15 \cdot \mathrm{deg}} \cdot \mathrm{ohm} \quad \mathrm{I}_{\mathrm{a}}:=\frac{\mathrm{V}_{\mathrm{an}}}{\mathrm{Z}}
$$

$$
\left|\mathrm{I}_{\mathrm{a}}\right|=12 \mathrm{~A}
$$

$$
\phi_{\mathrm{a}}:=\operatorname{angle}\left(\operatorname{Re}\left(\mathrm{I}_{\mathrm{a}}\right), \operatorname{Im}\left(\mathrm{I}_{\mathrm{a}}\right)\right) \quad \phi_{\mathrm{a}}=105^{\circ} \operatorname{deg}
$$

Phase angles on the other two line currents are
$\phi_{\mathrm{b}}:=\phi_{\mathrm{a}}-120 \cdot \mathrm{deg}$
$\phi_{b}=-15^{\circ}$ deg
$\phi_{c}:=\phi_{\mathrm{a}}+120 \cdot \mathrm{deg}$
$\phi_{\mathrm{c}}=225^{\circ} \mathrm{deg}$

Three phase complex power is

$$
\mathrm{S}_{3 \phi}:=3 \cdot \mathrm{~V}_{\mathrm{an}} \cdot \overline{\mathrm{I}_{\mathrm{a}}} \quad \mathrm{~S}_{3 \phi}=4179-1120 \mathrm{i} \cdot \mathrm{volt} \cdot \mathrm{amp}
$$

Summary of answers:

All line-to-neutral voltages are 120.1 Volts. All line-to-line voltages are 208 Volts. All line currents are 12.0 A .

Problem 4. (Problem 2.8 on page 47) In the system shown in the figure below, find la, lb, and lc for a. $\mathrm{Za}=\mathrm{j} 1 ; \mathrm{Zb}=\mathrm{j} 1 ; \mathrm{Zc}=\mathrm{j} 0.9$ (unbalanced)
b. $Z a=j 1 ; Z b=j 1 ; Z c=j 1$ (balanced)

Write down the given.

$$
\mathrm{j}:=\sqrt{-1}
$$

$$
\begin{array}{r}
\mathrm{V}_{\mathrm{an}}:=1.0 \quad \mathrm{~V}_{\mathrm{bn}}:=1.0 \cdot \mathrm{e}^{-\mathrm{j} \cdot \frac{2 \cdot \pi}{3}} \quad \mathrm{~V}_{\mathrm{cn}}:=1.0 \cdot \mathrm{e}^{\mathrm{j} \cdot \frac{2 \cdot \pi}{3}} \\
\mathrm{Z}_{\text {line }}:=\mathrm{j} \cdot 0.1 \quad \mathrm{Z}_{\mathrm{a}}:=\mathrm{j} \cdot 1 \quad \mathrm{Z}_{\mathrm{b}}:=\mathrm{j} \cdot 1 \quad \quad \mathrm{Z}_{\mathrm{c}}:=\mathrm{j} \cdot 0.9
\end{array}
$$

The mesh equations are as follows:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{an}}=\mathrm{I}_{\mathrm{a}} \cdot \mathrm{Z}_{\text {line }}+\mathrm{I}_{\mathrm{a}} \cdot \mathrm{Z}_{\mathrm{a}}+\left(\mathrm{I}_{\mathrm{a}}+\mathrm{I}_{\mathrm{b}}+\mathrm{I}_{\mathrm{c}}\right) \cdot \mathrm{Z}_{\text {line }} \\
& \mathrm{V}_{\mathrm{bn}}=\mathrm{I}_{\mathrm{b}} \cdot \mathrm{Z}_{\text {line }}+\mathrm{I}_{\mathrm{b}} \cdot \mathrm{Z}_{\mathrm{b}}+\left(\mathrm{I}_{\mathrm{a}}+\mathrm{I}_{\mathrm{b}}+\mathrm{I}_{\mathrm{c}}\right) \cdot \mathrm{Z}_{\text {line }} \\
& \mathrm{V}_{\mathrm{cn}}=\mathrm{I}_{\mathrm{c}} \cdot \mathrm{Z}_{\text {line }}+\mathrm{I}_{\mathrm{c}} \cdot \mathrm{Z}_{\mathrm{c}}+\left(\mathrm{I}_{\mathrm{a}}+\mathrm{I}_{\mathrm{b}}+\mathrm{I}_{\mathrm{c}}\right) \cdot \mathrm{Z}_{\text {line }}
\end{aligned}
$$

Forming into a matrix

$$
\left[\begin{array}{ccc}
Z_{\text {line }}+Z_{a}+Z_{\text {line }} & Z_{\text {line }} & Z_{\text {line }} \\
Z_{\text {line }} & Z_{\text {line }}+Z_{b}+Z_{\text {line }} & Z_{\text {line }} \\
Z_{\text {line }} & Z_{\text {line }} & Z_{c}+Z_{\text {line }}+Z_{\text {line }}
\end{array}\right] \cdot\left[\begin{array}{l}
I_{a} \\
I_{b} \\
I_{c}
\end{array}\right]=\left[\begin{array}{c}
V_{\text {an }} \\
V_{b n} \\
v_{c n}
\end{array}\right]
$$

Inverting the matrix to solve,

$$
\begin{aligned}
& {\left[\begin{array}{l}
\mathrm{I}_{\mathrm{a}} \\
\mathrm{I}_{\mathrm{b}} \\
\mathrm{I}_{\mathrm{c}}
\end{array}\right]:=\left[\begin{array}{ccc}
\mathrm{Z}_{\text {line }}+\mathrm{Z}_{\mathrm{a}}+\mathrm{Z}_{\text {line }} & \mathrm{Z}_{\text {line }} & \mathrm{Z}_{\text {line }} \\
\mathrm{Z}_{\text {line }} & \mathrm{Z}_{\text {line }}+\mathrm{Z}_{\mathrm{b}}+\mathrm{Z}_{\text {line }} & \mathrm{Z}_{\text {line }} \\
\mathrm{Z}_{\text {line }} & \mathrm{Z}_{\text {line }} & \mathrm{Z}_{\mathrm{c}}+\mathrm{Z}_{\text {line }}+\mathrm{Z}_{\text {line }}
\end{array}\right]^{-1} \cdot\left[\begin{array}{l}
\mathrm{V}_{\mathrm{an}} \\
\mathrm{~V}_{\mathrm{bn}} \\
\mathrm{~V}_{\mathrm{cn}}
\end{array}\right]} \\
& {\left[\begin{array}{c}
\mathrm{I}_{\mathrm{a}} \\
\mathrm{I}_{\mathrm{b}} \\
\mathrm{I}_{\mathrm{c}}
\end{array}\right]=\left[\begin{array}{c}
-5.584 \cdot 10^{-3}-0.912 \mathrm{i} \\
-0.793+0.451 \mathrm{i} \\
0.86+0.496 \mathrm{i}
\end{array}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& \left|\mathrm{I}_{\mathrm{a}}\right|=0.912 \quad \text { angle }\left(\operatorname{Re}\left(\mathrm{I}_{\mathrm{a}}\right), \operatorname{Im}\left(\mathrm{I}_{\mathrm{a}}\right)\right)-360 \cdot \operatorname{deg}=-90.351{ }^{\circ} \mathrm{deg} \\
& \left|I_{b}\right|=0.912 \quad \text { angle }\left(\operatorname{Re}\left(I_{b}\right), \operatorname{Im}\left(I_{b}\right)\right)-360 \cdot \operatorname{deg}=-209.649 \circ \text { deg } \\
& \left|\mathrm{I}_{\mathrm{c}}\right|=0.993 \quad \text { angle }\left(\operatorname{Re}\left(\mathrm{I}_{\mathrm{c}}\right), \operatorname{Im}\left(\mathrm{I}_{\mathrm{c}}\right)\right)=30^{\circ} \text { deg }
\end{aligned}
$$

Same process for the balanced system,

$$
\begin{aligned}
& \mathrm{Z}_{\text {line }}:=\mathrm{j} \cdot 0.1 \quad \mathrm{Z}_{\mathrm{a}}:=\mathrm{j} \cdot 1 \quad \mathrm{Z}_{\mathrm{b}}:=\mathrm{j} \cdot 1 \quad \mathrm{Z}_{\mathrm{c}}:=\mathrm{j} \cdot 1.0 \\
& {\left[\begin{array}{c}
\mathrm{I}_{\mathrm{a}} \\
\mathrm{I}_{\mathrm{b}} \\
\mathrm{I}_{\mathrm{c}}
\end{array}\right]:=\left[\begin{array}{ccc}
\mathrm{Z}_{\text {line }}+\mathrm{Z}_{\mathrm{a}}+\mathrm{Z}_{\text {line }} & \mathrm{Z}_{\text {line }} & \mathrm{Z}_{\text {line }} \\
\mathrm{Z}_{\text {line }} & \mathrm{Z}_{\text {line }}+\mathrm{Z}_{\mathrm{b}}+\mathrm{Z}_{\text {line }} & \mathrm{Z}_{\text {line }} \\
\mathrm{Z}_{\text {line }} & \mathrm{Z}_{\text {line }} & \mathrm{Z}_{\mathrm{c}}+\mathrm{Z}_{\text {line }}+\mathrm{Z}_{\text {line }}
\end{array}\right]^{-1}\left[\begin{array}{c}
\mathrm{V}_{\mathrm{an}} \\
\mathrm{~V}_{\mathrm{bn}} \\
\mathrm{~V}_{\mathrm{cn}}
\end{array}\right]} \\
& {\left[\begin{array}{c}
I_{a} \\
I_{b} \\
I_{c}
\end{array}\right]=\left[\begin{array}{c}
-0.909 \mathrm{i} \\
-0.787+0.455 \mathrm{i} \\
0.787+0.455 \mathrm{i}
\end{array}\right]} \\
& \left|\mathrm{I}_{\mathrm{a}}\right|=0.909 \quad \text { angle }\left(\operatorname{Re}\left(\mathrm{I}_{\mathrm{a}}\right), \operatorname{Im}\left(\mathrm{I}_{\mathrm{a}}\right)\right)-360 \cdot \operatorname{deg}=-90^{\circ} \text { deg } \\
& \left|I_{b}\right|=0.909 \quad \text { angle }\left(\operatorname{Re}\left(I_{b}\right), \operatorname{Im}\left(I_{b}\right)\right)-360 \cdot \operatorname{deg}=-210^{\circ} \operatorname{deg} \\
& \left|I_{c}\right|=0.909 \quad \text { angle }\left(\operatorname{Re}\left(I_{c}\right), \operatorname{Im}\left(I_{c}\right)\right)=30^{\circ} \text { deg }
\end{aligned}
$$

It is also possible (and easier) to solve the balanced system using a per phase equivalent.

$$
\begin{aligned}
& I_{a}:=\frac{V_{\text {an }}}{Z_{\text {line }}+Z_{a}} \quad I_{a}=-0.909 i \quad\left|I_{a}\right|=0.909 \quad \text { angle }\left(\operatorname{Re}\left(I_{a}\right), \operatorname{Im}\left(I_{a}\right)\right)=270 \text { odeg } \\
& \mathrm{I}_{\mathrm{b}}:=\frac{\mathrm{V}_{\mathrm{bn}}}{\mathrm{Z}_{\text {line }}+\mathrm{Z}_{\mathrm{b}}} \quad \mathrm{I}_{\mathrm{b}}=-0.787+0.455 \mathrm{i} \quad\left|\mathrm{I}_{\mathrm{b}}\right|=0.909 \quad \text { angle }\left(\operatorname{Re}\left(\mathrm{I}_{\mathrm{b}}\right), \operatorname{Im}\left(\mathrm{I}_{\mathrm{b}}\right)\right)=150 \text { odeg } \\
& \mathrm{I}_{\mathrm{c}}:=\frac{\mathrm{V}_{\mathrm{cn}}}{\mathrm{Z}_{\text {line }}+\mathrm{Z}_{\mathrm{c}}} \quad \mathrm{I}_{\mathrm{c}}=0.787+0.455 \mathrm{i} \quad\left|\mathrm{I}_{\mathrm{c}}\right|=0.909 \quad \text { angle }\left(\operatorname{Re}\left(\mathrm{I}_{\mathrm{c}}\right), \operatorname{Im}\left(\mathrm{I}_{\mathrm{c}}\right)\right)=30^{\circ \text { deg }}
\end{aligned}
$$

Problem 5. (Problem 2.12 on page 49 of the text) The system shown below is balanced. Assume that load inductors $\mathrm{ZL}=\mathrm{j} 10$ and load capacitors $\mathrm{ZC}=-j 10$. Find la, Icap, and S3pload.

$$
Z_{C \Delta}:=-j \cdot 10 \quad Z_{L Y}:=j \cdot 10 \quad j:=\sqrt{-1}
$$

It is probably easiest to convert to a Y equivalent circuit. The per phase equivalent circuit becomes:

The delta to wye conversion reduces the balanced capacitance by a factor of 3 . Finding the current la:

$$
Z_{\text {load }}:=\frac{(j \cdot 10) \cdot\left(-\mathrm{j} \cdot \frac{10}{3}\right)}{\mathrm{j} \cdot 10-\mathrm{j} \cdot \frac{10}{3}} \quad Z_{\text {load }}=-5 i \quad I_{a}:=\frac{1.0+\mathrm{j} \cdot 0.0}{\mathrm{j} \cdot 1+\mathrm{Z}_{\text {load }}} \quad I_{a}=0.25 i
$$

By current division,

$$
I_{C}:=I_{a} \cdot \frac{(j \cdot 10)}{j \cdot 10-j \cdot \frac{10}{3}} \quad I_{C}=0.375 i
$$

the current in a delta is a factor of sqrt of 3 less than the equivalent wye current and leads by 30 degrees.

$$
\begin{aligned}
I_{\text {cap }}:=\frac{I_{C}}{\sqrt{3}} \mathrm{e}^{\mathrm{j} \cdot \frac{\pi}{6}} \quad & \mathrm{I}_{\text {cap }}=-0.108+0.188 \mathrm{i} \quad\left|\mathrm{I}_{\text {cap }}\right|=0.217 \\
& \text { I cap_angle }:=\operatorname{angle}\left(\operatorname{Re}\left(I_{\text {cap }}\right), \operatorname{Im}\left(I_{\text {cap }}\right)\right) \quad I_{\text {cap_angle }}=120^{\circ} \mathrm{deg}
\end{aligned}
$$

Finding the three phase output complex power (in this case all reactive),
$\mathrm{S}_{\text {3фload }}:=3 \cdot\left|\mathrm{I}_{\mathrm{a}}\right| \cdot\left|\mathrm{I}_{\mathrm{a}}\right| \cdot \mathrm{Z}_{\text {load }} \quad \mathrm{S}_{\text {3фload }}=-0.9375 \mathrm{i}$

Checking the complex power out,
$\mathrm{V}_{\mathrm{anx}}:=\mathrm{I}_{\mathrm{a}} \cdot \mathrm{Z}_{\text {load }}$
$S_{3 \phi l o a d}:=3 \cdot \mathrm{~V}_{\text {anx }} \cdot \overline{\mathrm{I}_{\mathrm{a}}} \quad \mathrm{S}_{3 \phi l o a d}=-0.937 \mathrm{i}$
Another check of complex power out,

$$
\mathrm{S}_{3 \phi \text { in }}:=3 \cdot 1 \cdot \overline{\mathrm{I}_{\mathrm{a}}} \quad \mathrm{~S}_{3 \phi \text { out }}:=\mathrm{S}_{3 \phi \text { in }}-3 \cdot\left|\mathrm{I}_{\mathrm{a}}\right| \cdot\left|\mathrm{I}_{\mathrm{a}}\right| \cdot(\mathrm{j} \cdot 1) \quad \mathrm{S}_{3 \phi \text { out }}=-0.937 \mathrm{i}
$$

Problem 6. In the Figure shown below, assume that

Pick QG2 such that |V2|=1. In this case, what are QG2, SG1, and the angle of V2?

State the given voltage magnitude and find the angle on the line impedance.

$$
\mathrm{V}_{2 \mathrm{mag}}:=1 \quad \text { angle }_{\mathrm{Z}}:=\text { angle }\left(\operatorname{Re}\left(\mathrm{Z}_{\text {line }}\right), \operatorname{Im}\left(\mathrm{Z}_{\text {line }}\right)\right) \quad \text { angle }_{\mathrm{Z}}=84.289{ }^{\circ} \mathrm{deg}
$$

From the diagram, we see that the real power in the load SD2 must all be supplied from the transmission line.
$\mathrm{P}_{\mathrm{D} 2}:=\operatorname{Re}\left(\mathrm{S}_{\mathrm{D} 2}\right) \quad \mathrm{P}_{\mathrm{D} 2}=0.5$
$\mathrm{P}_{21}:=-\mathrm{P}_{\mathrm{D} 2} \quad \mathrm{P}_{21}=-0.5$
An expression for the real power from the line is as follows:
$P_{21}=\operatorname{Re}\left[\frac{\left.\left|V_{2}\right|\right|^{2}}{\left|Z_{\text {line }}\right|} \cdot e^{j \cdot a n g l e} Z_{-}-\frac{\left|V_{1}\right| \cdot V_{2 m a g}}{\left|Z_{\text {line }}\right|} \cdot e^{j \cdot a n g l e} Z_{\cdot} \cdot e^{j \cdot \theta}\right]$

Guess
${ }^{\theta} 12:=0 \cdot \operatorname{deg}$

Take the real part and solve for the voltage phase angle difference across the transmission line.
Given
$P_{21}=\frac{\left|\mathrm{V}_{2 \mathrm{mag}}\right|^{2}}{\left|\mathrm{Z}_{\text {line }}\right|} \cdot \cos \left(\right.$ angle $\left._{\mathrm{Z}}\right)-\frac{\left|\mathrm{V}_{1}\right| \cdot \mathrm{V}_{2 \mathrm{mag}}}{\left|\mathrm{Z}_{\text {line }}\right|} \cdot \cos \left(\right.$ angle $\left.\mathrm{Z}^{+}+{ }_{12}\right)$

$$
\theta_{12}:=\text { Find } \theta_{12} \quad \theta_{12}=-2.902 \cdot \mathrm{deg}
$$

Therefore, voltage V2 is $\mathbf{1 . 0}$ at an angle of - $\mathbf{2 . 9 0 2}$ degrees.
A rectangular form to be used in calculations that follow is

$$
\mathrm{V}_{2}:=\mathrm{V}_{2 \mathrm{mag}} \cdot\left(\cos \theta_{12}\right)+\mathrm{j} \cdot \sin \left(\theta_{12}\right)
$$

An expression derived in class for S 12 is
$\mathrm{S}_{12}:=\frac{\left(\left|\mathrm{V}_{1}\right|\right)^{2}}{\overline{\mathrm{Z}_{\text {line }}}}-\frac{\left|\mathrm{V}_{1}\right| \cdot\left|\mathrm{V}_{2}\right|}{\overline{\mathrm{Z}_{\text {line }}}} \cdot \overline{\left(\mathrm{e}^{\mathrm{j} \cdot \theta} 12\right)}$
solving,
$S_{12}=0.503-0.037 i$

At bus 1, the complex power balance is
$\mathrm{S}_{\mathrm{G} 1}:=\mathrm{S}_{\mathrm{D} 1}+\mathrm{S}_{12} \quad \mathrm{~S}_{\mathrm{G} 1}=1.003+0.463 \mathrm{i}$

Therefore, SG1 is $\mathbf{1 . 0 0 3}$ per unit real power and $\mathbf{0 . 4 6 3}$ per unit reactive power.

At bus 2, the complex power entering is
$\mathrm{S}_{21}:=\left[\frac{\left|\left|\mathrm{V}_{2}\right|\right)^{2}}{\overline{\mathrm{Z}_{\text {line }}}}-\frac{\left|\mathrm{V}_{1}\right| \cdot\left|\mathrm{V}_{2}\right|}{\overline{\mathrm{Z}_{\text {line }}}} \cdot \mathrm{e}^{\mathrm{j} \cdot \theta} 12\right] \quad \mathrm{S}_{21}=-0.5+0.063 \mathrm{i}$

At bus 2, the complex power balance is
$\mathrm{Q}_{\mathrm{G} 2}:=\mathrm{S}_{21}+\mathrm{S}_{\mathrm{D} 2} \quad \mathrm{Q}_{\mathrm{G} 2}=-1.717 \cdot 10^{-7}+0.563 \mathrm{i}$

Therefore, $\mathbf{Q} \mathbf{G} 2$ is $\mathbf{0 . 5 6 3}$ per unit reactive power.

