5.2 Tubular Steel Columns

Description

As described in Section 5.1, the selection of steel columns, subject to axial load and bending, can sometimes involve a tedious, iterative process. The first step requires guessing at a suitable trial section or using an elaborate set of formulas to select a first trial selection for the steel columns. The second step requires checking the first trial section to ensure that it satisfies the AISC Specification (specifically, the AISC interaction equations). If the first trial selection is not satisfactory, then the process must be repeated with a second trial section. In some cases additional iterations are required to ensure that the lowest weight section is obtained.

This application allows the user to rapidly check trial sections by entering only the width, depth and tube wall thickness of trial sections. All necessary section properties and parameters required are then computed by the application. If the trial section is not satisfactory, the user may repeat the process until a satisfactory section is obtained.

This application computes section properties, compact section criteria, lateral bracing lengths, and slenderness ratios of square or rectangular tubular column sections, actual and allowable axial and bending stresses, amplification factors and moment modifiers, and the beam-column interaction equations of the AISC Specification for a column with axial load and end moments about one or both axes. This application does not cover sections with "slender compression elements" as defined in the AISC Specification.

The required input includes axial load and end moments about one or both axes, column length, effective length factors, yield strength, flag denoting if column is free to sway about one or both axis directions, and the depth, width and thickness of the section.

A summary listing input, the solution of the interaction equations, and a listing of all computed values is shown on pages 11-13.

Reference: AISC "Specification for Structural Steel Buildings - Allowable Stress Design and Plastic Design with Commentary." June 1, 1989

Input

Notation

Section A

Input Variables

Yield strength of steel: $\quad F_{y}:=46 \mathrm{ksi}$

Column axial load: $\quad P:=200 \mathrm{kip}$

Unbraced column length: $\quad L:=11.5 \mathrm{ft}$

End moment about the X axis, at the upper end of the column:

End moment about the X axis, at the lower end

$$
M_{x l}:=-120 \mathrm{kip} \cdot f t
$$

End moment about the Y axis, at the upper end of the column:
$M_{x u}:=120 \mathrm{kip} \cdot \mathrm{ft}$ of the column:

$$
M_{y u}:=40 \mathrm{kip} \cdot f t
$$

End moment about the Y axis, at the lower end

$$
M_{y l}:=-40 \mathrm{kip} \cdot f t
$$ of the column:

Note $\Rightarrow \quad$ Positive values of M indicate clockwise moments and negative values indicate counterclockwise moments.

Effective length factor
relative to the X axis:

$$
K_{x}:=1.0
$$

Effective length factor
relative to the Y axis:

$$
K_{y}:=1.0
$$

Variable "X_Sway" defined as 0 if sidesway
is prevented, and 1 if
X_Sway:=0
sidesway is permitted:

Variable "Y_Sway" defined as 0 if sidesway
is prevented, and 1 if
Y_{-}Sway: $=0$
sidesway is permitted:

Section Dimensions and Wall Thickness

Enter estimated values for the depth, width and tube wall thickness.

Section depth:	$d:=16$ in
Section width:	$b:=12$ in

Tube wall thickness: $\quad t:=0.500 \mathrm{in}$

Computed Section Properties

A cross section area of member
W weight of section per unit length
Ix moment of inertia about the X axis
$\mathrm{r}_{\mathrm{x}} \quad$ radius of gyration about the X axis
$\mathrm{S}_{\mathrm{x}} \quad$ section modulus about the X axis
Iy moment of inertia about the Y axis
ry radius of gyration about the Y axis
Sy section modulus about the Y axis

Computed Variables

fa_{a} axial compressive stress
$\mathrm{fb}_{\mathrm{z}} \mathrm{xu}$ bending stress about the X axis at the upper end of the column
$\mathrm{fb}_{\mathrm{z}} \mathrm{x} \quad$ bending stress about the X axis at the lower end of the column
$\mathrm{fb}_{\mathrm{f}} \mathrm{yu}$ bending stress about the Y axis at the upper end of the column
$\mathrm{fb}_{\mathrm{y}} \mathrm{yl}$ bending stress about the Y axis at the lower end of the column
Fa allowable compressive axial stress (AISC Specification, Eqs. (E2-1) and (E2-2))
$\mathrm{Fbx}^{\mathrm{F}} \quad$ allowable bending stress about the X axis
(AISC Specification, Eqs. (F1-1), (F1-2), (F1-3) and (F1-5))
Fby allowable bending stress about the Y axis
(AISC Specification, Identity (F2-2) and Eq. (F2-3))
F'ex Euler's stress about the X axis divided by a factor of safety (AISC Specification, Sect. H-1)
F'ey Euler's stress about the Y axis divided by a factor of safety (AISC Specification, Sect. H-1)
Cb moment modifier factor (AISC Specification, Sect. F1-3)
Lc Lateral bracing length (AISC Specification, Eq. (F3-2))
CF a variable defined within this application to reflect compact section criteria of AISC Specification, Table B5.1. (Section is compact if $\mathrm{CF}=2$, non-compact if $\mathrm{CF}=1$, and a slender compression element section not covered by this application if $\mathrm{CF}=0$.)

Calculations

This application is limited to steel with a yield strength less than or equal to 65 ksi :

$$
F_{y}:=\operatorname{if}\left(F_{y}>65 \cdot k s i, 65 \cdot k s i, F_{y}\right) \quad \quad F_{y}=46 \mathrm{ksi}
$$

Section Properties

Cross section area:

$$
A:=2 \cdot t \cdot(b+d-8 \cdot t)+3 \cdot \pi \cdot t^{2} \quad A=26.356 \mathrm{in}^{2}
$$

Section weight per unit length:

$$
W:=A \cdot 3.4 \cdot \frac{l b}{f t \cdot i n^{2}} \quad W=89.611 \frac{l b}{f t}
$$

Moment of inertia about the X axis:

$$
\begin{aligned}
I_{x}:= & \frac{t \cdot(d-4 t)^{3}}{6}+\frac{t \cdot(b-4 t) \cdot(d-t)^{2}}{2}+\frac{(b-4 t) \cdot t^{3}}{6}+15 t^{4} \cdot\left(\frac{\pi}{8}-\frac{8}{9 \pi}\right)+3 \pi \cdot t^{2} \cdot\left(\frac{d}{2}-\frac{2}{3} t \cdot\left(3-\frac{14}{3 \pi}\right)\right)^{2} \\
& I_{x}=961.967 \mathrm{in}^{4}
\end{aligned}
$$

Section modulus about the X axis:

$$
S_{x}:=\frac{2 I_{x}}{d} \quad S_{x}=120.246 \mathrm{in}^{3}
$$

Radius of gyration about the X axis:

$$
r_{x}:=\sqrt{\frac{I_{x}}{A}} \quad r_{x}=6.041 \mathrm{in}
$$

Moment of inertia about the Y axis:

$$
\begin{aligned}
I_{y}:= & \frac{t \cdot(b-4 t)^{3}}{6}+\frac{t \cdot(d-4 t) \cdot(b-t)^{2}}{2}+\frac{(d-4 t) \cdot t^{3}}{6}+15 t^{4} \cdot\left(\frac{\pi}{8}-\frac{8}{9 \pi}\right)+3 \pi \cdot t^{2} \cdot\left(\frac{b}{2}-\frac{2}{3} t \cdot\left(3-\frac{14}{3 \pi}\right)\right)^{2} \\
& \quad I_{y}=617.752 \mathrm{in}^{4}
\end{aligned}
$$

Section modulus about the X axis:

$$
S_{y}:=\frac{2 I_{y}}{b}=102.959 \mathrm{in}^{3}
$$

Radius of gyration about the X axis:

$$
r_{y}:=\sqrt{\frac{I_{y}}{A}}=4.841 \mathrm{in}
$$

Axial and Bending Stresses

Axial stress:

$$
f_{a}:=\frac{P}{A}=7.588 \mathrm{ksi}
$$

Bending stress due to moment about the X axis at the upper end of the column:

$$
f_{b_{-} x u}:=\frac{M_{x u}}{S_{x}}=11.975 \mathrm{ksi}
$$

Bending stress due to moment about the X axis at the lower end of the column:

$$
f_{b _x l}:=\frac{M_{x l}}{S_{x}}=-11.975 \mathrm{ksi}
$$

Bending stress due to moment about the Y axis at the upper end of the column:

$$
f_{b_{-} y u}:=\frac{M_{y u}}{S_{y}}=4.662 \mathrm{ksi}
$$

Bending stress due to moment about the Y axis at the lower end of the column:

$$
f_{b_{-} y l}:=\frac{M_{y l}}{S_{y}}=-4.662 \mathrm{ksi}
$$

Slenderness ratios about the X and Y axes:

$$
\frac{K_{x} \cdot L}{r_{x}}=22.8 \quad \frac{K_{y} \cdot L}{r_{y}}=28.5
$$

Larger slenderness ratio:

$$
S R:=\text { if }\left(\frac{K_{x} \cdot L}{r_{x}}>\frac{K_{y} \cdot L}{r_{y}}, \frac{K_{x} \cdot L}{r_{x}}, \frac{K_{y} \cdot L}{r_{y}}\right)=28.504
$$

If $S R$ is >200 a larger section or bracing is required.

Modulus of elasticity of steel:

$$
E:=29000 \cdot k s i
$$

Column slenderness ratio separating elastic and inelastic buckling (see AISC Specification, Eq. (E2-1)):

$$
C_{c}:=\sqrt{\frac{2 \cdot \pi^{2} \cdot E}{F_{y}}}=111.554
$$

Compact Section Criteria

Section is compact if $\mathrm{CF}=2$, non-compact if $\mathrm{CF}=1$, and a slender compression element section not covered by this application if CF $=0$ (AISC Specification, Sect. B5 and Table B5.1).

$$
\begin{aligned}
& \frac{b-3 t}{t}=21 \\
& C F:=\text { if }\left(\frac{b-3 t}{t} \leq \frac{190}{\sqrt{F_{y} \cdot k s i^{-1}}}, 2, \text { if }\left(\frac{b-3 \cdot t}{t} \leq \frac{238}{\sqrt{F_{y} \cdot k s i^{-1}}}, 1,0\right)\right)=2
\end{aligned}
$$

An inside bending radius of 1.5 t is assumed in this equation to allow for tubes produced with a radius smaller than the 2 t value used to calculate section properties.

Allowable axial stress (AISC Specification, Eqs. (E2-1) and (E2-2)) with SR substituted for Kl / r. If SR is greater than 200 or if the section is a "slender compression element" this equation will return Fa equal to 0 :

$$
F_{a}:=\text { if }\left\{\left(\left(S R \geq C_{c}\right) \cdot(S R \leq 200)\right), \frac{12 \cdot \pi^{2} \cdot E}{23 \cdot S R^{2}}, \text { if } \left.\left\{(S R>200)+(C F=0), 0 \cdot k s i, \frac{\left(1-\frac{S R^{2}}{2 \cdot C_{c}{ }^{2}}\right) \cdot F_{y}}{\frac{5}{3}+\frac{3 \cdot S R}{8 \cdot C_{c}}-\frac{S R^{3}}{8 \cdot C_{c}^{3}}}\right) \right\rvert\,\right)
$$

$$
F_{a}=25.3 \mathrm{ksi}
$$

Ratio of the smaller end moment M_{x}, to the larger end moment M_{xb} about the X axis:

$$
\begin{aligned}
& M_{x a}:=\mathrm{if}\left(\left|M_{x u}\right|<\left|M_{x l}\right|, M_{x u}, M_{x l}\right) \\
& M_{x b}:=\operatorname{if}\left(M_{x a}=M_{x u}, M_{x l}, M_{x u}\right) \\
& \frac{M_{x a}}{M_{x b}}=-1
\end{aligned}
$$

Ratio of the smaller end moment M_{y}, to the larger end moment M_{yb} about the Y axis:

$$
\begin{aligned}
& M_{y a}:=\text { if }\left(\left|M_{y u}\right|<\left|M_{y l}\right|, M_{y u}, M_{y l}\right) \\
& M_{y b}:=\text { if }\left(M_{y a}=M_{y u}, M_{y l}, M_{y u}\right) \\
& \frac{M_{y a}}{M_{y b}}=-1
\end{aligned}
$$

Moment modifier factor Cb (AISC Specification, Sect. F1-3):

$$
\begin{aligned}
& C_{b}:=1.75+1.05 \cdot \frac{M_{x a}}{M_{x b}}+0.3 \cdot\left(\frac{M_{x a}}{M_{x b}}\right)^{2} \\
& C_{b}:=\text { if }\left(\left(X _S w a y=0\right) \cdot\left(f_{a}>0 \cdot k s i\right), 1.0, \text { if }\left(C_{b}<2.3, C_{b}, 2.3\right)\right) \\
& C_{b}=1
\end{aligned}
$$

If the ends of the member are braced to prevent sidesway in the X direction and the axial stress is greater than 0 ksi, Сb equals 1.0.

Lateral bracing length Lc (AISC Specification, Eq. (F3-2)):

$$
L_{c}:=\mathrm{if}\left(\left(1950+1200 \cdot \frac{M_{x a}}{M_{x b}}\right)>1200,\left(1950+1200 \cdot \frac{M_{x a}}{M_{x b}}\right) \cdot \frac{b \cdot k s i}{F_{y}}, 1200 \cdot \frac{b \cdot k s i}{F_{y}}\right)=26.087 \mathrm{ft}
$$

Allowable bending stress about strong or weak axis, for compact or non-compact sections (AISC Specification, Eqs. (F3-1), (F3-2), and (F3-3)). If the section contains a "slender compression element" this equation returns Fb equal to 0 :

$$
F_{b}:=\text { if }\left(C F=0,0 \cdot k s i, \text { if }\left((C F=2) \cdot\left(L \leq L_{c}\right) \cdot(d \leq 6 \cdot b), 0.66 \cdot F_{y}, 0.60 \cdot F_{y}\right)\right)=30.36 k s i
$$

Euler's stress for the X and Y directions, divided by a factor or safety and using the actual unbraced length and corresponding radius of gyration in the plain of bending (AISC Specification, Sect. H-1):

$$
F_{e x}^{\prime}:=\frac{12 \cdot \pi^{2} \cdot E}{23 \cdot\left(\frac{K_{x} \cdot L}{r_{x}}\right)^{2}}=286.201 \mathrm{ksi} \quad \quad F_{e y}^{\prime}:=\frac{12 \cdot \pi^{2} \cdot E}{23 \cdot\left(\frac{K_{y} \cdot L}{r_{y}}\right)^{2}}=183.791 \mathrm{ksi}
$$

Moment modifier coefficients Cmx and Cmy (AISC Specification, Sect. H-1):

$$
\begin{aligned}
& C_{m x}:=\text { if }\left(X_{-} S w a y=0,0.6-0.4 \cdot\left(\frac{M_{x a}}{M_{x b}}\right), 0.85\right)=1 \\
& C_{m y}:=\text { if }\left(Y _S w a y=0,0.6-0.4 \cdot\left(\frac{M_{y a}}{M_{y b}}\right), 0.85\right)=1
\end{aligned}
$$

AISC Specification, Eqs. (H1-1) and (H1-2) for combined axial compression and bending, expressed as functions of bending stresses about the X and Y axes:

$$
\begin{aligned}
& H 1 _1\left(f_{b x}, f_{b y}\right):=\frac{f_{a}}{F_{a}}+\frac{C_{m x} \cdot f_{b x}}{\left(1-\frac{f_{a}}{F_{e x}^{\prime}}\right) \cdot F_{b}}+\frac{C_{m y} \cdot f_{b y}}{\left(1-\frac{f_{a}}{F_{e y}^{\prime}}\right) \cdot F_{b}} \\
& H 1 _2\left(f_{b x}, f_{b y}\right):=\frac{f_{a}}{0.60 \cdot F_{y}}+\frac{f_{b x}}{F_{b}}+\frac{f_{b y}}{F_{b}}
\end{aligned}
$$

At upper end of column:

$$
\begin{aligned}
& H 1 _1\left(\left|f_{b_{-} x u}\right|,\left|f_{b_{-} y u}\right|\right)=0.866 \\
& H 1 _2\left(\left|f_{b_{-} x u}\right|,\left|f_{b_{-} y u}\right|\right)=0.823
\end{aligned}
$$

At lower end of column:

$$
H 1 _1\left(\left|f_{b_{-} x l}\right|,\left|f_{b_{-} y l}\right|\right)=0.866
$$

$$
H 1 _2\left(\left|f_{b_{-} x l}\right|,\left|f_{b_{-} y l}\right|\right)=0.823
$$

Maximum value of H1_1 or H1_2:

$$
\begin{aligned}
& H E Q:=\left[\begin{array}{ll}
H 1 _1\left(f_{b_{-} x u}, f_{b_{-} y u}\right) & H 1 _1\left(f_{b_{-} x l}, f_{b_{-y l}}\right) \\
H 1 _2\left(f_{b_{-} x u}, f_{b_{-} y u}\right) & H 1 _2\left(f_{b_{-} x l}, f_{b_{-} y l}\right)
\end{array}\right] \\
& \max (H E Q)=0.866
\end{aligned}
$$

If the maximum value of interaction equations $\mathrm{H} 1 _1$ or $\mathrm{H} 1 _2$ is less than or equal 1.0 the section is adequate. If the section is too small or too large, a new trial section may be entered.

Summary

Tube size:

Section depth: $\quad d=16$ in
Section width: $\quad b=12 \mathrm{in}$
Tube wall thickness: $\quad t=0.5$ in

Input

Yield strength of steel:
Column axial load:
Unbraced column length:
End moment about the X axis, at the upper end of the column:

End moment about the X axis, at the lower end of the column:

End moment about the Y axis, at the upper end of the column:

End moment about the Y axis, at the lower end of the column:

Effective length factor relative to the X axis:

Effective length factor relative to the Y axis:
Variable "X_Sway" defined as 0 if sidesway is prevented, and 1 if sidesway is permitted:

Variable "Y_Sway" defined as 0 if sidesway is prevented, and 1 if sidesway is permitted:

Maximum value of H1_1 or H1_2:

$$
\begin{aligned}
& F_{y}=46 \mathrm{ksi} \\
& P=200 \mathrm{kip} \\
& L=11.5 \mathrm{ft} \\
& M_{x u}=120 \mathrm{kip} \cdot \mathrm{ft}
\end{aligned}
$$

$$
M_{x l}=-120 \mathrm{kip} \cdot f t
$$

$$
M_{y u}=40 \mathrm{kip} \cdot f t
$$

$$
M_{y l}=-40 \mathrm{kip} \cdot f t
$$

$$
K_{x}=1
$$

$$
K_{y}=1
$$

$$
X _S w a y=0
$$

$$
Y_{-} S w a y=0
$$

$$
\max (H E Q)=0.866
$$

Note $\Rightarrow \quad$ If the maximum value of $\mathrm{H} 1 _1$ or $\mathrm{H} 1 _2$ is significantly larger than 1.0 , a stronger section must be used.

Estimated trial tube wall thickness for follow-up estimates, assuming no change in bf or d . Suggested value of t may be too thin or unavailable:

Intermediate Computed Values:

(Refer to the document for definitions)

$A=26.356 \mathrm{in}^{2}$	$f_{a}=7.588 \mathrm{ksi}$	$F_{a}=25.277 \mathrm{ksi}$
$I_{x}=961.967 \mathrm{in}^{4}$	$f_{b_{-} x u}=11.975 \mathrm{ksi}$	$F_{b}=30.36 \mathrm{ksi}$
$r_{x}=6.041 \mathrm{in}$	$f_{b_{-} x l}=-11.975 \mathrm{ksi}$	$F^{\prime}{ }_{e x}=286.201 \mathrm{ksi}$
$S_{x}=120.246 \mathrm{in}^{3}$	$f_{b_{-} y u}=4.662 \mathrm{ksi}$	$F^{\prime}{ }_{e y}=183.791 \mathrm{ksi}$
$I_{y}=617.752 \mathrm{in}^{4}$	$f_{b_{-}-y l}=-4.662 \mathrm{ksi}$	$C_{c}=111.554$
$r_{y}=4.841 \mathrm{in}$	$\frac{K_{x} \cdot L}{r_{x}}=22.842$	$C_{b}=1$
$S_{y}=102.959 \mathrm{in}^{3}$	$C_{m x}=1$	
$L_{c}=26.087 \mathrm{ft}$	$\frac{K_{y} \cdot L}{r_{y}}=28.504$	$C_{m y}=1$
$C F=2$		

