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    Remark: 
  1: Vectors depending from time and position, are written in bold-dark-blue fonts, while vectors depending only from 
       the position r are written in bold-light-blue fonts.
  2: The usual Mathcad complex conjugation operator that is the bar, here imeans Instead the arithmetic mean, that is 

                                                                                        a
 1

N

j

aj


N
= .

   3: the complex conjugation operator is indicated with the asterisk instead of a bar, that is: 

       if z a j b=  then z * a j b=  while in "  MAthcad"   as z


a j b= . 

Banach-Hilbert spaces

ℕ    set of all natural numbers
ℤ    set of all integer numbers

ℤ+ set of all positive integer numbers

ℤ− set of all negative integer numbers

ℤ0
+ set of all non negative integer numbers

ℤ0
− set of all non positive integer numbers

ℚ   set of all rational numbers
ℝ   set of all real numbers

ℝ+ set of all positive real numbers

ℝ− set of all negative real numbers
ℂ   set of all complex numbers
f:M→N  defined by x ↦ f(x)    application  f of M on N defined by x to which is associated f(x) (f maps M on N)
a *  indicates the complex conjugated of a
Φ(x) is the Heaviside step function
Δ(x) is the Dirac step function

   Cauchy convergence criterion  for real sequences.
  Given the sequence {an} , a necessary and sufficient condition for the convergence of the sequence, is that:

                                          ∀ε 0 , ∃ N 1  ∈ ℤ : an a ε ∀n N ⇒
∞n

anlim


a= .

 Furthermore the criterion say ∀ε 0 , ∃ N 1 ∈ ℤ : an am ε ∀n m N ⇒
∞n

anlim


a= .

    Banach Space   (Hyperlink)
  A normed and complete space, namely a normed space where every fundamental sequence is convergent, it is a Banach
space.
    Hilbert space   (Hyperlink)(Hilbert space=ℍ)
 The Cauchy convergence criterion applied to a linear space, is not always sufficient. 
 When for a linear space, the Cauchy criterion is also sufficient, the space is  complete. 
 A complete space, where there is also defined the scalar product and consequently the norm,  it  is a Hilbert space.

   vector space    (Hyperlink)
 A vector space V on a field K ( K ℝ=  orK ℂ= ) is a set where are defined the operations of vector sum
                                                                     (+) :  V +  V ↦ V                   (A ↦B: read A associated B )

                                                                                        (v1, v2) → v1+v2 ,    

  and the operation of product between a vector and a scalar
                                                                                      (·) :  K ×  V ↦ V
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                                                                                        (λ,v) → λv

Banach-Hilbert spaces

Tensors

                                                               1  Vector spaces 

  The physical state of an object (for example the orientation of the spin of an atom) is represented by a state's vector in 
  complex vector space . Following Dirac those vectors belong to a linear or vector space (Set of vectors)

  (Hilbert space=ℍ). The vector is indicated by the symbol  ∣ x  ˃  (ket) while the linear vector space with  

  L { ∣ x ˃ }=  ∈ ℍ . Any linear function f(∣ ψ )˃ of the ket ∣ ψ ,˃ possesses the superposition property, namely 

                                                   f λ1 ∣ ψ1 ˃ λ2 ∣ ψ2 ˃  λ1 f ∣ ψ1 ˃  λ2 f ∣ ψ2 ˃ =  .

  If two functions f1 and f2 have this property (superposition), any linear combination of this two functions 

                                                                              c1 f1 c2 f2

  also has this property. The function f ∣ x ˃  defines the new vector  (bra) < f ∣. The value taken by this function for 

  ket ∣ ψ  ˃is the  number  < f | ψ >.

  To the  dual space of L belongs the vector bra < x ∣ , dual of the ket ∣ x .˃ There is a  one-to-one correspondence  
  between the vectors of the space L and the vectors of the dual one. The correspondence between each ket and each bra 

  indicated as a conjugation, namely the bra conjugate to the ket ∣ x  ˃is represented by  < x ∣. The correspondence is a

  linear, that is to the linear combination λ2 ∣ x ˃ λ2 ∣ y ˃ ∣ z ˃=  corresponds the bra conjugate

                                                                < z ∣ λ2 * < x ∣ λ2 * < y ∣= .  

  To the ket ∣ 0  ˃corresponds the bra< 0 ∣  and vice versa. For the linearity, are necessary two operations:  the sum  

∣ x ˃ ∣ y ˃ ∣ z ˃=  and the product  between a complex constant α ∈ ℂ, and the ket ∣ x ,˃ namely  

                                                                          ∣ z ˃ α ∣ x ˃= ∣ x ˃ α= .                                                           (1.1)
                    Ket vectors properties                                                                                                    

                   ∃ Opposite                                     ∣ x ˃ ∣ x ˃ ∣ 0 ˃=              (1.2)

                   ∃ Neutral element (sum)                ∣ 0  ˃  namely  ∣ 0 ˃ ∣ x ˃ ∣ x ˃= (1.3)

                  Commutative (sum)                         ∣ x ˃ ∣ y ˃ ∣ y ˃ ∣ x ˃=          (1.4)

                   Associative (sum)                          ∣ x ˃ ∣ y ˃  ∣ z ˃ ∣ x ˃ ∣ y ˃ ∣ z ˃ =  (1.5)

                  Distributive (sum)                           α ∣ x ˃ ∣ y ˃  α ∣ x ˃ α ∣ y ˃=  (1.6)

                  Distributive  (product)                   α β( ) ∣ x ˃  α ∣ x ˃ β ∣ x ˃=      (1.7)

                  Associative (product)                     α β ∣ x ˃   α β( ) ∣ x ˃= (1.8)

                                                                          1 ∣ x ˃  ∣ x ˃=       (1.9)

To the ket ∣ w ˃
ξ1

ξ2

ξλ ξ  ∣ ξ ˃ 




d= corresponds the bra conjugated < w ∣
ξ1

ξ2

ξλ ξ  * < ξ ∣ 




d=

  The set L { ∣ x ˃ }=  and the two operation (+, .) verifying the previous axioms, forms a linear space or vector  
  space.
  Examples of linear sets: a) the set of the complex numbers (·,+,-,/),  
                                                 b) two and three-dimensional geometric spaces (·,+,-,/),
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                                                 c) the set Mat of the square matrices (N x N) (·,+,-,inverse),
                                                 d) the set of all continuous functions defined on a continuous and established range (·,+,-,
                                                 e) the set of all integrable functions (·,+,-,/),
                                                 f) the set of all square integrable functions (·,+,-,/),
                                                 g) the set of all function families of functions (·,+,-,/).    
                                                 

 Introducing in a set  one or more composition laws (internal, external as addition and multiplication (·,+,-) of vectors by
  scalars for ℕ, ℤ, ℚ,ℝ,ℂ), I give to the set an algebraic structure (The most important algebraic structures are:  
  group, semigroup, ring body, modulus, vector space). More simply, an Algebra is created  when I define the  
  product among the elements of the set L and as result it gives a new  element of the same set. It is an external product  
  and not a scalar product (internal) [8]. 
 A measure of the vectors is given by the scalar product.

 A set L { ∣ xi > }= , i=1,...,n, is linearly independent  if and only if 

1

n

j

αj ∣ xj >  


∣ 0 >=   which means that   

  all the coefficients αj are zero. The set L can also be infinite, but the sum must be carried on a finite set or subset of  L
  than the set is linearly independent.
  Definition of Basis of a vector space  for finite or infinite dimensional spaces: 
   each set  of linearly independent vectors   such that any other vector of the space can be expressed as a linear     
   combination of such vectors, is a base of a finite dimensional vector space.
  Example of bases of  finite dimensional vector spaces:
                  a1) Geometrical spaces: each set of three non-coplanar vectors , constitutes a basis.

                  a2) N-tuples (a collection of n ordered objects) of complex numbers α ∈ ℂ, the base is a linear combination o

                       the n-tuple.
                  a3) Square matrix (N x N).
                  a4) Polynomials (linear combinations of monomials) they have no finite dimension.
                  a5) The space of the square summable functions hasn't finite dimension.

  Let  H
1
 and H

2
 be two vector spaces and the ket ∣ u > ∈ H1 and  ∣ v > ∈ H2 . Define the tensor product of the vector

  spaces H1 and H2 as:

                                                                                     H12 H1 ⊗ H2=  

  and the kets product (or tensor product ) as: 

                                                                                ∣ u v > ∣ u > ∣ v >=  ,
5

  this product is commutative that is:

                                                           ∣ u v > ∣ v u >=  or ∣ u > ∣ v > ∣ v > ∣ u >=  ,
  it is distributive with respect to the sum:

                                                                             ∣ u > λ ∣ ξ > μ ∣ ψ >=  ,

                                       ∣ u v > λ ∣ ξ > μ ∣ ψ >  ∣ v >= λ ∣ ξ > ∣ v > μ ∣ ψ > ∣ v >=  ,  

                                                               while if    ∣ v > λ ∣ ξ > μ ∣ ψ >=    ,

                                       ∣ u v > ∣ u > λ ∣ ξ > μ ∣ ψ > = λ ∣ u > ∣ ξ > μ ∣ u > ∣ ψ >=  ,  
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                                              2   Scalar product axioms [4]

  Scalar product (or internal product) of two vectors (∣ x >, ∣ y > ) belonging to the Euclidean and vector space 

L { ∣ x > }=  . The scalar product must associate to each couple of vectors (∣ x >, ∣ y > ) a complex number, namely:

                                                                    ∣ x > ∣ y > →α < x | y >=

< x | y > < x ∣ ∙ ∣ y > = (2.1)

< x | x > 0 (2.2)

< x | x > 0= ⇒ ∣ x > ∣ 0 >= (2.3)

< x | y > < y | x > *= (2.4)

< x | α y  > α < x | y > = (2.5)

< α x  | y > α * < x | y > = (2.6)

< x | y z  > < x | y > < x | z >= (2.7)

Norm ∥ ∣ x > ∥ < x | x >= 0 ∥ ∣ x > ∥ ∞ (2.8)

∥ α ∣ x >  ∥ α ∥ ∣ x > ∥ = (2.9)

Triangular inequality ∥ ∣ x > ∣ y > ∥ ∥ ∣ x > ∥ ∥ ∣ y > ∥ (2.10)

Distance dxy ∥ ∣ x > ∣ y > ∥= (2.11)

  External product  between a ket ∣ x > and a bra < x ∣ is the operator: ∣ x > < x ∣.                                            (2.12)

                                                        3  vector analysis 

 Consider the sequence of vectors { ∣ xn > } , I define the limit of the sequence as:

                                                
∞n

∣ xn >lim


∣ x >=  ⇔
∞n

∥ ∣ xn > ∣ x > ∥lim


0= .                             (3.1)

 Definition of the limit about the vector space L { ∣ x t( ) > }=  ∈ ℍ , t ∈ ℝ.  The function maps  ℝ on L, it   

  associates to every t  the ket ∣ x t( ) >.

                                                                         
t0t

∣ x t( ) >lim


∣ x >=                                                                 (3.2)

 The property of uniqueness of the limit and all other, derive from the three properties of the norm.
 Continuity of the function: when the previous limit exists, the function is continuous. The ket writing can be   

 symbolically simplified ∣ x t( ) > ∣ t >=  ,  ∣ x1 > ∣ 1 >= ,... So, I can write:

                 
t0t

∣ t >lim


∣ t0 >=  ,  ∀ε 0 , ∃δε 0   :  t t0 δ ⇒ ∣ t > ∣ t0 > ε .                           (3.3)

  Derivative

                                                                  
t
∣ t >d

d t0t

∣ t > ∣ t0 >

t t0
lim


= , etc.                                                  (3.4)

  Integral in (a,b):

7

                           consider the function 

1

n

k

tk tk 1  ∣ tk > 


, t0 a= , tn b= ,                                                   (3.5)

  if exists  the limit   
0δk 1

n

k

tk tk 1  ∣ tk > 


lim


t∣ t >




d= ∣ Q >=                                                  (3.6)

                                                          then ∣ Q >  is the integral of ∣ t >  .

  In (a,b):                                                   ∣ Q b( ) > ∣ Q a( ) >
a

b

t∣ t >



d= .                                                      (3.7)

                                      
Derivative and integral are linear operators.
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                                                           4  Orthogonal systems of vectors

  Consider the set of vectors  L { ∣ xα > }=  ∈ ℍ , α ∈ ℝ it is  an orthonormal set of vectors when 

                                     ∀α β ∈ ℝ2  , < xα | xβ > δαβ=
0

1









=  for 
α β

α β=








.                                               (4.1)

  I can demonstrate that necessarily this set is a linearly independent set of vectors. 
   A set of orthonormal vectors is also a set of linearly independent vectors.

  Related to the properties of the  Hilbert space, follow some examples.

 H1) Consider the two complex numbers sequences {an} and {bn} such that 

1

∞

n

an 2


∞ , and

1

∞

n

bn 2


∞

 Define the kets ∣ a > { an }=  and ∣ b > { bn }= , so that: 

                                                           < a | b >
1

∞

n

an * bn 


= ,                                                                            (4.2)

                                         < a | α b( ) >
1

∞

n

an * α bn 


= α

1

∞

n

an * bn 


= ,                                               (4.3)

                                      < α a( ) | b >
1

∞

n

α an  * bn 


= α *

1

∞

n

an * bn 


= ,                                            (4.4)

              Cauchy criterion: ∀ε 0 , ∃ N ≥1 ∈( ) ℤ : an a ε ∀n N ⇒
∞n

anlim


a= .                                (4.5)

                 Furthermore  ∀ε 0 , ∃ N ≥1 ∈( ) ℤ : an am ε ∀n m N ⇒
∞n

anlim


a= .

                                                   ∀ε 0 , ∃ N ≥1 ∈( ) ℤ : bn b ε ∀n N ⇒
∞n

bnlim


b= .

                                                 ∀ε 0 , ∃ N ≥1 ∈( ) ℤ : bn bm ε ∀n m N ⇒
∞n

bnlim


b= .

   So that the space is complete, and therefore it is a Hilbert space.
  H2)  Continue functions space, defined in the range (0,1). Let's consider the two continue functionals f and g, and  
  calculate the scalar product       

                                                                      < f | g >
0

1

xf x( ) * g x( )




d=   ,                                                            (4.6)

  which always exists, been f and g continue functions. 
   Now see if they satisfy the scalar product axioms:                                                                       

                       < f | α g( ) >
0

1

xf x( ) * α g x( )




d= α
0

1

xf x( ) * g x( )




d= α < f x( ) | g x( ) > =  ,                  (4.7)

                    < α f( ) | g >
0

1

xα f x( )( ) * g x( )




d= α *
0

1

xf x( ) * g x( )




d= α * < f x( ) | g x( ) > = ,             (4.8)

                       < f | f > 0 ,                                                                                                                                        (4.9)
       and so on.
  If the Cauchy's convergence criterion is verified, then this vector space is complete and, therefore the continue   
  functions' space is a Hilbert space.                                                                     
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  H3)  The spaces L2 [ a b ] (also indicated L2 [ a b ]) of the (L=Lebesgue) integrable functions is a Hilbert space.

   L2 [ 0 2 π ]  ⊃ {
ei n x

2 π
} is a complete space and therefore it is a Hilbert space.

  L2 [ 1 1 ]  ⊃ { P λ ξ( ) }set of all   Legendre polynomials,  is a complete space and therefore it is a Hilbert space.

                                                  P n x( )
1

2n n nx
x2 1 n



n
= ,  f n x( ) n

1

2
 P n x( )= .                             (4.10)

       L2 [ ∞ ∞ ]  ⊃ {
∞

∞

xf x( )2



d }set of all square summable functions, ( Hermite polynomials)  is a complete   

 space and therefore it is a Hilbert space.

                                                H n z( )
ez

2

2n n π
nz

e z
2



n
= 1( )n 2 n 

n
 F n

1

2
 z2


= .                            (4.11)

10



                                                         5  Limited linear operators [8]

  The operator acts on a ket by left :                        A ∣ y > ∣ z >=                                                                                        (5.1) 

  and on a bra on the right :                                     < x ∣ A < y ∣=                                                                                         (5.2)
  The eigenvalues spectrum consists of:
  a) a discrete part, i. e. a finite or infinite set of values λn with n integer;

  b) a continuous part i. e. a set of values λ ν( ) which is a continuous and monotone function of ν. 
  Properties of the continuous spectrum: 
      1) λ ν( ) ∈ ℝ, 

      2) orthonormality of the eigenkets belonging to distinct eigenvalues: < y ν r( ) | y ν1 r1  > Δ ν ν1  Δ r r1 =

  A linear application A : ℍ1 → ℍ2 (A maps ℍ1 on ℍ2), with ℍ1 ℍ2  ∈ ℍ,  Hilbert space, is a linear operator.

  A is limited if  ∃ c ∈ℂ : ∥ A ∣ x > ∥ c ∥ ∣ x > ∥  ∀ ∣ x > ∈ ℍ1 .

  The set of all limited and linear operators, together the usual composition laws, is indicated with [H1,H2].

   [ℍ1 ℍ2 ] is a vector space  on K ( K ∈ ℝ orK ∈ ℂ). For each operator A, exists a norm ||A||. ℍ1 is the domain and 

   ℍ2  is the codominium or the operator's  range R A( ).

  If f1 ∈ ℍ1 and f2 ∈ ℍ2, the operator A lets associate to f1 the function f2, that is:  

                                                        ∀ ∣ x > ∈ DA ⊂ ℍ1 ⇒ A ∣ x > ∈ R A  ⊂ ℍ2.

    Be  ℍ1 a linear subset of ℍ2 , then:

                                                  A α β( ) α A β A=  ,  ∀ α β( ) ∈ℝ ℂ ,  A ∈ ℍ,                                         (5.3) 

                                                                          A B  ∣ x > A B ∣ x > = ,                                                           (5.4)
                                                                                A B C  A B  C= ,                                                                 (5.5)
                                                                             A B C  A B A C= ,                                                             (5.6)
                                                                                   A α B α A B= ,                                                                     (5.7)
                                                                                       A B B A ,                                                                         (5.8)

                                                      Commutator       [ A B ] A B B A= ,                                                             (5.9)
                                                             Identity                A I A= ,                                                                            (5.10)   

Schwarz inequality [4] < x ∣ A ∣ y > 2
< x ∣ A ∣ x > ∙ < y ∣ A ∣ y >  (5.11)

Bessel inequality [4]

α

< xα | x > 2



 < x | x > ∀ ∣ x > ∀ ∣ xα > 0  ∈  L (5.12)

Parseval Theorem [4]

α

< xα | x > 2

 < x | x >= (5.13)

   then the orthonormal system is complete. In such case is worth the following vector decomposition:

Decomposition ∣ x >
α

< xα | x > ∣ xα >= ∀ ∣ x > ∀ ∣ xα > 0  ∈  L (5.14)

  Each ket is thus, expressible as a linear combination of its components and hence the vector system   

                                                                             L { ∣ x t( ) > }=  ∈ ℍ , 
  is a complete basis. 
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  Hilbert spaces for which orthonormal and complete vector spaces  are at most numerable, are   separable.

                ∀ ∣ x >,     ∀ ∣ xj > ≠ 0 ∈ L = { ∣ x t( ) > } ∈ ℍ⇒  ∣ x >
0

N

j

< xj | x > ∣ xj >


=   .                (5.15)

∣ x > ∣ xs > ∣ xn >= (5.16)

< xs | xs > 2
< xn | xn > 2

 < x | x > 2


< xs | xn > 0= (5.17)

 n         6 Inverse operators

  Inverse  operator A 1 , is an operator such that  A 1 A A A 1= I=  ,                                                               (6.1)
   this property is not always verified (not invertible operator). That is the operator A is invertible if and only if

                                          ∀ ∣ y > ∈ R A   ∃ ∣ x > ∈ DA ⇒ A ∣ x > ∣ y > ∈ R A  ⊂ ℍ2= .

                                          A ∣ x > ∣ y >=    ⇒    A 1 A  ∣ x > ∣ x >= A 1 ∣ y >= .

                                                                            A B  1 B 1 A 1=

        The inverse of an operator can be found studying the equation A ∣ x > ∣ 0 >=  .

                           ∀ A B ∈ Mat N N( )    A B  1 A 1 A 1 B A B  1=  .                                             (6.2)

A B  1 A 1 B A B  1 A 1=

I A 1 B  A B  1 A 1=

∀ A B ∈ Mat N N  A B  1 I A 1 B  1
A 1=

∀ A B ∈ Mat N N  A B  1 I A 1 B  1
A 1=

∀ A B ∈ Mat N N  A2 B2  1
A B  A B  [ A B ] 

1
=

∀ A B ∈ Mat N N  A2 B2  1
A i B  A i B  i [ A B ]  

1
=

Example matrix calculation

A B  1 A 1 A 1 B A B  1= A 1 I B A B  1 =

A

1

4

7

2

5

8

3

6

9











 B

1

5

6

2

8

4

4

0

1











 I identity rows A  

A B  1
0.483

0.053

0.034

0.015

0.064

0.03

0.049

0.042

0.098













A 1 A 1 B A B  1

0.483

0.053

0.034

0.015

0.064

0.03

0.049

0.042

0.098











 I A 1 B  1
A 1

0.483

0.053

0.034

0.015

0.064

0.03

0.049

0.042

0.098
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A2 B2  1
0.015

0.039

8.967 10 3

0.027

0.066

0.019

8.354 10 3

4.806 10 3

2.597 10 3













A B  A B  A B B A  1
0.015

0.039

8.967 10 3

0.027

0.066

0.019

8.354 10 3

4.806 10 3

2.597 10 3













A2 B2  1
0.032

5.563 10 3

0.019

5.938 10 3

9.049 10 3

7.209 10 4

5.695 10 3

1.561 10 3

0.011













A i B  A i B  i A B B A   1
0.032

5.563 10 3

0.019

5.938 10 3

9.049 10 3

7.209 10 4

5.695 10 3

1.561 10 3

0.011













Example matrix calculation

The operator P ∣ u > < v ∣=  has no inverse.

Examples of operators inversion:

F
1

∣ F ω  > 1

2 π ∞

∞

ωei ω x



d ∣ F ω  >= ∣ f x  >=

Fourier F
∞

∞

xe i ω x



d= use with the Mathcad prefix operator

F ∣ f x  >
∞

∞

xe i ω x



d ∣ f x  >= ∣ F ω  >=

Laplace ℒ
∞

∞

xe s x



d= use with the Mathcad prefix operator

ℒ ∣ g x  >
∞

∞

xe s x



d ∣ g x  >= ∣ G s  >=

ℒ
1

∣ G s  > 1

2 π i σ i ∞

σ i ∞
ses x




d ∣ G s  >= ∣ g x  >=
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Differential operators
Examples:

Do1) A i
∂

∂x
= ⇒ A 1 1

i
 x.





d C=

A A 1 i
∂

∂x

1

i
 x.





d C






= I= ⇒ C 0=

A 1 A
1

i
 x.





d






i
∂

∂x



= x.





d
∂

∂x
= I=

DA ∈ ℝ Do2) A
∂2

∂x2
= i

∂
∂x

i
∂

∂x



=

A 1 i
∂

∂x




1
i

∂
∂x




1
=

1

i
 x.





d






1

i
 x.





d






= x.




d x.




d=

A 1 xx.




d




d=

Example with matrices

                                                             7  7 Adjoint operator [4]

 The  adjoint of a linear operator A (or Hermitian conjugate operator of A)  is written A
†

  (read: adjoint of A).

                                                                       if A ∈ MAT n n( ) :  A
†

A * T=  ,                                                          7.1)

furthermore, the operator A is Hermitian if                        A A
†

=  .

  Let A be a linear operator and ∣ x >  the ket conjugated of the bra < y ∣ A  ,  namely ∣ x > < y ∣ A  *= .

  The ket  ∣ x >  depends anti linearly upon the bra < y ∣, it is therefore, a linear  function of ∣ y > , through the new  

  operator A
†

 :                              

                                                                                  ∣ x > A
† ∣ y >=                                                                      (7.2)

  From (2.4): < x | y > < y | x > *=  , it follows that:

                                                    < u ∣ A ∣ v > < v ∣ A
† ∣ u >= < v ∣ A ∣ u > *= .                                       (7.3)

 The ket conjugated to < v ∣ A
†

 is A ∣ v >.

practical rule to obtain the adjoint  (or Hermitian conjugate)                                    

of a const replace with const *complex conjugated

of a < x ∣ replace with ∣ x >

of a ∣ x > replace with < x ∣

of a A replace with A
†

of c A † replace with c * A
† where c is a complex constant (7.4)

Reverse in each term the order of the various symbols
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A ∣ x > † = < x ∣ A
† (7.5)

< u ∣ A ∣ v > † = < v ∣ A
† ∣ u > (7.6)

A B ∣ u > < v ∣ C † = C
† ∣ v > < u ∣ B

†
A

† (7.7)

A B ∣ u > < v | w > † = < w | v > < u ∣ B
†

A
† (7.8)

< x ∣ A B ∣ u > < v | w > † = < w | v > < u ∣ B
†

A
† ∣ x > (7.9)

< x ∣ A B ∣ u > < v ∣ C ∣ w >  * = < w ∣ C
† ∣ v > < u ∣ B

†
A

† ∣ x > (7.10)

< x ∣ A B ∣ u > < v ∣ C ∣ w >  * < x ∣ A B ∣ u >  * < v ∣ C ∣ w > *= (7.11)

< x ∣ A B ∣ u > † < u ∣ B
†

A
† ∣ x >= (7.12)

< v ∣ C ∣ w > † < w ∣ C
† ∣ v >= (7.13)

< u ∣ A ∣ v > * < u ∣ A ∣ v > †= < v ∣ A
† ∣ u >=

  A way to calculate the adjoint of a given operator A ∈ L2 [ a b ]  (Hilbert space) , that is  A
†

 , is to calculate its 

  expectation value, considering two vectors < u ∣ and ∣ v >,  as follows:

(7.14)For L2 [ a b ] the scalar product is < u | v >
a

b

xu x  * v x 




d=

according to the definition < u ∣ A ∣ v >
a

b

xu x  * A v x 




d= I proceed to calculate the adjoint:

< u ∣ A ∣ v > * < u ∣ A ∣ v > †= < v ∣ A
† ∣ u >=

a

b

xu x  * A v x 




d






*= A ∈ L2 [ a b ]  (7.15)

For the integration by parts I consider: as finite factor: u *, as differential factor: A v dx , I get:

A ∈ L2 [ a b ]  xu x  * A v x 




d u x  * xA v




d u *xA v




d












d= (7.16)

a

b

xu x  * A v x 




d
bx

u * xA v




d






lim
 ax

u * xA v




d






lim









a

b

u *xA v




d











d=

< v ∣ A
† ∣ u >

a

b

xu x  * A v x 




d






*=
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a

b

xu x  * A v x 




d






*
bx

u * xA v




d






*lim
 ax

u * xA v




d






*lim




a

b

u *xA v




d











d=

  1) Consider first the case where the operator is A c R= ,  c ∈ ℂ ,  R  be  the vector Operator,

                                                                                      A
†

c * R
†=                                                                     (7.17)

                              integrating by parts 
a

b

xu x( ) * A v x( )




d c
a

b

xu x( ) * R v x( )




d= ,  A ∈ L2 [ a b ] 
      Finite factor u *,   Differential factor: R v dx    I get:

< v ∣ A
† ∣ u > c xu * R v





d






*= c * u * xR v




d






* u *xR v




d












d













*













=

A ∈ L2 [ a b ] 

< v ∣ A
† ∣ u > c *

bx
u * xR v





d






*lim
 ax

u * xR v




d






*lim




a

b

u *xR v




d











d













*













=

  2)  A Q R= ,   Q R  ∈ L2 [ a b ]   are  two vector Operators

< u ∣ A ∣ v > * < u ∣ A ∣ v > †= < v ∣ A
† ∣ u >=

a

b

xu x  * Q R  v x 




d






*= Q R  ∈ L2 [ a b ] 

< u ∣ A ∣ v > † < v ∣ Q R † ∣ u >= < v ∣ R
†

Q
†  ∣ u >=

< v ∣ R
†

Q
†  ∣ u > xv * R

† Q
†

u



d= v * xR
†

Q
†

u



d v *xR
†

Q
†

u



d

















d=

calculate < u ∣ A ∣ v > † assuming that u v  ∈ L2 [ a b ]  ∀x ∈ [ a b ]  u a  u b = 0=

< v ∣ R
†

Q
†  ∣ u >

bx
v * xR

†
Q

†
u




d










lim
 ax

v * xR
†

Q
†

u



d










lim




a

b

v *xR
†

Q
†

u



d
















d

=

  3)   A F x( ) R= ,  R  be  the given vector Operator,  

calculate < u ∣ A ∣ v > †assuming that F x  u v  ∈ L2 [ a b ]  ∀x ∈ [ a b ]  u a  u b = 0=
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< u ∣ A ∣ v > † < v ∣ A
† ∣ u >= A

†
F R †= F * R

†=

< v ∣ F * R
†  ∣ u > xv * F * R

†
u




d= v * xF * R
†

u



d v *xF * R
†

u



d

















d=

< v ∣ F * R
†  ∣ u >

bx
v * xF * R

†
u




d










lim
 ax

v * xF * R
†

u



d










lim




a

b

v *v * xF * R
†

u



d
















d

=

  4)  A Q R= , A ∈ L2 [ a b ]   Q R   be  two vector Operators

< v ∣ Q
†

R
†  ∣ u > xv * Q

†
R

†  u



d= v * xQ
†

R
†  u




d v *xQ
†

R
†  v




d

















d=

A ∈ L2 [ a b ] 

< v ∣ Q
†

R
†  ∣ u >

bx
v * xQ

†
R

†  u



d










lim


1 
ax

v * xQ
†

R
†  u




d










lim




a

b

u *v * xQ
†

R
†  u




d
















d

=
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                                       8 Examples of adjoint operators calculation
Examples of adjoint operators calculation

   Example   Adj1) [7]

 given the operator A i
∂

∂x
=

calculate < u ∣ A
† ∣ v > assuming that u v  ∈ L2 [ a b ]  ∀x ∈ [ a b ]  u a  u b = 0=

according to the definition: < v ∣ A
† ∣ u > < u ∣ i  ∂

∂x
∣ v >


*= i

a

b

xu x  *
x

v x 








d











*=

Integration by parts: finite factor: u x( ) *, differential factor: 
x

v x( )


 

i

a

b

xu x  *
x

v x 








d











* i u x  *

a

b

x
x

v x 








d i

a

b

u *x
∂

∂x
v






d















d















*=

< v ∣ A
† ∣ u > i

bx
u * * x

∂
∂x

v





d *










lim
 ax

u * * x
∂

∂x
v






d *










lim















a

b

u *x
∂

∂x
v






d















d















*

=

< v ∣ A
† ∣ u > i

bx
u v * lim

 ax
u v * lim




a

b

u *x
∂

∂x
v






d















d















*















=

i v b  * u b  v a  * u a   0=

< v ∣ A
† ∣ u > i v b  * u b  v a  * u a   < u ∣ i

∂
∂x

∣ v >=

< v ∣ A
† ∣ u > < u ∣ i

∂
∂x

∣ v >=
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< v ∣ A
† ∣ u > < u ∣ i

∂
∂x

∣ v >


*= i
a

b

u *v




d






*= i

a

b

xv
∂

∂x
u * 





d










*= i

a

b

xv *
∂

∂x
u





d=

resulting adjoint operator A
†

i
∂

∂x
= ∀x ∈ [ a b ]  u a  u b = 0=

   Example   Adj2) [1]

 given the operator Ax P x  ∂2

∂x2
 R x  ∂

∂x
 Q x =

with P x  0 Q x  0 R x  0

calculate < u ∣ Ax
† ∣ v > assuming that u v  ∈ L2 [ a b ]  ∀x ∈ [ a b ]  u a  u b = 0=

a

b

xu x  * P x  ∂2

∂x2
 R x  ∂

∂x
 Q x 







v x 




d

a

b

xu x  * Ax
†

v x 




d=

a

b

xu x  * P x  ∂2

∂x2
 R x  ∂

∂x
 Q x 







v x 




d

a

b

xu x  * P x 
∂2

∂x2
v x  u x  * R x 

∂
∂x

v x 

u x  * Q x  v x 







d=

a

b

xu x  * P x 
∂2

∂x2
v x 

u x  * R x 
∂

∂x
v x 



u x  * Q x  v x 












d

a

b

xu x  * P x  ∂2

∂x2


2
x

P x 




∂
∂x




2x
P x 



2




R x  ∂
∂x


x
R x 


 Q x 





























 v x 














d=

a

b

xu x  * Ax
†

v x 




d=

Ax
†

P x  ∂2

∂x2
 2 P' x  R x   ∂

∂x
 P'' x  R' x  Q x  =

Adjoint operator of Ax: Ax
† ∂2

∂x2
P x 

∂
∂x

R x  Q x = or more explicitly:

Ax
† ∂2

∂x2







P x  ∂
∂x




R x  Q x = P x  ∂2

∂x2
 2 P' x  R x   ∂

∂x
 P'' x  R' x  Q x  =

   Example   Adj3)

19

  given the operator A P x  ∂2

∂x2
 R x  ∂

∂x
 Q x =

with P x  0 Q x  0 R x 
x

P x 


=

A
†

P x  ∂2

∂x2
 2

x
P x 




x
P x 












∂
∂x


2x

P x 



2


x x
P x 






 Q x =

resulting adjoint operator A
†

P x  ∂2

∂x2


x
P x 



∂
∂x
 Q x = P x  ∂2

∂x2
 R x  ∂

∂x
 Q x = A=

If  R x( )
x

P x( )


= ⇒ A

†
A=

   Example   Adj4)

  given the operator A P x  ∂2

∂x2
 R x  ∂

∂x
 Q x =

with Q x  0 R x  0 P x  0=

resulting adjoint operator A
†

R x 
∂

∂x


x
R x 


 Q x =

   Example   Adj5)

 given the operator A P x  ∂2

∂x2
 R x  ∂

∂x
 Q x =

with P x  1= R x  0= Q x  0=

A
†

P x  ∂2

∂x2
 R x  ∂

∂x
 Q x =

resulting adjoint operator A
∂2

∂x2
= ⇒ A

† ∂2

∂x2
= ⇒ A

†
A=

   Example   Adj6)

 given the operator A P x  ∂2

∂x2
 R x  ∂

∂x
 Q x =

with P x  0= R x  1= Q x  0=

A
† ∂2

∂x2
P x  ∂

∂x
R x  Q x =

resulting adjoint operator A
∂

∂x
= ⇒ A

† ∂
∂x

=
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   Example   Adj7)

 given the operator A i
∂

∂x
=

A P x  ∂2

∂x2
 R x  ∂

∂x
 Q x =

with P x  0= R x  i= Q x  0=

A
†

P x  ∂2

∂x2
 2

x
P x 


 R x 









∂
∂x


2x
P x 



2


x
R x 


 Q x = i

∂
∂x
=

resulting adjoint operator A i
∂

∂x
= ⇒ A

†
i

∂
∂x
=

   Example   Adj8)

                                       given the operator    A P x( )
∂2

∂x2
 R x( )

∂
∂x
 Q x( )= ,

P x  1= R x  0= Q x  0=

A
∂2

∂x2
=

Ax
† ∂2

∂x2







P x  ∂
∂x




R x  Q x =
∂2

∂x2
=

resulting adjoint operator A
† ∂2

∂x2
=

A A
†

=

   Example   Adj9)

                                       given the operator    A P x( )
∂2

∂x2
 R x( )

∂
∂x
 Q x( )= ,

P x  1= R x  0 Q x  0
The Wronskian is: W ξ  f'1 ξ  f2 ξ  f'2 ξ  f1 x =

it satisfy the differential equation

Ax G x ξ  δ x ξ = where G(x,ξ) is the Green function:

G x ξ 
u1 x  u2 ξ  u2 x  u1 ξ 

W ξ  ξ xif

0 otherwise

= W(x) is the Wronskian

For the variable ξ there is a second differential equation, namely:

Aξ
†

G x ξ  δ x ξ =

21

resulting adjoint operator A
† ∂2

∂x2
R x  ∂

∂x


x
R x 


 Q x =

   Example   Adj10)

A ∇2=
∂2

∂x2

∂2

∂y2


∂2

∂z2
=

resulting adjoint operator A
† ∂2

∂x2

∂2

∂y2


∂2

∂z2
= ∇2= A A

†
= A is Hermitian

∇2 † ∇2=

   Example   Adj11)

A ∇ ∙=
∂

∂x

∂
∂y


∂
∂z

=

resulting adjoint operator A
† ∂

∂x

∂
∂y


∂
∂z




= ∇ ∙= A A
†= A is anti Hermitian

∇ ∙ † ∇ ∙=

   Example   Adj12)

A ∇=
∂

∂x
ix

∂
∂y

iy
∂
∂z

iz=

resulting adjoint operator A
† ∂

∂x
ix

∂
∂y

iy
∂
∂z

iz


= ∇= A A
†= A is anti Hermitian

∇† ∇=

Examples of adjoint operators calculation

Example   Adj13)
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                                        9 Spectral Decomposition of an Operator 

  Given the operator A  defined in D ∈ ℍ, I associate to it the operator A λ I , where I is the identity operator and λ is 

  complex number. I want calculate the inverse operator A λ I  1  . To do that, I consider the action of the operator 

  on a ket such that: A λ I  ∣ x ˃ ∣ 0 ˃=  that is it must be satisfied the eigenvalue equation A ∣ x ˃ λ ∣ x ˃=  .

  It follows that the operator A λ I  is invertible if the solution ∣ x  ˃of the eigenvalue equation is the simplest, that is
  a function of λ. The set of the complex values of λ for which the equation has a no banal solution, that is the values of λ
  for that the operator isn't invertible, forms the discrete spectrum of the operator A and are the eigenvalues of A.

  Vice versa when the values of λ gives the banal solution , then the operator A λ I  is invertible that is ∃ A λ I  1 .
  When this happens there are several possibilities: 

   1) if the operator A λ I  1  is limited, the corresponding value of λ belongs to the solving set of the operator A .

   2) if the operator A λ I  1  isn't limited, then λ belongs to the continuous spectrum of A .

  Consider the space L { ∣ x ˃ }=  ∈ ℍ.  Each linear operator A  has its eigenkets and  the corresponding eigenvalue
   satisfying the equation: 

                                                                                A ∣ x > λ ∣ x >=  ,                                                                                    (9.1)
  where the λ are numbers and are the eigenvalues of the operator A, they constitute the set of the eigenvalues of the    
  operator A . To each eigenvector is associated an eigenvalue.  
  If  there exist several linear independent eigenkets belonging to the same eigenvalue λ, any linear combination of this k
  is an eigenket of A belonging to this λ. That is the ensemble of eigenkets of A belonging to λ forms a vector space calle
  the subspace of the eigenvalue λ. If this subspace is one dimensional, the eigenvalue is said single or non-degenerate
  If this subspace is multidimensional, the eigenvalue is said degenerate. The order of degeneracy is given by the numbe
  of dimensions of this subspace (maybe of infinite order).
 The eigenbras and the corresponding eigenvalues of the operator A satisfy the equation:

                                                                                < y ∣ A < y ∣ μ=  ,                                                                 (9.2)
  where the μ are numbers and are other eigenvalues of the operator A. λ and μ constitutes the spectrum of A.

  Instead, if A is Hermitian (A A
†

= ):
      i) the two eigenvalues spectra are identical (λ=μ),

     ii) all eigenvalues are real, (since A A
†

=  , < x ∣ A ∣ x > λ < x | x > = ,

                       < x ∣ A ∣ x > * < x ∣ A
† ∣ x >= < x ∣ A ∣ x >= λ < x | x >   *= λ < x | x > = , 

                                   < x ∣ A ∣ x > and  < x | x > are real, therefore also λ is real.              
    iii) each eigenket and eigenbra correspond to the same eigenvalue λ=μ . The subspace  of the eigenbras of  μ is the du
           space of the subspace of the eigenkets of the same eigenvalue.
    iv) Eigenvectors belonging to distinct eigenvalues are orthogonal.

          Given A ∣ x > λ ∣ x >=  and < y ∣ A < y ∣ μ= ,  < y ∣ A ∣ x > < y ∣ λ ∣ x >= λ < y | x > = ,

                                                            < y ∣ A < y ∣ μ=     < y ∣ A ∣ x > < y ∣ μ ∣ x >= μ < y | x > = ,

         subtracting term by term I get:     < y ∣ A ∣ x > < y ∣ A ∣ x > 0= λ μ( ) < y | x > =  , consequently if   

         λ μ , < y | x > 0= . 
    Based on the property 2.8), the norms of the kets must be finite. The vectors with infinite norm with eigenvalues 
    belonging to the continuous spectrum  don't belong to the Hilbert space. Properties i), ii), iii), iv) are yet true. 
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                                                                         10  Projector Operator [6]

  Consider the Hilbert space ℍ and a subspace h ⊆ ℍ. h is linear and closed. The ket  ∣ x ˃ ∈ ℍ can be divided  in two

  vectors: ∣ xs > and ∣ xn >, such that ∣ xs > ∈ h and ∣ xn > has the property to be orthogonal to each vector of h,  

  that is  < xs | xn > 0=  , ∀ ∣ xs > ∈ h. If the space  h is closed under multiplication by a number and under vector 

  addition, that is if ∣ x > and ∣ y > ∈ h and α, β ∈ ℂ, 

                                P α ∣ x ˃ β ∣ y ˃  α P ∣ x ˃ β P ∣ y ˃= α ∣ x ˃ β ∣ y ˃=     

   the decomposition exists and is unique. The operator that associates to each ket ∣ x  ˃its ∣ xs  ˃ is defined in the who

  space ℍ and is the  projector P, that is:

                                                                   P ∣ x > ∣ xs >= ,  ∀ ∣ x > ∈ ℍ, P ∈ ℍ.

    Properties:                               P is limited:      P ∣ x > ∣ x >                                                                    (10.1)

it is idempotent: P2 P= (10.2)

P ∣ x > ∣ xs >=

P P ∣ x > P ∣ xs >= ∣ xs >= (10.4)

It is auto-adjunct or Hermitian: P P†= necessary and sufficient condition (10.3)

  A Hermitian operator P is called a projection operator or projector  iff it is independent (P2 P= ). 

   h is the set of the vectorsP x with x ∈ ℍ  hence I can write  

                                                                                           h P ℍ=  

  Let ℍ ℝ3=   that is the three dimensional euclidean space, and h a plane passing through the origin. Then ∀ x ∈ ℝ3, l

  P x be the ordinary projection of x onto the plane h.

P x I P  x P x x P x= x=

P x P I  x P x P x x= x=
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The projector I P  determines another subspace, the ortonormal one, denoted by h
⊥

. All vector ∣ xs > of h are

orthonormal to the vectors ∣ xn > of h
⊥

.  Then:  

∣ xs > P ∣ x >=

∣ xn > I P  ∣ x >=

verify the orthonormality:

< xs | xn > < x ∣ P I P  ∣ x >= < x ∣ P P2  ∣ x >= < x ∣ P P  ∣ x >= 0=

Two subspaces h1, h2 ⊆ ℍ are mutually orthogonal if ∀ ∣ x > ∈ h1 and if ∀ ∣ y > ∈ h2 , results< x | y > 0= .

The set h={ ∣ x > ∣ y >  : ∣ x > ∈ h1 , ∣ y > ∈ h2  }is the direct sum of h1 and h2   and is denoted by:

                                                                                  h h2 ⊕ h2=  .

For a collection of mutually orthogonal subspaces h1, h2 , ... , hn , their direct sum is indicated so:

                                                          h
j

⊕ hj=  = { 

j

∣ xj >  : ∣ xj > ∈ hj  }.

    ∀ ∣ x > ∈ ℍ I can write ∣ x > P ∣ x > I P  ∣ x >= , that is any projector P gives a decomposition of ℍ into 

   orthogonal spaces ℍ h ⊕ h
⊥ = . Furthermore ∀ ∣ x > ∈ ℍ, the set { α ∣ x > : α ∈ ℂ}is a one dimensional 

   subspace of ℍ, or  the space spanned by∣ x >. Given the basis { ∣ aγ > } ∈ ℍ, the trace of the operator A is:

                                                                           Tr A 
γ

< aγ ∣ A ∣ aγ >=

  In effect the trace is independent from the basis.  Tr A B  Tr B A =  
                                                                       Tr A B  Tr A  Tr B = .

  Given   ∣ xj > ∈ hj   , that is hj  is the space spanned by∣ xj > , then  the space ℍ is the direct  sum:

                                                           ℍ

j

⊕ hj= h0 ⊕ h1 ⊕ h2 ⊕ h3 ⊕ ...=   

  Let Pn , with n=0,1 , 2,...,, denote the projector on hn   , then the operator form of the previous is: 

                                                                                  

0

∞

n

Pn


I=  , 

   so that ∀ ∣ f > ∈ ℍ,  I can write the sum of its components Pn ∣ f > in the subspace hn  , that is: 

                                                                            ∣ f >
0

∞

n

Pn ∣ f > 


= .

which is equivalent writing:
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∣ f >
0

∞

n

∣ aγ > < aγ | f > 


=

Elementary projector Pa ∣ a > < a ∣= (10.5)

∣ a > < a ∣ I= (10.6)

Given the orthonormal set h
⊥

={ ∣ k >} with k=1,2,...,n,  results : < m | n > δm n=  (10.7)

the projector on the subset E1 is: P1
1

N

j

∣ j > < j ∣


= (10.8)

If given a ket ∣ ξ > and ξ is continuous in (ξ1,ξ2) ,then < ξ1 | ξ > Δ ξ1 ξ =  (10.9)

The projector on the subset E2 is: P2
ξ1

ξ2

ξ∣ ξ >




d < ξ ∣= (10.10)

degenerate spectrum P2 ∣ u >
ξ1

ξ2

ξ∣ ξ >




d < ξ | u >= (10.11)

Closure relation: PA
1

N

j

∣ j > < j ∣
 ξ1

ξ2

ξ∣ ξ >




d < ξ ∣= 1= (10.12)

  Expansion of any vector ∣ ψ > of Hilbert space in a series of the basic kets of the observable A. I suppose that the 
   spectrum of A is non degenerate:

∣ ψ > PA ∣ ψ >=

1

N

k

∣ k > < k | ψ >
 ξ1

ξ2

ξ∣ ξ >




d < ξ | ψ >= (10.13)

Parseval: < ψ | ψ > < ψ ∣ PA ∣ ψ >= < ψ ∣
1

N

k

∣ k > < k ∣
 ξ1

ξ2

ξ∣ ξ >




d < ξ ∣










∣ ψ >= (10.14)

< ψ | ψ >
1

N

k

< k | ψ > 2


 ν1

ν2

ν< ν | ψ > 2



d= (10.15)

H H PH=

1

N

k

∣ k > λk < k ∣
 ν1

ν2

ν∣ ν > λ ν 




d < ν ∣= (10.16)

f H 
1

N

k

∣ k > f λk  < k ∣
 ν1

ν2

ν∣ ν > f λ ν  




d < ν ∣= (10.17)
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                                                   11 Commutator  Operator [4]

[ A B ] A B B A= (11.1)

[ A B ] [ B A ]= (11.2)

[ A Const ] A Const Const A= 0= (11.3)

[ A B C ] [ A C ] [ B C ]= (11.4)

[ A B C ] [ A B ]  C B [ A C ] = (11.5)

[ A B C ] [ A C ]  B A [ B C ] = (11.6)

[ A B C D ] [ A C ]  D B C [ A D ]  B A [ A C ]  D A C [ B D ] = (11.7)

[ A B C D ] [ D C ]  B D A [ B C ]  D C [ A D ]  B C A [ B D ] = (11.8)

[ A [ B C ] ] [ B [ C A ] ] [ C [ A B ] ] 0= (11.9)

[ A Bn ]
0

n 1

k

Bk [ A B ]  Bn k 1  


= (10.10)

For a given quantum system in N dimensions
Position observables  qi, i=1,2,...N

Momentum observables pi i ℏ
∂

∂qi
= , i=1,2,...,N, (10.11)

[ qi qj ] 0= (10.12)

[ pi pj ] 0= (10.13)

[ qi pj ] i ℏ δ i j = (10.14)

[ qi F q1 q2 ... qn  ] 0= (10.15)

[ pi G p1 p2 ... pn  ] 0= (10.16)

[ pi F q1 q2 ... qn  ] i ℏ
qi

F


= (10.17)

[ qi G p1 p2 ... pn  ] i ℏ
pi

G


= (10.18)

[ pi A pi qi  ] i ℏ
qi

A pi qi 


= (10.19)

for a one-dimensional quantum system   [ q pn ] i ℏ n pn 1= (10.20)

[ q p2 f q  ] 2i ℏ p f q = (10.21)

[ q p f q  p ] i ℏ f q  p p f q = (10.22)

27

[ q f q  p2 ] 2i ℏ f q  p= (10.23)

[ p p2 f q  ] i ℏ p
q

f q 


= (10.24)

[ p p f q  p ] i ℏ p
q

f q 











 p= (10.25)

[ p f q  p2 ] i ℏ
q

f q 











 p2= (10.26)
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                                                     12  Operators' Algebra [4]

A B  1 B 1 A 1= (12.1)

< v ∣ < u ∣ A= ⇒ ∣ v > < v ∣ *= < u ∣ A  *= A
† ∣ u >= (12.2)

< y ∣ A ∣ x > < x ∣ A
† ∣ y >  *= (12.3)

A
† † A= (12.4)

const A † const * A
†= (12.5)

A B † A
†

B
†= (12.6)

A B † B
†

A
†= (12.7)

∣ u > < v ∣ † ∣ v > < u ∣= (12.8)

Hermitian or self-adjoint operator: A A
†

= ⇒ < y ∣ A ∣ x > * < x ∣ A ∣ y >= (12.9)

Anti - Hermitian operator B B
†= (12.10)

  Each linear operator is formed by the sum of two operators, one Hermitian and the other anti - Hermitian:

A A
A

†

2


A
†

2
=

A A
†

2

A A
†

2
= A+ A−= (12.11)

Hermitian A+
A A

†
2

= A−
A A

†
2

= anti - Hermitian (12.12)

C+

1

n

k

αk A+ 


= ∀ αk ∈ ℝ ℂ  A+ ∈ ℍ ⇒ C+ ∈ ℍ (12.13)

A+ A+ †= B+ B+ †= ⇒ A+ B+ † B+ † A+ †= B+ A+= A+ B+= (12.14)

The product of two Hermitian operators A+ and B+,  is Hermitian if and only if [ A+ B+ ] 0= .

The commutator of two Hermitian operators is anti - Hermitian: 

[ C+ D+ ] [ C+ D+ ] †= (12.15)

Demonstration of The commutator of two Hermitian operators is anti - Hermitian 

 two Hermitian operators C+ C+ †= D+ D+ †=

[ C+ D+ ] C+ D+ D+ C+= C+ † D+ † D+ † C+ †=

C+ † D+ † D+ † C+ † D+ C+ † C+ D+ †=

D+ C+ † C+ D+ † D+ C+ C+ D+ †= [ C+ D+ ] †=
Demonstration of The commutator of two Hermitian operators is anti - Hermitian 
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Operator's derivative
ξ

A ξ d

d 0ε

A ξ ε  A ξ  
ε

lim


= (12.16)

Two operator's product  derivative
ξ

A B d

d ξ
Ad

d









B A
ξ

Bd

d
= (12.17)

Operator's square derivative
ξ

A2d

d ξ
Ad

d









A A
ξ

Ad

d
= (12.18)

Operator's inverse derivative
ξ

A 1d

d
A 1

ξ
Ad

d









 A 1= (12.19)

Integral equation: B t  B0 i [ A
0

t

τB τ 



d ]






= ⇒ B t  ei A t B0 e i A t= (12.20)

B t  B0 i A
0

t

τB τ 



d
0

t

τB τ 



d






A






=

Definition: A B k [ A [ A [ A [ A [ A [ A B ] ] ] ] ] ]= k times (12.21)

ei A t B e i A t

0

∞

k

ik

k
A B k











= (12.22)

A
ξ

Ad

d









k

[ A [ A [ A [ A [ A [ A
ξ

Ad

d
 ] ] ] ] ] ]= (12.23)

ei A t
ξ

e i A td

d
 i

0

∞

k

i k

k 1  A
ξ

Ad

d









k












= (12.24)
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                       13  Decomposition of the product of two Hermitian operators  [4]

C+ D+
C+ D+ D+ C+

2

1

2
[ C+ D+ ] = (13.1)

Particular Hermitian Operator: ∣ u > < v ∣ It has no inverse. (13.2)

∣ u > < v | w > const ∣ u > = (13.3)

< w | v > < u ∣ const < v ∣ = (13.4)

                                        14   Expectation value of the Operator

< A >
< ψ ∣ A ∣ ψ >

< ψ | ψ >
=

τΨ τ  * A Ψ τ 




d

τΨ τ  * Ψ τ 




d

= (14.1)

for normalized eigenfunction: < ψ | ψ > 1=

< A > < ψ ∣ A ∣ ψ >= τΨ τ  * A Ψ τ 




d= (14.2)

< F A  >
n

Pn < n ∣ F A  ∣ n > = (14.3)

Δ A < A < A > 2
>= (14.4)

< A B > < A > < B >= (14.5)

                                         15  Heisenberg uncertainty principle 

Δ A Δ B
1

2
< [ A B ] > (15.1)

Demonstration of 15.1)

Δ A < A < A > 2
>= < A2 > < A > 2

=

A1 A < A >=

Δ A < A1
2 >=

Δ B < B < B > 2
>= < B2 > < B > 2

=

B1 B < B >=

Δ B < B1
2 >=
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Δ A Δ B 2 < A1
2 >  < B1

2 > = < ψ ∣ A1
2 ∣ ψ > < ψ ∣ B1

2 ∣ ψ >=

Self adjoint Operators (Hermitian)

A1 A1
†

= B1 B1
†

=

< ψ ∣ A1
2 ∣ ψ > < ψ ∣ B1

2 ∣ ψ > < ψ ∣ A1 A1 ∣ ψ > < ψ ∣ B1 B1 ∣ ψ >=

∣ z > A1 ∣ ψ >= ∣ ζ > B1 ∣ ψ >=

< ψ ∣ A1 A1 ∣ ψ > < ψ ∣ B1 B1 ∣ ψ > < ψ ∣ A1 ∣ z > < ψ ∣ B1 ∣ ζ >=

< ψ ∣ A1 ∣ z > < z ∣ A1 ∣ ψ > *= < z | z > *= A1 ∣ ψ > 2
=

< ψ ∣ B1 ∣ ζ > < ζ ∣ B1 ∣ ψ > *= < ζ | ζ > *= B1 ∣ ψ > 2
=

Δ A Δ B 2 < ψ ∣ A1 ∣ z > < ψ ∣ B1 ∣ ζ >= A1 ∣ ψ > 2
B1 ∣ ψ > 2

=

Schwarz inequality < x ∣ A ∣ y > 2
< x ∣ A ∣ x > ∙ < y ∣ A ∣ y >  (5.13')

Δ A Δ B 2 A1 ∣ ψ > 2
B1 ∣ ψ > 2

= < ψ ∣ A1 ∣ z > < ψ ∣ B1 ∣ ζ > < ψ ∣ A1 B1 ∣ ψ > 2
=

Δ A Δ B 2 < ψ ∣ A1 B1 ∣ ψ > 2


A1 B1
A1 B1 B1 A1

2

A1 B1 A1 B1

2
=

A1 B1 B1 A1

2

[ A1 B1 ]
2

=

A1 B1 † B1 † A1
†= B1 A1=

Δ A Δ B 2 < ψ ∣
A1 B1 B1 A1

2

[ A1 B1 ]
2










∣ ψ >








2



Δ A Δ B 2 < ψ ∣
A1 B1 B1 A1

2
∣ ψ > < ψ ∣

[ A1 B1 ]
2

∣ ψ >








2



< ψ ∣
A1 B1 B1 A1

2
∣ ψ > <

A1 B1 B1 A1

2
>=

< ψ ∣
[ A1 B1 ]

2
∣ ψ > <

[ A1 B1 ]
2

>=

Δ A Δ B 2 <
A1 B1 B1 A1

2
> <

[ A1 B1 ]
2

>








2
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  assuming that the average  <
A1 B1 B1 A1

2
> is real and <

[ A1 B1 ]
2

> is imaginary, I get: 

<
A1 B1 B1 A1

2
> < ψ ∣

A1 B1

2
∣ ψ >

< ψ ∣
B1 A1

2
∣ ψ >

=

A1 c B1=

< ψ ∣
α * B1 B1

2
∣ ψ >

< ψ ∣
α B1 B1

2
∣ ψ >

 α * α  < ψ ∣
B1 B1

2
∣ ψ >= Re α  < ψ ∣

B1
2

2
∣ ψ >=

Re α  < ψ ∣
B1

2

2
∣ ψ > 0= if Re α  0=

Δ A Δ B 2 <
A1 B1 B1 A1

2
>









2

<
[ A1 B1 ]

2
>









2



The minimum for Δ A Δ B  is reached when

< A1 B1 B1 A1 > 0= finally resulting:

A1 A < A >=

B1 B < B >=

[ A1 B1 ] A1 B1 B1 A1= A < A >  B < B >  B < B >  A < A > =

A < A >  B < B > 
1  B < B >  A < A >  

 A B A < B >  < A >  B < A >  < B > 
1  B A B < A >  < B >  A < B >  < A >  

=

A B A < B >  < A >  B < A >  < B >  B A B < A >  < B >  A < B >  < A > 

[ A1 B1 ] A B B A=

Δ A Δ B
1

2
< [ A1 B1 ] >

1

2
< [ A B ] >=

Δ A Δ B
1

2
< [ A B ] >

Demonstration of 15.1)
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                                                        16 Wave Mechanics  [3]

Each physical system possesses its dynamical variables, each one at each instant possessing a well defined value. 
The set of all those values defines the dynamical state of the system at that instant.  

Consider an elementary particle of mass mp ant kinetic energy Tp
p2

2 mp
= . Than I can write  p 2 mp Tp=  and since

p ℏ kp=  , where kp
2 π
λp

=  , results the wavelength of the particle λp
2 π ℏ
2 mp Tp

=
h

2 mp Tp
= which is the known

de Broglie wavelength of the particle.  For example if mp me   and Tp1 1 eV , the de Broglie wavelength is 

λe
h

2 mp Tp1
12.265 Å  so that if Tp zp Tp1=   with zp 5 104  than λp

12.265 Å

zp
 that is λp 0.055 Å

  Consider a monochromatic plane wave associated with a particle which propagates in an isotropic and homogeneous 
   medium:

                                                                                E r t  E0 ei k r ω t( )= ,                                                       (16.1)

where the wavelength is λ
2 π
k

=  and k r ω t constant= . The time derivative of the latter gives:

                                   
t

k r ω t 


k

t
r


 ω= 0= , that is the phase velocity 

t
r



ω
k

= vφ= .                (16.2)

  Each wave can be considered as a superposition of monochromatic plane waves. The dispersion law ω(|k), let me know
  the time behavior  of every wave. To each frequency corresponds an energy Ei ℏ ωi= .

  The classical approximation let me found a relation between k and the moment p of the particle.
   Indeed to the particle is associated the wave packet:

                                                                 Ψ r t 
∞

∞

k1fpw k1  e
i k1 r ω1 t 






d= ,                                        (16.3)

  where fpw k1  A k1  e
i α k1 

=  is the plane wave spectrum and A k1  takes appreciable values only around k1.

  In one dimension I get:

                                       Ψ x t( )

∞

∞

k1fpw k1  e
i k1 x ω1 t 






d=

∞

∞

k1A k1  e
i φ k1 






d= ,                   (16.4)

  where φ k1  k1 x ω1 t α k1 = . The function A k1  has a pick in a regionΔk around k1.The wave is concentrated

in a region Δx ≈
1

Δk1








 ,  where  

k1

φ k1 


x t

k1

ω k1 




k1

α k1 


= 0= , namely                              (16.5)

                                                                               x t
k1

ω k1 




k1

α k1 


= ,                                                 (16.6)

  with a velocity:                                                           
t
x


vg=

k1

ω k1 


= .                                                    (16.7)

  For the classical approximation where the extension of the wave packet is traceable, the particle velocity is   

                                                                                v
p

E


= vg=

k1

ω k1 


= ,                                                 (16.8)
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                                                      that is                          
p

E

 k1

ω k1 


= .                                                        (16.9)

  Multiplying and dividing the right side by ℏ, I get:    
p

E



1

ℏ k1

ω k1  ℏ 


= ,                                               (16.10)

                                                     from which I have:   E ℏ ω=  and  p ℏ k1=  .                                                (16.11)

  Postulates
 Then the wave function of the quantum system define completely its dynamical state. It is the equation of  the wave   
  propagation:

                                                                 Ψ r t 
∞

∞

pψ p  e
i

p r E t
ℏ















d=  ,                                             (16.12)

              which is rewritten as:                               Ψ r t  Aψ e
i

E t
ℏ


= .                                                         (16.13)

  This is a solution of the differential equation:

                                                                         i ℏ
t

Ψ r t 


 E Ψ r t = ,                                                        (16.14)

                                                          in fact: i ℏ
t

Ψ r t 


 E Aψ e

E t i
ℏ


=                                                     (16.15)

                                                        E Aψ e

E t i
ℏ


 E Ψ r t = E Aψ e

i
E t
ℏ


= .                                           (16.16)

   The classical kinetic energy is: E
p2

2 m
=

                                               i ℏ
t

Ψ r t 


 E Ψ r t =

∞

∞

pE ψ p  e
i

p r E t
ℏ















d= ,                          (16.17)

                                                 i ℏ
t

Ψ r t 




1

2 m ∞

∞

pp2 ψ p  e
i

p r E t
ℏ















d= ,                                  (16.18)

                                  

                                 ∇ Ψ r t  ∇
∞

∞

pψ p  e
i

p r E t
ℏ















d=
i

ℏ ∞

∞

pp ψ p  e
i

p r E t
ℏ















d=         (16.19)

                                                        
ℏ
i

∇ Ψ r t 
∞

∞

pp ψ p  e
i

p r E t
ℏ















d=                                          (16.20) 

                                      ℏ2 ΔΨ r t 
∞

∞

pp2 ψ p  e
i

p r E t
ℏ















d= 2 m i
t

Ψ r t 


=                        (16.21)
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                                                                        i ℏ
t

Ψ r t 




ℏ2
2 m

ΔΨ r t =                                                (16.22)

Schrödinger equation  ([4] Vol. I)

The theory of matter waves leads unambiguously to the wave equation of a free particle (non relativistic approximation

The wave Ψ r t  is a superposition of monochromatic waves e
i

p r E t
ℏ








 :

Ψ r t  pΦ p  e
i

p r E t
ℏ














d= 16.23)

where p px ix py iy pz iz= r x ix y iy z iz= 16.24)

 with angular frequency ω
E

ℏ
=  connected to the wave vector k

p

ℏ
=  by the relation connecting momentum and energy

E
p2

2 m
=  . Taking the partial derivative equation of 1) one obtains:  

t
Ψ r t 


pΦ p 

t
e

i
p r E t

ℏ

















d=
i

ℏ
pΦ p  E e

i
p r E t

ℏ













d= 16.25)

that is
t

Ψ r t 



i
ℏ

pΦ p  E e
i

p r E t
ℏ














d=

or also i ℏ
t

Ψ r t 


 pΦ p  E e

i
p r E t

ℏ













d= 16.26)

Now calculate the gradient of 16.23):

∇ Ψ r t  ∇ pΦ p  e
i

p r E t
ℏ














d= pΦ p  ∇ e
i

p r E t
ℏ














d= 16.27)

16.28)that is ∇ e
i

p r E t
ℏ







 i

ℏ
p e

i
p r E t

ℏ







=

∇ Ψ r t  i

ℏ
pΦ p  p e

i
p r E t

ℏ













d= 16.29)

Than the divergence of it:
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∇ ∙ ∇ Ψ r t  Δ Ψ r t =
i

ℏ
∇ ∙ pΦ p  p e

i
p r E t

ℏ













d=
i

ℏ
pΦ p  p ∇ ∙ e

i
p r E t

ℏ













d=

Δ Ψ r t  1

ℏ2
 pΦ p  p2 e

i
p r E t

ℏ













d= 16.30)

since p2 2 m E= , after a substitution one gets:

ℏ2
2 m

Δ Ψ r t  pΦ p  E e
i

p r E t
ℏ














d= 16.31)

The right side of 16.31) is the same of eq 16.26) below rewritten  

i ℏ
t

Ψ r t 


 pΦ p  E e

i
p r E t

ℏ













d= 16.26')

equating 16.26') and eq 16.31) I get: i ℏ
t

Ψ r t 




ℏ2
2 m

Δ Ψ r t =

this is the well known three dimensional Schrödinger equation for a free particle of mass m. 

Laplace transform of the Schrödinger equation :

∣ Ψ x s  > ℒ ∣ ψ x t  > =

j ℏ s ∣ Ψ x s  >  ∣ ψ 0  >  H ∣ Ψ x s  >= 16.32)

Schrödinger equation  ([4] Vol. I)

Solution of the one-dimensional Schrödinger equation for a free particle[1] 

To solve the one-dimensional Schrödinger equation for a free particle of mass m moving with velocity v, I can proceed a
follows:

Configuration space  representation:
ℏ2

2 me 2x
Ψ



2
 i ℏ

t
Ψ


= (16.33)

   It allows factorization (separable variables): Ψ g t  φ x = (16.34)

   Replacing (16.13) in (16.12) I have: g t  ℏ2
2 me


2x
φ x 



2
 i ℏ

t
g t d

d









 φ x = (16.35)

let's  me put: i ℏ
t
g t d

d
 ℏ ω g t =
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ℏ2
2 me 2x

φ x 



2
 ℏ ω φ x =

The equation breaks down in two differential equations:

a)
t
g t d

d
i ω g t = (16.36)

with solution: g t  e i ω t= (16.37)

and the equation: b)
2x

φ x d

d

2 2 me ω

ℏ
φ x  0= (16.38)

  If ω is real, the solution is periodic in time, and φ x( )( )2 is independent of time (stationary case);

  with ω positive, 

2x
φ x d

d

2
k2 φ x   0= (16.38')

k2
2 me ω

ℏ
=

  Even the constant k2 is positive and the solutions of (16.38') are periodic even in space.
   It is an essential feature of quantum mechanics that temporal dependence is of complex form (16.37).
   Real sinus and cosine functions are not solutions of the differential equation (16.36). This behavior, so different
   from classical physics, is a consequence of Schrödinger's equation that is of first order over time. 
  The physical  meaning of the parameter ω can be further interpreted considering the operator at the first member of 
  (16.33) as the Hamiltonian constituted, in our case, only by the kinetic energy operator.
   It follows that the kinetic energy of the particle must be real and positive. Our solution is therefore a Hamiltonian  
   auto state. Since k2 is a positive constant, the complete solution of (16.37') or

                                                                                    φ''+k2φ=0                                                                            (16.39)
   is: 
                                                                 φ x( ) A exp i k x( ) B exp i k x( )=

so that the one-dimensional wave function is the product (16.34),  that is:

ψ x  A ei k x ω t( ) B e i k x ω t( )= (16.40)

consists of two waves propagating in opposite directions, both with phase velocities:

vph
ω
k

=

The physical meaning of the spatial part of the wave function (16.40) becomes clear in obtaining the probability density

  The two waves, of amplitudes A and B, apparently correspond to two opposite currents whose intensities are given by  
   their normalization constants and is proportional to k. Density shows the interference of the two waves (consistent)   
   causing spatial periodicity.
    As long as there is no particular reason to achieve consistency (such as contour conditions), it will be reasonable to  
    consider the two waves, put B = 0 and get s> 0, or A = 0, which provides s <0. The result thus corresponds to the linea
    motion of a particle in either direction.  Assuming both signs of k, I can summarize the final results as follows:

ρ ψ x  ψ x  *= (16.41)

and the flux S
ℏ

2 i me
ψ x  *

x
ψ x 


 ψ x 

x
ψ x  *












= (16.42)

finding that: ρ A 2 B 2 A B * e2 i k x A * B e 2 i k x =
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E ℏ ω= k2
2 me ω

ℏ
= E

ℏ2 k2
2 me

= (16.43)

S
ℏ k
me

A 2 B 2 = (16.44)

ρ C0 k  2= s0
ℏ k
me

C0 k  2=

Ψ x t  C0 k  ei k x ω t( )= (16.45)

p k  ℏ k= v k  ℏ k
me

=

Ψ x t  C0 k  e
i k t v vph 

=

The latter is different from the phase velocity of the wave:

vph ω k  ω k 
k



ω k 
k

E k 
p k =

E k 
p k 

vph k 
2

=

and it is identical to the group velocity: vgr k ω 
k

ω


=

k
ω k 

 p
E k 


=

v
p

E k 


=

Ψ x t  C0 k  exp i k x ω t  = C0 k  e
i k t v vph  

=
I have seen that: (16.46)

ω k  ℏ
2 me

k2 (16.47)

 k is an independent variable, so that the complete solution of the equation is obtained by integrating on k:

k0

me v

ℏ
= Ψ x 0  A exp

x2

2 a2
i k0 x







= (16.48)

Ψ x t 
∞

∞

kψ k x t 



d= (16.49)

So the density: ρ x 0  Ψ x 0  2= Ψ x 0  2 A 2 exp
x2

a2







=

locate the particle within x a , the flux (16.42) is:
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s0 x 0  ℏ
2 m i

2 i k0 A 2 exp
x2

a2







=

s0 x 0  ρ
ℏ

me
 k0=

 so that the velocity of the particle and the moment are:

v0
ℏ

me
k0=

p0 ℏ k0=

Thanks to the normalization condition:

∞

∞

xρ x 



d 1=

I get: A 2 1

a π
= A

1

a π
= (16.50)

The expression (16.48) can be decomposed into plane waves using (16.49) and (16.43)

(16.51)Ψ x 0 
∞

∞

xC0 k  ei k x




d=

This is a Fourier integral whose inversion is:

C0 k  1

2 π ∞

∞

xΨ x 0  e i k x




d=

C0 k  A

2 π
∞

∞

xexp
x2

2 a
i k0 k  x














d=

since
∞

∞

ze z
2





d π=  results: C0 k  A a
2 π

exp
1

2
a2 k k0 2


= (16.52)

  Which can be easily understood in terms of Heisenberg's uncertainty relationship: in the initial state, the uncertainty of
  particle coordinate, in accordance with (16.48), of the order of Δx = a;  as shown in (16.1), contributes to this wave 
  function a spectrum of wave numbers k or of momentum p = ℏk around k = k0 of a width Δk = 1 / ao or Δp = ℏ / a. So, 

  regardless of the choice of a, it is the relation Δx Δp = ℏ which is the uncertainty principle of of Heisenberg.
   After determining C (k) from the initial state at time t = 0, I am now ready to evaluate the integral (16.49) at any instan
  that is:

A 2 1

a π
= A

1

a π
=

Ψ x t  A a
2 π

∞

∞

kexp
1

2
a2 k k0 2 i k x

i ℏ t
2 me

k2












d= 16.53)
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   The exponent is a quadratic form in k so that, again, I can use the integral error. It is:

Ψ x t  A a
2 π ∞

∞

ke

a
2

2


t ℏ i
2 me










k
2 k0 a

2 x i  k
a
2

k0
2

2








d=

(MATHCAD symbolic initialization) t t a a k k k0 k0 me me x x ℏ ℏ

Ψ x t  A a e

a
2

k0
2

2



2 π ∞

∞

ke

a
2

2


t ℏ i
2 me










k
2 k0 a

2 x i  k






d=

A0
a2

2


t ℏ i
2 me










= B0 k0 a2 x i = C0
A a e

a
2

k0
2

2



2 π

=

Ψ x t  C0
∞

∞

ke
A0 k

2 B0 k



d= 16.54)

C0
∞

∞

ke
A0 k

2 B0 k



d

π C0 e

B0
2

4 A0



∞k

erf
B0 2 A0 k  i

2 A0









lim










1 
∞k

erf

1

A0
B0

2
i A0 k i











lim





















2 A0
=

Ψ x t 
π C0 e

B0
2

4 A0



∞k

erf
B0 2 A0 k  i

2 A0









lim
 ∞k

erf

1

A0
B0

2
i A0 k i











lim














2 A0
=

∞k
erf

B0 2 A0 k  i

2 A0









lim


erf
B0 i

2 A0







 ∞k

erf A0 k i lim


=

∞k
erf A0 k i lim



e
A0 k

2

A0

i

π k
i

2 A0 π k3


3i

4A0
2 π k5









 i
A0

A0
=

∞k
erf

1

A0
B0

2
i A0 k i











lim


erf
i B0

2 A0







 ∞k

erf A0 k i lim


=
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∞k
erf A0 k i lim



e
A0 k

2

A0

i

π k
i

2 A0 π k3


3i

4A0
2 π k5









 i
A0

A0
=

Ψ x t 

π C0 e

B0
2

4 A0


 erf
B0 i

2 A0









∞k
erf A0 k i lim


erf

i B0

2 A0







 ∞k

erf A0 k i lim






























2 A0
=

Ψ x t 

π C0 e

B0
2

4 A0


 erf
B0 i

2 A0









e
A0 k

2

A0

i

π k
i

2 A0 π k3


3i

4A0
2 π k5









 1

1  erf
i B0

2 A0









e
A0 k

2

A0

i

π k
i

2 A0 π k3


3i

4A0
2 π k5









 1















































2 A0
=

Ψ x t 
π C0 e

B0
2

4 A0




A0
=

π
A a e

a
2

k0
2

2



2 π

 e

k0 a
2 x i 2

4
a
2

2


t ℏ i
2 me
















a2

2


t ℏ i
2 me












=

Ψ x t 
π

A a e

a
2

k0
2

2



2 π

 e

k0 a
2 x i 2

4
a
2

2


t ℏ i
2 me
















a2

2


t ℏ i
2 me












=
A e

a
2

k0
2

2


 e

k0 a
2 x i 2

4
a
2

2


t ℏ i
2 me
















1
t ℏ i

me a2


=
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A e

a
2

k0
2

2


 e

k0 a
2 x i 2

4
a
2

2


t ℏ i
2 me
















1
t ℏ i

me a2


A e

2 me a
2 k0 x t ℏ a

2 k0
2 me x

2 i  i

2 me a
2 t ℏ i 



1
t ℏ i

me a2


=
A e

k0 x
t ℏ k0

2

2 me


x
2

2 a
2

i










i

1
t ℏ i

me a
2









1
t ℏ i

me a2


=

erf1 x μ σ  1

2 π ∞

x

ξe

ξ2

2






d

μ 0.3 σ 0.3

x 10 σ 10 σ
20 σ
1000

 10 σ

4 2 0 2 4
0

0.5

1

0.5

1

erf1 x μ σ( )

x
erf1 x μ σ( )





0

x

Ψ x t  A

1
i ℏ t

me a2


exp

x2 2 i a2 k0 x
i ℏ t
2 me

k0
2 a2










2 a2 1
i ℏ t

me a2

























= (16.55)

Let's say, for example: v 103 m

s
 a 10 6 m and that|A|=A:

A
1

a π
 k0

me v

ℏ
 v0

ℏ
me

k0 p0 ℏ k0

A 751.126
1

m0.5
 k0 8.637 106

1

m


ψ x t  A

1
i ℏ t

me a2


exp

x2 2 i a2 k0 x
i ℏ t
2 me

k0
2 a2










2 a2 1
i ℏ t

me a2
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a 1 μm v 1 103
m

s
 t 50 ns

x 10 5 2 m 10 5 2 m
10 5 8 m 10 5 2 m

1000
 10 5 8 m

2 10
5 4 10

5 6 10
5 8 10

5
3 10

10

2 10
10

1 10
10

0

1 10
10

2 10
10

3 10
10

Wave Packet

Re ψ x t( )( )

ψ x t( )

ℏ k0

me
t

x

ψ 10 5 5 m t  4.568 105 2.265j 1010  1

m0.5


ξ
k

k0
=

C0 ξ  A a
2 π

exp
1

2
a2 k0

2 ξ 1 2




vph ω k  ω k 
k



p0 0
m kg

s


k0 8.637 106
1

m


vph ω k0
3

2



750
m

s


Abscissa of the widths at half height:

ξ1

ln
1

2



1

2
a2 k0

2


1 ξ2

ln
1

2



1

2
a2 k0

2


 1 ξ1 ξ2 0.273
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ξ 0.4 .4 .001 2.2

0.5 1 1.5
0

1 10
4

2 10
4

3 10
4

A a

2 π 2

A a

2 π

C0 ξ( )

ξ2 ξ1

ξ

A good understanding of (16.55) which is asomewhat complicated expression, can be obtained by debating the density a
flow again. The first one becomes:

ρ x t  A 2

1
ℏ t

me a2









2










2
exp

x
ℏ k0

me
t









2



a2 1
ℏ t

me a2









2




























 (16.56)

which is a function of x, it is a bell curve, whose maximum is shifted from x=0 to x=(ℏk
0
/m)t.

t 10 9 52 s

2 10
5 4 10

5 6 10
5 8 10

5
0

100

200

300

400

500

ρ x t( )

ℏ k0

me
t

x

The maximum of the "wave group" represented by (16.55) is thus propagated at a velocity v0 = ℏk / m ('group velocity =

particle velocity'). the denominator of the exponent in (16.56) shows that, at the same time, the wave packet has expande
from its initial width - a - at the instant t = 0, to

v0

ℏ k0

me
 a1 a 1

ℏ t

me a2









2










 a1 6.103 10 6 m

v0 1 103
m

s
 a 1 10 6 m

Which is about equal to ℏt / (ma) at the instant t = t. This effect can be easily explained by the spectral function C (k): th
waveform spectrum has the width Δk = 1 / a, the partial wave velocities cover a region of width 
                                                                          Δv = (ℏ / k) Δk = ℏ / (ma) 
so that the packet widens to Δx = tΔv = ℏt / (ma). The flow is derived from (16.55) with the help of the relationship:
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x
ψ x t 


i k0

1 i
x

a2 k0









1 i
ℏ t

m a2


 ψ x t =

Which compared with (16.55) provides:

s0 x t  ρ x t  v0

1
ℏ t x

me a4 k0


1
ℏ t

me a2









2


 (16.57)

2 10
5 4 10

5 6 10
5 8 10

5
0

1 10
5

2 10
5

3 10
5

4 10
5

5 10
5

s0 x t( )

v0 t

x

It follows that in no way I always have s = rv0 at every instant, as I have for t = 0.
This is again a consequence of the finite width of the spectrum: at the maximum point of the packet, x0 = v0t, the equatio
(16.57) leads to the elementary relation s = ρv0 for x <x0 or x> x0 I find s <ρv0 , s> ρv0 this is reasonable as at a point x 
(x> x0) must reach those parts of the wave packet whose speeds are lower (higher) than v0. Finally, I can mention that th
normalization condition always applies at any instant, this reflects the conservation of matter.

Solution of the one-dimensional Schrödinger equation for a free particle[1] 

Standing wave

Infinitely heigh potential barrier

Classical  Hamiltonian for N non relativistic particles of  rest mass mi , under mutual interaction only

Classical  Hamiltonian for two non relativistic particles of  rest mass m1 and m2 , under mutual interaction only

Classical  Hamiltonian for two non relativistic and non interacting  particles of  rest mass m1 and m2

Potential hole between two walls

Scattering on a Dirac Delta Barrier

Finite Potential Barrier. Resonances

Potential Step. Reflection and Transmission of Wave

Scattering on a Symmetrical Potential Barrier. Tunnel Effect
Reflexion Inversion

Rectangular Potential Hole - Bound State

Rectangular Hole Between Walls

Virtual Levels

Periodic Potential's Wave Function

Potential Formed By A Sequence of Dirac Pulses Spaced Δ From Each Other
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                                                 17 Quantization procedures
                                            when the quantum system possesses a classical analogue

Quantization rules (substitute to each classical operator of the Hamiltonian the corresponding Quantum Operator )
                                                             Classical           Quantum
                                                             Operator           Operator acting on kets or eigenfunctions
                                                                                       p   ↔ i ℏ ∇                                                                      (17.1)
                                                                           L r p=   ↔ i ℏ r ∇ ,                                                   (17.2)
                                                                                    s p    ↔   ∇ ×                          A. M. 551               

                                                                                       p2 ↔ ℏ2 Δ ,                                                                        (17.3)

                                                                     
p q'

2

p2

2 m
=   ↔ 

ℏ2
2 m

Δ                                                           (17.4)

                                                                         Energy   E  ↔   i ℏ
∂
∂t
 ,                                                         (17.5)

                                                                                      E2↔   ℏ
∂2

∂t2


                 l
2

r p  r p = r2 p2 pr
2 =  ↔  r2 ℏ2 Δ ℏ2 ∂

∂r

1

r






  Sph. coord.   (17.6)

                                                                      r p   ↔  i ℏ r
∂
∂r
 i ℏ r

∂
∂r

1

r



=  Sph. coord.                (17.7)

                                           A is the vector potential   p A   ↔   
i ℏ
2

∇ ∙ A A ∇  .                                   (17.8)

Example 17.1) Heisenberg Uncertainty principle  Δ A Δ B
1

2
< [ A B ] >

For a particle of mass m

x q= q ↔ q A= p m v= p ↔
ℏ
i

∇ B=


i i=

[ A B ] Ψ [ x
ℏ
i

∇ ] Ψ= x
ℏ
i

 ∇ Ψ
ℏ
i

∇ x Ψ= x
ℏ
i

 ∇ Ψ
ℏ
i

Ψ ∇ x
ℏ
i

x ∇ Ψ=
ℏ
i

 Ψ ∇ x=
ℏ
i

 Ψ=

[ x p ] i ℏ=

Δ A Δ B Δ x Δ p
1

2
i ℏ=

1

2
ℏ=

Δ x Δ p
1

2
ℏ

x q= q ↔ q A= p ℏ k= ℏ
2 π

λ
 k= ℏ

ω
c

 k=
E

c
k= p ↔

ℏ
i

∇ B=


Δx

c
Δt= Δ x

1

c
 Δ E Δt ΔE

1

2
ℏ=

thence it follows that, for a quantum system, the energy can be uncertain to within ΔE for a time Δt

Example 17.2) The Hamiltonian H and the operator A, are time independent.
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A x= p ↔
ℏ
i

∇


H T U=
p2

2 m
=

ℏ2

2 m
 ∇2=

[ x
ℏ2

2 m
 ∇2 ]









ψ x
ℏ2

2 m
 ∇2 ψ

ℏ2

2 m
∇2 ψ x= 0=

Δ x Δ
ℏ2

2 m
 ∇2









1

2
< [ x

ℏ2

2 m
 ∇2 ] > 0=

  Example 17.3) Relativistic case:                     E ± c p2 m2 c2=      

                                                                            E2 c2 p2 m2 c4=                                                                        

                                                               ℏ2
2t

Ψ



2
 c2 ℏ2 ΔΨ m2 c4 Ψ=

                                                                   ΔΨ
1

c2 2t
Ψ



2


m2 c2

ℏ2
Ψ 0=

                or using the Dalambertian Operator:  □
1

c




2 ∂2

∂t2
 ∇2=  ,

                                                  

                                     Klein-Gordon equation:   □
m c

ℏ




2










Ψ r t  0=     
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                                          18  Lagrange equations
Lagrangian coordinates for a system with n degree of freedom  : qi , i=1,..n

Kinetic energy : T
Potential energy : U

 Classical mechanics Lagrangian :                      

                              L q1 q2 ...qn q'1 q'2.n ...q' t  T q'1 q'2 ...q'n t  U q1 q2 ...qn =                             (18.1)

Lagrange equations' system
t q'i

Li q1 q2 ... 



d

d qi

Li q1 q2 ... 


 0= i 1= 2 3 n (18.2)

Conjugated momenta pi
q'i

L


= i 1= 2 3 n Kinetic energy: T

1

2 m
1

n

i

pi
2



=
1

2 m
1

n

i
q'i

L









2




=

Ti

pi
2

2 m
=

pi pi

2 m
=

pi m q'i

2 m
=

pi q'i

2
= ⇒ T

1

2
1

n

i

pi q'i 


=

⇒ L 1

2
1

n

i

pi q'i 


 U= (18.3)

Example: classical Lagrange equations for a two degree of freedom System

                                             19  Hamilton equations
Kinetic energy : T,  Potential energy : U

Classical mechanics Hamiltonian : 

H q1 q2 ...qn p1 p2 ...pn t  T U= 2 T L q1 q2 ...qn q'1 q'2.n ...q' t = E=  

H 2 T L= 2
1

2


1

n

i

pi q'i 


 L=

1

n

i

pi q'i 


L=

1

n

i

q'i
q'i

L













L= E=

E H=

1

n

i

q'i
q'i

L













L= (19.1)

q'i
pi

H


= i 1= 2 3 n (19.2)

p'i
qi

H


= 19.3)
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                                     20  Schrödinger equation of motion 

System's time evolution. Given a physical system whose Hamiltonian (observable) is known, and are given the initial
conditions, the equations are the following: 

i ℏ
t
∣ ψ >


 H ∣ ψ >= (20.1)

i ℏ
t
< ψ ∣


 < ψ ∣ H

†
= (20.2)

 They are deterministic.
  A system is conservative if the Hamiltonian isn't time dependent otherwise isn't conservative. Each isolated system is
  conservative.

  Assuming H t( ) H=  time independent and with a discrete spectrum only, I can create the following base system   
   belonging to the Hilbert space

                                                                            H ∣ k > Ek ∣ k >=  ,                                                                   (20.3)

  from the closure relation I know that Pn
1

N

k

∣ k > < k ∣
 ξ1

ξ2

ξ∣ ξ >




d < ξ ∣= 1=  ,                                (20.4)

  since there exist only the discrete spectrum for hypothesis, the integral vanishes, so that:

                                                                           Pn
1

N

k

∣ k > < k ∣


= 1=                                                          (20.5)

 and the equation 20.1) become: i ℏ

1

N

k

∣ k > < k ∣



t
∣ ψ >




1

N

k

∣ k > < k ∣


H ∣ ψ >= ,                       (20.6)

  since ∣ k > is time independent, I can write:

                                                    i ℏ

1

N

k

∣ k >
t
< k | ψ >






1

N

k

∣ k > < k ∣


H ∣ ψ >=                            (20.7)

furthermore, since H ∣ ψ > Ek ∣ ψ >= substituting in (20.7), I get:

i ℏ

1

N

k

∣ k >
t
< k | ψ >






1

N

k

∣ k > < k ∣


Ek ∣ ψ >= (20.8)

i ℏ

1

N

k

∣ k >
t
< k | ψ >






1

N

k

∣ k > < k ∣


Ek ∣ ψ > 0= (20.9)

1

N

k

i ℏ ∣ k >
t
< k | ψ >


 ∣ k > Ek < k | ψ >











0= (20.10)

1

N

k

∣ k > i ℏ
t
< k | ψ >


 Ek < k | ψ >











0= (20.11)

All the components must vanish otherwise the basis isn't complete:
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(20.12)i ℏ
t
< k | ψ >


 Ek < k | ψ > 0=

the solution is: < k | ψ > C e
i

Ek

ℏ
 t

= (20.13)

and the initial condition let me know the constant C:

for t t0= , I get: C < k | ψ0 >  e
i

Ek

ℏ
 t0

= ⇒ < k | ψ > < k | ψ0 > e
i

Ek

ℏ
 t t0 

= (20.14)

∣ k > < k | ψ > ∣ k > < k | ψ0 > e
i

Ek

ℏ
 t t0 

= (20.15)

∣ k > < k ∣ 1= ∣ ψ > ∣ ψ0 > e
i

Ek

ℏ
 t t0 

= (20.16)

f H  ∣ k > f Ek  ∣ k >= (20.17)

f H 
1

N

k

∣ k > f Ek  < k ∣


=

1

N

k

∣ k > e
i

Ek

ℏ
 t t0 

< k ∣


=

1

N

k

∣ k > e
i

H

ℏ
 t t0 

< k ∣


= (20.18)

∣ ψ > e
i

H

ℏ
 t t0 

∣ ψ0 >= (20.19)

  U t( ) e
i

H

ℏ
 t t0 

=  is the evolution operator. It is unitary. The ket ∣ ψ > components, are those of ∣ ψ0 >  rotated 
  with a phase

                                                                                         
Ek

ℏ
ωk=                                                                       (20.20)

Planck's formula: E ωk  ℏ ωk (20.21)
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                                                                  21  Black body radiation
  The spectral exitance is given by the Planck formula.

Define the constants.c1 π 2 h c2 c2
h c
kB



c1 0.322
cal μm2

hr
 c2 0.014 m K

 Planck's formula of black body radiation:Iλ λ T  c1
λ 5

e

c2

λ T 1



1000 Å  0.1 μm Iλ 1000 Å 4000 K  8.936
kW

m3
 λ0 T 

c2

5 T


Iλ 1 μm 6000 K  3.741 104
GW

m3
 σSB 56.696

nW

m2 K4


if  λT<<1  ⇒   e

c2

λ T ≫ 1  ⇒ Iλ c1 λ 5 e

c2

λ T=

U ω T  U ω 0 
ℏ ω3

π2 c3 exp
ℏ ω
k T




1



=

Wien Displacement law λmax T  2.8978 106
T

nm K λmax 6000 K  0.483 μm

Color λmax 6000 K   "Bleu"

Color λmax 5000 K   "Yellow" λmax 5000 K  0.58 μm

Color λmax 4700 K   "Red"

Essentially the solar spectrum is a black body radiation at 6050 K with power density:135.3
mW

cm3
 ..

x 0 μm 0.01 μm 4 μm
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

5.5 10
12

1.1 10
13

1.65 10
13

2.2 10
13

2.75 10
13

3.3 10
13

3.85 10
13

4.4 10
13

4.95 10
13

5.5 10
13

6.05 10
13

6.6 10
13

7.15 10
13

7.7 10
13

8.25 10
13

8.8 10
13

9.35 10
13

9.9 10
13

1.045 10
14

1.1 10
14

Planck

Iλ λmax 6000 K( ) 6000 K Iλ x 1300 K( )

Iλ x 1600 K( )

Iλ x 1900 K( )

Iλ x 2200 K( )

Iλ x 2500 K( )

Iλ x 2800 K( )

Iλ x 3100 K( )

Iλ x 3400 K( )

Iλ x 4700 K( )

Iλ x 5000 K( )

Iλ x 6000 K( )

λmax 6000 K( )

μm

x

μm

                                                                                  Stefan-Boltzmann

z λ 1= dz λ 2 dλ= z2 dλ= dλ
dz

z2
=

0

∞

λc1
λ 5

e

c2

λ T 1









d

∞

0

zc1
z5

e

c2 z

T 1







 z2









d=

0

∞

z
c1 z3

e

c2 z

T 1








d=

c1 c1 T T λ λ c2 c2

c1

0

∞

z
z3

e

c2 z

T 1








d
π4 T4 c1

15 c2
4



π4 T4 c1

15 c2
4

σ T4=

53

0

∞

λc1
λ 5

e

c2

λ T 1









d σSB T4=

c1 0
m4 kg

s3
 c1

c2
4

8.731 10 9
kg

K4 s3


c2 0.014 m K

σSB

π2 kB
4

60 ℏ3 c2
 T 300 K a T 

kB T

ℏ
 σSB 56.696

nW

m2 K4


a T  3.927 1013 sec 1

σSB 56.696
nW

m2 K4
 Etot

0

∞

λIλ




d= σSB T4=

The total emittance is given by the Stefan-Boltzmann lawEtot T  σSB T4 Etot T  459.239
W

m2


    

Time evolution operator

Time evolution operator (conservative system, the Hamiltonian H, is constant in time):

U t t0  e
i

H t t0 

ℏ


= U t0 t0  1= (20.22)

Differentiation:
t
U t t0 



H e

H t t0  i

ℏ


 i
ℏ

=
i

ℏ
H U t t0 =

If H is time independent then: i ℏ
t
U t t0 d

d
 H U t t0 = (20.23)

Integral equation U t t0  1
i

ℏ
t0

t

τH U τ t0 




d= (20.24)

Assuming a linear dependence of ∣ Ψ t( ) > from ∣ Ψ t0  > I can write:
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∣ Ψ t  > U t t0  ∣ Ψ t0  >= (20.25)

Differentiation:
t
∣ Ψ t  >d

d t
U t t0 d

d









∣ Ψ t0  >= (20.26)

from (20.19) I get 
t
U t t0 d

d

i
ℏ

H U t t0 = , which substituted in (20.22) gives:

t
∣ Ψ t  >d

d

i
ℏ

H U t t0  ∣ Ψ t0  >= (20.27)

that is the Schrödinger equation: 
t
∣ Ψ t  >d

d

i
ℏ

H ∣ Ψ t  >= (20.28)

Time evolution operator

                                                              22 Momentum Space Wave Function

dV dx dy dz= d k d kx d ky d kz= k kx ix ky iy kz iz=

Consider the Fourier transforms and the inverses of the wave function and of the potential:  

Ψ r  1

2 π 3
kf k  ei k r





d= f k  1

2 π 3
VΨ r  e i k r





d= (21.1)

V r  kW k  ei k r




d=
∞r

V r lim


0= W k  1

2 π 3
VV r  e i k r





d= (21.2)

Substitute into the Schrödinger equation
ℏ2

2 m
Δ Ψ r  V r  Ψ r  E Ψ r = (21.3)

Calculation of the MOMENTUM SPACE WAVE FUNCTION [3] 

ℏ2
2 m

1

2 π 3
 Δ kf k  ei k r





d

1

2 π 3
kW k  ei k r





d k1f k1  e
i k1 r







d


















E
1

2 π 3
kf k  ei k r





d= (21.4')

ℏ2
2 m

kf k  Δ ei k r




d kW k  ei k r




d k1f k1  e
i k1 r







d E kf k  ei k r




d= (21.5')

consider the the second term on the left side:

kW k  ei k r




d k1f k1  e
i k1 r







d k1kW k  f k1  e
i k1 k  r







d





d= (21.6')

replace k2 k k1= k1 k2 k= d k1 d k2= k k2 k1= d k d k2= (21.7')

55

obtaining k1kW k  f k1  e
i k1 k  r







d





d k2k1W k2 k1  f k1  e
i k2 r







d





d= (21.8')

k2 k= (21.9')

resulting k2k1W k2 k1  f k1  e
i k2 r







d





d kk1W k k1  f k1  ei k r



d



d= (21.10')

furthermore Δ ei k r k2 ei k r= (21.11')

ℏ2

2 m
kf k  k2 ei k r





d kk1W k k1  f k1  ei k r



d



d E kf k  ei k r




d= (21.12')

k
ℏ2

2 m
k2 E









f k  k1W k k1  f k1 



d










ei k r







d 0= (21.13')

ℏ2

2 m
k2 E









f k  k1W k k1  f k1 



d 0= (21.14')

Calculation of the MOMENTUM SPACE WAVE FUNCTION [3] 

integral equation k1W k k1  f k1 



d
ℏ2

2 m
k2 E









 f k = (21.4)

          23 Representations theory

Euclidean representation: < x | Ψ > Ψ x( )= ,    < Ψ | x > Ψ x( ) *= ,

k representation: < k | Ψ > Ψ k( )= ,    < Ψ | k > Ψ k( ) *= ,

p representation: < p | Ψ > Ψ p( )= ,    < Ψ | p > Ψ p( ) *= ,

Closure relation: PA
1

N

j

∣ j > < j ∣
 ξ1

ξ2

ξ∣ ξ >




d < ξ ∣= 1= (10.12')

PA H

1

N

j

∣ j > < j ∣ H
 ξ1

ξ2

ξ∣ ξ >




d < ξ ∣ H=

1

N

j

∣ j > < j ∣
λj



ξ1

ξ2

ξ∣ ξ >




d < ξ ∣

λ
=
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PA
1

N

j

∣ j > < j ∣


= 1=

H ∣ ψ > Ek ∣ ψ >=

z H  ∣ ψ > z Ek  ∣ ψ >=

z H  PA ∣ ψ > z Ek  PA ∣ ψ >=

apply the closure relation (10.12') assuming that there is no continuous spectrum 

z H 
1

N

j

∣ j > < j | ψ >


 z Ek 
1

N

j

∣ j > < j | ψ >


=

z H  1

1

N

j

∣ j > < j | ψ >



1

z Ek 
1

N

j

∣ j > < j | ψ >


=

z H  1

1

N

j

∣ j > < j ∣



1

z Ek 
1

N

j

∣ j > < j ∣


=

1

N

j

∣ j > < j ∣
z Ek



= G z =

Green function: G z 
1

N

j

∣ j > < j ∣
z Ek



=
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                       24 Time evolution of the  average value of an observable  [4]

t
< A >d

d

1

i ℏ
< [ A H ] >  <

t
A


>= (23.1)

Demonstration of 23.1)

Consider the definition of average value:

< A > < ψ ∣ A ∣ ψ >= τΨ τ  * A Ψ τ 




d= (23.2)

and calculate the expectation value derivative:

t
< A >d

d t
< ψ ∣ A ∣ ψ >d

d
= (23.3)

calculation result:
t
< A >d

d t
< ψ ∣











A ∣ ψ > < ψ ∣
t
A


∣ ψ > < ψ ∣ A

t
∣ ψ >


= (23.4)

knowing that: i ℏ
t
∣ ψ >


 H ∣ ψ >= and i ℏ

t
< ψ ∣


 < ψ ∣ H

†
= (23.5)

from which
t
∣ ψ >



1

i ℏ
H ∣ ψ >= and

t
< ψ ∣


< ψ ∣ H

† 1

i ℏ
= (23.6)

< ψ ∣
t
A


∣ ψ > <

t
A


>=

after a substitution in 22.4), I get

t
< A >d

d t
< ψ ∣











A ∣ ψ >  < ψ ∣ A
t
∣ ψ >




<
t
A


>

= < ψ ∣ H
† 1

i ℏ






A ∣ ψ > 

< ψ ∣ A
1

i ℏ
H ∣ ψ >


<

t
A


>

=

so that
t
< A >d

d
< ψ ∣ H

† 1

i ℏ






A ∣ ψ >  < ψ ∣ A
1

i ℏ
H ∣ ψ >


 <

t
A


>=

t
< A >d

d

1

i ℏ
< ψ ∣ H

†
A ∣ ψ > 

1

i ℏ
< ψ ∣ H A ∣ ψ >  <

t
A


>=

namely
t
< A >d

d

1

i ℏ
< ψ ∣ A H ∣ ψ > < ψ ∣ H

†
A ∣ ψ >  <

t
A


>= (23.7)

Self adjoint Operator (Hermitian): H H
†

=

t
< A >d

d

1

i ℏ
< ψ ∣ A H H A  ∣ ψ > <

t
A


>= (23.8)

t
< A >d

d

1

i ℏ
< [ A H ] >  <

t
A


>=
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Demonstration of 23.1)

2t
< A >d

d

2 1

ℏ2
< [ [ A H ] H ] >

1

i ℏ
<

t
[ A H ]d

d
>

t
<

t
A


>


= (23.9)

Demonstration of 23.9)

Eq. 23.1 can be rewritten as: <
t
A


> 1

i ℏ
< [ A H ] >

t
< A >d

d
= (23.10)

For a system in  stationary state, of energy E ω  ℏ ω  ∣ Ψ > e
i

E t
ℏ


∣ ψ >=

E ψ e

E t i
ℏ


 H ψ e

i
E t
ℏ










=

Schrödinger equation for the stationary state H ψ E ψ= H ∣ ψk > Ek ∣ ψk >=

  The observable is a motion's constant when the operator isn't time dependent. This happens if and only if its average
   isn't time dependent.
  Theorem: a necessary and sufficient condition that a time independent observable be a motion's constant, is that the
                   Hamiltonian commute with it. It follows that all statistical moments are time independent as well.
                   The set of all time independent variables commuting with  the Hamiltonian (compatibility) coincide with    
                   the motion's constants.
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 25  Conservation Laws  [4]

For a particle in a scalar potential:

Probability density P ψ * ψ= (24.1)

Probability current density J
ℏ

2 m i
ψ * ∇ ψ ∇ ψ  * ψ = (24.2)

Continuity law ∇ ∙ J
t
P


 0= (24.3)

Energy Flux vector S
ℏ2

2 m


t
ψ *


∇ ψ

t
ψ


∇ ψ * 









= (24.4)

Energy density W
ℏ2

2 m
∇ ψ *  ∇ ψ ψ * ∇ ψ = (24.5)
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                         26 Commutation relations of Angular Momentum  [4]

(Classical mechanics L r p= )

          L r p=   ↔ i ℏ r ∇ ,       (25.1)

[ qi A pi qi  ] i ℏ
qi

A pi qi 


= (25.2)

[ Lx Ly ] i ℏ Lz= (25.3)

[ Ly Lz ] i ℏ Lx= (25.4)

[ Lz Lx ] i ℏ Ly= (25.5)

(25.6)[ Lz Lx
2 ] i ℏ Ly Lx Lx Ly =

[ Lz Ly
2 ] i ℏ Ly Lx Lx Ly = (25.7)

[ Lz Lz
2 ] 0= (25.8)

u is a unit vector [ u L p ] i ℏ ix p = (25.9)

u is a unit vector [ u L r ] i ℏ ix r = (25.10)

u is a unit vector [ u L p2 ] 0= (25.11)

u is a unit vector [ u L r2 ] 0= (25.12)

u is a unit vector [ u L r p ] 0= (25.13)

Spherical coordinates (r,θ,φ) pr
ℏ
i

∂
∂r

1

r



= (25.14)

Classical mechanics p2 pr
2 L2

r2
= (25.15)

L2 ℏ2

sin θ 2
sin θ 

θ
sin θ  ∂

∂θ
















∂2

∂φ2








= (25.16)

L2 Y l m θ φ  l l 1  ℏ2 Y l m θ φ = l 0= 1 2 ... ∞ (25.17)

Lz Y l m θ φ  m ℏ Y l m θ φ = m l= l 1 ... l (25.18)

Pl cos γ   4 π

2 l 1
l

l

j

Y l j Θ Φ  * Y l j θ φ  


= (25.19)

Angular moment theorem 

A vector operator J is an angular momentum if its components are observables satisfying the following commutation
61

relations:

J Jx ix Jy iy Jz iz= (25.20)

[ Jx Jy ] i ℏ Jz= (25.21)

[ Jy Jz ] i ℏ Jx= (25.22)

[ Jz Jx ] i ℏ Jy= (25.23)

If a and b are any two vectors (or any two vector operators that commute with each other and also with J) I get

[ a J b J ] i ℏ a b  J= (25.24)

[ J J2 ] 0= (25.25)

(25.26)[ f Jα  J2 ] 0=

Hermitian conjugated operators: J+ Jx i Jy= J− Jx i Jy=

[ Jz J+ ] ℏ J+= (25.27)

[ Jz J− ] ℏ J−= (25.28)

[ J+ J− ] 2 ℏ Jz= (25.29)

Demonstration of (25.27), (25.28), (25.29) 

[ J2 J+ ] [ J2 J− ]= [ J2 Jz ]= 0= (25.30)

J2 1

2
J+ J− J− J+  Jz

2= (25.31)

J− J+ J2 Jz Jz 1 = (25.32)

J+ J− J2 Jz Jz 1 = (25.33)
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                 27 Charged Elemental Particle (Q) in an Electromagnetic Field
MKS-GAUSS
Electric field

The electric field is bounded to the vector potential by the relation:

volt

m
E R t  ∇ φ R t 

t
A R t 


=

Wb

m sec
1

volt

m
 (26.1)

t
A R t 


∇ A R t 

t
R


= v ∇ A R t = (26.2)

volt

m
E R t  ∇ φ R t  v ∇ A R t =

Wb

m sec
1

volt

m
 (26.1')

E R t  ∇ φ R t  v A R t  =

verify

Consider the electric charge Q immersed in an electromagnetic field. It is subject to the Lorenz force:

F Q E v B = (26.3)
Substitute in it eq. 26.1) and the option 26.a1) (Option 1) . Results:

F m q''= p'= Q ∇ φ
t
A


 v ∇ A 









= (26.4)

v ∇ A  ∇ v A  v ∇  A A ∇  v A ∇ v  = (26.5)

t
A


v ∇ A= (26.2)

F Q ∇ φ v ∇ A ∇ v A  v ∇  A A ∇  v A ∇ v   = (26.6)

furthermore, collecting the gradient operators, I can write:

E R t  ∇ φ R t  v A R t  = ∇ Φp = (26.7)

so that I can define the scalar potential: Φp R t  V R t  v A R t = (26.8)

while the potential energy is U R t  Q V R t  v A R t  = Q ± qe= (26.9)

which is useful to define the  Lagrangian. 

Lagrangian coordinates: p m q'= p' m q''= q r= (26.10)

F m q''= p'= q'
p

m
= (26.11)

Cinematic moment (A is the potential vector)

T
p2

2 m
=

p m q'
2 m

=
p q'

2
= (26.12)

U Q V R t  v A R t   Φ r = (26.13)
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Classical Lagrangian L T U=
p q'

2
Q V R t  v A R t   Φ r = U T L= (26.14)

L p q'
2

Q V R t  v A R t   Φ r =
p2

2 m
Q V v A  Φ r = (26.15)

Classical Hamiltonian  in an electromagnetic field:

U T L= H T U= 2 T L= p q'
p q'

2
 Q V R t  v A R t   Φ r = (26.16)

H p q'
2

Q V R t  v A R t   Φ r = (26.17)

Classical Lagrangian for one electron (Φ=0, Q=-qe) in an electromagnetic field:

L p q'
2

qe V R t  v A R t  = (26.18)

Classical Hamiltonian for one electron (Φ=0, Q=-qe) in an electromagnetic field:

H p q'
2

qe V R t  v A R t   Φ r = (26.19)

 Scalar potential due to electrostatic field V r  rE r 




d= , or E r( ) ∇ V r( )=                                               (26.20)

The Potential due to non electromagnetic forces is indicated with  Φ r 

 Electromagnetic vector potential A, magnetic induction  B ∇ A=    (T) . In a system of currents, A is the solution of t
Helmholtz equation  

                                                                      ∇2 A x y z( ) k2 A x y z( ) Jσ x y z( )= ,        k2 ω2 μ ε=                           (26.21)

A x y z  1

4 π
zyxJ p1  e

i p p1 

p p1








d







d







d= (26.22)

Apply the quantization rules to the classical  Hamiltonian of one electron (Φ=0, Q=-qe) in an electromagnetic field:

  Quantization rules (substitute to each classical operator of the Hamiltonian the corresponding Quantum Operator )

  when the quantum system possesses a classical analogue:
                                                                       Classical            Quantized
                                                                       Operator           Operator acting on kets or eigenfunctions 
                                                                                     p   ↔ i ℏ ∇ ,

                                                                                     q'  ↔ i
ℏ
m
 ∇

                                                                         L r p=   ↔ i ℏ r ∇ ,

                                                                                      lx ↔ i ℏ y
∂
∂z
 z

∂
∂y



 ,

                                                                                      ly ↔ i ℏ z
∂
∂x
 x

∂
∂z



 ,

                                                                                      lz ↔ i ℏ x
∂
∂y
 y

∂
∂x



 ,
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                                                                                     p2 ↔ ℏ2 Δ ,

                                                                                    
p q'

2

p2

2 m
=   ↔ 

ℏ2
2 m

Δ

                                                                       Energy   E  ↔   i ℏ
∂
∂t
 ,

                                    l
2

r p  r p = r2 p2 pr
2 =  ↔  r2 ℏ2 Δ ℏ2 ∂

∂r

1

r






  Sph. coord.

                                                                                                       r p   ↔  i ℏ r
∂
∂r
 i ℏ r

∂
∂r

1

r



=  Sph. coord.

                                                                                 s p    ↔   ∇ ×                          A. M. 551

Classical  Hamiltonian for a non relativistic particle of  rest mass m: 

   how do I get the quantized Hamiltonian? I substitute to each classical operator the one given by the table of the 
   correspondences (at first only the energy E).

   Classical mechanical energy E T U= H= . In QM, to E and H  correspond to each one an operators acting on a ke

                                                                                  E ∣ Ψ > H ∣ Ψ >=  .                                                                           (26.24 )
   Namely, applying the previous substitutions  rules, I get (vector operators are written with bold fonts):

H p2

2 m
qe V

m v A q t 
m







 Φ r =
p2

2 m
qe V

qe p A q t 

m
 Φ r = (26.23)

Classical Hamiltonian ↔ QM Hamiltonian (26.25)

↓ ↓

H p2

2 m
qe V

qe p A q t 

m
 Φ r = ↔ H

ℏ2

2 m
 ∇2

i qe ℏ

m
A ∇ qe V Φ r = (26.26)

 in fact for the scalar product between p and A,  I can write:   p A A p=   ↔   i ℏ A ∇ (26.27)

 classical Hamiltonian of the electron: H p2

2 m

A2 qe
2

2 c2 m


A p qe

c m
 qe V r  Φ r = (26.28)

QM Hamiltonian operator H
ℏ2

2 m
 ∇2

i qe ℏ

2 m c
∇ ∙ A A ∇ 

qe
2

2 m c2
A2 qe V Φ= (26.29)

H+H^†

Probability current density J
ℏ

2 m i
ψ * ∇ Ψ Ψ ∇ ψ * 2i

qe

ℏ c
 A ψ * Ψ









= (26.30)

or J
ℏ

2 m i
ψ * ∇ Ψ Ψ ∇ ψ *

qe

m c
ψ * Ψ A









= (26.31)

 varie

Remark on parity

Remark on parity [4]

65

ℏ2
2 m

Δ V x 








∣ ψ > E ∣ ψ >=

V x  ℏ2

2 m
U x = E

ℏ2

2 m
ε=

ℏ2
2 m

Δ
ℏ2

2 m
U x 









∣ ψ > ℏ2

2 m
ε ∣ ψ >=

Δ U x   ∣ ψ > ε ∣ ψ >=

Δ ∣ ψ > U ε  ∣ ψ >=

2x
ψ x 



2
U ε  ψ x  0=

If the potential U is even, that is to say if U x( ) U x( )= ,  the Schrödinger Hamiltonian doesn't change when I replace
with -x, that is it is invariant under reflection through the origin. It follows that if ψ(x) is an eigenfunction of the
eigenvalue E, equation changes as follows:

H ∣ ψ x  > E ∣ ψ x  >= → H ∣ ψ x  > E ∣ ψ x  >=

  The even function ψ x( ) ψ x( )  and the odd function ψ x( ) ψ x( )  are both eigenfunctions of the same eigenvalue E 
   and at least one does vanish identically.
  1) E is not degenerate, then the four functions (ψ x( ) , ψ x( ) ,ψ x( ) ψ x( )  , ψ x( ) ψ x( ) ) are multiples of each 
      other. ψ(x) is a multiple of the one not identically zero.
      The eigenfunction of a non degenerate eigenvalue (spectrum) some are even and the other are odd. The ground state 
      always even. Increasing the eigenvalues of the energy, alternately the eigenfunctions are even and odd.
  2) E is degenerate, then each eigenfunction ψ is a linear combination of the linear and independent function f, g each 
      having its parity: for example ψ(x)=λf(x)+μg(x). The eigenvalues of the continuous spectrum are all doubly degener
      and to each of the corresponds an even function and an odd.
       If the Hamiltonian of the system is invariant under certain transformations, the eigenfunctions have certain symmet
       properties. Parity is an example of this.
       Consider the observable parity indicated with P:

                                                                         P ∣ ψ x( ) > ∣ ψ x( ) >= ,

       P is Hermitian                                                         P P
†

= ,

                                                                                      P2 1= .

     The eigenvalues λ of P ∣ ψ q( ) > λ ∣ ψ q( ) >=  are necessarily λ1 1=  and λ2 1= . 
     The eigenfunction associated with the eigenvalue λ1 1=  are even, 

     while the eigenfunction associated with the eigenvalue λ2 1=  are odd.

     When the Schrödinger Hamiltonian  is invariant under reflection through the origin, results:

                                                                                   [ P H ] 0= .

       If  H
ℏ
i

d

dq
 q


H

ℏ
i


d

dq
 q


=  ⇒ ∀∣ ψ q( ) >,  

                          PH ∣ ψ q( ) > H
ℏ
i


d

dq
 q


∣ ψ q( ) >= H

ℏ
i

d

dq
 q


∣ ψ q( ) >= HP ∣ ψ q( ) >= .

   For t=0 and the same condition, if the wave function has a definite parity, it conserves the same parity in the course of
   time.
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Remark on parity

                                          28  Pauli Matrices [4]

   Hermitian σ1
0

1

1

0









 σ2
0

i

i

0









 σ3
1

0

0

1








 (27.1)

   Anti Hermitian i σ1
0

j

j

0









 i σ2
0

1

1

0









 i σ3
j

0

0

j








 (27.2)

Calculations

67

              29  Statistical Mixtures [4]

Statistical mixture of states:  the dynamical state of the system is incompletely known. One assign to the system a
statistical mixture of wave functions each having a suitable statistical weight.

  Methods to study  incompletely known dynamical states of a quantum system. 
  When information regarding a system is incomplete, I simply state that the system has some probabilities p1, p2,..., pn  

  to find itself in the dynamical states represented by the ket vectors  ∣ 1 >, ∣ 2 >,...,∣ n >. In other words the dynamic
  state of the system can't be represented by a single vector but by a statistical mixture of vectors. 
  Suppose I perform the measurement of the physical quantity A; it is an observable so that it is represented by the   
  operator A.  After n measurement I have the average value of the n results indicated with <A>n.

< A >n
< n ∣ A ∣ n > 

< n | n >
= (28.1)

For normalized eigenvectors I have < n | n > 1= , so that: < A >n < n ∣ A ∣ n >= , while 

< A >
n

pn < A >n  =

n

pn < n ∣ A ∣ n > = (28.2)

in fact if I indicate with aij the result of each measurement, I have:< A >i
j

aij
ni

= < i ∣ A ∣ i >=  

∣ i > 1=

< A > i j

aij

k

nk
=

i

ni < A >i  

k

nk
=

i

ni

k

nk
< A >i 









= (28.3)

define the statistical weight as:
ni

k

nk
pi= (28.4)

so that < A >
n

pn < A >n  =

n

pn < n ∣ A ∣ n > = (28.5)

the statistical weigh is given by the projector:pn ∣ n > < n ∣= pn 0

n

pn 1= (28.6)

P

n

pn=

n

∣ n > < n ∣= (28.7)

Consider the projector Pn ∣ n > < n ∣=

Tr Pn  1=
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Tr Pn A  Tr Pn
2 A = Tr Pn A Pn =

Tr Pn A Pn  Tr ∣ n > < n ∣ A ∣ n > < n ∣ = < n ∣ A ∣ n > Tr ∣ n > < n ∣ = < n ∣ A ∣ n >=

If A=1 Tr Pn  < n | n >= 1=

< A >
n

pn < A >n  =

n

pn < n ∣ A ∣ n > =

n

pn Tr Pn A  =

n

pn Tr ∣ n > < n ∣ A  =

Statistic Operator or Density Operator: ρ

n

∣ n > pn < n ∣= < n | n > 1= (28.8)

Knowing ρ, I can find the statistical distribution of the results of measurement of A 

The dynamical state of the system is represented usefully by the statistical mixture of ket vectors. 

pn is a statistical weight

n

pn 1= (28.9)

ρ 0 (28.10)

ρ ρ
†

= (28.11)

Tr ρ A  < A >= A 1= Tr ρ  1=

Operator trace Tr ρ  1= (28.12)

Tr ρ2  1 (28.13)

Average value of the observable A: < A > Tr ρ A = < n ∣ A ∣ n >= (28.14)

Average value of the function of the  observable F(A): < F A  > Tr ρ F A  = (28.15)

  The probability that the result of measurement belong to domain D of the spectrum of A is

                                                                          wD < PD >= Tr ρ PD = ,                                                                       (28.16)

  where PD is the projector upon the subspace spanned by  the eigenvectors of A.

  The probability of finding the system in the quantum state represented by the normalize  ket ∣ x > , is:

wx Tr ρ ∣ x > < x ∣ = (28.17)

Two statistical mixtures possessing the same density operator, are identical.

The Schrödinger equation of the Density Operator: i ℏ
t

ρ


 [ H ρ ]= (28.18)

i ℏ
t

ρ
k l




 < k ∣ [ H ρ ] ∣ l >= (28.19)

H H
†

= ⇒
t

ρ
k l




i ω

k l ρ
k l= (28.20)

ω
k l

Ek El

ℏ
= (28.21)
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ρ t 
k l ρ 0 

k l e
i ω

k l t t0 
= (28.22)

for k= l ωk k
Ek Ek

ℏ
= 0= ρk k ρk k 0 = all elements of the diagonal are unchanged

Pure state: when the dynamical state of the system is exactly known one says that "one is dealing with a pure

state.  The pure state ∣ χ > can be represented as the only state of a statistical mixture; so that its density operator
is  

                                                                           ρχ ∣ χ > < χ ∣=

                                                                                   ρχ
2 ρχ=  .

If a density operator is a projector, than it represents a pure state.
Since a density operator can be represented by the superposition

                                                                      ρ

n

∣ n > pn < n ∣=  ,

in order that it represents a pure state it is necessary and sufficient that each ∣ n > be equal to each other to within
a phase.

Furthermore if Tr ρ2  1= , than the density operator represents a pure state.

The state of a quantum system whose Hamiltonian is H,  in thermodynamic equilibrium at temperature T is represented
the operator 

                                                                           ρ N e

H

kB T


= ,
where N is a normalization constant such that Tr(ρ)=1.
System entropy
                                                                        S k Tr ρ ln ρ  =
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     30 Hamiltonian for macroscopic systems and small interactions close to equilibrium

H H0 Hint Hr= (29.1)

Unperturbed Hamiltonian H0

Interaction Hamiltonian Hint

Relaxation Hamiltonian Hr

i ℏ
t

ρ
k l




 [ H0 ρ ] 

k l
[ Hint ρ ] 

k l
 [ Hr ρ ] 

k l
=

H0 Hint H0 Hr ⇒ i ℏ
t

ρ
k l




 [ Hr ρ ] 

k l
= k l

H1 H0 Hint=

i ℏ
t

ρ
k l






i ℏ
t

ρ
k l


















i ℏ
ρ

k l
τ

k l


[ H1 ρ ] 
k l

i
ℏ
T1
 ρek k

ρk k 

















=

  If Hint 0=  ⇒ [ H0 ρ ] 
k k

C0=  ⇒Wn k ρen n
 Wk n ρek k

=  this is the "  detailed balance principle"   
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                  31  Algebra of the one-dimensional harmonic oscillator  [6]

  The  classical Hamiltonian of a simple (without damping) mechanical oscillator (composed by a mass m) is:

H 1

2
m x'2

m ω2
2

x2= (30.1)

considering the Lagrangian conjugated momenta, I can write:H 1

2
m q'2

1

2
m ω2 q2= (30.1)

where: x' q'= p m q'= q'2
p

m




2
=

p2

m2
= (30.2)

so that the Hamiltonian takes the form: H 1

2 m
p2 m2 ω2 q2 = (30.3)

Quantization rules  (when the quantum system possesses a classical analogue)

                                                                       Classical            Quantized
                                                                       Operator           Operator acting on kets or eigenfunctions 
                                                                                   p   ↔ i ℏ ∇ ,

                                                                                  q'  ↔ i
ℏ
m
 ∇

                                                                                  p2 ↔ ℏ2 Δ ,

                                                                
p q'

2

p2

2 m
=   ↔ 

ℏ2
2 m

Δ

                                                                    Energy   E  ↔   i ℏ
∂
∂t


It follows that:H 1

2 m
p2 m2 ω2 q2 = ↔ H

ℏ2
2 m

Δ
m ω2

2
q2= (30.4)

The Schrödinger equation of motion is: 

i ℏ
t
∣ Ψ >


 H ∣ Ψ >= (30.5)

that is: i ℏ
t
∣ Ψ >




ℏ2
2 m

Δ
m ω0

2

2
q2









∣ Ψ >= (30.6)

When the system is in a stationary state of energy E, I get:∣ Ψ > e
i

E t
ℏ


∣ ψ >=

E ∣ ψ > H ∣ ψ >=

Commutator [q,p] calculations

with the previous assumption I want see how the Hamiltonia H is related to the Lagrangian variables position q and
conjugated momentum  p.  I found that:

[ q p ] i ℏ= (30.7)

Define the new operators: q
ℏ

m ω
Q= and p ℏ m ω P= [6] (30.8)

72



substituting in (30.7) I get:

[ q p ] q p p q=
ℏ

m ω
Q ℏ m ω P ℏ m ω P

ℏ
m ω

 Q= ℏ Q P P Q = ℏ [ Q P ] = i ℏ=

it follows necessarily, that [ Q P ] i I= (30.9)

Furthermore substituting (30.8) into the Hamiltonian (30.4), results: 

H
1

2 m
p2 m2 ω2 q2 =

1

2 m
ℏ m ω P2 m2 ω2

ℏ
m ω
 Q2


=

H
1

2 m
ℏ m ω P2 ℏ m ω Q2 =

ℏ ω
2

P2 Q2 = (30.10)

namely: H
ℏ ω

2
P2 Q2 = (30.11)

I place: H ℏ ω H0=

so that, thanks to (30.11), I get: H0
1

2
P2 Q2 = (30.12)

(Q+iP)(Q-iP)

(Q-iP)(Q+iP)

Since I deal with vectorial operators I have:

P2 Q2 Q i P  Q i P  I=

the Hamiltonian (30.12) can be rewritten as: H0
1

2
Q i P  Q i P  I =

A further simplification is reached with defining the  three new following QM operators:

(Ladder) operator: a
1

2
Q i P = (30.13)

(30.14)(Ladder) operator: a
† 1

2
Q i P =

Since a a
†  they aren't Hermitian. 

Number operator: N a
†

a= N
†

a a
†= (30.15)

Complex conjugated of a: a *
1

2
Q i P  *=

1

2
Q i P = a

†
=

adjoint or Hermitian conjugate: a * a
†

=

other noteworthy relations between a and a
†

 are:

the sum:
a
†

a
1

2
Q i P Q i P = 2 Q= (30.16)

(30.17)Q
1

2
a
†

a =

the difference: a
†

a
1

2
Q i P Q i P  = 2 i P= (30.18)
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P
1

2
a
†

a = (30.19)

Product: a a
†

1

2
Q i P  Q i P =

1

2
P2 Q2 I = H0

1

2
I= (30.20)

a
†

a
1

2
Q i P  Q i P =

1

2
Q2 P2 I = H0

1

2
I= (30.21)

The commutator between a and a
†

 can be found using (30.20) and (30.21):

[ a a
† ] a a

† a
†

a= H0
1

2
I H0

1

2
I


= I=

[ a a
† ] I= [ a

†
a ] I= (30.22)

From (30.21) I get the operator number as a function of the Hamiltonian  H:

N a
†

a= H0
1

2
I= (30.23)

that  is the Hamiltonian takes the form:H0 N
1

2
I= H ℏ ω H0= (30.24)

 The Hamiltonian can also take other forms, in fact consider the commutator: 

[ a a
† ] a a

† a
†

a= N
†

N= (30.25)

From (30.20) , I have: N
†

a a
†= H0

1

2
I= (30.26)

namely: N
†

H0
1

2
I= (30.27)

Calculation of the commutator [ N a ] [ a
†

a a ]= a
†

a a a a
† a= a

†
a a a

† I=

[N,a]

the result is:[ N a ] a= (30.28)

I adopt the same procedure to calculate the commutator [ N a
† ], namely: a a

† a
†

a I=

[N,a†]

the result is:[ N a
† ] a

†
= (30.29)

Can be useful to calculate the following  difference  using (30.27) and (30.24):

N
†

N a a
† a

†
a= H0

1

2
I H0

1

2
I= I=

N N
†

I=
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N
†

N I=

N
†

N I=

The sum: N
†

N H0
1

2
I H0

1

2
I= 2 H0=

H0
1

2
N

†
N = (30.30)

The Hamiltonian as a function of a and a
†

:

from (30.28): H0
1

2
N

†
N =

1

2
a
†

a a a
† = (30.31)

from (30.27) I get: H0 N
† 1

2
I= H ℏ ω H0= (30.32)

i ℏ
t
∣ ψ >


 H0 ∣ ψ >= N

† 1

2
I





∣ ψ >=

The Schrödinger equation of motion is: 
t
∣ ψ >



i
ℏ

N
† 1

2
I





∣ ψ >= (30.33)

i ℏ
t
∣ ψ >


 H0 ∣ ψ >= N

1

2
I


∣ ψ >=

i ℏ
t
∣ ψ >


 N

1

2
I


∣ ψ >=

The Schrödinger equation of motion is: 
t
∣ ψ >



i
ℏ

N
1

2
I


∣ ψ >= (30.34)

i ℏ
t
∣ ψ >


 H0 ∣ ψ >=

1

2
a a

† a
†

a  ∣ ψ >=

The Schrödinger equation of motion is: 
t
∣ ψ >



i
2 ℏ

a
†

a a a
†  ∣ ψ >= (30.35)

                   32 Eigenvalues and eigenvectors of  the energy  associated with H and N [6]

Assuming that there exists at least one eigenket of N in Hilbert space ℍ, I can write:

    N ∣ φν > ν ∣ φν >=  , (31.1)

where  N a
†

a=  and < φν | φν > λν=  , that is the ket ∣ φν > isn't normalized. 

Now write the eigenvalue equation for the ket: a ∣ φν >  keeping in mind (30.28) [ N a ] a= : (31.2)

[ N a ] N a a N= N a [ N a ] a N= a a N= a N I =

N a ∣ φν > a N I  ∣ φν >= ν 1( ) a ∣ φν >=  , (31.3)
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Knowing that [eq. (30.22)] : [ a a
† ] a a

† a
†

a= I=

it follows that : a
†

a a a
† I= (31.4)

apply a on the right of (31.4) : a
†

a a a a
† I  a= a a

† a a= a a
†

a I = (31.5)

so that eq. (31.3) can be rewritten as: N a ∣ φν > a
†

a a ∣ φν >= a a
† I  a ∣ φν >=

therefore: N a ∣ φν > a a
†

a I  ∣ φν >= a N I  ∣ φν >=

resulting: N a a N I = (31.6)

the eigenvalues equation is: a N I  ∣ φν > a ν 1  ∣ φν >= ν 1  a ∣ φν >=

finally resulting: N a ∣ φν > ν 1  a ∣ φν >= . (31.7)

  The ket: a ∣ φν >  is an eigenvector of N with eigenvalue ν 1 .  I can define the new eigenvector:   

                                                                                C ∣ φν 1 > a ∣ φν >=  

                           the equation (31.7) become:  N C ∣ φν 1 > ν 1( ) C ∣ φν 1 >=                                                           

namely: N ∣ φν 1 > ν 1  ∣ φν 1 >= (31.8)

 With the same procedure I define the ket:C ∣ φν 2 > a ∣ φν 1 >= a a ∣ φν > = a2 ∣ φν >=

and so on, finding the mth eigenvector of N as: ∣ φν m > am ∣ φν >= (31.9)

Now write the eigenvalue equation (31.1) for the ket: a
† ∣ φν >  that is: N a

† ∣ φν > a
† ∣ φν >= ,

since: N a
†

a=  ,

the eigenvalues equation takes the form:N a
† ∣ φν > a

†
a a

† ∣ φν >= (31.10)

The product  a a
†  in (31.10) is equivalent to the following: a a

† I a
†

a=  ,

therefore: a
†

a a
† ∣ φν > a

†
I a

†
a  ∣ φν >= a

†
I N  ∣ φν >=  ,

from (31.10) the equality: N a
† a

†
N I =  . The eigenvalues equation gives: (31.11)

N a
† ∣ φν > a

†
N I  ∣ φν >= a

†
ν 1  ∣ φν >= ν 1  a

† ∣ φν >=

finally resulting: N a
† ∣ φν > ν 1  a

† ∣ φν >=

 so that a
† ∣ φν >  is an eigenvector of N with eigenvalue ν 1 . In that case I can define the new eigenvectors   

∣ φν 1 > a
† ∣ φν >= (31.12)

∣ φν 2 > a
† 2

∣ φν >= (31.13)
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∣ φν m > a
† m

∣ φν >= (31.14)

Resuming the previous results (31.9) and (31.14):

∣ φν m > am ∣ φν >= eigenvalues ν-m (31.9')

∣ φν m > a
† m

∣ φν >= eigenvalues ν+m (31.14')

∣ φν m > ∣ 0 > (31.15)

Demonstration of |φ(λ+m)>≠|0>

Finally, results  ∣ φν 1 > always an eigenvector of N with eigenvalue ν+1. On the other hand  ∣ φν m > can be zero
In fact, calculate the average:

< φν m ∣ N ∣ φν m > < φν m ∣ ν m  ∣ φν m >= ν m  < φν m | φν m >= (31.16)

this result can be rewritten as: ν m  < φν m | φν m > ν m  ∥ ∣ φν m > ∥ 2
= (31.17)

in such a way that: ν m
< φν m ∣ N ∣ φν m >

∥ ∣ φν m > ∥ 2
= (31.18)

On the other hand the average of the operator N is:

< φν m ∣ N ∣ φν m > < φν m ∣ a
†

a ∣ φν m >= ∥ a ∣ φν m > ∥ 2
= (31.19)

so that I can write as well: ν m
∥ a ∣ φν m > ∥ 2

∥ ∣ φν m > ∥ 2
0= (31.20)

  It follows that the sequence of eigenvectors  ∣ φν m >, must terminate after a finite number of steps and there must   

   exist one vector ∣ φ0 >  such that  a ∣ φ0 > ∣ 0 >= .

 Normalization:

define the normalized eigenvector as ∣ ϕ0 >
∣ φ0 >

∥ ∣ φ0 > ∥
= C0 ∣ ϕ0 >= C0 1= (31.21)

Various cases

generalizing I get: ∣ ϕn >
∣ φn >

∥ ∣ φn > ∥
= Cn a

† n

∣ ϕ0 >= (31.22)

∣ ϕn > Cn a
† n

∣ ϕ0 >= (31.23)

Cn
1

kn
=

   I'm looking for a relation between Cn and Cn 1  . Consider therefore the normalization of the eigenvalue equation with

   ν n= :
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N ∣ φn >

∥ ∣ φn > ∥

n ∣ φn >

∥ ∣ φn > ∥
= (31.24)

thanks to (31.22) eq. (31.24)  it can be rewritten:

N ∣ ϕn > n ∣ ϕn >= (31.25)

whose norm is: ∥ ∣ ϕn > ∥ < ϕn | ϕn >= 1= (31.26)

Now calculate the square of (31.26) and substitute in it eq.(31.23):

∥ ∣ ϕn > ∥ 2
∥ Cn a

† n

∣ ϕ0 > ∥






2

= Cn 2 < ϕ0 ∣ a a
† n

∣ ϕ0 >= 1= (31.27)

Calculation of || |ϕ>||²

∥ Cn a
† n

∣ ϕ0 > ∥ Cn a
† n

∣ ϕ0 >






†

Cn a
† n

∣ ϕ0 >= < ϕ0 ∣ Cn *  a
† †





n

 Cn a
† n

∣ ϕ0 >=

a
† †





n

a
† n

 a n a
† n

= a a
† n

=

< ϕ0 ∣ Cn *  a
† †





n

 Cn a
† n

∣ ϕ0 > < ϕ0 ∣ Cn *  an Cn a
† n

∣ ϕ0 >=

< ϕ0 ∣ Cn * an Cn a
† n

∣ ϕ0 > Cn * Cn < ϕ0 ∣ a a
† n

∣ ϕ0 >= Cn 2 < ϕ0 ∣ I a
†

a n

∣ ϕ0 >=

Calculation of || |ϕ>||²

In the average (31.27) there is the previously defined ket (31.23):

a
† n

∣ ϕ0 > 1

Cn
∣ ϕn >=

a
† ∣ ϕn 1 >

Cn 1
= (31.28)

which substituted in the result (31.27), gives:

< ϕ0 ∣ a a
† n

∣ ϕ0 > 1

Cn 2
=

< ϕn 1 ∣ a a
† ∣ ϕn 1 >

Cn 1 2
=

< ϕn 1 ∣ I a
†

a  ∣ ϕn 1 >

Cn 1 2
=

Cn 2 < ϕ0 ∣ a a
† n

∣ ϕ0 >




2

 Cn 2 < ϕn | ϕn > 2
= Cn 2= 1=

1

Cn 2
n

< ϕn 1 | ϕn 1 >

Cn 1 2
=

n

Cn 1 2
= < ϕn 1 | ϕn 1 > 1=

< ϕn 1 ∣ I a
†

a  ∣ ϕn 1 >

Cn 1 2

< ϕn 1 ∣ N 1  ∣ ϕn 1 >

Cn 1 2
= n

< ϕn 1 | ϕn 1 >

Cn 1 2
=

<n|

Sequence

Cn
1

n
= (31.29)
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The sought eigenvector is: ∣ ϕn > 1

n
a
† n

∣ ϕ0 >= with eigenvalue n, (31.30)

(that is the solution of  the eigenvalues equation: N ∣ ϕn > n ∣ ϕn >=  .)

   They are orthonormal < ϕn | ϕν > δn ν=  and form an orthonormal basis in Hilbert space ℍ, the space of the   

   dynamical states of the quantum system under study. The operators a and a
†

 are defined on this basis.

C ∣ ϕν 1 > a ∣ ϕν >=

< ϕν 1 ∣ C * C ∣ ϕν 1 > < ϕν ∣ a
†

a ∣ ϕν >= < ϕν ∣ N ∣ ϕν >= n < ϕν | ϕν >=

C 2 < ϕν 1 | ϕν 1 > n < ϕν | ϕν >= < ϕν 1 | ϕν 1 > 1= < ϕν | ϕν > 1=

C n=

C1 ∣ ϕν 1 > a
† ∣ ϕν >=

< ϕν 1 ∣ C1 * C1 ∣ ϕν 1 > < ϕν ∣ a a
† ∣ ϕν >=

a a
† I a

†
a=

< ϕν 1 ∣ C1 * C1 ∣ ϕν 1 > < ϕν ∣ a a
† ∣ ϕν >= < ϕν ∣ I a

†
a  ∣ ϕν >= n < ϕν | ϕν >=

C1 2 < ϕν 1 | ϕν 1 > < ϕν ∣ I N  ∣ ϕν >= n 1  < ϕν | ϕν >=

C1 n 1=

(Ladder operators) a ∣ ϕn > n ∣ ϕn 1 >= annihilation operator (31.31)

a
† ∣ ϕn > n 1 ∣ ϕn 1 >= creation operator (31.32)

Consider the set of all vectors ∣ Ψ >
0

∞

n

αn ∣ ϕn > 


= where the  αn are complex numbers and 

0

∞

n

αn 2







∞

It forms a linear space, that is the Hilbert space ℍ  spanned by ∣ ϕn > 

The space of all ∣ Ψ > for which  

0

∞

n

αn 2 n 1 p







∞ p 0= 1 2 3 ∞

will be denoted by Σ (Schwartz space) Σ ⊂ ℍ.

All the operators representing observables can be defined on the whole space Σ but not on all ℍ. 

All observables are functions of the operators  a and a
†

 given by (31.31) and (31.32) known for all ∣ Ψ >.  
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Calculation of the diagonal matrix elements:

H ℏ ω H0= ℏ ω N
1

2
I


= N ∣ φν > ν ∣ φν >=

H ∣ ϕn > ℏ ω N
1

2
I


∣ ϕn >= ℏ ω ν
1

2



∣ ϕn >=

< ϕν ∣ H ∣ ϕν > ℏ ω < ϕν ∣ N
1

2
I


∣ ϕν >= ℏ ω ν
1

2



< ϕν | ϕν >= ℏ ω ν

1

2



 ∣ φν > 2

=

Eν < ϕν ∣ H ∣ ϕν >= ℏ ω ν
1

2



= ∣ φν > 2

1= (31.33)

Eν ΔE ν
1

2



= ΔE ℏ ω=

  the diagonal matrix elements are the possible energy values of the QM oscillator. One can excite the harmonic oscillato

  into any one of a discrete number of states described by ∣ ϕν > , the system is in a mixture of states. The mixture can 

  described by the set  of vectors ∣ ϕ0 > , ∣ ϕ1 >, ∣ ϕ2 >,...,∣ ϕν > and  a set of relative probabilities w
0
, w

1
, 

  w2,...,wn,...proportional to the height of the jump corresponding to the energy En .

                                                                                           

n

wn 1=

  In a collection of N elemets (atoms, molecules,) the number of elements  with energy En is Nn=wnN. 

  If no excitation take place, the harmonic oscillator is in the ground state described by ∣ ϕ0 > , (See Frank   

 & Hertz experiment) . If there is only one state ∣ ϕn0 >  then the quantum system is in a pure state ∣ ϕn0 > and the 

  corresponding energy is the only one En0  .

II axiom.  A physical QM system characterized by a projection operator P on a one-dimensional subspace Pℍ is in a
pure state.
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