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2.1 Stress Vectors

For the following stress tensor at point P

7 -5 0
o=|-5 3 1
0o 1 2
g 7 =50
Lil=0o=|-5 3 1
¢ 0 1 2

Determine the traction (or stress vector) t passing through P and parallel to the plane ABC where A(4,0,0),
B(0,2,0) and C(0,0,6)

Solution:

The vector normal to the plane can be found by taking the cross products of vectors AB and AC

N=ABxAC=|_4 5 ¢ |=12¢ +24¢,+8e,
4 0 6

The unit normal of N is given by

3.6 2
n=|—-— — —
7 7 17

Hence the stress vector traction will be

9 5 10
t=no=|-— — —
( 77 7)
10

9 5
and thus t ——;el+;e2+7e3
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2.2 Stress Vectors 2

The state of stress through a continuum is given with respect to the cartesian axes by

3x1 X, 5(x2)2 0

o(x) =5 (x2)2 0 2. |'MPa

Determine the stress vector at P(l, 1\/3) of the plane that is normal to the tangent to the cylindrical surface
(x2>2 + (x3)2 =4atP

Solution:
Vector Equation

v(X) = (x2)2 + (x3)2 -4
Gradient
0

Veetl(x) = V. v() - | 272

2-x3
For x, =1
X, = 0

X, = 1
xy = [4- (x2)2 ~ 1732

Normalized Vector

0
X
n=—=( 05
|
0.866
2.5
o(x)-n = 3 MPa
1.732
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2.3 Principal Stresses

The stress tensor is given at a point by point P

311
o=[120 2
1 20
Determine the principal stress values and the corresponding directions

Solution:

3-X 1 1
I 0-X 2 =0
1 2 0-X

Simplifying the determinant

3-x 1 1
1 0-X 2 =0 simplify — —(A—1)-(A+2)-(A\—4) =0
1 2 0-X

thus the roots are
1

A=—-A-1)A+2)(A—4)=0solve > | 2

4
1

A=|-=2
4
Note that those are the three eigenvalues of the stress vector. If we letthe x, axis be the one corresponding to the

direction of A, and n? be the direction cosines of this axis, then we have

2 2 2 2 2 2
(3—>\2)1'11 +1'12 +1’13 —0—)5'111 +1’12 +1’l3 =0

2 2
|

[}
o
=]

S}

[}

1’112 + (0 - >\2)1'122 + 21132 =0-> 1’112 + 21’122 + 21’132 =0

1’112 + 21’122 + (0 - >\2)n32 =0-> 1’112 + 21’122 + 21’132 =0
Similarly, if we let x, be the one corresponding to the direction of A, and n," be the direction cosines of this axis,

2 2 2 2 2 2
(3 —>\1)1'11 + 1’12 + 1'13 =0-> 2111 + 1’12 + 1’13 =0
1 1 1 1

1_
1’11 =

1
2 2 2 2 2 2 — n n
1’11 + (0 - >\1)1'12 + 2H3 =0-> 1’11 - 1’12 + 2113 =0 _\/3 2 3 3 3

1’112 + 21’122 + (0 - >\1)n32 =0-> 1’112 + 21’122 - 1’132 =0
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Finally, if we let x, be the one corresponding to the direction of A; and ni3 be the direction cosines of this axis,

2 2 2 2 2 2
(3-)\3)1'11 +Il2 +1’13 -0—>—n1 +Il2 +1’13 =0

3 3

Il2—

1
— n
7 3

Bk

Illz + (0 - )\3)1'122 + 21132 =0-> Illz - 4n22 + 21’132 =0

Illz + 21122 + (0 - )\3)1132 =0-> Illz + 21122 - 41’132 =0

o L L
VIoz

1 1 1
R IVERERNE
2 1
V6 V6 6
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2.4 Stress Tensor Operations

For the following stress tensor

6 30
o=-3 6 0
0 0 8

a) Determine directly the three Invariants |, Il ; and lll ;

b) Determine the principal stresses and principal stress directions

c¢) Show that the transformation tensor of direction cosines transforms the original stress tensor into the diaganol
axes stress tensor

d) Recompute the three invariants from the principal stresses

e) Split the stress tensor into its spherical and deviator parts

f) Show that the first invariant of the deviator is zero

Solution:
a) I = 01,1 + 02’2 + 03’3 =20
HO‘ = 0'1’ 1.0‘2’2 + 0'2’2-0‘3’3 + 0'3’3-()'1’1 — 0-1’2.0-2’1 =123
I, = |o| =216
3
b) Op = eigenvals(o) =| 8
9
-0.707 0 -0.707
n, = eigenvecs(o) =| —0.707 0 0.707
0 1 0
300
c) T ~
Ilp 'O'-np ={0 8 0
009
d =
) Iopd Op, * Op, * O, 20
Hopd %, %Py T %Py %P3 T py %, T 123
111 .o. 0. =216
opd™ "p; 7P, Tp3
I
d
©) Opean = % = 6.667
mean 0 0 6667 0 0
Osperical = 0 Omean 0 = 0 6667 0
0 0 Omean 0 0 6.667
-0.667 -3 0
f) .
Odeviator = 9 ~ O-sperical = 3 -0.667 0
0 0 1.333
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2.5 Stress Transformation

Show that the transformation tensor of direction cosines for the stress tensor

311
o=|10 2
1 20

transforms the original stress tensor into the diaganol principal axes stress tensor

Solution:
1 1
0 —_— ——_—
V2 2
L L L
R INERN AN
2 b
Vo V6 6
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2.6 Stress Transformation 2

The octahedral plane is the plane which makes equal angles with the principal stress directions. Show that the
shear stress on this plane, the so-called octahedral shear stress, is given by

1
Goct(gl’gll’glll) = g'\/(cl - 011)2 + (0'11 - 0’111)2 + (0111 - cr1)2

Solution:

T
n = (Llj =(0.577 0.577 0.577)
A\

o(op.op.om) = | 0 om O

t(oy,opp. 071) = n-o(oy,opp, oyyp) = (0.577-07 0.577-0y; 0.577-0yy; )

. T

tshear(gl’gll’qlll) = \/t(gl’GII’GIII)'t(GI’GII’GIII)T - tn(ql’UII’GIII)'tn(GI’GII’GIII)

. . 2 2 2

tshear(gl’gll’qlll) - Uoct(gl’cn’glu) =0
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2.7 Strain Invariants & Principal Strains

Determine the planes of principal strains for the following strain tensor

1 30

E=[{3 0 0

0 0 1
Solution:

The strain invariants are given by

IE=E11=2

1
I = 5-(Eij-Ei- -E

i )=—1+3=2

i Ejj
g = |Eg| =-3
The principal strains by

1-X 3 0
13 1—413
El_]_>\6l_] = \/E 0=\ 0 =(1 _)\)()\_%)()\_—r)

2
0 0 1-X

1441
E =) = V13 o )s
1= >

1 -
Ex =X = =-13
3 3 2

B

1 13 . . N 1
The eigenvectors for E| = +2\/_3 give the principal directions n

1 +413 [ 3 1 i
1- +13 NE 0 —nl,l-(ﬂ——j+ 3:n,,1
2 0.l 2 2
1 ++413 3 1
V3 o- +y13 0 | m 1| 5] =ny, 10 VENEAN 30,1
2 2 2
1’13,1
1 +413 3 1
0 0 LR IE —n3,1-£——
2 | 2 2 ]
_ S _
-nq,1-{——-—1]+4+3ny,1
T 0
3 1
-n5,1:{— +—|+y3ny,1[=]|0
2t 1) o,
0
X JI31
_n, o ————
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1+413
1’11,1 = hl 2,1
243
1’13,1 =0
nl-n1 =1
1+2y13+ 13 2 _
(T + lj-(n2,1> =1
ny,1=0.6
_1 1+413
ny,1 1B ny,1 SLEL/IERIPP
243 243

nl=(08 06 0)

For the second eigenvector A,=1

-1 3 0 (™2 V3my,2
V3 0-1 0 ||m2:2 | > (n),2) +/3n.2
0 0 1-1){ng2 0
I '\/3'1’12,2 0
—(H2,2) + '\/5'1’11,2 =0
0 0
n’=(0 0 1)

Finally, the third eigenvector can be obtained by the same manner, but more easily from

€1 € €3
n3—nl><n =detl 08 06 0 =0.6e1—0.862
0 0 1
Therefore
1
n 0.8 0.6 0
aiJ= n2 a=|0 0 1
3 06 —08 0
n
0.8 0.6 0 1 \/3 08 0 0.6 230 0
aEa =| 0 0 3 0 1406 0 -08|=[0 1 O
06 —08 0 0O 0 1 0O 1 0 0 0 -13
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2.8 Equilibrium Equations

In the absence of body forces, does the following stress distribution

(AP (f] 2 0
T(x,v) = v %, () V{(xz)z _ (xlﬂ 0

where v is a constant, satisfy equilibrium?

Solution:
0 0 0 0
T, =2 T, +& T, + -T2 =2vx, —2.Vx, =0
OX. 1] Ox 1 Ox 12 Ox 13 1 1
| 1 2 3
0 0 0 0
Ty =l Ty + 5Ty + Ty =2.0x, + 2:Ux, =0
OX. 2l Ox 21 Ox 22 Ox 23 2 2
| 1 2 3
0

0 0 B _
—TI3j = T3 + —T3p + —T33=0

axj Ox | 6x2 6x3

Therefore, equilibrium is satisfied.
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2.9 Stress-Strain

Determine the stress tensor at a point where the Lagrangian strain tensor is given by

30 50 20
E:=[50 40 0 |10
20 0 30

6

and the material is steel with X := 119.2GPaand p := 79.2GPa

A+2:0 XN A 0 0 0 277.6-GPa 119.2-GPa 119.2-GPa 0 0
X OXN+2p A 0 0 0 119.2-GPa 277.6-GPa 119.2-GPa 0 0
N N X+2p 0 0 0 | 119.2-GPa 119.2-GPa 277.6-GPa 0 0
C:= simplify —
0 0 2w 0 0 0 0 0 158.4-GPa 0
0 0 0 0 2 0 0 0 0 0 158.4-GPa
0 0 0 0 0 2. 0 0 0 0 0
Ei ) [3x107°
Eyol| l4ax10?
E3,3 3x10°°
’Y:: =
El,z 5% 10 °
Eisl l2x1073
E
273 0 X 100
0.01667
0.01826
0.01667
cg=Cn~= -GPa
0.00792
0.00317
0

S O o O

158.4-GPa
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2.10 Stress-Strain

Determine the stress tensor at a point where the Cauchy stress tensor is given by

100 42 6
42 -2 0 [-MPa
6 0 15

Qa
)

with E := 207GPa, p := 79.2GPa and v := 0.3

Solution:
1 v v 0 0 0 1 ~0.001 0.001 0 0 0
E E E 207-GPa GPa GPa
v 1 v 0.001 1 0.001
— — — 0 0 0 - - 0 0 0
E E E GPa  207-GPa GPa
1 0.001 0.001 1
LY 00 0 90 00 0 0 0
E E E GPa GPa 207-GPa
S:= simplify —
1 0.013
0 0 0 — 0 0 0 0 0
18 GPa
0 0 0 0 1 0 0 0 0 0.013
! GPa
1 0.013
0 0 0 0 0 — 0 0 0 0 0
18 GPa
%11
- 100
2.2 L
%33 15
S = = -MPa
0'1,2 42
- 6
1,3 0
%3
4643% 10 4
1763%x 10”4
6957 10 °
’YZS'S:
5303% 104
7576x 107 °
0x 10°
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4643x 107 Y 26520x 1074 3.788x 107 °
=1 2652x 10" % —1763x 10~ % 0x 10°
3788x 10 > 0x 100 —6957x 10 °
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3.1 Displacement by Double Integration

Determine the deflection at B for the following cantilevered beam.

y l
Vy
7 B
1A ‘ »‘
|‘ |l
|‘ Vl‘
2L/3 L/3
Solution:
At0 <x< 2L
3
1. Moment Equation
-L 5
E.I.izy = MX = W—.X — —W.L2
ox 3 18
2. Integrate Once
L
E~I~Qy = W—~x2 - i~W-L2-x+ Cy
ox 6 18

However we have at x=0, dy/dx=0, C,=0
3. Integrate Twice

2
L 3 S5wL 2
Ely=—x - x +C
T 36 2
Again we have at x=0, y=0, C,=0
2L
At — <x<L
3
1. Moment Equation
%
& wL 5 2 2L 3
El—y =My=—x—-—wL -w|x—-—|
P 3 18 3 2

2. Integrate Once

3
-L 5 2L
E~I~gy =W—~x2 ——~W-L2-X—2- x——| +C3
ox 6 18 6

Applying the boundary condition at x = % we must have ? equal to the value coming frmo the left C3=O
X

3. Integrate Twice

w-L 3 5~W-L2 2 0w 4
Ely=—:1%xX - X ——|x—— | +Cy
18 36 24 3
Again following the same argument as above, C,=0
Substituting for x=L we obtain
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4.1 Live Load Reduction

Afour storey office building has interior columns spaced 30ft apart in the two directions. If the flat roof loading is
50 Ib/ft2, determine the reduced live load supported by a typical interior column located on the ground level

Solution:
L = 50psf

Ag = 30ft:30ft = 900-ft”

KLL =4

15
Lioor Lo-AT:Kp 1) = Lo| 025 + ————|pst
KpL-Ar

Ly A
L =L —.,—,K = 25-psf
floor floo psf 2 LL p
ft
L
fl
Reduction := oo _ 50-%
Lo
LI'OOf = 06LO = 30pSf

F| = (3-Lijoor AT + Lygof A7) = 94.5kip
Note that without reduction the total load woul dhave been

F, = 4-L A = 180-kip
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4.2 Wind Load

Wind blows on the side of the fully enclosed agricultural building located on open flat terrain in Oklahoma. Determine the external

pressure acting on the roof. Also, what is the internal pressure in the building which acts on the roof? Use linear interpolation to

determine g, and Cp.

700 5

Solution:

a,(K,. Kz Kg. V.1) = 0.00256-K-Ky7-K - V- I-psf
KZt =1

Kd =1

V := 90mph
I:=0.87

v
qZ(KZ,KZt,Kd,m—ph,Ij - 18.04~Kz~psf

KZ15 = 0.85

v
Az15 = qz(KzlszpKd,m—ph,lj = 15.334-psf

KZ20 =09

v
q220 = qZ(Klzo’KZt’Kd’m_ph ,Ij = 16236psf

1
h:= 15ft + 5~25ft~tan(10deg) =17.204-ft

9h 7 9z15 _ 9220 ~ 9z15
h — 15ft 20ft — 15ft

o st

50 ft
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4220 ~ 9215
= | ———— |-(h — 15ft) +
I (20&-15& j( )+ dz15

qp = 15.732-psft

External pressure on windward side of roof

P(qh,G,Cp) = qh-G~Cp-psf

G:=0.85
L := 50ft
L} =0.344
L

~-09--07 _09-Cp

0.5-025 h
05— —
L
C g 09--07( o h
p 05025 L
C, =-0.775

9h
PWindward = p(g:(}:cpj =—10.367-psf

External pressure on leeward side of roof

-05--03 _ 092G

0.5-025 h
05— —
L
C g5 05--03(  h
p 05025 L
C, =-0375

9h
PLeeward = p(gs(}»cpj =—5.018-psf

Internal pressure

Cpip = 0.18

C —-0.18

pi2 ==
Pint1 = pint(qh:G:Cpil) =-2.407-psf

Pint2 = pint(qhsG:Cpiz) = 2.407-psf
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4.3 Earthquake Load on a Frame

Determine the approximate earthquake forces for the ductile hospital frame structure shown below. The dead load for each floor is

Ibf . . Ibf o .
DL:= 200L and the live load is LL := 400%. The structure is built on soft clay. Use DL+0.5LL as the weight of each floor. The
t

ft
building is in seismic zone 3.

400 Ib/ft

IR

12 ft

400 Ib/ft

RERE

12 ft

NNNNANN

Solution:

1. The fundamental period of vibration is
3

T(Ct,hn) = Ct~hn4-sec
C;=0.03
h = 24ft

T:= T(Ct,ij =0.325s
ft

2. The C coefficient is

1.258
C(S,T) = —2

T3

S:=2.0
T

C=(CS,— | =5286>275
sec

Use C:= 2.75

20 ft

3. The other coefficients are Z := 0.3, [ := 1.25 Ry = 12
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4. Check

275
£ 275 5350075 OKI

Ry
5. The total vertical load is

L := 20ftframe width

W := 2-(DL + 0.5-LL)-L = 16000-1bf
6. The total seismic base shear is

= &W = 1375-1bf

Ry
7. Since T < 0.7sec, there is no whiplash
8. The toal load on each floor is given by

hl = 121t
h2 = 244t
V-hy
Fyi= = 916.7-Ibf
hl + h2
V-h,
F| = = 458.3-Ibf
hl + h2
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4.4 Earthquake Load on a Tall Building

Determine the approximate critical lateral loading for a 25 storey, ductile, rigid space frame concrete structure in the short direction. The rigid
frames are spaced 25 ft apart in the cross section and 20 ft in the longitudinal direction. The plan dimension of the building is 175x100 ft, and
the structure is 25(12ft)=300 ft high. This office building is located in an urban environment with a wind velocity of V := 70mph and in seismic

zone 4. For this investigation, an average building total dead load of DL := 192psf is used. Soil conditions are unknown.

Solution:

1. The total building weight is
L := 100ft
B = 175ft

W := DL-L-B-25 = 84000-kip
2. The fundamental period of vibration for a rigid frame is
3

T(Ct,hn) = Ct~hn4-sec

C;=0.03

h = 25-12ft = 300-ft

T:= T(Ct,%) =2.16s >0.7s OKI!

3. The C coefficient is

1.25-S
C(S,T) = ——
2
T3
S=1.5

C:= C(S,i) =1.12 <275
sec

4. The other coefficientsare Z := 0.4, 1:= 1, Ry =12

5. Check

C o2 0935 0,075 OKI

R
w
6. The total seismic base shear along the critical short direction is

Z1.C
V.= ——W=3139%kip

R
W
7.Since T > 0.7sec, the whiplash effect must be considered
T
F=007— V= 475 kip
sec
Hence the total triangular load is
Fiot = V — F; = 2664-kip

8. Let us check if wind load governs. From table xx we conservatively assume a uniform wind pressure of 29 psf resulting in a total lateral

force of
p = 29psf
P, = p-h-B = 1522.5-kip <3108 kip

The magnitude of the total seismic load is clearly larger than the totoal wind force
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4.5 Hydrostatic Load

The basement of a building is 12 ft below grade. Ground water is located 9 ft below grade. What thickness concrete slab is
required to exactly balance the hydrostatic uplift?

Solution:

The hydrostatic pressure must be countered by the pressure caused by the weight of the concrete. Since p=yh we equate the two
pressures and solve for h, the height of the concrete slab.

h:= 12ft

h oft

water =

d:=h-h 3-ft

water —

Ibf
=624—

ft?

Ibf
=150 —

fi®

Vwater

Veoncrete *

Ywater d = Veoncrete D

'\fwater'd .
= — =15in

concrete
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4.6 Thermal Expansion/Stress

6

in- A°F
structure was buitt at a temperature of T := 60A°F and is located in the northern part of the United States where the temperature range is
between T . = —20-A°Fand Thigh = 120-A°F.

Alow-rise building is enclosed along one side by a 100 ft-long clay masonry (o := 3.6-10 , B := 2400000psi)bearing wall. The

Solution:

1. Assume that the wall can move freely with no restraint from cross-walls and foundations. The wall expansion and contraction
(summer and winter) are given by

AL = AT-L

ALgymmer= @ (Thigh — T)-100ft = 0.26in

ALyinter = & (Tlow = T)- 100t = ~0.35in

2. We now assume (conservatively) that the free movement cannot occur (AL=0) hence the resulting stress would be equal to

AL a-AT-L

o=E-e =E-T =E- =E-o AT

o =E-a-AT

OSummer == E'O"(Thigh - T) =518 psi

OWinter = E~0L-(T10W - T) = —691-psi

Note the tensile stress being beyond the masonry capacity. Cracking will occur.
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5.1 Statically Indeterminate Cable Structures

Arigid plate is supported by two aluminum cables and a steel one. Determine the force in each cable.

- A A 4

A

Al Steel Al h

AL L L

\/
P

If the rigid plate supports a load P, determine the stress in each of the three cables.

Solution:

1. We have three unknowns and only two independent equations of equilibrium. Hence the problem is statically indeterminate to
the first degree.

_ left _
DM, =0 Ppp =Py
ZFy =0 2P+ Pg =P
Thus we effectively have two unknowns and one equation

2. We need to have a third equation to solve for the three unknowns. This will be derived from the compatability of the
displacements in all three cables i.e. all three displacements must be equal:

right

o=

™
1]

g =

mlq t_<|E > |

Combine to obtain

AL=%

ParL Pgel Py (BA)y
EarAal  EsrAst Pst  (EA)g,

or <(EA)g Pj + (EA) ,Pg =0

3. Solution of this system of two equations with two unknowns yield:

2 1 Paj P
~(EA)g, (EA) [ pg, _(oj
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|

Paj

Pgt

M

2 T (Pj i | (EA),, 1 (P)
“(FA)g, (BA) | o) " 2:EA), + (BA) | (EA)g, 2 |\o
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5.2 Simply Supported Beam
Determine the reactions of the simply supported beam shown below.

60 k
| 4 kit
Bke—Y 4+ 4 o+ bt bbby
al_’LI b c d
[ 6t - 6 ft gl 6 ft >

The beam has 3 reactions. We have 3 equations of static equilibrium. Hence it is statically determinate.

Solution:
ZFX=0 R, — 36kip =0
Fu=0 Ry, + Ry, — 60kip— 42 12 =0

c_ : =
ZMZ =0 12R,y, — 6-Rgy — 60kip-6ft =0

or

1o o) ([Rax] [ 36kip
0 1 1 |{Ryy |=]108kip
012 6) Ry, | \360Kip
Rax | (36kip

Ray | =| S6kip

Rgy) \52kip

Alternatively we could have used another set of equations:
a . kip .
ZMZ =0 60kip-6ft + 4 == 120 12ft — Ry 181 =0 Ryy =52kip
M d'0 R, .- 18ft — 60kip-12ft 4lip 12ft-12ft=0 R, = 56ki

Check:
ZFy =0  56kip + 52kip — 60kip — 48kip = —0-kip
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5.3 Parabolic Load

2
Determine the reactions of the simply supported beam of length L subgcted b aparabolicload w = wo-(%)

Solution:

Since there are no axial forces, there are two unknowns and two equations of equilibrium. We have two equations of equilibrium  ( ZFY

and ZM), we judiciously start with the second one, as it would directly give us the reaction at B. Considering an infinitesimal element of

rx=L

2
A X
dM, =0 J wo-(zj dxx x~RgL=0

x=0
R _1 ! _1 L
B — —.WO. —_— — —.WO.
L 4L2 4
With Rg determined, we solve for R, from
2.y =0
x=L
2
R +l-w-L—[ wo| = dx=0
AT L0 J 0L
x=0
R -0 U L L
———— . — W . —-—— W
AT 23 40 0
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5.4 Three Span Beam

Determine the reactions of the following three span beam

40 k 50 k 30 k
l 4h\ 4 k/ft
3 HERENEEREEE
a‘ 'b‘ Cl} d
"T'}‘T"‘T’PT 8 ft 21t | 21t
40 k 40 k 30 k
l l 4 kift
30k HERENEEREEE
Rax<_‘a >—>F F<—<b _ d
RayT s i RWT RdYT
“T’FT" ~w T an 8 ft 2 2]

Solution:

We have 4 unknowns (R ,R ,R ,and Rd ), three equations of equilibrium and one equation of condition (ZMb = 0), thus the structure is
ax ay cy y

statically determinate. Though there are many approaches to solve for those four unknowns (all of them correct), a few are simpler to pursue.
In this case, it is easiest to "break” the structure into substructures and examine the free body diagram of each one of them separately.

1. Isolating ab:
b_ . _ _ 40kip-5ft _
ZMZ =0 OftRyy —d0kip-5R=0  Ryy:= — - =22.2kip
40kip-4ft
ZMZ"‘ =0 40kip4ft—S9ft=0  Si= —P " _17.8kip
oft
ZFX =0 R, = 30kip
2. Isolating bd:
"
ZMZd =0 —S-18ft — 40kip- 15ft — 4%~12ft~6ft ~ 30kip-2ft + Ry, 12ft =0
t

y
S-18ft + 40kip-15ft + 4%-12ft~6ft + 30kip-2ft
t

Rey = = 105.7-ki
&y 12ft P
y
ZMZC =0 —S-6ft — 40kip-3ft + 4 %- 12t-6ft + 30kip-10ft — Ry~ 12ft = 0
t
y
—S-6ft — 40kip-3ft + 4%-12&-6& + 30kip-10ft
t
R, = =30.1-ki
dy 12ft P
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3. Check

2Fy

. . kip . .
—4 —4 —4—. — =_0- |
Ray Okip Okip + Rcy f 12ft — 30kip + Rdy 0-kip OK!
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5.5 Three Hinged Gable Frame

The three-hinged gable frames are spaced at 30 ft on center. Determine the reactions components on the frame due to: 1) Roof
dead load of 20 psf of roof area; 2) Snow load of 30 psf of horizontal projection; 3) Wind load of 15 psf of vertical projection.
Determine the critical design values for the horizontal and vertical reactions.

15 ft

20 ft

60 ft -

20 ft

Ahv

A C
307 0 307 TAW

1. Due to smmetry, there is no vertical force transmitted by the hinge for snow and dead load, and thus we can consider only the left (or right)
side of the frame.
2. Point equivalent loads:

a) Roof dead load per one side of frame is

DL := 20psf-30ft~ (30ft)° + (15f)> = 20.12-kip

b) Snow load per one side of frame is
SL := 30psf-30ft-30ft = 27-kip
¢) Wind load per per frame (ignoring the suction) is
WL := 15psf-30ft-35ft = 15.75-kip
3. There are 4 reactions, 3 equations of equilibrium and one equation of condition; therefore, statically determinate. Alternatively, by
symmetry there is no shear at the hinge, and we would have for the substructure two reactions at the support and one (horizontal) at the
hinge.
4. %he relationship between the horizontal and vertical reactions atA due to a centered vertical load, Ay, and A, respectively is determined
by taking the moment with respect to the hinge (b):

B
ZMZ =0 15V -30-A,, + 35A, =0

C
Ahv hv

Solution: b) TAW o) 1va

ZFy=O Ay -V=0
.. 15A,,
hv 35
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Substituting for roof dead and snow load we obtain:

AVVDL = DL = ZOlelp BVVDL = AVVDL = 2012k1p
~ DAypL . . ,
AhVDL = T = 862klp BhVDL = AhVDL = 862k1p
AVVSL = SL = 27k1p BVVSL = AVVSL = 27klp
) 15AVVSL . ) .
AhVSL == 1157k1p BhVSL = AhVSL = 1157k1p

5. The reactions due to wind load (blowing from left) are determined as follows:
a) Vertical reaction at Ais determined by considering the entire structure and taking the moment with respect to C (c)

C_ (20t + 15ft _
ZMZ =0 15.75k1p-(T) ~ 60ft Ay =0

(20& + 15ft)
WL. -

2
_ — 459k
vh 60ft P

A, is the vertical reaction at A due to the horizontal load, and from equilibrium of forces in the y-direction, we have
th = —Avh = —459k1p

(note that wind load does not have any vertical component)
b) The horizontal reaction at B is determined by considering the right substructure and taking the moment with respect to

the internal hinge at B
SM,” =0 350Cpy ~ Cyp 30 =0

o= 0 ak
= — =-3.94-k1
hh ™ 35h P
¢) Horizontal reactino atA is taken by considering the entire structure and summing forces in the x-direction
ZFX:O WL+Chh—Ahh=O

and note that A carries most of the horizontal load.
6. Finally, the supports should be designed for the most critical (plausible) combination of reactions

H:= AhVDL + AhVSL + Ahh = 3201k1p
V= AVVDL + AVVSL + AVh = 5172k1p
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5.6 Inclined Supports

Determine the reactions of the following two span beam resting on inclined supports.

40 k 30 k 50 k
2
. /
. V.
Na é b c “3

4

8 ft 6 ft 6 ft 6 ft 6 ft

Solution:

A prioriwe would identify 5 reactions; however, we do have 2 equations of condition (one at each inclined support), thus with three equations
of equilibrium, we have a statically determinate system.

2
ZMZb =0 Rpy20ft — 40kip- 12ft — 30kip-6ft + 50kip~sin(atan(T))~6ft ~Rgy12t=0

2
Ray-ZOft - Rcy' 12ft = 40kip-12ft + 30kip-6ft — 50kip-sin(atan(T))-6ft
3 . 2 4 _
ZFX =0 ZRay - 50k1p-cos(atan(Tj) - ;'Rcy =0

3(3 . 2))) 9 .
Rcy = Z-(ZRay - 50k1p-cos(atan(T))) * 16 'Ray - 16.77kip

9

¢ Ray ~Rey = 16.77kip
Solving for those two equations:
20 -12) /R .
ay (391.672 klpj
9 . =
—_ _1 T
P Rcy 16.77kip
Ray (14.37kipj
Rey —8.69kip
The horizontal components of the reactions ata and c are
3 .
Ry = Z-Ray =10.78-kip
. 4 1
Rex = =5 Rey = 11.59kip

Finally, we solve for Ry,

2
ZMZ"‘ =0 40kip-8ft + 30kip 14ft — Ry, -20ft + 50kip-sin(atan(TD-26ft ~Rgy32ft=0

2
40kip- 81t + 30kip- 144t + 50kip-sin(atan(T))-26ft - Rcy-32ft

Ry, = = 109.04-ki
by 20ft P
We check our results
2

= — ip — ip — ip-si — =0-ki |

ZFy 0 Ray 40kip — 30kip — 50kip s1n(atan( | )) + Rby + Rcy 0-kip OK!
2

ZFX =0 Ry — 50kip-cos(atan(T)) + R =0kip OK!
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7.1 Truss Method of Joints

Using the method of joints, analyze the following truss

< o2¢)

12
l G
10 H E
32!
E
R
A 20k a0k 0k
24" 24' 24" 24"

Solution:

1. R=3, m=13, 2j=16, and m+R=2j
2. We compute the reactions

ZMZE =0 (20kip + 12kip)-72ft + (40kip + 8kip)-48ft + 40kip-24ft — R o ;-96ft = 0

_ (20kip + 12Kip)-72ft + (40kip + 8Kip)-48ft + 40kip-24ft

Rpy:
Ay 961t
ZFy =0 20kip + 12kip + 40kip + 8kip + 40kip ~ R oy~ Rp, =0

REy := 20kip + 12kip + 40kip + 8kip + 40kip — RAy

3. Consider each joint separately:
Node A: Clearly AH is under compression and AB is under tension

FAH

A O— Fas

T 58k
ZFy=O Fapy + Ray=0
FAHy = _RAy = —58klp

2 2
Ly = 321t Ly = 241t L:= ’Ly +L, = 40-ft

L .
Fapg = L_'FAHy =—72.5-kip Compression
y
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D Fe=0 Fanx + Fap =0
Ly _
FAp = L—y-RAy = 43.5-kip Tension
Node B:
Fgu
B
435k Fsc
20 k
ZFX =0 Fpc = 43.5kip  Tension
ZFy =0 Fgpy = 20ki ~ Tension
Node H:
12k
FAHyf
72 k
D Fe=0 FaHx ~Frex ~Fagx =0
. 24t 24t _
\/ (24ft)” + (32ft) (24ft)” + (10ft)
ZFy =0 Fany + Frcy — 12kip — Fyygy — 20kip =0:

32ft 10ft

‘Fc - ‘Fug -
J24t0? + (3211 J@4f? + (10f)>

'[his can be most conveniently written as

58kip +

24t 24t
Jeat? + Gar2 | am? + (tom? | (Fac) (43 5kip
) 321t 10ft '(FHGJ =( 26kip j
| J e+ am? a2 + (1om)? |

12kip — 20kip =0
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Solving we obtain

24ft 24ft
F 2 2 2 2 .
HC (24f1)° + (32ft) (24ft)" + (10ft) 43 5kip -7.5 g
= . = . 1
Fag B 321t 10t 26kip 52 P
| Jam? s am? @402 + (1012 |
Frc = -7.5-kipp Compression
Fag =52k Tension
Node E:
Fep
Fep E
62 k
ZFy =0 Fpy = 62kip
\/ (24ft)2 + (3zft)2 .
EF = -62kip = 77.5-kipCompression
32ft
D Fe=0 FED = FEpy
Fpp = 24i 62kip = 46.5-kipf Tension
ED ™ “pp TP T

The results of the analysis are summarized below

12

58 62
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4. We would check our calculations by verifying equilibrium of forces at a node not previously used, such as D.

7.2 3D Truss
Solution:
1. Consider the free body diagram of the entire truss
600-3ft
ZMAB =0  C,5ft—600-3ft=0 C, =
5ft
C, =360
600-2ft
ZMCB =0  600-2ft — A,-6ft =0 A, =
6ft
A, =200
ZFZ =0 B, + 200 + 360 — 600 = 0 B, := 600 — 200 — 360
B, =40
ZFX =0 B, =0
ZFy =0 Ay=Cy=0
ZMZ = Ay3ft+ Cy2ft=0 Ay=Cy=0
Ay =
Cy =
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2. Consider the free body diagram of joint B

7 Fgp
Fga %% g .
"""" ‘:"'B“:j\""""'""" Y
X 40.0Ib

Joint B
2 2 2
Lpp = \/(2ft) + (3ft)" + (8ft)” = 8.775-ft
—8ft
BD
_ mp .
Fpp = 40‘? =-43.875 Compression
Fgpx ~Fpc =0
3t _
Fppx = @'FBD =15 Tension
Fgpy —Fpa =0
o =2ft .
FBDy = @'FBD =10 Tension

3. FBD of jointA

200 1b
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Lap = Js% + Gy + (47 = 94341
81t

ZFZ=O T Fap +200=0
AD
-L D
Faop = 200 =-235.85 Compression
ZFX=O FaDx ~Facx =0
Sft 5
tan(a) = — o= atan| — | = 39.8-deg
61t 6
3ft .
L_FAD - FAc'Sln((l) =0
AD
3ft F
L AD
AD .
Fpc= ————=1172 | Tension
sin(39.8deg)
ZFy=O Fppy ~ Fpa =0

5ft 5
tan(o) = — o= atan| — | = 39.8-deg
61t 6

_2ft Tonsi
FBA = L_FBD =10 ension
BD
5. JointC
Z
8 ft
-.l;—~' l,”’

39.81 o

N N T __
&~ c e y

x/ 360 Ib

Lep = Jsm2 + 22 + (27 = 8485

-8t
ZFZ =0 Fop, + 360 =0 ——Fcp + 360 =0
Lcp

-L
. CD c .
FCD = —360'¥ =-381.8 ompression
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7.3 Truss I, Matrix Method

Determine all member forces for the following truss

Ay

5

Node2: 0yp = -1
ode3d: agz, = 7 =0.707

Node3: 03] = ﬂ =0.707
2

- 10 >
Solution:
1. We first determine the direction cosines
Member 1 (Nodes 1-2)
Nodel: o= 1 B11=0
Member 2 (Nodes 2-3)
2 2
Node2: oy, := % =-0.707  Bpyi= = =0707
Member 3 (Nodes 3-1)
2 2
Node2: a3 = % =-0.707 By = = = 0707
2. Next we write the equations of equilibrium
0
Bip 0 B3 01 0| Fy 0
. + =0
Br; Bpp O 0 0 1 ||Ryy 0
0
-10
0 5
F 0 010
2 Pri B31 0 ~7.071
F3 mp ay 0 000 0 ~7.071
Ry Br; Byp 0 001 0 0
0 5
-10 5
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7.4 Truss Il, Matrix Method

Set up the statics matrix for the truss shown below

8
12
A J
l G
10 H F
32'
E
AR
A 20k Y40k 40k
24 24 24 24

Solution:

10'

32!

-y PP Pp———Pp

24 24" 24 24
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1. We first determine the direction cosines
241t

J 402 + (3210

324t

J 402 + (3210

10ft

J 402 + (101

24t

J 402 + (101

2. Next we write the equations of equilibrium

=0.6

=0.8

=0.385

=0.923

2. Next we write the equations of equilibrium

1 0 0 0 06 0 O O
0O 0 0 0 08 0 O O
-11 0 0 O O 0 O
o 0 0 0 0 1 O0 O
0o -11 0 0 0 -06 O
0 0 0 0 0 O0 08 1
o 0 -1 1 0 0 O O
o 0 0 0 0 O O O
o 0 0 -1 0 O 0 O
o 0 0 0 0 0 O0 O
o 0 0 0 0 0 O0 O
o 0 0 0 0 O O0 O
o 0 0 0 0 O O O
o 0 0 0 0 0 0 -1
0 0 0 0 06 0 06 O
0o 0 0 0 -08 -1 -08 0

O 0 0 0 0 100
0o 0 0 0 0 010
o 0 0 0 0 000
0o 0 0 0 0 000
06 0 0 0 0 000
08 0 0 0 0 000
o 0 0 0 0 000
o 1 0 0 0 000
0 0 06 0 0 000
0 0 08 0 0 001
06 0 06 0 —092300 0
08 -1 08 0 038 000
0 0 0 -0923 0923 0 0 0
0 0 0 —-038 —0385 0 0 0
0 0 0 0923 0 000
0 0 0 038 0 000
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Fy
Fy ~1
1 0 0 0 06 0 0 0 0 0 0 0 0 100 1
F3 00 00 08 0 0 0 0 0 0 0 0 010 1 43.5
Fy 110 0 0 0 O O O O O 0 0 000 2 43.5
Fs 00 00 0 I 0 0 0 0 0 0 0 000 -20 3 46.5
. 0 -1 1. 0 0 0 —-060 06 0 0 0 0 000 0 4 46.5
6 5 -72.5
00 00 0 0 08 1 08 0 0 0 0 000 -40 .
Fy 6 20
0 0-11 0 0 0 0O 0 0 0 0 0 000 0
Fg 0000 0 0 0 0 0 1 0 0 0 000 40| |7 7479
Fg | |0 0 0 -1 0 0 0 0 0 0 -06 0 0 000 o |78] 32033
9 2.479
00 00 0 0 0 0 0 0 08 0 0 001 0
F10 10 40
00 00 0 0 0 0 —060 06 0 -093000 0
Fl1 11 -77.5
00 00 0 0 0 0 —-08-1-08 0 0385 0 0 0 0
Fi2 00 00 0 0 0 0 O 0 0 -0923 0923 000 0 12| -51.91
' ' 13| -51.991
Fi3 00 00 0 0 0 -1 0 0 0 -038 -038 000 -8 % 0
Ry, 00 0 0 060 06 0 0 0 0 0923 0 000 0 T =3
Ry, 0 0 0 0 08-1-080 0 0 0 038 0 000 -12 16 62
Rsy
7.5 Truss, Method of Sections
Determine Fg- and F,; in the truss below
8
12 l
l G
10' H F
32
E
A
20k 40k 40 k
- —————————————— PP

24 24 24 o4

Solution:

Cutting through members HG, HC, and BC, we first take the summation of forces with respect to H:
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o l /FHG
H
32
\ Fuc
A B —Fpc
58k 20k

24 24' 24' 24

H_ =
ZMZ =0 Rpy24ft — Fger32ft=0

R Ay = 58kip  (From previous example)
24ft

Fpri= — R, =43.5-ki Tension
BC™ 3 ~AY P

C . . .
ZMZ =0 58kip-48ft — (20kip + 12kip)-24ft — Fyygy-32ft — Fyy, 241t = 0

244t 10ft

~ 24ftFyy - =0
2 2 2 2
J @4 + (10f) J 2402 + (10f1)

58kip-48ft — (20kip + 12kip)-24ft — 32ft-Fyy5-
Fyg = S2kif  Compression

8.1 Funicular Cable Structures

Determine the reactions and the tensions for the cable structure shown below

12 k 6k not to scale

- > > >

30' 40’ 30'

Solution:

We have 4 external reactions, however the horizontal ones are equal and we can use any one of a number of equations of conditions in
additiona to the three equations of equilibrium. First, we solve for the vertical reactions Ay Dy and then for the horizontal ones (which are
equal and opposite (|H| =A, = -D,). For this problem we could use the following 3 equations of static equilibrium 2F, = 2F, = M = 0, however
since we do not have any force in the x direction, the first equation is of no avail. Instead, we will consider the following set 2F = 2M, = 2Mg =
0. Alternatively, we can consider the problem as one with 8 unknowns (A, A, D,, Dy, B, 8g, 8¢, and hc), to be solved through the 2

annatinne nf aniiilihriiim avnracead at aarh nf tha fniir nninte Af intfaracact
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N
1. Solve for Dy

ZMZA =0 12kip-30ft + 6kip-70ft — Dy 100ft = 0

12kip-30ft + 6kip-70ft
D, = L2Kip 30t + Okip 701 _ ;o]
y 1001t
2. Solve forAy
ZFy=O Ay~ 12kip ~ 6kip + Dy =0

|Ay = 12kip + 6kip — Dy = 10.2-kip|
3. Solve for the horizontal force by isolating the free body diagram AB

B_ =
ZMZ =0 Ay30ft - H6ft =0

Ay-30ft
H:= =51-ki
6ft
4. Solve for the sag at point C by isolating the free body diagram CD
C_ =
ZMZ =0 -Dy30ft + Hh, =0
30ft Dy
h, = = 4.6-fi
H

5. Solve for the cable internal forces or tractions in this case

6ft 6ft
tan(O, ) = — 0, = atan| — | = 11.31-de
(0) 30t A (30&) £
T = H =52.01-ki
AB cos(eA) ’
6ft —h, 6ft —h,
tan(OR ) = On := atan =2.02-de
(%) 40ft B 40ft s
H
Tpe = =51.03-ki
BC cos(eB) P
he he
tan(0-~) = — 0 := atan| — | = 8.7-de
(%) 30ft ¢ 301t £

TCD = W = 51.59'kip
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8.2 Design of Suspension Bridge

Design the following 4 lane suspension bridge by selecting the cable diameters assuming an allowable cable strength of o, := 190ksi.. The
bases of the tower are hinged in order to avoid large bending moments. The total dead load is estimated at 200 psf. Assume a sag to span

ratio of 1/5.

100’

Solution:

1. The dead load is carried by each cable with one half the total deal load or p{ :=

300

100’

1
2
2. Using the HS 20 truck (or its distributed equivalent load of 0.64kip/ft per lane), the uniform additional load per cable is

y
-200psf-50ft = 5-%
t
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kip kip
=2-0.64— =1.28—

P2 fi fi
Thus the total design load is

kip
p=py+py= 6.28-?

3. The thrust H is determined by

L := 3001t
h := 60ft
p-L2

H:=——=1177.5kip
8-h
4. The maximum tension is

r= sag to span ratio

5

Thax = H~\/l + 16r2 = 1508 kip

5. Note that if we used the approximate formula we woul dhave obtained
. 2) .

TmaxApp = H-(l + 8.1 ) = 1554.3-kip

6. The required cross sectional area of the cable along the main span should be equal to

Tmax

A=

=7.94-in
Gall
which corresponds to a diameter

4A
d:= /— = 3.18#
™

7. We seek to determine the cable force in AB. Since the pylon cannot take any horizontal force, we should have the horizontal component of
Tmax €qual and opposite to the horizontal component of Tpg or

2 2
100f6)> + (120ft
- H-\/( 0ft) + (120f) :1839-kip‘

T
AB 100ft

The cable area should be

TAB .
A= ——=9.681n
Tall
which corresponds to a diameter
d:= +A =3.51in
™
8. To determine the vertical load acting on the pylon, we must add the vertical components of T, and Tag (Vgc and Vg respectively). We can
determine Vg from H and T, thus

120ft
P:=——H+ |T X2 - H2 = 2355-kip{

100ft ma
Using A36 steel with an allowable stress of o 5 34 := 21ksil, the cross sectional area of the tower should be

A= P =112-in
TA36

LN S} AR I AN P Y e R o i AN AU N | SR - SR RPN | PV
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[ NOE UIdUDUCKINg O SUCITd IOWET TTIgITTgoveTTT UTE TNdr anTerTsiorns.
9. If the cables were to be anchored to a concrete block, the volume of the block shoul dbe at least equal to

120t
oot
V= = 9420t

Ibf
15028
f

10.1 Simple Shear and Moment Diagram

Draw the shear and moment diagram for the beam shown below.

11k 10 k
3

A 4ft 61t Aft
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Solution:

The free body diagram is drawn below

Free Body Diagram

Hk 10k | 5 2
Iy LA T
S S
TDl 3k, oy 2k ¢ 8k

13k

il o |t

A:(13)(4):52 A=(6)(2)=12

Shear Diagram

i

A=(-6)(4)=-24

TDl 6k

A=-4(6+14)/2=-4

Slope= dV/dx=w=-2

14k

Momen Diagram

T
; T
S ! n i <
(g\] + \6‘
N ? o S
1
() <t
\O
A B C D E
Reactions are determined from the equilibrium equations
ZFX =0 ~A, + 6kip =0 A, = 6kip
_ . .3 kip =
ZMA =0 11kip-4ft + 10k1p-g- 10t + 2 ?-4ft-16ft ~Ey 18t =0

ft

4 ki
kip-4ft + 10kip- - 10ft + 22 4t 16ft
= 14-ki

E, =
y 18ft
_ . .4 kip _
ZFy-O Ay~ 11kip ~ IOklp-g —2?-4ft+Ey-O

. . kip .
Ay := 11kip + 8kip + 2?-4& - Ey = 13-kip

Shear are determined next

IR WY W S SR S T SR SRR B S 71
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. Ve,
2. At B the shear drops (negative load) by 11 kto 2 k
3.AtCitdrops again by 8 kto -6 k
4. It stays constant up to D and then it decreases (constant negative slope since the load is uniform and negative) by 2 k
per linear footup to -14 k
5.As a check, -14 k is also the reaction previously determined at E.
Moment is determined last
1. The moment atA is zero (hinge support)
2. The change in moment between A and B is equal to the area under the corresponding shear diagram, or
AMp = 13kip-4ft = 52-kip-ft

3. Changes between other points are determined the same by taking the area under the shear diagram

10.2 Frame Shear and Moment Diagram

Draw the shear and moment diagram of the following frame
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Solution:

TN

i B C4 %
oo |, X
A D

T 52.96kT

3k/ft

L( Jr i l | i l i i i i lcij’i 432-@%406(30):139.8

432 T64.06
64.06 64.06-3(30)=25.94
’ ) ° 25.96
139.8 7"
36 432 36 é. ¢ C
— >
S~ 432 /\
1322 ‘\42,37
64.06 T /‘ s
! 4937
= 139.8
64.06 (36)(12)=432 >(‘
-~
b 36 3(15)-31.78=13.22 /
36 A \ L

64.06 T

64.06
-—
36

3 _ X A5296)-423
g(52.96)—3178 T\ 5( )

52.96
423\
Y

64.06 ’\
M 13.22

36

—

25.94
Shear Diagram

252 31.78
139.8

432

|
432 V 139.8

Moment Diagram
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Reactions are determined first

4 _kip 4 _ kip .
F, = Ray — —3—2.15ft = Ray = —3—2.15ft = 36-ki
Z X AX s g AXT 5T g p{
kip 3 kip 4 ki
> My = 3L 30f-15ft + =3~ 15ft-34.50 — =3 —2. 15f-6ft — Rpy,-39ft = 0
ft 5 ft 5 ft y
ki ki 4k
38R Sorsh+ 23K yspaash - 23 KR sen
N fi 57 & 57 & 96
= = . K1
Dy 391t
kip kip
F, =0 322 30ft - 23215/t + Ry, = 0
Z y Ray =% 37k Dy

, kip kip
Rpyi= 3= =30+ 53T15ft Ry = 64.04-kip

We isolate each member and draw its free body diagram for each force component.

Shear
1. For A-B the shear is constant, equal to the horizontal reaction at Aand negative according to our previously defined

sign convention, V 5 := ~36kip
2. For member B-C at B, the shear must be equal to the vertical force which was transmitted along A-B, and which is
equal to the vertical reaction atA, Vg := R Ay~ 64.04-kip
3. Since B-C is subjected to a uniform load, the shear along B-C will have a slope equal to -3 and in terms of x (measured
from B to C) is equal to
VBc(X) = RAy - 3x
4. The shear along C-D is obtained by decomposing the vertical reaction at D into axial and shear components. Thus, at

: 3 . . . .
D the shear is equal to ;RDY = 31.78-kip and is negative. Based on our sign convention for the load, the slope of the

shear must be equal to -3 along C-D. Thus the shear at point C is such that V. - §-9ft~3 % = —%-RDyor
t

V= % 9ft-3 % - %'RDy = 13.22-kip. The equation for shear is given by (for x going from C to D)
t

VCD(X) = VC - 3x

Moment
1.Along A-B, the moment is zero atA (since we have ahinge)and its slope is equaltothe shear, thus at B the moment

is equal to —36kip-12ft = —432-kip-ft
2.Along B-C, the moment is equal todx

X X 2
. . 3x
Mpc = Mg + J Vpc(x) dx = —432kip-ft + J (Ray = 3x) dx = ~432kip-ft + Ry yrx — —
0 0
which is a parabola. Substituting for x=30, we obtain at node C:
ki
3 % (30ft)
. t .
M¢ == —432kip-ft + RAy-3Oft - f = 139.2-kip-fi
dM
3. If we need to determine the maximum moment along B-C, we know that p = ( at the point where where V=0,
X BC
RAy
thatis Vg(x) =R Ay~ 3X =0, X5 = kip = 21.3-ft. In other words, the maximum moment occurs where the shear is
3 —_

ft
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zero. Thus

kip 2
. 3 ?'(Xmax) .
Mpcmax = —432kip-ft + RAy'Xmax - f = 251.5-kip-fi

4. Finally, along C-D the moment varies quadratically (since we had a linear shear), the moment first increases (positive

shear), and then decreases (negative shear). The moment along C-D is given by

X X 2
3 - _
Mcp =M + J Vep(®) dx =M + ‘[ (VC - 3x) dx=Mc + Vg x - % which is a parabola. Substituting for
0 0
x =15ft, we obtain at node D
i
%-(15&)2
t
Mp = Mc + Vg I5ft -3 ———— =-0-kipfi  OK
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10.3 Frame Shear and Moment Diagram: Hydrostatic Load

The frame shown below is the structural support of a flume. Assuming that the frames are spaced 2 ft apart along the length of the
flume,

1. Determine all internal member end actions

2. Draw the shear and moment diagrams

3. Locate and compute maximum internal bending moments

4. If this is a reinforced concrete frame, show the location of reinforcement

Af 1 F
H,0 Density of water=62.4 1b/ft
g Spacing of frames=2 ft.
B & . E
C D
3 ft. 10 ft. 3 ft.

Solution:

The hydrostatic pressure causes lateral forces on the vertical members which can be treated as cantilevers fixed at the lower end. The
pressure is linear and is given by p(~,h) := ~-h. Since each frame supports a 2 ft wide section of the flume, the equation for w (pounds/ft) is

Ibf 124.8-h-1bf
w(h) i= 2624 == - ————

> fi

ki - .
Atthe base wy,, . = W(6ft) = 0.749-%. Note that this is both the lateral pressure on the end walls as well as the uniform load on the
t

horizontal members.

y y y y
L ] ] l L [E Shear l
* ¥ o 3.744 k * %
2246 %%
Eﬁ B ¢ * m D | + E
2246k 2246k i - ‘ i} 2.246 k
w -2.246 k
2 ft 2 ft — -3.744 k
2246k 2.246 k S 5
x__ MWt 749 K/ft TN . l—> ‘T
4.493 k-ft 4.493 k-ft “
o 1.5 k-ft &y
b b M e s
2.246 k 2246 k S 3 - m % %
4.493 k-ft T 5.99k 599k T 4.493 k-ft
4.493 k-ft -7.864 k-ft -7.864 k-ft 4.493 k-ft
End Actions
. 1 .
1.Base force atBis Fpy = Ewbase'“t = 2.246-kip
. 1 i
2.Base momentatB s Mg = EFBX-6ft =4.493-kip-ft
3. End forces at B for member B-E are equal and opposite
. . 1 .
4.Reaction atCis RCy = Ewbase' 16ft = 5.99-kip
Shear forces

1. Base at B the shear force was determined eariler and was equal to Fg, = 2.246-kip. Based on the orientation of the x-y

axis, this is a negative shear.
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2. The vertical shear at B is zero (neglecting the weight of A-B)

3. The sheartothe leftof C is Vleft = 0 = Whage 3t = —2.246-kip
4. The shear to the right of C is VCright = VCleft + RCy = 3.744-kip
Moment diagrams
1.Atthe base: B Mp = 4.493-kip-ft
ft
2. At the support C, Mg = -Mp - Wbase'3ft'37 = —7.862-kip-ft
. . 5ft .
3. The maximum moment is equal to Mpax = M + Wbase'Sft'T = 1.498-kip-ft

Design: Reinforcement should be placed along the fibers which are under tension, that is on the side of the negative moment. The figure
below schematically illustrates the location of the flexural reinforcement.
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10.4 Shear Moment Diagrams for Frame

l 8 l 12 l 10 l Vba Vbe 2k/ft 10k
si/ft |30k 2K/t |10k| i J, ~
A pbririiiy B e . Hb%erC
o E Mba H84= M Mh
! C
f 5 M bd Vhe
VAL Ly 20k g Wb (10)+(2)( )k Lok
59 5k 30k Vbe ‘il
15" i i —
—o = (10)('128)O '%2)(10)(10)/2
650k = 200k +
L HD 450'k
4Kk/ft T
82.5k
VD CHECK
30k
5k/ft bd \H\Mbd
AWV B<) Hp, . 450'k Hbd—
T M %)
17.5kT Vba P2 =
T 20k 450'k 20k
S =
17.5k ) 2
- H
1 -22.5k 17.5-(3)(8) S f—
17.5-5x=0 v 50Kk <
-22.:5+(-30)=-525 ba D oo
30.6'k (17.5)(3.5)/2 T 4k/ft T 50
" 82.5k
-20'k 5)(3.5)/2#(-22.5)(8-3.5)/2 =
(]
wv
(-52.5)(12)+(-20)_¢ s My, b
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10.5 Shear Moment Diagrams for Inclined Frame

2k/ft

[N
g 19.2k o 48.8k
=~ - (=3
8 éd\ =800k
= —»6\ 20k | 2
x 20k & %
) ) ¥ oK
S S 8
g
2Kk/At 60k ~
-
60k F/Fy=z/x
T AB ED T F/Fx=zly
3 Fx/Fy=y/x

(20)(5)/13=7.7

(20)(12)/(13)=18.46
(19.2)(5)/(13)=7.38
(19.2)(12)/(13)=17.72
(26)(12)/(13)=24

(26.6)(13)/(12)=28.8
(26.6)(5)/(12)=11.1

Mcp | @s8E=23.1

C
o o (28.8)(3)/(5)=17.28
1,130-(.58)(13) e eld & 2004)/(5)=16
800+(25.4)(13)  \\22¢ gz (3;;?1((12'5) GO
RENS \ dllg 20)3)/(5)=12
=z
Q00 -|lg (39.1)(5)/(4)=48.9
9B-C 12C-D

(39.1)(3)/(4)=29.3

+60k
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10.6 3D Frame

4dm

1. The frame has a total of 6 reactions (3 forces and 3 moments) at the support, and we have a total of 6 equations of equilibrium,

thus it is staticall determinate.

z

2. Each member has the following internal forces (defined in terms of the local coordinate system of each member x' - y'- Z' such

that x is along the member)

Member Internal Forces
Axial | Shear | Moment | Torsion
Member
Ny vV, Vy M, M, Te
C-D v v v v
B-C v v v v v
A-B v v v v v

3. The numerical calculations for the analysis of the three dimensional frame are quite simple, however the main complexity
stems from the difficulty in visualizing the inter-relations between internal forces of adjacent members.

4. In this particular problem, rather than starting by determining the reactions, it is easier to determined the internal forces at the
end of each member starting with member C-D. Note that temporarily we adopt a sign convention which is compatible with the

local coordinate systems.
C-D
ZFy. =0
D Fy=0
ZMy. =0
ZMZ. =0

m

VZ'C = 60kN

m

kN

My’C = —60kN-2m = —120-kN-m

KN 2
M, = 20— 2m-— = 40-kN-m
2
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B-C
S
D Fy=
D My=
>
Y-
AB

NX'B = VZ'C = 60-kN
Vle = Vyvc =40-kN

Mva = MyvC =-120-kN-m
MZ'B = ylc4m =160-kN-m

TX'B = _MZ'C = —40-kN-m

NX'A = Vva =40-kN
VylA = NX'B = 60-kN
MyvA = _TX'B =40-kN-m

MZ'A = MZ’B + NX‘B-4m =400-kN-m

TX'A = Mle =-120-kN-m

The interaction between axial forces N and shear V as well as between moments M and torsion T is clearly highlighted by this example.

A o
& o >
. C_FT 0 < |- s
\ >’ Q¥ C
L B N ’))/«\/ ¢ @@*f// S
A ©
*’? {50, 0¥ o
S o
OF ¥
o
/1@&'&
$"2/ é/\/v
R ls,
D(Q ¥$ / 60‘7\/\0]
&
o
e
Ny
/ ‘ZE
/\4,71
e AU
Q@’ff»// \zoé/\co
e bg\&$ 2
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11.1 Three Hinged Arch, Point Loads

Determine the reactions of the three-hinged arch shown below

20k 30K ;B
Hp Hy
T<—=—'1

|

|

33.75' Ve oo

|

|

]

80 k !

-2 !

|

|

26.25' H |

A A i

60' TVA |

Solution:

Four unknowns, three equations of equilibrium, one equation of condition - staticall determinate

C_
RO
R 5y 140ft + 80kip- (30t — 26.25ft) — 30kip- (601t + 20ft) — 20kip-(60ft — 20f) + R 5-26.25ft = 0

Ry 140ft + R 2625t = 30kip-80ft + 20kip-40ft — 80kip-3.75ft
Ry 140ft + R 5 ,26.25ft = 2900kip-f{

80k1p - RAX - RCX =0

[Rax + Rey = 80kip

RAy + RCy — 30kip — 20kip =0

[Ray + Rey = 50kip

R p60ft — 80kip-30ft — 30kip-20ft + R ,+80ft =0

Ry 80ft + R x-60ft = 80kip-30ft + 30kip-20ft
R 5y 80ft + R 5 ~60ft = 3000kip-ff
Solving those four equations simultaneously we have:

R
140 2625 0 0| AY 2900
0 1 o0 1]|Rax 80
10 10[|Rgy 50
80 60 00)|g 3000
Cx
_1 RA
Ay 140 2625 0 0 2900 15.1 y Ay 15.1
Ax 0 1 01 80 29.8 RAx Ax| o [298
= . = = -kip =
Cy 10 10 50 34.9 Rey Cy 34.9
Cx 80 60 0 0 3000 50.2 Re Cx 50.2
X

We can check our results by considering the summation with respect to B from the right:

ZMZB =0

~20kip-20ft — R(y-33.75ft + Ry 60t = ~0-kip-ft

-kip

20k
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11.2 Semi-Circular Arch

Determine the reactions of the three-hinged staticall determinate semi-circular arch under its own dead weight w (per unit arc

length s, where ds=rd@

Solution:

Reactions The reactions can be determined by integrating the load over the entire structure

1. Vertical Reaction is determined first

0=t
ZMA =0 ~Cy2R + J wR dO-R(1 + cos(0)) =0
0=0
wR O=m TWR
Cy=—- (1 + cos(0)) dO = ——
2 6=0 2
2. Horizontal Reactions are determined next
LS
0=
2
ZMB =0 C¢R+CyR-|  wRd6-Reos(8) =0
0=0
LS

Internal Forces can now be determined

=)
=]
§7)
~ = \\
%) b
<3 b
9 n
i c-(%4
® T - 2
Q
A
Rcosf & cé
PRl
R(11-cos0) Pl
Rcos a ©

? ") &.
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1. Shear Forces: Considering the free body diagram of the arch, and summing the forces in the radial direction (2Fg=0)

0
—(g - 1)-chos(e) + g-szin(e) - J wR dovsin(8) + V =0

a=0

V= WR~_(§ - 1)-cos(6) + (6 - g)sin(e)_

2. Axial Forces: Similarly, if we consider the summation of forces in the axial direction (2F5=0)

0
(g - l)szin(G) + g-chos(e) —J wR da-cos(0) + N=0

a=0

N = wR- (e - g)-cos(e) - G - 1)-sin(e)

2. Moment: Now we can consider the third equation of equilibriﬁm (2M,=0)

0
G - lj-wR-Rsin(O) + g-wR-R-(l ~ cos(8)) + J WR do-R(cos(ar) — cos(8)) + M =0
a=0

M = wR> %-(1 _ sin(6)) + (e - %)-cos(@)

Deflection are determined last
1. The real curvature ¢ is obtained by dividing the moment by El

2
o= = ﬂ.E.u ~sin(6)) + (e - g)-cos(e)}

EI ElI
2. The virtual force 8-Pwill be a unit vertical point load in the direction of the desired deflection, causing a virtual internal
moment
— R
SM = (1~ cos(0) —sin(0) 00 g
3. Hence, application of the virtual work equation yields:
T
2 2 4
f wR™ | Tt . s R . wR 2
LA =2 — | —-(1 —sin(0)) + | 6 — — |-cos(0) |-| —-(1 — cos(0) —sin(B)) [{ Rd6 = ——\7-w — 187w - 12
J = [2( (0)) ( 2) ()Hz( (0) ())} 16EI( )
6=0

64 of 159




Structural Analysis
Prof. Victor Saouma
Prepared by Christopher Segura

11.3 Statically Indeterminate Arch

Determine the value of the horizontal reaction component of the indicated two-hinged solid rib arch, as caused by a concentrated
vertical load of 10 k at the center line of the span. Consider shearing, axial, and flexural strains. Assume the rib is a W24x130 with

a total area of 38.21 in2, that it has a web area of 13.70 in2, a moment of inertia equal to 4,000 in%, E of 30,000 k/in2, and a
shearinf modulus of 13,000 k/in2.

Solution: 200"
1. Consider that end C is placed on rollers, as shown below.

1k Virtual
N=P/2 cosQ

P2
V=P/2 sin Q

200'
Aunit ficticious horizontal force is applied at C. The axial and shearinf components of this ficticious force and of the
vertical reaction at C, acting on any section 8 in the right half of the rib, are shown at the right end of the rib in the figure

above.
2. The expression for the horizontal displacement of C is

(B M fB \% (B N
LACp=2| M-—ds+2-| &V ds+2-| &N-—ds
| El J Ay G ) AE

c C
3. From the figure above, for the rib from C to B

C

P
M= ;(100 — R-cos0)

§M = 1-(R-sinf — 125.36ft)

P
= —.sin0O
2
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5-{/ = cosO

P
N =—-cosH
2

0N = —sin6
ds =Rd6O
4. If the above values are substituted in the equation for the horizontal displacement of C and integrated between the limits of
0.898 and 11/2, the result will be
Acy, =22.55in + 0.023in - 0.003in

ACh = 22.57in

5. The load P is now assumed to be removed fro mthe rib, and a real horizontal force of 1 k is assumed to act toward the right at
C in conjunction with the ficticious force of 1 k acting to the right at the same point. The horizontal displacement of C will be
given by

S-N-% ds =2.309in + 0.002in + 0.002in

B B rB

— M \'%
Schch=2| OM-—ds+2| &V ds + 2-
J EI Ay G J
C C C
6. The value of the horizontal reaction component will be

A
Ch

He = -kip = 9.76-kip

SChCh
7. If only flexural strains are considered, the result would be
22.55in
= kip = 9.77-ki
€~ 2300m " p{

Comments

1. For the given rib and the single concentrated load at the center of the span it is obvious that the effects of shearing and axial
strains are insignificant and can be disregarded.

2. Eroneous conclusions as to the relative importance of shearing and axial strains in the usual solid rib may be drawn, however,
from the values in the equation for A}.. These indicated that the effects of the shearing strains are much more significant thatn

those of the axial strains. This is actually the case for the single concentrated load chosen for the demonstration, but
only because the rib does not approximate the funicular polygon for the single load. As a result, the shearing components on
most sections of the rib are more important than would otherwise be the case.
3. The usual arch encountered in practice, however, is subjected to a series of loads, and the axis of the rib will approximate
the funicular polygon for these loads. In other words, the line of pressure is nearly perpindicular to the right section at all points
along the rib. Consequently, the shearing components are so small that the shearing strains are insignificant and are neglected
4. Axial strains, resulting in rib shortening, become increasingly important as the rise-to-span ratio of the arch decreases. Itis
advisable to determine the effects of the rib by considering flexural strains only, and then to check for effects or rib shortening.
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11.4 Semi-Circular Box Girder

Determine the reactions of the semi-circular cantilevered box girder subjected to its own weight w.

X

Solution:

Reactions are again determined first
From geometry we have OA=R, OB=Rcos8, CD = BA= OA - OB =R - Rcos8, EB = R(1+cosB) and BC = Rsinf. The
moment arms for the moments with respect to the x and y axis are BC and EB respectively. Applying three equations
of equilibrium we obtain

0=m
FZA—‘[ wRdO =0 FZA=WR’7T
6=0
0=
M, - J wR d6-R-sinf = 0 M, =2.wR
6=0
0=
MyA - J wR dO-R-(1 + cosB) =0 MyA = —W~R2-’7T

0=0
Internal Forces are determined next
1. Shear Force:

0
ZFZ=O V—J wR da =0
0

2. Bending Moment:

0
ZMR =0 M —J wR dovR-sinou = 0
0

M = wRZ-(l — cos0)

3. Torsion:

0
ZM9=0 T+J wR dovR-(1 — cosa) =0
0

T = —wR>-(6 - sin6)
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Deflection are determined last

We assume a rectangular cross-section of width b and heigh d=2b and a Poisson's ratio of v := 0.3
1. Noting that the member will be subjected to both flexural and torsional deformations, we seek to determine the two

stiffnesses.

3 4
2. The flexural stiffness El is given by EI = E% = %

3. The torsional stiffness of solid rectangular sections J = kb3-d where b is the shorter side of the section, d is the longer,

. E E E
and k is a factor equal to 0.229 for d/b=2. Hence G= —— =—,and GJ = —-O.229-b4 = 0.176E-b4.
2«(1+v) 26 2.6
4. Considering both flexural and torsional deformations, and replacing dx by rd6:
T M [‘Tt T
OM-A = 0-M-—-R dO + 6-T-—-R d6
EL, | GJ
0 0

where the real moments were given above.
5. Assuming a virtual downward force §-P = 1, we have
6-M = R-sinO

5T = —R-(1 — cosB)
6. Substituting these expressions into the equation for displacement (in 4)

2 (T 2 [T
‘R ‘R
.A = W—J (R-sin0)-(1 — cos)-R d6 + — J (6 — sinB)-R-(1 — cos®)-R dO
EI 0 GJ 0
4 T
w-R . . . .
I-A=—— (sin6 — sinB-cos0) + (0 — 6-cosO — sinB + sinb-cosO) dO
EI 0.265
0
4
A =2056 3R
EI
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11.5 Internal Forces in an Helicoidal Cantilevered Girder, Point Load

Determine the internal forces N, V, and V,, and the internal moments T, M, and M, along the helicoidal cantilevered girder.

Isometric View

Plan View

X Y
Solution:
1. We first determine the geometry in terms of the angle 6
H
x(R,0) := R-cos(0) y(R,0) := R-sin(0) z(H,0) .= —-6
T
2. To determine the unit vector n at any point we need the derivatives
H
dx(R,0) = 6—X(R,6) — —R-sin(0) dy(R,0) = 6—y(R,6) — R-cos(0) dz(H, 0) = a—z(H,G) - —
00 00 00 T

and then determine the unit vector

“R-sin(0)i + R-cos(0) ] + -k
™

n= = ! ~[—sin6-i + cosO:j + (i)q
[ ! R
2 2
2 2
|:R2-(sin6)2 + RZ-(COSG)Z + (E) } {1 + (i) j|
T TR

Since the denominator depends only on the geometry, it will be designated K.
3. The strong bending axis lies in a horizontal plane, and its unit vector can thus be determined

i ] k

1 H
nx k =E- —sin® cos® — | = -(cose-i + sin6-j)

1
m-R K
0 0 1

and the absolute magnitude of this vector |n x k| = % and thus

S = cosO-i + sinb-j
4. The unit vector along the weak axis is determined
i j k
1 6 sinf 0 1 H H
w=sxn=—| = —-(—~sin6-i ———-cos6-j + kj
K H K \ R TR
—sin® cos6 ——
TR
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5. With the geometry definition completed, we now examine the equilibrium equations.
ZF =0 F=-P

ZMb=O M=-LxP

where
0
L =(R —R-cos6)-i + (0 — R-sinB)-j + (0 - —-H)-k
’7T
and
i i k
. -6 H A :
M=LxP=R|1-cos6 —sin@ —-— | = PR-[—sm6-l -(1- cos@)ﬂ
T R
0 0 P
and

M = PR[sin6-i + (1 — cos6)-j]
6. Finally, the components of the force F = —Pk and the moment M are obtained by appropriate dot products with the unit vectors

1 H
N=Fn=—P—
TR
VS=F.S =
VooFwe L
W K

PR
T=M-n=——:(1-cosO
K

M, = M:-s = PR-sinf

PH
M_=Mw=——(1-cosb
w K (
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12.1 Moment Area, Cantilevered Beam

Determine the deflection at PointA

4wlL? (25L) = 2wl
_EI 25 5
4wl w iy \
v 2 MMMMT Bl
_El .
A<l$>]i—ld> C P w L
tasc
Solution:
Elt = L[‘”'ﬂ.(ﬂ).(i.ﬂ) + l.[‘W'sz.L.(%) _ 2wt
ACT L s 2 )3 2) 3 2 4 24
Thus,
- —29W~L4
AT 4ET
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12.2 Moment Area, Simply Supported Beam

Determine A and 6, for the following example

l P 3Pa/4
[ , Pa/2
AKX
tam
Solution:
'AB
Deflection A is determined from Ac =chc=c"c"—c"c c"c =top, and ¢'.¢"=—
c

e [(2)(9(2) (22 2]

This is positive, thus above tangent from B

foom L (P (20) (2] _ P’
CB g1l 2 )L2)\3) 3E1

Positive, thus above tangent from B. Finally,

1 (5P~a3J P-a3 11 P-a3
AC=—. =—.

2\ 2.E1) 3E1 12 EI

Rotationa 6 is

Ogc =0 —Oc => 6 =6 — O

Ogc = A3
t
AB
eB =—
L

0. = 5P-a3 L E 2 _ P~a2
C oE14a 2 ) 2) 8EI
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12.3 Maximum Deflection
Determine the deflection at D and the maximum deflection at B

\
[ L
p-4 )4
L 4% 4PX/5
B < D  Jpr/e

l P/5 T 9P/5

Solution:

Deflection at D:
9

Ap ='pa ~ Sl

b o L(HPLY) (L _opl?
CATH\ 5 3 15

o= opL’
CA™ 5B
1 ( -4P-L 17L 1 (-4P-L 4L 8L —234P-L3
EItDA=_—L_ + —. _ | — |- —_— | -—
2 5 15 2 5 5 15 375
- 2341’
DA™ 37551
Substituting we obtain
_ =48 pL’
D™ 125 EI
Maximum Deflection at B:
N opL’
CA™ y5p1
_tca _opr?

9, =— =
AT L 15E-1

_ 1 |1 (4Px X _ 2 Px
: 5 EI

5

()
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12.4 Frame Deflection

Complete the following example problem

w=a  T2/EI

1
72/EL | 2

72/EI l
B ()
C 6% _ -
T 12 A o
x =48
e
— ' AA
12k 6 6
(@) (b)
\_/
120/El ’B B
— Q! ] ‘7 !
120/EI B X—g} C B T—TB \]? CT—TC' B
e S 5 |t o
. \" 7| / %
9 tangent @ B %%fs‘]ﬁ%%(f
20k 10k /\\tangent @B
6' / —— vertical line / ?
20 k e A A D
12
10 k v<—> tABlz?B (b) (C)
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12.5 Frame Subjected to Temperature Loading

Neglecting axial deformation, compute displacement atA for the following frame

2 T = 60
B C
? Tp = 200 >
I
=
h, =25' D
I ft=16"
a°
L=20'

Solution:

1. First let us sketch the deformed shape
2.BCflexes => 0 =0c =0

3. Rigid hinges at B and C with no load on AB and CD

4. Deflection atA
AA =AA"=AA + AA"
A-A'= AB = AC = |ec| hz
A-A" = |eB| hy

5. We need to compute 8g and 6.

_cB

0
B~

t
BC

6. In order to apply the curvature area theorem, we need a curvature (or moment diagram)

1 (TB_TTJ M
—=| ——— | =—

p h E1
7.
L 1 A —-A
t =A— = (0p| = —||—|=— OR 0 =—
B og| =A( £ ){1] =5 R 05 ==
8.
9B =
GC—GCB+6B
A A
0~ = - — =
¢ 2 2

9. From above
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10. Substitute
-6
Ay = (6.5-10 )-(200 - 60)-F-E-35ft

Ap =2.867

11. Other numerical values

A
O =0~ =—
B="C™,
1 - 200 - 60
Og = 5(6.5-10 6)-(—_)-20ft =0.006825-rad
n
0c = O = 0.006825

M 1 Tg - Tt
— =— =
E p h

1

s 222

12.In order to get M, we need E and |. Note the difference with other statically determinate structures; the stiffer the beam, the higher the
moment; the higher the moment, the higher the stress? NO!!

—

= 1465.2-1t

M. E-1 E-.
13. c=—2=—Y=2Y
[ p I p
M_dhy _ diy M ox
14.pis constant => BC is on arc of circle Mis constantand — = S A c=>y=—+dx+e
ElI 2 2 EI 2
dx dx
15. The slope is a parabola
2
dy
1M e
p EI 3

y=— +dx+e
d

—y=cx+d

dx

dy _

—= =c

dx2

PR o N ] S
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dUX=U, y=0, UT1us €=U

d
at x=0, LA 0 =-0.006825rad, thus d = -0.006825rad
X

atx=20 ft, % =6 = 0.006825rad, thus ¢(20ft) — 0.006825 = 0.006825, thus ¢ = 6.825-10
X

—4 x2
y =6.825-10 (7 - IOxj

d _
Y 2682510 *(x = 10)

dx
2
Y = 682510
dx2
—4
¢ = 6.825-10
1
p:= — ft = 1465.2-ft as expected!
¢
dz-y
dx2

If we were to use the exact curvature formula

—4
6.825-10
¢ = T = 0.000682
2

[1 + (0.006825)2}

1
pi= —-ft = 14653t

¢

4
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12.6 Conjugate Beam

Analyze the following beam

l 4PL/SEI

X & oo X

A A
4L/5

@
w)
B —_—

Solution:

3 equations of equilibrium and 1 equation of condition = 4 = number of reactions. Deflection at D = Shear at D of the corresponding conjugate
beam (Reaction at D) Take AC and M with respectto C

e -

_ 2.p.L°
15E-1
(Slope in real beam atA) As computed before. Let us dram the moment diagram for the conjugate beam

P (2 2 2-P
-_-— —.LZ.X_—.X3 =—'(L2'X—X3)
15 15

A

EI 15-E-1
: . dM
Point of maximum moment (A ) occurswhen — =0
max dx
dM 2-pP
— =—~(L2—3x2) =0 => x=L
dx 15-E-1
as previously determined
L
X=—
3
2-pP 2( L L 3
M=s=—|L7 | —|-| —
15-E-1 \/§ \/§
3
4P-L
M = ——— as before
45+[3-E-1
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12.7 Conjugate Beam

Analyze the following beam

6k 8k 6k

)
t J I'=2I=1,, =900in’ t
|
. 12t ! 6/t ! 6/t 2/ o
M (k) | |
144 oo . ‘
120 fmmmmmmmmmmmmmm o
(+)
Solution: 12 18 24 x ()

From simple observation, the reactions atA and B are equal to 10 k. The elastic load on the conjugate beam is then shown below.

120 120
EI EI
0 a @ ) n 2
EI 1 EI EI‘ EI
g
s e = = 1
| ! G J 3 | ¢ |
1A of o 12 e ¥ 8 i Y i 10/t 1 s ¥ lte
EI El
20 36
EI EI
. 'lLso =
ElL ‘}
A =~
| .
= ! 34
11 [ —
EI 18/t v
v fi c
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We next seek to determine the internal moment at C' in the conjugate beam. It is obtained from equilibrium:;

2

1116-kip-ft

> M=o —
B

E:= 29~103ksi
I:= 450in4
AC = MC’

720-kip-ft* |

2
60-kip- ft
of - SO0k S

-18ft —

2
6-kip-ft
_ 36kp 2ft+ M@ =0

-10ft

-3t

720-kip-fi* 1

ACI =

2
360-kip-ft
+ b

2 2
6-kip-ft 1116-kip-ft
NELLY RIBPY P

-18ft = —1.554-in

13.1 Deflection of a Cantilever Beam

Determine the deflection of the cantilever beam with span L undera pointload P atits free end. Assume constant El.

K

M=PL

N |
N
Solution:
W.=LpA
e, f
e
U= | M (%) dx
) 2-E-1
0
M =-Px

0

3.2

1 L-P

—PAf = —

2 6-EI
3
P-L
Ap=——
3-EI

Note that the solution of this problem was faciltated by the fact that/\;is co-alligned with P.
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13.2 Beam Deflection
Determine the deflection at point C. E := 29000ksi, I := IOOin4

2 k/ft

REEEREEEEREET. A

' C
A\_,/EB\ Idc 0.5k
Hisk ! \

Tl.sk

Virtual Moment

Real Moment w

-0.5x
Solution:
For the virtual force method, we need to have two expressions for the moment, one due to the real load, and the other to the (unit)
virtual one.
Element x=0 M oM
AB A 15x-x> | -0.5x
BC C -x2 - X
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For the virtual force method, we need to have two expressions for the moment, one due to the real load, and the other to the (unit) virtual
one.

p— L —
Ap-8P = ( 5. MO 4o
EL
0
20 10
1A =|( (—OSX)-(ISX—_XZjdX+ |r (—x)-(_—xzjdx
¢ | ' EI ) EI

0 0

* N
AC(EI):=J (‘O'SX)'(ISXTIXJC‘X” (—@{%}dxaw

J EI

0 0

~ 2500kip-ft’
E1

AC : =1.49-in

13.3 Deflection of a Frame

Determine both the vertical and horizontal deflection at A for the frame shown. E := 200- 106k—N , 1:=200- 106mm4
2

m
50 kKN
l 1 kN 1 kN
A B C
! —_—
2 m 2 m
Sm
D
kN 5 kN-m
100 kN-m Tso kN 4 kN_mTl kN -
Pz el o N—r

Solution:

To analyze the frame we must determine analytical expressions for the moments along each member for the real load and the two
virtual ones. One virtual load is a unit horizontal load at A, and the other a unit vertical one at A
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l 1 kN
X l X +4
+100 ! I:N
50x - +
X
+
-X
1kN
> > e
100 kN-m 4 kN-m 5 kKN-m
50 kN Tl kN
Element| x=0 M SM, SM,,
AB A 0 - X 0
BC B - 50x -2-X 0
CcDh C 100 4 - X

Note that moments are considered positive when they produce compression on the inside of the frame. Substitution yields:
L
[ Mo
A, 8P = d-M(x)- = dx

z

2 2 5
1A, = —x~@ dx + (-2 —x)~i0x) dx + 4~ﬂ dx
EI EI EI

- i
AL(ED = —x-(E—OI) dx + (-2 - X)-_T(I)X dx +

)

_ 7000KN-m’
v 3-E-1
Similarly for the horizontal displacement

5
100 7000
oy, 200

J El 3.El

0 0

=5.833-cm

— L J—
Ap-6P= [ 6~M(x)~m dx

J EL,

0
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fz 0 fz 50 (5 100
1A, = 09 g | 02 gy | 10 4
El EI

R R

0 0

2 2
0 50 100 1250
A (ED) = ( 0 4y s f -2 4y f X dx >
J El J El J EI El
0 0 0
_1250kN-m’
pi= ————— =-3.125cm
E-

13.4 Rotation of a Frame

Determine the rotation of joint C for the frame shown. E := 29000ksi, I:= 240in4
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3 k/ft
BrYYvyvyvyvyvyy
A I
15
v _K_A
30kt 0

Solution:

0.05k

1 k-ft

~

<

T

0.05k

In this problem the virtual force is a unit moment applied at joint C, 6~MG. It will cause an internal moment SE

Element| x=0 M oM
AB A 0 0
BC B 30x - 1.5x%| - 0.05x
ch D 0 0

Note that moments are considered positive when they produce compression on the outside of the frame. Substitution yields:

L
— — M
oo | sm MO
J EI,
0
20
[ 30x -1 5x2
1-6c = ~0.05x)-| ———— | dx
C ( ) =

0

20
2
30— 1.5
O (ED) = [ (—0.0SX)-(%] dx = —

0
_1000kip-ft°
C = ———— = ~0.021-rad
E1
13.5 Truss Deflection

1000

El

Determine the vertical deflection of joint 7 in the truss shown E := 30000ksi
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15

Solution:

Two analyses are required. One with the real load, and the other using a unit vertical load at joint 7. Results for those analyses are
summarized below. Note that advantage was taken of the symmetric load and structure.

A L pe 5P | SPPL/A n6PPL/A
Member ) . ) n )
in ft kip kip k-ft/in k-ft/in
1&4 2 25 -50 -0.083 518.75 2 1037.5
10& 13 2 20 40 0.67 268 2 536
11812 2 20 40 0.67 268 2 536
589 1 15 20 0 0 2 0
6&8 1 25 16.7 0.83 346.5 2 693
283 2 20 -53.3 -1.33 | 708.9 2 1417.8
7 1 15 0 0 0 1 0
Total 4220.3
L
M.NJ 57
AE
0
_P.L
LA =3%5P,
42203 kL;t
A= — 1688
E

13.6 Torsional and Flexural Deformation

Determine the vertical deflection atA in the structure shown. E := 30000ksi, 1 := 144in4, G := 12000ksi, J := 288in4
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Solution:

1. In this problem we have both flexural and torsional deformation. Hence we should determine the internal moment and torsion
distribution for both the real and the unit virtual load.
2. Then we will use the following relation

5P-Ap = r 5 M2 dx + f 5T — dx
J El J GJ

3. The moment and torsion expressions are given by

Element x=0 M oM T 6T
AB A 10x X 0
BC B 15x X 50 5

4. Substituting

50 3125 1250
—dx> — + ——

P o s
AAE LG = | x—dx+ | x—dx+
E1 E-l J GJ 3EI GJ

) )

3125kip . 1250kip-ft°
AT 3R] GJ

0 0

= 1.042.in}

13.7 Flexural and Shear Deformations in a Beam

Determine the deflection of a cantilevered beam, of length L, subjected to an end force P due to both flexural and shear
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deformations. Assumed G=0.4E and a square solid beam cross section.

Solution:

1. The virtual work equation is

B L L (L (L _ v
6-P~A=J 5~M~(x)-d¢(x)dx+J 6-V~(x)-’7xy(x) dx = SM( X)- E( )d + 5-V(x)~>\-g

; ; ) )

2. The firstintegral yields for M=Px, and §-M = 1-x

(L L
SM()M(X) dx = —J xzdx

J El El

0

dx

0 0

L
p 2 94280057135446.5-N-ft°
— | xXdx—>
Bl J, El

3. The second integral represents the contribution of the shearing action to the total internal virtual work and hence fo the total
displacement.

4. Both the real shear V and the virtual shear 8-V are constant along the length of the member, hence

L L
J V() M~ LJ 1-(P) dx
GA GA J,
0

L
X 374606093684.841-GPa-N- ft
= 1P d&x—> o

5. Since X := 1.2for a square beam; hence

4
h
I=— and A=h2
12
then
2 2
P-L | 12L 9 3P-L | 1.33L
= —  — | = — + 1
3-E 4 2 2 2

h h E-h h
6. Choosing L := 20ftand h := 1.5ft (L/h=13.3)

2
3P-L 20ft 3P-L
A= —~{1.33~(—f) + 1} =——(237+1)
E-h2 1.5ft E-h2
Thus the flexural deformation is 237 times the shear displacement. This comparison reveals why we normally neglect

shearing deformation in beams. As the beam get shorter or deeper, or as L/h decreases, the flexural deformation

decreases relative to the shear displacement. At L/h=5, the flexural deformation has reduced to 1.33-52 =33.25 times
the shear displacement.

13.8 Thermal Effects in a Beam
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Consider the cantilever beam shown. If the beam is a steel, wide flange section, 2 m long and 200 mm deep, what is the angle of
rotation, 8,, at the end of the beam caused by the temperature effect? The original uniform temperature of the beam was 40C.

70°C \
200 mm | e=a? Tdx=11.7x10"° (80)dx=

-6

df
2m —»{ -80°C
100 mm \

1 "-—-...____=_ § 100 mm

+80°C

dM=1 S . dx
<’ § Thermal Gradient —b

| Strain

. Virtual forces
Solution:

1. The external vurtual force conforming to the desired real displacement 8, is a moment M = 1 atthe tip of the cantilever,

producing an external work term of moment times rotation. The internal virtual force system for this cantilever beamis a
uniform moment &-M; . = 1.

2. The real internal deformation results from (a) the average beam temperature of 150C, which is 110C above that of the original
temperature, and (b) the temperature gradient of 160C across the depth of the beam.

3. The first part of the thermal effect produces only a lengthening of the beam and does not enter into the work equation since the
virtual loading produces no axial force corresponding to an axial chnge in length of the beam.

L
4. The second effect (thermal gradient) produces rotation d¢, and an internal virtual work term of J 0-M- ¢ dx
0

5. We determine the value of d$ by considering an extreme fiber thermal strain as shown above. The angular rotation in the length
dx is the extreme fiber thermal strain divided by half the beam depth.

M d2-y _d_6 3 =
EI dxz dx vy
L R—
1-0, -J 8-M-¢ dx
0
L
o(Tp — T
B T
el = 1(7) dx
0
— 6 m
11.7-10 °—-(230 — 70)-2m
o) = = = 0.01872 rad
0.2m

6. This example raises the following points
a) The value of 8, would be the same for any shape of 200 mm deep steel beam that has its neutal axis of bending at

middepth
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b) Curvature is produced only by thermal gradient and is independent of absolute temperature values.

c) The calculation of rotations by the method of virtual forces is simple and straightforward; the applied virtual force is a
moment acting at a point where rotation is to be calculated.

d) Internal angular deformation d$ has been calculated for an effect other than load-induced stresses. This extension of
the method of virtual forces to treat inelastic displacements is obvious - all we need to know is a method for
determining the inelastic internal deformations.
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13.9 Deflection of a Truss

Determine the deflection at node 2 for the truss shown

120 k

A=5.0 in’ each;
E=10x10’ ksi

12' 12 0.5 1.0 0.5
Solution:
Member 6_P P_e L .AZ E_ SPPL/AE
kip kip ft in ksi

1 0.25 37.5 12 5 10x 10° | 22.5x 10

2 0.25 52.5 12 5 10x 10° | 31.5x 10
3 056 | -83.8 | 13.42 5 10x 10° |125.9x 10

4 0.56 16.8 13.42 5 10x 10° | 25.3x 10*
5 0.56 -16.8 | 13.42 5 10x 10° |-25.3x 10"
6 -0.56 | -117.3 13.42 5 10x 10° |176.6x 10

7 -0.5 -45 12 5 10x 10’ | 54x 10"
Total 410.5x 10"

The deflection is thus given by

5P-A = Z(

n=1

5p. 1L
© AE

:

A= 410510 Yt =

0.493-in
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13.10 Thermal Deflection of a Truss; |

The truss shown is built such that the lower chords are shielded from the rays of the sun. On a summer day the lower chords are
30F cooler than the rest of the truss members. What is the magnitude of the vertical displacement at joint 2 as a result of this
temperature difference?

A=501n" each;
60k 120k | poqpmip®ys | 60 120

1 838 /@ 1173

P A s 75.0 105.0

Solution:

1. The virtual force system remains identical to that of the previous example because the desired displacement componentis the
same.
2. The real internal displacements are made up of the shortening of those members of the truss that are shielded from the sun.
3. Both the bottom chord members 1 and 2 thus shorten by

AL = AT-L
in

in- A°F

AL = (0.0000128 j(30~A°F)~12ft =0.0553-in

4.Then,
1.A = Zsi-AL

A= 025(-AL) + 0.25(-AL)
5. The negative sign n the displacement indicates that it is in opposite sense of the displacement; the assumed direction is
always identical to the direction of the applied virtual force.
6. Note that the same result would be obtained if we had considered the internal displacements to be made up of lengthening of all
truss members above the bottom chord.
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13.11 Thermal Deflection of a Truss; Il

Asix panel highway bridge is constructed with sidewalks outside the trusses so that the bottom chords are shaded. What wil be the vertical
deflection component of the bottom chord at the center of the bridge when the temperature of the bottom chord is 40F (AT) below that of the

. Lo 1
top chord, endposts, and webs? (coefficient of steel thermal expansion is o := 0.0000065-E

28 4

= 3 1}’11( o

A
\/

Solution: 6@21'

1. The deflection is given by
P;.

i Zs-Fi-ALi = Za-?i-a-AT-L

L
AP = ( 5-5& dx = ZS-E- =

)

where AL isthe temperature change in length of each member, and 3P are the member virtual internal forces

2. Taking advantage of symmetry (Note that we ignor members 1-3 because we assumed that they had the reference temperature,
and all other members are subjected to a relative temperature increase of 40F)

0

L 6P
Member aATL . SPAL
ft kip
35 0.0091 0.625 0.00568
21 0.00546 0.75 0.00409
21 0.00546 1.13 0.00616

4
5
6
7 0 0 0 0
8
9

35 0.0091 -0.625 [ -0.00568
28 0.00728 0.5 0.00364

10 35 0.0091 -0.625 | -0.00568
11 0 0 0 0
Total 0.00821

3. Hence the total deflection is

|A == 2-0.00821ft = 0.197-in)
4. A more efficient solution would have consisted in considering members 1, 2, and 3 only and applying AT=-40F, we would obtain
the same displacement.
5. Note that the forces in members 1, 2, and 3 (-0.75, -0.375, and -0.375 respectively) were not included in the table because the
corresponding AT=0.
6. A simple solution would have AT := —40-A°Fin members 1, 2,and 3 thus
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[A = 2-0.00819ft = 0.197-in

L 6P
Member aATL . SPAL
ft kip
1 21 -0.00546 | -0.75 0.004095
2 21 -0.00546 | -0.375 | 0.0020475
3 21 -0.00546 | -0.375 | 0.0020475
Total 0.00819
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13.12 Truss with Initial Camber

Itis desired to provide 3 in. of camber at the center of the truss shown below by fabricating the endposts and top chord members
additionally long. How much should the length of each endpost and each panel of the top chord be increased?

2 3
I 36
Ny _/ _/ A /
= f ik a
- >
6 @27
Solution: @
1. Assume that eachtop chord is increased 0.1 in.
6P, AL
Member it , SPAL
kip In
1 0.625 0.1 0.0625
2 0.75 0.1 0.075
3 1.125 0.1 0.1125
Total 0.25

Thus,
2-0.25in = 0.5-in
2. Since the structure is linear and elastic, the required increase of length for each section will be
3in
0.5in
3. If we use the practical value of 0.625in
0.625in-0.5in

0.1lin

-0.1in = 0.6-in

=3.125.in}
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13.13 Prestressed Conrete Beam with Continuously Variable |

Aprestressed concrete beam is made of variable depth for proper location of the straight pretensioning tendon. Determine the midspan

displacement (point c) produced by the dead weight of the girder. The concrete weighs w := 23.6 kN and has E := 25000MPa. The beam is
3

m
0.25mwide.
1.0 m - 2.36 kKN/m
— ™
025mwide _____________ } { %/v L !WV why
Ag———==========x5 —p—-¢ 0.6m 3.54 kN/m
Bff Y Y Y VYV VY VYV VY VYV VY
B ——
20 m 4 J
472 kN 47.2 kKN
w; Dc
lo.s kN
-—— Y ———
Ro 0.5 kN 0.5 kN
s
L N M
5‘, 1 2 3 4 5 6 7 8 9 10
47 .2 x
Solution:

1. We seek an expression for the real moment M. This is accomplished by first determining the reactions and then considering
the free body diagram.

2. We have the intermediary resultant forces

3.54-kN-x

m

Ry(x) := 0.25mx-0.6m-w —

0.4m 0.118-kN-x°
XW —>

10m 2
m

1
Ry(x) = E-O.ZSm-x-

Hence,
M(x) = 47.2x — 3.54x~Gj — 0.1 18x2-(§) S5 472X + —0.039-% + —1.77-x>
3. The moment of inertia of the rectangular beam varies continuously and is given, for the left half of the beam, by

1 3
I(x) =—-b'h
(%) o

1 3 3
I(x) := E-(O.ZS)-(O.6 + 0.04x)" — 0.021-(0.04-x + 0.6)

4. Thus, the real angle changes produced by the dead load bending are

472-x + —0.039-){3 + —1.77-x2

1
E| — |-(0.6 + 0.04x)°
43

M
dp =—-dx =
¢ EI
5. The virtual force system corresponding to the desired displacement is shown above with &M = %-xfor the left half of the span. Since the

beam is symmetrical, the virtual work equations can be evaluated for only one half of the beam and the final answer is then obtained by
multiplying the half-beam result by two.
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6. The direct evaluation of the integral J 5-M d¢ is difficult beause of the expression for d¢. Hence we shall use a numerical procedure,

replacing the -M- (EI) dx with the ZS M (M)Ax, where each quantity in the summation is evaluated at the center of the interval Ax

and held constant over the interval length. As Ax becomes very short, the solution approaches the exact answer.
7.An interval length of 1 meter, giving 10 elements in the half length of the beam, is chosen to establish an accurate resultt.
8. The internal virtual work quantity is then

L
[ 2
J d Z[& M( )
0

9. The summation for the 10 elements in the left half of the beam gives

_ 48 (%)
o o —
M() EE{M()h3 }

} > SMw: ((1)\42(%
h

12

Segment X h h3 M &M M&M/h?

1 0.5 0.62 0.238 23.2 0.25 24
2 1.5 0.66 0.288 66.7 0.75 174
3 2.5 0.7 0.343 106.4 1.25 388
4 3.5 0.74 0.405 150 1.75 648
5 4.5 0.78 0.475 173 2.25 820
6 5.5 0.82 0.551 200 2.75 998
7 6.5 0.86 0.636 222 3.25 1134
8 7.5 0.9 0.729 238 3.75 1224
9 8.5 0.94 0.831 250 4.25 1279
10 9.5 0.98 0.941 256 4,75 1292

Total 7981

10. The Sl units should be checked for consistency. Letting the virtual force carry the units of kN, the virtual moment has the units of m-kN,
and the units of the equation

1 (m-kN)-(m-kN) m = m _
1000

kN MN 4
_.m
2
m
11. Then
" s
o6M-M
dx
J El
0
48
2:f —— |-7981-1-mm = 30.65-mm
(25000)
and the deflection at midspan is

AC = 30.65 mm
12. Acceptably accurate results may be obtained with considerably fewer elements (longer intervals Ax). Using four elements with centers at

2,5,8,and 10, the Zs M( ijls

3(174) + 3-(820) + 3-(1224) + 1-(1292) = 7946
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which is only 0.4% lower than the 10 element solution. If we go to two elements, 3 and 8, we obtain a summation of
5-388 + 5-1224 = 8060 which is 1% high. A one element solution, with x=5m and h=0.8m, gives a summation of 9136
which is 14.4% high and much less accurate than the 2 element solution.
13. Finally, it should be noted that the calculations involved in this example are essentially identical to those necessary in the
moment area method.
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14.1 Steel Building Frame Analysis

A small, mass-produced industrial building is to be framed in structural steel with a typical cross as shown below. The engineer is considering
three different designs for the frame: (a) for poor or unknown soil conditions, the foundation for the frame may not be able to develop any
dependable horizontal forces at its bases. In this case the idealized base conditions are a hinge at one of the bases and a roller at the other;
(b) for excellent soil conditions with properly designed foundations, the base of the frame legs will have no tendency to move horizontally, and
the idealized base condition is that of hinges at both points A and D; and (c) a design intermediate to the above cases, with a steel tie member
capable of carrying only tension running between points A and D in the floor of the building. The foundations would not be expected to
provide any horizontal restraint for this latter case, and the hinge-roller details at points A and D would apply. Critical design loads for a frame
of this type are usually the gravity loads (deal load + snow load) and the combination of dead load and wind load. We will restrict our attention
to the first condition, and will use a snow load of S := 30psf and an estimated total dead load of D := 20psf. With frames spaced at

spacing := 15ftt on centers along the length of the building, the design load is w; ., := spacing:(S + D) = 750~%f. If the frame is made of

steel beam sections 21 in. deep and weight 62 Ib/ft of length (W 21x62), and the member for design (c) is tentatively chosen as a 2 in2 bar,
determine the bending moment digrams for the three designs and discuss the alternate solutions

Roof system

12

D 40" A

Structure cross section

Rpy, Tie member

L

Rp, a) Roller support Rp, T c¢) Roller with tie RAVT

RAV

Solution:

Structure a This frame is statically determinate since it has three possible unknown external forces acting on it. Final bending
moments are shown below.

83.3ftk | | 83.3ftk 81ft.k | |81ft.k
~_— 1 — —
N oem ) Vo
150 ftk 6.93k 6.93k 6.75 k Tension
15k 15k 15k { 15k 15k 5k
a) b) ¥
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Structure b Hinging both legs of the frame results in another unknown force, making the structure statically indeterminate to the first degree
(one redundant).

1.Alateral release at pointAis chosen, with the redundant shearing force R1. The displacement A4 in the primary structure, as a result of the
real loading, shown in the figure below, is computed by virtual work.

2. The virtual force system produces virtual bending moment 6-1\_/[, which is uniform across the top member of the frame.

X
Q=1
M=w/2(Lx-x") —
’ 1
a) Moment caused by actual load on primary b) Virtual forces
structure
dM=M=12
1
b — M=1 x ) M=1.x
f11 dM=1.x dM=1.x

c¢) Real load for determining fi,
d) Moments produced by virtual forces and unit redundant

The virtual moment acting through the real angle changes given the internal work term
~40

LA =] oM dx
EI

Y0
3. Equating this to the external virtual work of 1-A |, we have

r40
1
5.0,75(40}( - Xz)
LA = | 12 dxkip-f
EI
70
40
1
f 5.0.75(40x - xz) 48000-1t-Ld
1t -
AJED = | 12— kip i 28000 ki
J = El
0

4. The equation of consistent displacementis A + f|-R; = 0. The flexibility coefficient f; | is computed by applying a unit horizontal force at
the release and determining the displacement at the same point.
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5. ltis seen that the real loading and the virtual loading are identical for the calculations, and

12 20
12
L =2 | x—dx |12 dx
El El

0 0
or

12 20 3
12 6912-f>-ki
fED =2 | x=dc+ | 122 dxkip D > P
EI EI EI

0 0
6. solving for R1

1 —
ﬁ-(48000 + 6912R) =0

or
48000

I 6912

-kip = 6.944-kip

Structure ¢ The frame with the horizontal tie between the points A and D has three unknown external forces. However, the structure is
statically indeterminate to the first degree since the tie member provides one degree of internal redundancy.

1. The logical release to choose is a longintudinal release in the tie member, with the associated longitudinal displacement and axial force.
2. The primary structure is the frame with the tie member released.

Release in tie member - dQ=1
_1 —P —
a) Primary structure ¢) Virtual forces
dM=M=12
2z 2 ML ML
g 710 - " amex dM=1.x

b) Actual loading on primary structure
¢) Moments produced by virtual forces and unit
redundants

1k

-

d) Real loading for computing f;;  f},

The compatability equation is based on the fact that the displacement at the release must be zero; that is, relative displacement of the two
sections of the tie at the point of release must be zero, or
where
Ay = displacement at release 1 in the primary structure, produced by the loading
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11 = relative displacement at release 1 for a unit axial force in the member
Ry = force in the tie member in the original structure
3. Virtual work is used to determine both displacement terms.

4. The value of A4 is identical to the displacement for structure (b) because the tie member has no forces (and consequently no deformation)
in the primary structure. Thus,

3
48000kip-fi
A= D —208%in

30000ksi- 1327in4
5. The flexibility coefficient f ; is composed of two separate effects: a flexural displacement due to the fiexibility of the frame, and the axial

displacement of the stressed tie member. The virtual and real loadins for this calculation are shown in the previous figure.

(12 (20

12 - PL
1-f,, =2 x—dx+ | 12-2dx | + 8P
11 Bl

J J El EA
0 0
6912 1-1-40
lfll =— +
EI EA
3 . .

6912kip-ft 40-kip- ft 1

fip = P P — 0308 —

30000ksi-1327in”  30000ksi-2in> ) P kip
6. The equation of consistent deformation is

_Al
Ry = — = -6.764ki

or

f
11
7. The two displacement terms in the equation must carry opposite signs to account for their differences in direction.

Comments The bending moment in the frame differes only slightly from that of structure (b). In other words, the tie member has such high
axial stiffness that it provides nearly as much restraint as the foundation of structure (b). Frames with tie members are used widely in industrial
buildings. A lesson to be learned here is that it is easy to provide high stifness through an axially loaded member.

The maximum moment in frames (b) and (c) is about 55% of the maximum moment in frame (a). This effect of continuity and redundancy is
typical - the positive bending moments in the members are lowered while the joint moments are increased and a more economical design
can be realized. Finally, we should notice that the vertical reactions at the bases of the columns do not change with the degree of horizontal
restraint at the bases.
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14.2 Analysis of Irregular Building Frame

The structural steel frame for the Church of the Holy Spirit, Penfield, New York is shown below. In this example we will discuss the
idealization of the structure and then determine the forces and bending moments acting on the frame.

10’
W4-
W30-108 B A w=0.8k/ft B
= o x —
A G W14-30 %0 —T w=0.72k/ft
D [ M=24.6x-0.4x>
W10-49 =
E 1
d) Moment due to actual loading on structure
61'-5" 21'-8" dQ=1
a) Geometry of frame M=x/61 42
B oL dM=1 —~ b
AH\HHHHHHHHHHH\HHH dM:X/2133
— C mmﬂ%) e) Moment dM due to dQ=1 at release 1
b) Idealized frame E < A7.1 k.ft
s A g
A B 23.8 354 k. i
== 55k

¢) Primary frame with angular
release at B
wéam

_ i35.2 k
f) Reactions and moment for frame

Solution:

1. The two main horizontal members of the frame are supported at points A and D by masonry walls.

2. The connection used at these points is not intended to transmit axial forces from the frame to the wall; accordingly, the axial forces in the
horizontal members are assumed to be zero and the joints at A and D are idealized as rollers that transmit vertical forces only.

3. The base joint E is designed to resist both horizontal and vertical loads, but not moment, and is assumed to be a hinge.

4. Finally, joints B and C are designed to provide continuity and will be taken as rigid; that is, the angles of intersection of the members at the
joint do not change with applied loading.

5. The frame is simplified for analysis by removing the small 4 in. wide flange members EF and FG and replacing their load effect by applying
the roof load with acts on EF directly to the segmentAG.

6. the idealized frame is shown above.

7. The dead load on the higher portion of the frame is p o g := 25psf times the frame spacing of spacing := 13.33ft, or

Ibf
WAR = PAR SPacing = 333-T along the frame.
t

8. The dead load on CD is less beacuse the weight of the frame member is substantially smaller, and the dead load is about ppy := 19psf,

Ibf
or wep = Pcp-spacing = 253-T.
t

: Ibf
9. Snow load is S := 35psf over both areas, or wg, . = S-spacing = 467 o
t

10. The total loads are then
: kip
MemberAB. WtOtAB = WAB + WSHOW = 08?
Member CD: : kip
embper . WtOth = WCD + WSnOW = 072?
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11. the frame has four unknown reaction components and therefore has one redundant. Although several different releases are possible, we
choose an angular (bending) release at point B.
12. The resulting primary structure is shown as (c) in the figure above, where the redundant quantitity R1 is the bending moment at point B.
13. The equation of compatability is

where 8, is the relative angular rotation corresponding to release 1 as produced by the actual loading, and f;4 is the

flexibility coefficient for a unit moment acting at the release.
14. From virtual work we have

J El

and
J EI

where 8-M and M are defined in (e) in the figure above.

15. Then
61.42 2133 ( )
R ( ) (T« 2
0(Elsn,EI =|—-"- —-\24.6x — 0.4x ) dx + . —-17.68x — 0.36x ) dx
1(FlaB-Flep) EI 61.42 EI 2133
AB J ¢ J,
291.31658667  7763.6329512000000002
Elcp El,p
16, With 1, 3 := 4470in" and Iy = 290in”
291 7764 118411
01(E) = + -in4 - > —
Elcp Elap 43210-E
17. Similarly
61.42 2133
1 ( X 2 1 ( X 2 1 8 2
£, 1(El o wa, El oy, El) i= ——- | — | dx+ —| — dx+—-J 1)” dx
11(Elap-Elcp Elic) Elxp | (61.42) Elcp | (21.33) Elgc 0()
0 0

8 20.473 7.11
+ +

f11(EI El EI -
11\="AB> = CD>=BC
( ) Elgc Elzp Elcp

18.With I = 273in’

8 20.473 71 ). 4 0.058
+ + -in simplify — T

Eldlge Elag Elcp

. a2
Note that the numerators of 8 andf have units of Kip-ft_
1 1" 4

in
19. Applying the compatability equation,
118411 N 0.058
43210-E E
and the bending moment at point B is

M| =0
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118411
43210-E

My == ——— kip-ft = —47.248-kip-ft
0.058

E

The reactions and moments in the structure are given in (f) in the figure above.
20. Once we have My, the structure is by now statically determinate and from statics we can complete the shear and moment diagrams.
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14.3 Redundant Truss Analysis

Determine the bar forces in the steel truss shown below using the flexibility method. The truss is part of a supporting tower for a
tank, and the 20 kN horizontal load is produced by wind loading on the tank.

20kN
- B 20__, 0
A 0
3m - P
Q ‘ 0
C D 2 54
A Y 20 )T
20
3m 20 ] {) 1q
b) Primary structure ©) ermary structure
a) Original Structure subjected to real load
-0.707 -0.707 o -10
20 Ny
+1 \b< _1 O
S o~ o~ 5 DX
= = = = +10 | 72
S| 3 < \z < %
o A1

20 <
+10
-0.707 _0.707>}( y

d) Virtual load on ¢ 20 20
primary structure 11
e) Action of unit force .

Final It
corresponding to redundant R, ) Final results

Solution:

1. Applying the criteria for indeterminancy 2-4 = 8 equations, 6 members + 3 reactions => one degree of indeterminancy. A logitudnial
release in any of the six bars may be chosen.

2. Because the truss members carry only axial load, the longitudinal release is identical to actually cutting the member and removing its axial
force capability from the truss.

3. In analyzing the trusses with double diaganails it is both convenient and customary to select the release in one of the diganol members
because the resulting primary structure will be the conventional truss to which we are accustomed.

4. Choosing the diagonal member BC for the release, we cut it and remove its axial stiffness from the structure. The primary structure is
shown in (b) in the figure above.

5. The analysis problem reduces to applying an equation of compatability to the changes in length of the release member. The relative
displacement A of the two cut ends of member BC, as producued by the real loading, is shown in (d) in the figure above.

6. The displacement is always measured along the length of the redundant member, and since the redundant is unstressed at this stage of
the analysis, the displacement A4 is equal to the relative displacement of joint B with respect to joint C.

7. This displacement must be eliminated by the relative displacements of the cut ends of member BC when the redundant force is acting on
the member. The latter displacement is written in terms of the axial flexibility coefficient f44, and the desired equation of consistent deformation
is

8. The quantity A4 is given by

~(PL
1-A; =) 6P| —
=2 )

where 5.Pand P are given in (d) and (e) in the figure above, respectively
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9. Similarly,

-(pPL
fir = Z“’(Ej

10. Evaluating these summations in tabular form:

P 6P L
Member 6PPL 6PPL
kN kN m
AB 0 -0.707 3 0 1.5
BD 0 -0.707 3 0 1.5
CD 20 -0.707 3 -42.42 1.5
AC 20 -0.707 3 -42.42 1.5
AD -28.28 1 4.242 -119.96 4.242
BC 0 1 4.242 0 4.242
Total -204.8 14.484
11. Since A = constant for each member
A = ZS'E(E) _ 2048 2 and = 14484 |2
AE AE AE
then
1
—-(—204.8 + 14.484-R1) =0
AE
. . 204.8
12. the solution for the redundant force value is R = Y -kN = 14.14-kN

13. The final values for forces in each of the truss members are given by superimposing the forces due to the redundant and the forces due
to the real loading.

14. The real loading forces are shown in (c) in the figure above, while the redundant force effect is computed by multiplying the member
forces in (d) in the figure above by 2.83, the value of the redundant.

6P R,6P P Piotal
Member

kN kN kN kN
AB -0.707 -10 0 -10
BD -0.707 -10 0 -10
CD -0.707 -10 20 10
AC -0.707 -10 20 10
AD 1 14.14 -28.28 -14.14
BC 1 14.14 0 14.14

15. Itis informative to compare the member forces from this solution to the approximate analysis obtained by assuming that the
double diagonals each carry half the total shear in the panel. The comparison is given in the figure below
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o 10 - -10
20
20 > 5
N N
o [} S N/ 9
— ‘/ v—l< + 7 '
n %, 7,
20
< < A
410 A +10
Y Y20 20
20 20

a) Exact analysis b) Approximate analysis

It reveals that the approximate analysis is the same as the exact analysis for this particular truss. The reason for this is that the
stiffness provided by each of the diagonal members (against "shear" deformation of the rectangular panel) is the same, and
therefore they each carry an equal portion of the total shear accross the panel.
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14.4 Truss with Two Redundants

Another panel with a second redundant member is added to the truss of the preceeding example

Solution:

1. The twice redundant truss is converted to a determinate primary structure by releasing two members of the truss; we choose

two diagonals (DB and BF).
2. Releasing both diagonals in a single panel, such as members AE and DB, is inadmissible since it leads to an unstable truss

form.
3. The member forces and required displacements for the real loading and for the two redundant forces in members DB and BF are

given in the figure below.

15k 0
15k -9.5 95 N2
ik) A B C 4 . 15
10' L’P n ><\ ol\
4=
D F ¢ s 0 7 7, -(). 7
2@10 5.5 95 11
b) Primary structure subjected to  ¢) Action to unit force R;=1
real load
a) Original structure; all A=4 in*
-0.707 ) 15
’ 4 -5.82 -3.56
RS
) A

X7 o VAN S
A @ A ‘N
il bo) ' o«

7 0707 % y o~
-fi 4
7.68 5.94

d) Action of unit force R2=1 )
e) Final results

4. Although the rela loading ordinarily stresses all members of the entire truss, we see that the unit forces corresponding to the redundant
stress only those members in the panel that contain the redundant; all other bar forces are zero.

5. Recognizing this fact enables us to solve the double diagonal truss problem more rapidly than a frame with multiple redundants.

6. The virtual work equations for computing the six required displacements (two due to load and four flexibilities) are

—( PL

1.A, = 5P| —
! Z I(AE)
—(PL

1Ay =58P, —
2 Z 2(AE)

_ Pl-L
_(pL

fo =10 by reciporocal theorem
_ P2-L
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7. If we assume tension in a truss member as positive, use tensile unit loads when computing the flexibility coeeficients
corresponding to the redundants, and let all displacement terms carry their own signs, then in the for the redundants a positive
value of force indicates tension while a negative value menas the member is in compression.

8. The calculation of f,, involves only the six members in the left panel of the truss; f,, invioves only member BE.

9. The simple used for performing the displacement analyses, as summarized in tabular form, leads one quickly to the
compatability equations which state that the cut ends of both redundant members must match (there can be no gaps or overlaps
of members in the actual structure).

Member P P4 P, & & fu fax faz
6P,PL 6P,PL 6P,P,L | 6P,P4L | 6P,P,L
AB -9.5 -0.707 0 806 0 60 0 0
BC -9.5 0 -0.707 0 806 0 0 60
CF -9.5 0 -0.707 0 806 0 0 60
EF 0 0 -0.707 0 0 0 0 60
DE 4 -0.707 0 -340 0 60 0 0
AD -5.5 -0.707 0 466 0 60 0 0
AE 7.78 1 0 1322 0 170 0 0
BE -15 -0.707 -0.707 1272 1272 60 60 60
CE 13.43 0 1 0 2280 0 0 170
BD 0 1 0 0 0 170 0 0
BF 0 0 1 0 0 0 0 170
Total 3528 5164 580 60 580

10. The equations are

or

1 (580 60 )(Ri) 1 (3528
E'( 60 580} Ry E'(slmj
11. The final set of forces in the truss is obtained by adding up, for each member, the three separate effects. In terms of the forces shown in
the figure above, the force in any member is givenby F =P + R1~P_1 + RZ'P_Z

Member P P, P, R4P4 R,P, Piotal
AB -9.5 -0.707 0 3.676 0 -5.82
BC -9.5 0 -0.707 0 5.925 -3.56
CF -9.5 0 -0.707 0 5.925 -3.56
EF 0 0 -0.707 0 5.925 5.94
DE 4 -0.707 0 3.676 0 7.68
AD -5.5 -0.707 0 3.676 0 -1.82
AE 7.78 1 0 -5.2 0 2.58
BE -15 -0.707 -0.707 3.676 5.925 -5.38
CE 13.43 0 1 0 -8.38 5.05
BD 0 1 0 -5.2 0 -5.2
BF 0 0 1 0 -8.38 -8.38
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14.5 Analysis of Nonprismatic Members

The nonprismatic beam is loaded with an end moment M, at its hinged end A. Determine the moment induced at the fixed end B
by this loading.

A I 21 B
< e S— R=1
L Tesm=T
L2 L/2 8EI —
16EI
a) Beam with end B fixed e) Rotations produced by a unit value of redundant R
\Y PN Mg M, 0.40L
< .—_s‘—ﬂ > T~ Mp=2/3M,

b) Elasti
) Elastic curve f) Moment diagram for A hinged, B fixed

’B
Mg

¢) Primary structure Ma

g) Beam with end A fixed

02861 __—
Mo =0 ML — Mg
SM,L 8EI MM
16EI A ?

d) Rotations produced by Mx h) Moment diagram for A fixed, B hinged

Solution:

1. The beam has one redundant force; we select Mg as the redundant R4, and obtain the primary structure shown in the figure above. It can
be shown that the flexibility coefficients for unit moments applied at each end are those in (d) and (e) in the figure above, with a sing
convention of counterclockwise as positive.

2. The equation of consistent displacement at B is

MpLo 3
+ —.—.R1 =
8E-1 16 E-I
and the value of My is

2
MB = Rl = ;MA
3. The resulting moment diagram is given in (f). We note that the inflection point is 0.4L from the fixed end. If the beam had a uniform value of |

across its span, the inflection point would be L/3 from the fixed end. Thus the inflection point shifts toward the section of reduced stiffness.
4. The end rotation 6, is given by

o e Mat 12 L1 Mat
A6 E1 8\3 AJE1 48 EI
My
5. The ratio of the applied end moment to rotation 6_ is called the rotational stiffness and is
A
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Ma _ s 1
0, 11 L

6. If we now reverse the boundary conditions, making A fixed and B hinged, and repeat the analysis for an applied moment Mg, the resulting

moment diagram will be as given in (h) in the above figure. The moment induced at end A is only 40% of the applied end moment Mg. The

inflection point is 0.286L fromthe fixed end A. The corresponding end rotation 65 in (g) in the figure above is

_ 11 MpL
B7 80 EI1
Mg
7. The rotational stiffness — is
L)
Ma _ 80 Bl
0, 11 L

8. A careful comparison of the rotational stiffnesses, and of the moment diagrams in (f) and (h) in the figure above, illustrate the fact that
flexural sections of increased stiffness attract more moment, and that inflection points always shift in the direction of decreased stiffness.

9. The approach illustrated here may be used to determine moments and end rotations in any type of non-prismatic member. The end
rotations need in the force analysis may be calculated by either virtual work or moment area (or by other methods). Complex variations in El
are handles by numerical integration of the virtual work equation or by approximating the resultant M/El area and their locations in the
moment area method.
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14.6 Fixed End Moments for Nonprismatic Members

The beam of the previous example

Solution:

1. The beam has two redundant forces and we select M, and M. Releasing these redundants, R4 and R,, we obtain the primary sturcture.

2. The equations of consistent deformations are

where R;is Myand R, is Mg.
3. The values of Aq and A,, the end rotations produced by the real loading on the primary structure, can be computed by the virtual work
method.

4. The flexibility coefficients are also separately derived (not yet in these notes)
5. We define counterclockwise end moments and rotations as positive and obtain

5 -1
L |16 8 |[[Ri _W.L3 ~0.352
0.0273

E1|-1 3 [|R;] EI

8 16
from which

3
R| =My =0.0742w-L

R, =Mp = —0.0961W-L2|
6. The stiffer end of the beam attracts 30% more than the flexible end.

2
7. For a prismatic beam with constant |, the fixed end moments are equal in magnitude (M, = -Mp = Wl_z) and intermediate in value

between the two end moments determiend above.
8. Fixed end moments are an essential part of indeterminate analysis based on the displacement (stiffness) method and will be used

exclusively in the Moment Distribution method.
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14.7 Rectangular Frame; External Load

Solution:

Qci
Qs B Elg C v Qc2
> D
h Elc
A D
B L EE

1. The structure is statically indeterminate to the third degree, and the displacements (flexibility terms) are shown in the figure

above.

2. In order to evaluate the 9 flexibility terms, we refer tot he table.

2k 514)
|- L ' |
i L = L k0 i Tk | L ik 3
Release 1 Release 2 Release 3
5L-10 b
L 2h+5L-10 J
o
A\l
. /ij\ y
? f /R | . S A .
2 21 _f___| i “ fio i 53 . i
%»? — LG S L: . ( ’if33§
13
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3. Substituting h := 10ft, L := 20ft, and Elg = El~ = EI the flexibilty matrix then becomes
2667 3000 -300
1
f= ol 3000 6667 —400

-300 —400 40
and the vector of displacements for the primary structure is
—-12833
1
=—-| -31333
EI

1800
where the units are kips and feet.
4. The inverse of the flexibility matrix is

24 0 18
£ =107 ELl 0 0375 375
18 3.75 1975
5. Hence the reactions are determined from
Ry 24 0 18 -12833 1.601
Ry | = 107 2EL] 0 0375 3.75 é 31333 || > | -5
Ry 18 3.75 1975 1800 7.007
Ri) (16
Ry | =] -5
Ry 7
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14.8 Frame with Temperature and Support Displacements

The single bay frame, of the previous example, has a height h := 10ftand span L := 20ftand its two supportsrigidly connected and is
constructed of reinforced concrete. It supports a roof and wall partitions in such a manner that linear temperature variation occurs across the
depth of the frame members when inside and outside temperatures differ. Assume the member depth is constant at 1 ft, and that the
structure was built with fixed bases A and D at a temperature of 85F. The temperature is now 70F inside and 20F outside. We wish to
determine the reactions at D under these conditions. Assume that the coefficient of linear expansion of reinforced concrete is

1
o= 0.0000055-——.
A°F

Solution:

1. Our analysis proceeds as before, with the [D] vector interpreted appropriately. The three releases shown in the previous example, will be
used.
2. The first stage in the analysis is the computation of the relative displacements A4, Aoy, Azp, Of the primary structure caused by temperature
effects. These diaplcements are caused by two effects: axial shortening of the membersbecause of the drop in average temperature (a
middepth of the members), and curvature of the members because of the temperature gradient.
3. In the following discussion the contributions to the displacements due to the axial strain are denoted with a single prime (') and those due to
curvature by a double prime (").
4. Consider the axial strain first. A unit length of frame member shortens as a result of the temperature decrease from 85F to 45F at the
midepth of the member. the strain is therefore

aAT := a-40-A°F = 0.00022
5. The effect of axial strain on the relative displacements needs little analysis. The horizontal member shorte ns by an amount
aAT-20ft = 0.0044-ft. The shortening of the vertical members results in no relative displacement in the vertical direction. No rotation occurs.

6. We therefore have A'l A= - AT-20ft = —0.0044-1t, A'z A = 0ft, and A'3 A = Orad

7. The effect of curvature must also be considered. Aframe element of length dx undergoes an angular strain as a result of the temperature
gradient. The change in length at an extreme fiber is

e(dx) := a-25-A°F-dx — 0.0001375-dx
8. With the resulting real rotation of the cross section

d
do(dx) = %-rad 5 0.000275-dx-rad

9. The relative displacements of the primary structure at D are found by the virtual force method.

10. A virtual force 6-6 is applied in the direction of the desired displacement and the resulting moment diagram 5-M determined.
11. The virtual work equation

5-QA = J M do>

is used to obtain each of the desired displacements at D.
12. The results, which you should verify, are
A"} = 0.0828ft

A" = 0.11041t
A"y == -0.01104rad

13. Combining the effects of axial and rotational strain, we have
Ap = A A + A" =0.0784-ft

Ay = Ayp + A" = 0.1104-ft
Ay = A'3p + A" =-0.01104-rad
14. We now compute the reduntants caused by temperature effects

R=f l(-A)
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Ry

—-0.0784
-3 0.0106 -3
Ry =10 “-EI(18 3.75 197.5)-| —-0.1104 | = -10 "-EI
0.355
Ry 0.01104

where the units are kips and feet.
15. You should construct the moment diagram for the structure using the values of the redundant found in the analysis.
16. Notice the stiffness term El does not cancel out in this case. Internal forces and reactions in a statically indeterminate subject to effects
other than loads (such as temperature) are dependent on the actual stifnesses of the structure.
17. The effects of axial strain caused by forces in the members have been neglected in this analsis. Thisis usual forlow frames where
bending strain dominates behavior. To illustrate the significance of this assumption, consider member BC. We have found

-6 EI L . I . -6 EI
R; =10.6-10 6-—. The tension in BC has this same value, resulting in a strain for the member of 10.6-10 6 = .For a rectangular
E E
1 bd _d 6 7
member, — = m = 1— In our case d=1ft, therefore the axial strain is 10.6-10 -(0.0833) = 8.83 x 10 "~ , which is several orders of

magnitude smaller than the temperature strain computed for the same member. We may therefore rest assured that neglecting axial strain
caused by forces does not affect the values of the redundants in a significant manner for this structure.

18. Now considert the effects of foundation movement on the same structure. The intermediate frame behavior depends on a structure that
we did not design: the earth. The earth is an essential part of nearly all structures, and we must understand the effects of foundation behavior
on structural behavior. for the purposes of this example, assume that a foundation has revealed the possibility of a clockwise rotation of the
support at D of 0.001 radians and a downward movement of the support at D of 0.12 ft. We wish to evaluate the redundants R4, R,, and R;

caused by this foundation movement.

19. No analysis is needed to determine the values of A, Aoy, and Ag, for the solution of the redundants. These displacements are found
directly from the support movements, with proper consideration, of the originally chosen sign convention which defined the positive direction
of the relative displacements. From the given support displacements, we find Ajp =0, Ay A = 0.12ft, and Aj A = 0.001rad. Canyou

evaluate these quantities for a casr in which the displacements occured atA instead of D?
20. The values of the redundants is given by

R=f LA)
Ry
-3 —0.12 18 -3
Ry | =10 "-EL(18 3.75 197.5)- = 10" °-El
0.001 ~252.5
R3

with units in kips and feet.
21. A moment diagram may now be constructed, and other internal force quantities computed from the now known values of the redundants.
The redundants have been evaluated separately for effects of temperature and foundation settlement. These effects may be combined with
those due to loading using the principle of superposition.
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14.9 Braced Bent with Loads and Temperature Change

The struss shown below represents an internal braced bent in an enclosed shed, with lateral loads of 20 kN at the panel points. A
temperature drop of 30C may occur on the other members (members 1-2, 2-3, 3-4, 4-5, and 5-6). We wish to analyze the truss for
loading and for temperature effects.

Solution:
1. The first step in the analysis is the definition of the two redundants. The choice of forces in diagonals 2-4 and 1-5 as redundants facilitates

the computations because some of the load effects are easy to analyze.
2. The computations are organized in tabular form in Table ?7?. The first column gives the force in each bar caused by a unit load (1 kN)

91 _
corresponding to release 1. These are denoted p and also represent the bar force —— caused by a virtual force 3-Q, applied at the same
i 3-Q

location. Column 3 lists the same quantitiy for a unit load and for a virutal force S-Q_Z applied at release 2. These three columns constitute a
record of the truss analysis needed for this problem.

Verticals: 500 mm? ; Webs: 250 mm?; E=200,000 N/mm?; a=1.0x107/ °C

20kN _ 3 4 ' 4.85
R, B N &
) " NG
L=3m N o - %
w| o %) < <
i s
20kN o 7.76
S rd —> . N
2 Rz \‘)6 - ™
L=3m < < | % N
o . I N
on p—
5
"~
6 S
2.91
== L £ 291 b

d) Forces due to
a) Structure b) Redundant forces ¢) Forces due to lateral load temperature drop

3. Column 4 gives the value of L/EAfor each bar in terms of L /EA,, of the vertical members. This is useful because the term L/EA cancels out

in some of the calculations.
4. The method of virtual work is applied directly to compute the displacements A;q and A, corresponding to the releases and caused by the

actual loads. Apply a virtual force 6-Q_1 atrelease 1. The internal virtual forces q_1 are found in column 2. The internal virtual work q_l-Al is

L
found in column 5 as the product of columns 1, 2 and 4. The summation of column 5 is Alq = —122.42-&. Similarly, column 6 is the

C

L
product of columns 1, 3, and 4, giving A, _ = 27312 —.
q EA,
5. The same method is used to compute the flexibilities. In this case, the real loading is a unit load corresponding to release 1 leading to f;

and f,4, and then to release 2 leading to f;, and fy,. Column 7 shows the computation for f,4. Itis the product of column 2, representing force
due to the real unit load with column 2 representing force due to a virtual force 6-Q_1 at the same location (release 1) multiplied by column 4 to

include the L /EA, term. Column 8 derives from columns 2, 3, and 4 and leads to f,,. Columns 9 and 10 are the computations for the
remaining flexibilities.
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6. We have assumed that a temperature drop of 30C occurs in the outer members. The corresponding length changes are found in column
11. Again using the virtual work method, column 12 tabulates the internal virtual work of th virtual forces through displacements Al where for
each bar, Al =alAT. Column 12 is therefore the product of columsn 2 and 11. The summation of the elements of column 12 is the
displacement Al corresponding to release 1. Column 13 repeats this process for A, corresponding to release 2.

7. The tabulated information provides the necessary terms for a matrix solution of the problem. We have
‘= 8.66 1 \ L
1 8.66) EA,

~122.42 C
Aq =
-273.12

A 6.36 _
AT 424
therefore
o 0.117 -0.0134) EA;
-0.0134 0117 ) L,
8. The redundant forces due to the applied load are
R=1'(-Ag)
EA; (12242 L, 10.66
R =(-0.0134 0.117)—. —=
L, \273.12) EA, (3032

9.Thus R =10.66kN, R, =30.32kN

10. The redundant forces due to the temperature dropare R = f 1-(—A A)

EA. (636 _4 687\ _5
R =(-0.0134 0.117)-—- 10 "L, = 10 “-EA,
L, (424 —4.11

. kN
11. Thus with E := 200 —, AC = 500mm2
2

mm

R; = —6.87-10 5-E-Ac =—6.87-kN

Ry = —4.11:107 -E-A, = —4.11-kN
12. Using the redundant forces from each of these analyses, the remainder of the bar forces are computed by simple equilibrium. Table ?7?
contains such computations. The bar forces in any bar is the force in column 1 added to that in column 2 multiplied by R plus that is column 3
multiplied by Ry. This follows from the fact that columns 2 and 3 are bar forces caused by a force of unitiy corresponding to each of the

redundants. The results of the calcultations are shown for the applied loading and for the temperature drop. The forces caused by the
temperature drop are similar in magnitude to those caused by wind load in this example. Temperature differences, shrinkage, support
settlement, or tolerance errors can cause important effects in statically indeterminate structures.
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15.1 Approximate Analysis of a Frame Subjected to Vertical and Horizontal Loads

Draw the shear and moment diagrams for the following frame.

0.25 k/ft
YUY Y VYV Y Yovy

5k —p 7 3 13
0.50 k/ft 5 8
14 6 7
30k v i l l i
— > 9 10 11
16 | ) 3 4 16'
X X X X — — — —
20 30' 24 20" 30’ 24"
- - -t - -t
Solution:
The analysis should be conducted in conjunction with the free body diagram shown below.
Vertical Loads
v ) o (e
ht ht - - o o
rl,@ M | XT M | N M—I
—_— ) : Em— i — - 2 ) -
~ < e = IR P
/\4.3 /\D.O ) 0)/—\ 8] Dm
0.64 =— 0.8 — > 0.p1 — 093
0.64 0.8 051 093
>~ > N4 N~
45 56 A 36
Py - - 2~ | " S S A
- v v - ~ = — © A -
|_ “ﬂ D\l I DJ T/@ I )\\ D\ H
- = ® e — IS - a -
~ < 7 il . S SRAN = RPN
/\4.3 /\3.0 3 0)/—\ O-Dr\
0.56 = 0.7 — > 045 — 0.81
0.56 0.7 0.45 « 0.81
\ > N~ N~
4.5 5.6 3.6 6.5
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Gravity Loads
0.25 K9P 0.25.59P. 0.25.59P.
Win = 025— Wiq = Wiy = 0.25-— Wig = Wiy =0.25-—
12 ft 13 12 ft 14 12 ft
kip kip kip
wg = 0.5— Wi = Wg = 0.5-— W11 = Wg =0.5—
9 i 10 9 i 11 9 i
Approximate Equations
Meg(w,L) = —0.045-w~L2 Maximum negative moment at girder end
M ept(W,L) = 0.08-w~L2 Maximum positive moment

1. Top Girder Moments

Mo = Mleft(wlz,ZOft) = —4.5-kip-ft
Mioent = Mcent(le,ZOft) = 8-kip-ft
M orgt = Mg = —4.5-kip-ft
M 315 1= Miog(w)3.30f) = ~10.125-kip-fi
Mi3cnt = Mcem(wl3,30ft) = 18-kip-ft
M 3pgt = My 315 = —10.125kip-ft
M 41fy = Miep( W14, 24ft) = ~6.48-Kip-ft
Cent(w1 4,24&) = 11.52-kip-ft
M 4rgr = M 415 = —6-48 kip-ft

Migent =M

2. Bottom Girder Moments

Mojfy = Mg Wo, 20ft) = -9-kip-fi
Mgcnt = Mcent(W9,20ft> = 16-kip-ft
M9rgt = Mg = —9-kip-ft
Mioift = Mleft(W10,30ft) =-20.25-kip-ft
cent(W10’30ft) = 36-kip-ft
M orgt = Myqugy = —20-25kip-ft
My = Mleft(w11,24ft) = —12.96-kip-ft
Mijent = Mcent(wl 1 ,24ft) = 23.04-kip-ft
M iyt = M1 = —12.96:kip-ft

3. Top Column Moments
MStop = Moy = —4.5kip-ft

Mjpent =M

Mspot = _MStop =4.5-kip-ft

M6t0p = _M12rgt + M35 = —5.625-kip-ft
Mgbot = _M6top = 5.625-kip-ft

M7t0p = _M13rgt + My = 3.645-kip-ft
M7pot = _M7t0p = —3.645-kip-ft

M8t0p = _M14rgt = 6.48 kip-ft

Mgpot = _M8t0p =—06.48-kip-ft
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4. Bottom Column Moments
MltOp = M5b0t + M9lft = —45k1pft

Mpot = _Mltop =4.5-kip-ft

Matop = Mebot = Morgt + Myg1ft = =5.625-kip-ft
Mapot = “Magop = 5:625-kip-fi

M3t0p = M7pot — MlOrgt + My = 3.645 kip-ft
M3pot = ~Mzgop = —3.645-kip-ft

My10p = Mghot ~ My {1 = 6:48kip-ft

Mypot = _M4t0p = —6.48kip-ft

0.50 k/

PENNTERREY =0 - LS 45 5.6 436 6.5
12 6 b 7 h -4.5 -4.51 0.1 S10.N76.5 -6.5
e e e G T 20 230
¢ $ o : : +4.5 +5.6 -3.6
’ 10 i ) '(1)6 901502 202y 130 L4.5 56 136 +6.5 -6.5
1 $2 ¢3 ! . . .
rL = =) g E=m == m= == +4'5T:] >-6 é‘ &3'6 6.5

5. Top Girder Shear

Viorgt = Vi1 = —2-5kip
V13rgt = _V131ft = —375klp
Vigi = ——— =3kip

Vidrgt = ~Viaife = -3 kip
6. Bottom Girder Shear

V9lft = ’ = S'kip
Vorgt = ~Voufr = ~5-kip
Viorgt = ~Vioi = ~7-5kip
Vi = —2 = 6-kip

Viirgt = ~Viiug = —0-kip
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7. Column Shears

hl = 16ft hz = hl =16-ft h3 = hl =16-ft h4 = hl =16-ft

+2.5

+5.0

VS =

MStop

= —0.643-kip

———— = _0.804-kip

—— = 0.521-kip

—— = 0.926-kip

——— = _0.563kip

— = = _0.703-kip

——— —0.456:kip

+3.75 3.0

75k -3.75 30
' +6.0

-0.64
-0.80

+0.51

+0.93

-5.0 6.0

-0.56
-0.70

+0.45

+0.81
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8. Top Column Axial Forces

P7 = _V13I'gt + V14lft = 675klp
P8 = _V14I'gt = 3k1p

9. Bottom Chord Axial Forces
Pl = P5 + V9lft = 75klp

P4 = Pg — Vlll'gt = 9klp

Horizontal Loads

\ e v % n{ 7
: o~ o~ l\‘ : :
| / | A <
175v qg‘\ ﬁf\ 171l \
S N d IS
—=23 —5 —=3 —=25
~_ ¥
25<—" 175 5<—35 5<—35 215 =——175
P vy A T i A
h N N o ~ o
— o = o — o
S — T — 1T —11
\ | / | LN
60— A w N P
e LU p— LU p— PN
75 < 15« 15 120 75
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Horizontal Loads
Fg := 15kip

F, = 30kip
Approximate Equations

F
Vext(F’n) = E

Npays = 3

1. Column Shears
Vs = Vext(FS’nbays) = 2.5-kip
Vg = 2:V5 =5-kip
V5= 2-V5=5kip
Vg = V5 =2.5kip
V) = Vexi(F + Fsulipayg) = 7.5kip
Vy =2V = 15-kip
V3 :=2-V| =15-kip
V4= V| =7.5kip
2. Top Column Moments
Vs-h

MStop = = 17.5-kip-ft

Msbot = —Mstop = —175klpft
V¢-h
66 .
M6t0p = T = 35-kip-ft
M6b0t = _M6t0p = —35klpft
V--h
77 .
M7t0p = T = 35-kip-ft
M7b0t = _M7t0p = —35klpft
_Vehg
MStOp = T =17.5-kip-ft
M8b0t = _MStOp = —175klpft

3. Bottom Column Moments
Vl - h 1

Mltop = = 60-kip-ft

MlbOt = _MltOp = —60k1pft
V5-h
2772 .
M2top = T = 120-kip-ft
MZbOt = —Mztop = —120k1pft
_ V3hs .
M3t0p = T = 120-kip-ft
M3b0t = _M3t0p = —IZOklpft

M4t0p = = 60-kip-ft
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Mypot = _M4top =—-60-kip-ft

4. Top Girder Moments

M1t = Msyop = 17.5-kip-ft
M1orgt = M1t = —17.5-kip-ft
M 311 = Mygpep + Mggop, = 17.5Kip-ft
M| 3pgt 1= ~Mj 31 = —17.5kip-ft
M 415 = M3pgp + Mygop = 17.5kip-ft
M grgt = ~Mjg1g = =175 kip-ft

5. Bottom Girder Moments

Mo == Mop — Mspot = 77.5-kip-ft

Moo = -Mgyg = =77.5-kip-ft

M ify = Morgt + Mo ~ Mgpo = 77.5-kip-ft
M orgt = “Mygift = ~77.5-kip-ft

Mgt = Myorgt + M3top = M7pot = 77.5 kip-ft
M| irgt = My = —77.5kip-ft

° °
° °
16
= = X X
20 30 24 20 30’ 24'
-

775 %

35k

. 3
175 * Yl

35k

6. Top Girder Shear

\" 2 Miain 1.75-ki
= — =-1.75'k1
121ft 20ft p
V12I'gt = V121ft = —175klp
-2-M
131ft
\" =— =-1.167-ki
1311t 30ft p
Vl3l‘gt = V131ft = —1.167-kip
-2:M
141ft
Vi = ————— =—1.458ki
141ft 2aft p

V14I'gt = V141ft = —1458k1p

120

60 & ;

—

-175 %

% * %
-120 e -120 I'; -60
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7. Bottom Girder Shear

v —2:-Mg S
= — =-7.75ki
olft e p

V9rgt = Vg5 = —7.75-kip

Vioift = —_Z'Mlolft =-5.167-kip
30ft

VlOrgt = Vo1 = —5-167-kip

Vi = M =—6.458-kip
24ft

Vi Irgt = Vi1 = —6-458-kip

8. Top Column Axial Forces (+ve tension, -ve compression)

Pg = =Vo15 = 1.75:kip

Pg = V12rgt = V315 = —0.583-kip
Py = V13rgt = Vig1£ = 0.292-kip
Pg = V14rgt = —-1.458kip

8. Bottom Column Axial Forces (+ve tension, -ve compression)

P = P5 — Vg1 = 9.5kip

PZ = P6 - VlOrgt + V9lft =-3.167-kip
Py =Py - Vllrgt + Vioift = 1.583-kip
Py :=Pg+ Vllrgt =-7.917-kip
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16.1 Propped Cantilever Beam

Find the end moments for the beam

20 kN

10 m

Solution:

1. The beamis kinematicall indeterminate to the third degreee (6,, A5, 85), however by replacing the overhang by a fixed end moment equal

to 100 kN-m at support 2, we reduce the degreee of kinematic indeterminancy to one (6,).

2. The equilibrium relation is

3. The member end moments in terms of the rotations are

2

4

4. Substituting into the equilibrium equations

10 250
0 =—— M =
2741 2T E
or
2 2-EI 250
10 10 EI
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16.2 Two-Span Beam, Slope Deflection

Draw the moment diagram for the two span beam

2 klp/ft - 5 klpS
Py _
B T 0 2 O IO T
= —
~ — % —_ — — 3=
20 15 15

0
40.97

79.52
Solution:
1. The unknows are 8, and 65
2. The equilibrium relations are

le + M23 =0
3. The fixed end moments are given by

Ki
2 —(—2 %)-(20&)2
— t .
12 12
_ _-PL _ —(=5kip)(30ft) .
4. The member end moments in terms of the rotations are
_ _ 2EI _EI
My =2-E-Kj»0) + Mypp = L_l'ez * MR =502+ Mpop
4EI El
M) =2-E-Ky(28;) + My = L—l'ez *Maip =26 + My
2EI EI EI
2EI EIl El

L o N T L Y T S T
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5. SUbSIUUNG N e equiibrum equatons

or
S))

51
El .

03

_ [ 718.755
281.25

EIB, 5 1\ (718755 128.473
EI6; | (1 2 28125 )\ 76.388
6. Substituting for the moments
EI8, kip-ft
EI8, kip-ft
le = 5 — MIZF = —40972klpf
N EI0, kip-ft  EI0y-kip-ft N 09Tk
= + + = 40.972-kip-
23 75 15 23F P
EI0, kip-ft  EI65-kip-ft e
M7y = + — My = 0-kip-fi
32 15 75 23F P

El El El El El El
—-0,+ M +—0, +—07+M =0 = —0y + —-05 + —-0, =47.917 kip-ft
5 2 20F T 55 V2 T 53 23F s 2T 2T S p

El El El El

— 0y + —03 + M3rp=0 => —.0, + —-0, = 18.75 kip-ft

15 2 75 3 T3 15 2 75 3 P
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16.3 Two-Span Beam, Slope Deflection, Initial Deflection

Determine the end moments for the previous problem if the middle support settles by 6 in.

Solution:

1. Since we are performing a linear elastic analysis, we can separately analyze the beam for support settliement, and then add the moments

to those due to the applied loads.
2. The unknowns are 6, and 65

3. The equilibrium relations are
M21 + M23 =0
4. The member end moments in terms of the rotations are

e o 1 Caae R

My =2-EKyy| 26, - 3%} 2K (262 005) —% 0, + %

M3 = 2EKyy 292+93—3L—23j 292 63+33—§)-% 0, + i 63+%
M3, =2-E-Ky3- 62+263—3L—23j 62+2e3+3%j-}13—; 0, + £2.93+%

[~ o NN AT T L P Y | PRI H SO VD SN | N
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[ O. SUDSUWUNY MU uT1e equmorurT equdauorts

EI 3B EI EI EI EI El —13EI
_.62+_+—.2+—.3+—= —.62+—.3=—
5 400 7.5 15 300 3 15 1200
EI El El EI El —EI
_.62+_.e3+—= —62+—e3 =
15 75 300 15 75 300
or
~13
100 20\ [ ©2 —
EL - =EL| 4
20 40) | 65
-1
which will give
13 1
S) 100 20\ ' [ = 360
= 1 4 |5
0 20 40 7
_l _—
720

6. Thus the additional moments due to the settement are
EI 3EI EI
M{~(El) = —-04 + — simplify —» —
12(ED = 00 + g simplify: = -

EI 3EI EI
M5 (El) = —-04 + — simplify —» —
21(ED = -0y + 5 SRy = oo

EI EI EI
Ma3(ED i= =0y + ——-03 + —- simplify — ~0.0013888838888883838889-EI

153
EI EI ET .
M3, (El) = E-Gz + %-63 + % simplify — —3.7037037037037037037e-24-EI

16.4 Frame, Slope Deflection

Determine the end moments for the frame

y 3 kips/ft a__?:)
v‘rllllllla‘li

-

20'

A

Y
A
Y
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Solution:
1. The effect of the 35 cantilever can be included by replacing it with its end moment.
L ki ft
My = —w-L-— My = 32 6ft6——54k1p fi
2 ft
2. The unknown displacements and rotations are
N, and 6, atjoint 2

05 and 6, at joints 3 and 4
We observe that due to the lack of symmetry, there will be a lateral displacement in the frame, and neglecting axial
deformations, A, = A4

3. The equilibrium relations are
Mj3+ M3, =0
M3, + My, = —54kip-ft
My3=0
Vi + V43 — 10kip =0

Thus we have four unknown displacements and four equations. However, the last two equations are in terms of of the
shear forces, and we need to have them in terms of the end moments. This can be achieved through the following
equilibrium relations

Vis =
12 Ly,
M3y + My3
Va3 =—
34
Hence, all four equations are now in terms of the moments.
4. The fixed end moments for member 23 are

4. The fixed end moments for member 23 are

_-PL ~10kip- 10ft .
y
) 3P o)
M —wL M fi 100-kip-ft
= = — kin-
23F 12 21F 12 p

5. The member end moments in terms of the rotations are

A
2
M, =2-EK |y (92 -3 j + Mpp = 02EL(6; — 0.34,) + 12.5

=2-EK;y (262 - 3—] + My = 02E1(26, — 0.34,) ~ 12.5

L34

2
My3 = 2-EK3y (

2
63 + 26, — 3;] = 0.2EL:(63 + 26, — 0.34,) + 100
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6. Substituting into the equilibrium equations and dividing by El

—875
605 + 072 — 0.6A, =——
2 3 2 El

460

03 + 264 - 03A, =0
and the last equilibrium equation is obtained by substituting V4, and V43 and multiplying by 10/El

—83.3
62+ 63 + 64—04A2 =T

or
610 —06 875
162 —06]||9 1| 460
EIL . —
012 -03[|6,| EI| 0

111 -04)| -83.3
which will give
% -294.8
O3 | 1| 684
o, | EI| 2406
A, ~1375.7

7. Substituting into the slope deflection equations gives the end moments

My,
36
M
21 ~47.88
My 47.88
M3, ~115.8
61.78
M3y
0
Mys
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16.5 Box Culvert Slope Deflection

Draw the shear and moment diagram for the following box girder

0.2 k/ft

>
W)
- 18

0.8 k/ft 0.8 kit 0.8 k/ft

- 16—»

Solution:

0.2 k/ft

-« 16>

0.8 ki/ft

-—18'

135 of 159




Structural Analysis
Prof. Victor Saouma
Prepared by Christopher Segura

1. From symmetry 6 = -0, and atthe base 6, =0, = 0.

2. The fixed end moments are given by

BC =,
FEM -y = wL?

CB=;

AB= 5,

FEMp 4 = _(W'Lz)
BA 30
3. The moments are given by

_2EI

y
0.2%-(16&)2
t .
FEMp = ————— = 4267-kip
.
022 (16fr)>
fi

FEMcp = ————>——— = ~4267kip-f

y
0.8~L_(13f)>
fi

FEMpR = ————— = 1296kip-f

y
08P 8fr)
fi

FEMp =~ = -8.64Kip-ft

EI
Mpc = 1—6-(29B +6¢) + FEMpc = 3 O+ 4267

2EI

Mpa
2EI

MaB

4. Equilibrium at joint B
MBA + MBC =0
2EI

2EI
3 (26 + 0) + FEMp, = = O~ 8.64

EI
5 (26p) + FEMpp = 5 OB + 1296

El _
T-OB - 8.64 + ?GB +4.267=0

OR(El) =
TR

9 8

5. Substitute B to get the moments

Mo | EL(12.594

BCT s | m
[EI ((12.594

Mpip=|—:

AB _9( EI j
[2EI (12.594

Mgy = | — o —=—

BA™ | ( EI

8.64 — 4.267 12.594
_)

EIl

+ 4.267|-kip-ft — 5.841-ft-kip

+ 12.96 |-kip-ft — 14.359-ft-kip

) — 8.64 |-kip-ft - —5.841-ft-kip

6. Member forces are determined from statics. Cart_aful, the moment diagram is now based on the so-called "design" sign convention.
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0.8 k/ft

-« 66—

18—

0.8 k/ft

BERERY
1.93 v 1.93
_:_ng.6 1.6T5>.84
1.6 — v
0.56
5847 N 5.84 M

6
VBA:193£
X 584
08 U 1436

VAB:5~27 -+

1.6

1.93

—0 3'—m

6.06

5.27

14.36

16.6 Continuous Beam

Solve for the moments atA and B by moment distribution, using (a) the ordinary method, and (b) the simplified method.
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10

D K=5 K=3 l k
A B ==

Q
Cc==

- ]2 ——]0)—>—]0"—>

Mpa=-23.4-22-0.2=-258

10 .
@ 0 l k p Fixedend ¥ @ O Fﬂrom previous step v Fﬂrom previous step
D )Y Tl moments due D PN 70 pL D Pl
25 55 totheload 11 7@ 234 14.1 ’ 1.1 @ 0.6
@ 5| x_ Release C, 1l X . > .
u Q. bal i ~0 Release C, ~I Release C,
{-<-, balance =1 M g
25 Moment 7.0 alance Moment 0.6""balance Moment
@ m A Carry over n [ . @ L P -
<, 7_/[1 to B Iy 7()/D(arry0\'crt08 o(jﬂ(,anymct atB
£ 25 9 . .6
D @ il r Sum the
u \37 s AU moments at B
@ Release B, @ Release B, @ Release B,
D p_{,g )B Distribute D A-s-:‘: )D Distribute D )B Distribute
234 141 0 Moments 22 13 o Moments 0 o Moments
” @ 0 . s Carry over from Carry over
4 [| Carry over fronj | I [x [ L [ fromBto A
AU 70) Bto A and N A0 Tl B to A and from PL "y B
A . < 5 ~ and from o
117 234 141 from B to C 1.1 22 13 0.6 BtoC 0.1 2 0.6
Map=117-11-01=-129 ] Mpc= 25+12.5-14.1+3.5-13+03-0.1 =258
£ e

Mcp=-25.0+25.0-70+7.0-0.6+0.6=0.0

258 25.8
12.9 h) ( Free Body Diagram
. 3.9 looo 37 I3m e
12,9\ Moment Diagram
25.8

10kip-20ft

Solution:
For this example the fixed-end moments are computed as follows:
_PL
Mpcr =5

2. Since the relative stiffness is given in each span, the distribution factors are

DFAB=E= > =
YK oo+ 5

DFBA=@= 5 =
XK 5+3

DFBC=E= 3 =
K 5+3

DFCB=@ =E=l
K 3

=0

3. The balancing computations are shown below.

Joint A B C
Member AB BA BC CB
|74 (g (g 2 2
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Joint A B C
Member AB BA BC CB
K 5 5 3 3
DF 0 0.625 0.375 1
25 -25
12.5 25
-11.7 -23.4 -14.1 -7
FEM 3.5 7
-1.1 -2.2 -1.3 -0.6
0.3 0.6
-0.1 -0.2 -0.1
Total -12.9 -25.8 25.8 0

4. The above solution is that referred to as the ordinary method, so named to designate the manner of handling the balancing at
the simple support at C. Itis known, of course, that the final moment must be zero at this support because it is simple

5. Consequently, the first step is to balance the fixed-end moment at C to zero. The carry-over is then amde immediately to B.
When B is balanced, however, a carry-over must be made back to C simply because the relative stiffness of BC is based on end C
of this span being fixed. It is apparent, however, that the moment carried back to C (in this case -7.0) cannot exist at this joint.
Accordingly, it is immediately balanced out, and a carry-over is again made to B, this carry-over being considerably smaller than
the first. Now B is again balanced, and the process continues until the numbers involved become too small to have any practical
value.

6. Alternatively, we can use the simplified method. It was previously shown that if the support at C is simple and a moment is
applied at B, then the resistance of the span BC to this moment is reduced to three-fourths the value it would have had wit C fixed.

Consequently, the relative stiffness of span BC is reduced to three-fourths of the value given, it will not be necessary to carry over
to C.

Joint A B C
Member AB BA BC CB
K 5 5 2.25 3
DF 0 0.69 0.31 1
FEM 25 -25
12.5 25

-12.9 -25.8 -11.7
Total -12.9 -25.8 25.8 0

7. From the standpoint of work involved, the advantage of the simplified method is obvious. It should always be used when the external
(terminal) end of a member rests on a simple support, but it does not apply when a structure is continuous at a simple support. Attention is
called to the fact that when the opposite end of the member is simply supported, the reduction factor for the stiffness is always 3/4 for a
prismatic member but a variable quantity for a nonprismatic member.

8. One valuable feature of the tabular arrangement is that of dropping down one line for each balancing operation and making the carry-over
on the same line. The practice clearly indicates the order of balancing the joints, which in turn makes it possible to check back in the event of
an error. Moreover, the placing of the carry-over on the same line with the balancing moments definitely decreases the chances of omitting a
carry-over.

9. The correctness of the answers may ina sense be checked by verifying XM = 0 at each joint. However, even though the final answers
satisfy this equation at every join, this is in no way a check on the inital fixed end moments. These fixed end moments, therefore, should be
checked with great care before beginning the balancing operation. Moreover, it occasionally happens that conpensating errors are made in
the balancing, and these errors will not be apparent when cheking XM = 0 at each joint.

10. To draw the final shear and moment diagram, we start by drawing the free body diagram of each beam segment with the computed
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moments, and then solve from statics for the reactions

Check:

12.9kip-ft + 25.8kip-ft

12.9Kip-ft + 25.8Kip-ft — 12ftV, =0 £ - ~ 3.225-kip
t
VA + VBL =0 VBL = —VA = —3225klp
25.8kip-ft + 10kip: 10ft
25.8Kip-ft + 10kip-10ft — 20ft- Vg = 0 Vg = PR F TR 6.29-kip

6.29kip + V(= — 10kip = 0
~VBL~ VBR* RB =0
RA+RB + Rc— 10k1p =0
Mpe = Vo 10ft = 37.1 kip-fi

20ft
V¢ = 10kip — 6.29kip = 3.71-kip

Va + Rp + Ve - 10kip = 0-kip
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16.7 Continuous Beam

Using the simplified method of moment distribution, find the moments in the following continuous beam. The values of | as
indicated by the various values of K, are different for the various spans. Determine the values of the reactions, draw the shear and
bending moment diagrams, and sketch the deflected structure.

0.5k 1k 1k 0.2 kips/ft

! Py IEEEE
A_;K=2oi_é K = 60 émso

S 5 10’
10' 20' 20' 15'

-

A

A
\
A
\
A
\

Solution:

1. Fixed-end moments

For the 1 kip load:

2 2
_Pab _ 1kip-5ft-(15ft) :
L (20ft)
P-a’b Tkip-(5£0)°- 156t
MBAF = Mpapr = — 5 = 0938kipft
L (20ft)
For the 4 kip load:
_PL 4kip-20ft i
MABF =~ MpRps4 = ———— = 10-kip-ft
For the uniform load:
ki
) 022 (15>
M = L M fi 3.75-kip- ft
-_— = = . -Kip-
CDF 12 CDF 12 p
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2. The balancing operation is shown below

Joint A D
Member AO AB BA BC CB CD DC
K 0 20 15 60 60 40 40
DF 0 1 0.2 0.8 0.6 0.4 0
-5 12.8 -10.9 3.8 -3.8
-7.8 -39
2.9 11.9 5.9
FEM -2.9 -5.8 -3.9 -1.9
0.6 2.3 1.1
-0.3 -0.7 -0.4 -0.2
0.1 0.2
Total -5 5 -11.2 11.2 0.5 -0.5 -5.9

3. The only new point in this example is the method of handling the overhanging end. It is obvious that the final internal moment at
Amust be 5 kip-ft and, accordingly, the first step is to balance out 7.8 kip-ft of the fixed end moment at AB, leaving the required 5
kip-ft for the internal moment at AB. Since the relative stiffness of BA has been reduced to three-fourths of its original value, to
permit considering the support atA as simple in balancing, no carry-over from B to Aiis required.

4. The easiest way to determine the reactions is to consider each span as a free body. End shears are first determined as caused
by the loads alone on each span and, following this, the end shears caused by the end moments are computed. These two
shears are added algebraically to obtain the net end shear for each span. An algebraic summation of the end shears at any
support will give the total reaction.
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16.8 Continuous Beam, Initial Settlement

For the following beam find the moments atA, B, and C by moment distribution. The support at C setles by 0.1 in. Use E := 30000ksi

5 kips/ft 10 k
% A A y y l
| = 2400 in* é | =7200 in*
= K=20
K=10 | = 1200 in
K=10
- : > T ' >
20 10 30
Solution:
1. Fixed-end moments
Uniform load:
2 5 %{20&)2
w- )
MABF =~ MRF = ————— = 166.667 kip-ft

Concentrated load:

PL 10kip-30ft

kip-ft

Moments caused by deflection:

6EL A 6-E-1200in™0.1in .
BCF = > MBCF = 5 = 125-klp'ft
L (10ft)
.4 .
6EI-A 6-E-7200in -0.1in .
MCDF =— 5 MCDF == 5 = —83333k1pft
L (30ft)

2. Moment distribution

Joint A B C D
Member AB BA BC CB CD DC
K 10 10 10 10 15 20
DF 0 0.5 0.5 0.4 0.6 1
167 -167 38 -38
125 125 -83 -83
60 121
FEM -28 -56 -84
17 35 35 17
-3 -7 -10
1 2 1
Total 185 -130 130 79 -79 0
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The fixed-end moments caused by a settlement of supports have the same sign at both ends of each span adjacent to the settling
support. The above computations have been carried to the nearest kip-ft, which for the moments of the magnitudes involved, would

be significantly close for purposes of design.
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16.9 Frame

Find all moments by moment distribution for the following frame. Draw the bending moment diagram and the deflected structure.

Solution:

26

18 k
- :‘
12' i
| =360 in*
| = 260 in* | =390 in*
K=10 K=15
Ky = 10/26 Ky = 15/26
AN NN NN
-t 18' -

1. The first step is to perform the usual moment distribution. The reader should fully understand that this balancing operation adjusts the
internal moments at the ends of the members by a series of corrections as the joints are considered to rotate, until M = 0 at each joint. The
reader should also realize that during this balancing operation no translation of any joint is permitted.

2. The fixed-end moments are

18kip- 12ft- (6 )

MpcF = 5 = 24-kip-ft
(18ft)
. 2
McBr = —M = —48-kip-ft
(18ft)
3. Moment distribution
Joint A B C D
Member AB BA BC CB CD DC
K 10 10 20 20 15 15
DF 0 0.333 0.667 0.571 0.429 0
24 -48
13.7 27.4 20.6 10.3
-6.3 -12.6 -25.1 -12.5
FEM 3.6 7.1 5.4 2.7
-0.6 -1.2 -2.4 -1.2
0.3 0.7 0.5 0.2
-0.1 -0.2
Total -6.9 -13.9 13.9 -26.5 26.5 13.2
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4. The final moments listed in the table are correct only if there is no translation of any joint. It is therefore necessary to determine whether or
not, with the above moments existing, there is any tendency for side lurch of the top of the frame.
5. If the frame is divided into three free bodies, the result will be as shown below.

Inspection of this sketch indicates that if the moments of the first balance exist in the frame, there is a net force of 1.53kip — 0.8kip = 0.73-kip
tending to sway the frame to the left. In order to prevent side-sway, and thus allow these moments to exist (temporarily for the purpose of the
analysis), it is necessary that an imaginary horizontal force ce considered to act to the right at B or C. This force is designated as the artificial
joint restraint (abbreviated as AJR) and is shown below.

6. This illustration shows the complete load system which would have to act on the structure if the final moments of the first balance are to be
correct. The AJR, however, cannot be permitted to remain, and thus its effect must be cancelled. This may be accomplished by finding the
moments in the frame resulting from a force equal but opposite to the AJR and applied at the top.

7. Although itis not possible to make a direct solution for the moments resulting from this force, they may be determined inddirectly. Assume
some unknown force P acts on the frame, as shown below, and causes it to deflect laterally to the left, without joint rotation, through some
distance A. Now, regardless of the value of P and the value of the resulting A, the fixed-end moments induced in the ends of the columns
must be proprtional to the respective values of Ky,;.

, . A 1 .
Recalling that the fixed end momentis My = 6EI-— = 6EKy - A, where Ky = — = — we can write
2 2

L L

ol

A= MABF _ Mpcr
6E-Ky; 6E-Ky

MaBr _ KmaB _ 10

Mpcr Kmpc 15
These fixed-end moments could, for example, have values of -10 and -15 kip-ft, or -20 and -30, or -30 and -45, or any other combination so
long as the above ratio is maintained. The proper procedure is to choose values for the fixed-end moments of approximately the same order
of magnitude as the original fixed-end moments due to the real loads. This will result in the same accuracy for the results of the balance for
the side-sway correction that was realized in the first balance for the real loads. Accordingly, it will be assumed that P, and the resulting A, are
of such magnitude as to result in fixed-end moments shown below.
8. Obviously XM = 0 is not satisfied for joints B and C in this deflected frame. Therefore, these joints must rotate until equilibrium is reached.
The effect of this rotation is determined in the distribution below.

Joint A B C D
Member AB BA BC CB CD DC
K 10 10 20 20 15 15
DF 0 0.333 0.667 0.571 0.429 0
-30 -30 -45 -45
12.9 25.8 19.2 9.6
FEM 2.8 5.7 11.4 5.7
-1.6 -3.3 -2.4 -1.2
0.2 0.5 1.1 0.5
-0.3 -0.2 -0.1
Total -27 -23.8 23.8 28.4 -28.4 -36.7
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9. During the rotation of joints B and C, as represented by the above distribution, the value of Ahas remained constant, with P varying in
magnitude as required to maintain A.

10. Itis now possible to determine the final value of P simply by adding the shears in the columns. The shear in any member, without external
loads applied along its length, is obtained by adding the end moments algebraically and dividing by the length of the member. The final value
of P is the force necessary to maintain the deflection of the frame after the joints have rotated. In other words, it is the force which will be
consistent with the displacement and internal moments of the structure as determined by the second balancing operation. Hence this final
value of P will be called the consistent joint force (abbreviated as CJF).

11. The consistent joint force is given by

27kip-ft + 23.8kip-ft N 28.4kip-ft + 36.7kip-ft

26ft 26ft
and inspection clearly indicates that the CJF must act to the left.
12. Obviously, then, the results of the last balance above are moments which will exist in the frame when a force of 4.45 kip acts to the left at
the top level. Itis necessary, however, to determine the moments resulting from a force of 0.73 kip acting to the left at the top level, and some
as yet unknown factor "z" times 4.45 kip will be used to represent this force acting to the left.
13. The free body diagram for the member BC is shown above. XH = 0 must be satisfied for this figure, and if forces to the left are

considered as posttive, the resultis 4.45z — 0.73 =0, and

Z:= ﬂ =0.164
4.45
If this factor is applied to the moments obtained from the second balance, the result will be the moments caused by a force of 0.73 kip acting
to the left at the top level. If these moments are then added to the moments obtained from the first balance, the result will be the final moments

for the frame, the effect of the AJR having been cancelled. The combintaion of moments is shown below.

CJF := = 4.458kip

Joint A B C D
Member AB BA BC CB CD DC
M from 1st balance -6.9 -13.9 13.9 -26.5 26.5 13.2

z x Mfrom 2nd balance -4.4 -3.9 3.9 4.7 -4.7 -6
Final Moments -11.3 -17.8 17.8 -21.8 21.8 7.2

14. If the moments are correct, the shears in the two columns of the frame shoul dbe equal and opposite to satisfy XH = 0 for the entire
frame. This check is expressed
11.3Kip-ft + 17.8kip-ft ~ —21.8kip-ft + =7 2kip-ft _

26ft 26ft

0-kip

and
1.12kip — 1.11kip = 0.01-kip (nearly)
The signs of all moments taken from the previous table have been reversed to give the correct signs for the end moments external to the
columns. It will be remembered that the moments considered in moment distribution are always internal for each member. However, the
above check actually considers each column as a free body and so external moments must be used.
15. The moment under the 18 kip load is obtained by treating BC as a free body:
Mg = 5.77kip-12ft — 17.8kip-ft = 51.44-kip-ft

16. The direction of side lurch may be determined from the obvious fact that the frame will always lurch in a direction opposite to the AJR. If
required, the magnitude of this side lurch may be found. The procedure which follows will apply.

Aforce P of sufficient magnitude to result in the indicated column moments and the lurch Awas applied to the frame. During the second
balance this value of Awas held constant as the joints B and C rotated, and the value of P was considered to vary as necessary. The final

value of P was found to be 4.45 kip. Since Awas held constant, however, its magnitude may be determined from the equation M = 6EI-A,
2
L
where M is the fixed-end moment for either column, | is the moment of inertia for that column, and L s the length. This Awill be the lurch for
4.45 kip acting at the top level. For any other force acting horizontally, Awould vary proportially and thus the final lurch of the frame would be
the factor z multiplied by Adetermined above.
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16.10 Frame with Side Load

Find by moment distribution the moments in the following frame

Solution:

The first balance will give the results shown

18 k
12! 5 Kk
A R
| =360 in*
26' | = 260 in* | =390 in”
K=10 K=15
Km = 10/26 Km = 15/26
A A
DRSS NNN
-t 18’ >
AB BA BC CB CD DC
-7.2 -14.6 14.6 -22.5 22.5 0

Acheck of the member BC as a free body for XH = 0 will indicate that an AJR is necessary as follows:

from which

AJR + 0.84kip — 0.87kip — Skip =0

AJR := 5kip + 0.87kip — 0.84kip = 5.03-kip

in the direction assumed
The values of Ky, for the two columns are shown, with Ky, for column CD being K/2L because of the pin at the bottom. The horizontal

displacement Aof the top of the frame is assumed to cause the fixed-end moments shown there. These moments are proportional to the
values of Ky, and of approximately the same order of magnitude as the original fixed-end moments due to the real loads. The resullts of

balancing out these moments are

AB

BA

BC

CB

CD

DC

-34.4

-28.4

28.4

23.6

-23.6
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34.4kip-ft + 28.4Kip-ft + 23.6kip- ft

CJF = = 3.323-kip
26ft
and
5.03-332z=0
from which
g 20KP 5y
CJF
The final results are
AB BA BC CB CD DC
M from 1st balance -7.2 -14.6 14.6 -22.5 22.5 0
Z X M 2nd balance -52.1 -43 43 35.8 -35.8 0
Final moments -59.3 -57.6 57.6 13.3 -13.3 0

If these final moments are correct, the sum of the column shears will be 5 kip
_59.3:kip-ft + 57.6kip-ft + 13.3kip-ft

YV:

26ft

= 5.01-kip

The 5 kip horizontal load acting at C enters into the problem only in connection withthe determination of the AJR. If this load had been applied
to the column CD between the ends, it would have resulted in intial fixed-end moments in CD and these would be computed in the usual way.
In addition, such a load would have enetered into the determination of the AJR, since the horizontal reaction of CD against the right end of BC
would have been computed by treating CD as a free body.
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17.1 Beam
Considering the figure, let P; =2P, M = PL.P, =P, and

P, =P. Solve for the displacements.

A AN
A NS [Nl
-—L/2 L/2: L/2: L/2—»

FLEXIBILITY

STIFFNESS

[—r

Statically Determinate

——

Kinematically Determinate

Displacements due to

P LR P2 DL

PL/8
Al<ﬂ 1) HBDPIL/8 B( )c
2 ¢_pI n -P,/24 V-2

SNEF,; SNEF,

A—EP—Tc

_T Applied Forces

[f{R}+{? }={0}

Actual Load Nodal Equivalent Forces
ll | Iy K, 4 Ko Ko
/ N
= _tfi' ‘‘‘‘‘‘‘ '_?Z_féz F\%\QF‘“ D:ﬂ:\ﬁ
% 21 "I Applied

Displacments
[K]{? }={M} +{NEF}

Solution:

1. Using the previously defined sign convention (counterclockwise positive)
Pi-L Pyl oppL pL _PL

SNEF, = -
8 8 8
PL
SINEF, = —
8

2. If it takes 4EI/L (kg4 o g) to rotate AB and 4EI/L (ky, ) to rotate BC, it wil take a total force of 8EI/L to simultaneously rotate AB and BC

(Note that a rigid joint is assumed)

3. Hence, Ky which is the sum of the rotational stiffnesses at global d.o f. 1, will be equal to K= ST; similarly, Ky =—

4. If we rotate dof 2 by a unit angle, then we will have K, = % and K|, = T

5. The equilibrium relation can be written as

8EI 2EI PL

L L (%) (rL 8

281 4t || 6, '(0)+2

L L 8

or

PL+E @E 0
8| | L L 1
PLo| | 2E amn |6
8 L L

8 8

2EI

We note that the matrix corresponds to the structure's stiffness matrix, and not the augmented one.

2EI
L

(k4280
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6. The two by two matrix is next inverted

8EI 2EI) | PL 17 pL?
0 — = PL + — _
1 L L 8 112 EI
e2 E ﬂ E __5 p.L2
L L 8 112 EI

7. Next we need to determine both the reactions and the internal forces.
8. Recall that for each element p = k-§, and in thiscase p =P and § = A for elementAB. The element stiffness matrix has been previously

derived, and in the case of the global and local d.o.f. are the same.
9. hence, the equilibrium equation for elementAB, at the element level, can be written as

12EI  6EI  12EI 6EI
T, 2, 2P
L3 12 IR 5
0
P
) | GEL 4EL GBI 2EI . 2PL
Py 12 L 12 L o
= . 0 "
3 12EI  6EI 12EI  6EI 5 2P
3 2 3 2 ||17 PL 2
Py L L L L T
112 EI _oPL
6EI  2EI 6EI  4EI —
- - 8
12 L 2 L
Solving
107 31 5 5
=| —.P —PL —P —.PL
(P1 P2 Py p4) (56 56 56 14 )
10. Similarly, for element BC:
12E1 ~ 6EI  12EI 6EI
T, P
L3 12 IR 0 Py
P
U] | GEL4EL 6EL 2EL || g 52| | pp
b2 1’ L 1’ L 112 EI 8
= +
3 12EI  6EI 12EI  6EI 0 P
3 2 3 2 2
Py oo L || s oprl?
6EI  2EI 6EI  4EI 112 EI —PL
- T - 8
12 L 2 L

or
79 -]
(P1 P2 p3 P4)=(§'P I7R 0)

11. This simple example calls for the following observations:
a) Node A has contributions from element AB only, while node B has contributions from both AB and BC

b) We observe that p3 o5 # p g €ven though they both correspond to a shear force at node B, the difference between
themis equal to the reaction at B. Similarly, py A g # pppg due to the externally applied moment at B

c) From this analysis, we can draw the complete free body diagram and then the shear and moment diagrams
which is what the engineer is most interested in for design purposes.
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17.2 Frame

Whereas in the first example all local coordinate systems were identical to the global one, in this example we consider the
orthogonal frame shown below.

3 Y ty RS 2, p
M
= \ P2l (| Dl na “3 A l
B D G D
B| x B
Bl — 7 M
w H :
‘_
w |
C C «—
L2 L/2|:| B
A

oY n
72 BIW:K Dé,/ﬂl(ll D)

Solution:

1. Assuming axial deformations, we do have three global degress of freedom A4, A, and 65.

2. Constrain all degrees of freedom, and thus make the structure kineamatically determinate.
3. Determine the nodal equivalent forces for each element in its own local coordinate system (the first three values are associated with the first
node, and the last three with the second node):

-P -PL -P PL
(pl Vl ml p2 V2 m2)=(0 7 — 0 — _j Member AB

8 2 8

2 2
-wH —-w-H -wH w-H

4. Summing the nodal equivalent forces at node B in global coordinates we have

_| —-wH -P PL W-H2
(Py Py Py)=| — — —-——

2 2 8 12
5. Next, we apply a unit displacement in each of the three global degrees of freedom, and we seek to determine the structure global stiffness
matrix. Each entry Kij of the global stiffness matrix will correspond to the internal force in degreee of freedome i, due to a unit displacementin

degree of freedomj.
6. Recalling the force displacement relations derived earlier, we can assemble the global stiffness matrix in terms of contributions from both AB
and BC.
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Ki1 Ki2 Ki3
N h, A;
¢ AB EA/L 0 0
"
: BC | 12e1/H? 0 6EI/H’
¢ AB 0 1261/ | -6EI/L°
5
’ BC 0 EA/H 0
’ AB 0 -6EI/L* | 4EI/L
3’ BC | 6El/H? 0 4EI/H
7. Summing up, the structure global stiffness matrix [K] is
EA 12EI 6EI
_ — 0 —
L H3 H2
12EI  EA —6EI
K= S5 " 2
L L
GEl GEL  4EL 4EI
HZ L2 L H
8. The global equation of equilibrium can now be written
EA 12EI 6EI
— 0 — wH
L 3 2 -
H H Al —_P 2
12EI  EA —6EI 2 P
0 — t— - Ay | = — Py
L3 H LZ . 0
6EI ~6El 4Bl 4EI |\ 3 M PL W H
HZ L2 L H 8 12
9. Solve for the displacements
-1
EA L BH 0 ot P wH
L 3 2 - -
Al H H 2 2
12EI EA —6EI —P
el e B
o L L
3 6EI —6EI 4EI  4EI PL w-H2
~ — T ow | My
HZ L2 L H

10. To obtain the element internal forces, we will multiply each element stiffness matrix by the local displacements. For element AB, the local

and global coordinates match, thus

153 of 159




Structural Analysis
Prof. Victor Saouma

Prepared by Christopher Segura

ETA 0 0 % 0 0
o I2EL GEL o 12BI GEI ’
P1 ol IS S L
P2| |, 6EL 4EL o 6Bl 2EI || 0 "
P3 L’ L 0 8
py| | EA 0 o EA 0 RN
ps L L Ay P
L L L L =
o GEL 2Bl GEL 4 i

12 L 2 L

11. For element BC, the local and global coordinates do not match, hence we will need to transform the dispalcements from their global to
their local components. But since vector (displacement and load) and matrix transformation have not yet been covered, we not by inspection
that the relationship between global and local coordinates for element BC is

Local

61 (oS 63 84

8s

Bs

Global

0 0 0 Ji%)

-0

03

and we observe that there are no local or global displacements associated with dof 1-3; Hence, the internal forces for element BC

are given by:

Py
b2
P3
P4
Ps

Pg

EA -EA

e 0 0 _— 0 0

L L
12EI @ 0 12EI @
L3 L2 L3 2
6EI 4E1 6FEI 2EI

°* =5 T ° = T
L2 L2

-EA EA

E— 0 0 e 0 0

L L

0 12EI @ 12EI @
L3 L2 L3 2
6EI 2EI 6FEI 4E1

=5 T ' = T
L2 L

Note that the element is defined as going from C to B hence x,y,z correspond to Y, -X, Z.
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