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 2.1 Stress Vectors

For the following stress tensor at point P
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Determine the traction (or stress vector) t passing through P and parallel to the plane ABC where A(4,0,0),
B(0,2,0) and C(0,0,6)

 Solution:  

The vector normal to the plane can be found by taking the cross products of vectors AB and AC
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The unit normal of N is given by

n
3

7
e
1

6

7
e
2

+
2

7
e

3
+=

n
3

7

6

7

2

7






:=

Hence the stress vector traction will be
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 2.2 Stress Vectors 2

The state of stress through a continuum is given with respect to the cartesian axes by
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Determine the stress vector at P 1 1, 3, ( )  of the plane that is normal to the tangent to the cylindrical surface 
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 Solution:  
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 2.3 Principal Stresses

The stress tensor is given at a point by point P
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Determine the principal stress values and the corresponding directions

 Solution:  
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Simplifying the determinant
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Note that those are the three eigenvalues of the stress vector.  If we let the x1 axis be the one corresponding to the

direction of λ2 and ni
2 be the direction cosines of this axis, then we have
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Similarly, if we let x2 be the one corresponding to the direction of λ1 and ni
1 be the direction cosines of this axis,
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Finally, if we let x3 be the one corresponding to the direction of λ3 and ni
3 be the direction cosines of this axis,
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 2.4 Stress Tensor Operations

For the following stress tensor
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a) Determine directly the three Invariants Iσ, IIσ and IIIσ
b) Determine the principal stresses and principal stress directions
c) Show that the transformation tensor of direction cosines transforms the original stress tensor into the diaganol
axes stress tensor
d) Recompute the three invariants from the principal stresses
e) Split the stress tensor into its spherical and deviator parts
f)  Show that the first invariant of the deviator is zero 

 Solution:  
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 2.5 Stress Transformation

Show that the transformation tensor of direction cosines for the stress tensor 
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transforms the original stress tensor into the diaganol principal axes stress tensor

 Solution:  
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 2.6 Stress Transformation 2

The octahedral plane is the plane which makes equal angles with the principal stress directions.  Show that the
shear stress on this plane, the so-called octahedral shear stress, is given by

σoct σI σII, σIII, ( ) 1

3
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 2.7 Strain Invariants & Principal Strains

Determine the planes of principal strains for the following strain tensor
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 Solution:  

The strain invariants are given by

IE Eii= 2=
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IIIE Eij= 3-=

The principal strains by

Eij λδij-

1 λ-

3

0

3

0 λ-

0

0

0

1 λ-









= 1 λ-( ) λ
1 13+

2
-









 λ
1 13-

2
-









=

E1 λ1=
1 13+

2
= 2.3=

E2 λ2= 1=

E3 λ3=
1 13-

2
= 1.3-=

The eigenvectors for E1
1 13+

2
=  give the principal directions n

1
 

1
1 13+

2
-

3

0

3

0
1 13+

2
-

0

0

0

1
1 13+

2
-



















n1 1, 

n2 1, 

n3 1, 















n1 1, 
13

2

1

2
-









- 3 n2 1, +

n2 1, 
13

2

1

2
+









- 3 n1 1, +

n3 1, 
13

2

1

2
-









-





















n1 1, 
13

2

1

2
-









- 3 n2 1, +

n2 1, 
13

2

1

2
+









- 3 n1 1, +

n3 1, 
13

2

1

2
-









-



















0

0

0











=

11 of 159



Structural Analysis
Prof. Victor Saouma

Prepared by Christopher Segura

n1 1
1 13+

2 3
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n3 1 0=, 
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For the second eigenvector λ2=1
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Finally, the third eigenvector can be obtained by the same manner, but more easily from

n
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 2.8 Equilibrium Equations

In the absence of body forces, does the following stress distribution

T x ν, ( )

x
2( )2

ν x
1( )2

x
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


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1

 x
2



0

2- ν x
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
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
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where ν is a constant, satisfy equilibrium?

 Solution:  

x
j
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 x
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 x
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
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x
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
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 2 ν x

1
-= 0=

x
j

T2j


 x
1

T21


 x
2

T22



+

x
3

T23



+= 2- ν x

2
 2 ν x

2
+= 0=

x
j

T3j


 x
1

T31


 x
2

T32



+

x
3

T33



+= 0=

Therefore, equilibrium is satisfied.

13 of 159



Structural Analysis
Prof. Victor Saouma

Prepared by Christopher Segura

 2.9 Stress-Strain

Determine the stress tensor at a point where the Lagrangian strain tensor is given by

E

30

50

20

50

40

0

20

0

30











10
6-

:=

and the material is steel with λ 119.2GPa:=  and μ 79.2GPa:=  

 Solution:  

C

λ 2 μ+

λ

λ

0

0

0

λ

λ 2 μ+

λ

0

0

0

λ

λ

λ 2 μ+

0

0

0

0

0

0

2 μ

0

0

0

0

0

0

2 μ

0

0

0

0

0

0

2 μ



















simplify

277.6 GPa

119.2 GPa

119.2 GPa

0

0

0

119.2 GPa

277.6 GPa

119.2 GPa

0

0

0

119.2 GPa

119.2 GPa

277.6 GPa

0

0

0

0

0

0

158.4 GPa

0

0

0

0

0

0

158.4 GPa

0

0

0

0

0

0

158.4 GPa



















:=

γ

E
1 1, 

E
2 2, 

E
3 3, 

E
1 2, 

E
1 3, 

E
2 3, 

























3 10
5-



4 10
5-



3 10
5-



5 10
5-



2 10
5-



0 10
0



























=:=

σ C γ

0.01667

0.01826

0.01667

0.00792

0.00317

0



















GPa=:=
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 2.10 Stress-Strain

Determine the stress tensor at a point where the Cauchy stress tensor is given by

σ

100

42

6

42

2-

0

6

0

15











MPa:=

with E 207GPa:=  ,μ 79.2GPa:= , and ν 0.3:=  

 Solution:  

S

1

E

ν

E
-

ν

E
-

0

0

0

ν

E
-

1

E

ν

E
-

0

0

0

ν

E
-

ν

E
-

1

E

0

0

0

0

0

0

1

μ

0

0

0

0

0

0

1

μ

0

0

0

0

0

0

1

μ



































simplify

1

207 GPa

0.001

GPa
-

0.001

GPa
-

0

0

0

0.001

GPa
-

1

207 GPa

0.001

GPa
-

0

0

0

0.001

GPa
-

0.001

GPa
-

1

207 GPa

0

0

0

0

0

0

0.013

GPa

0

0

0

0

0

0

0.013

GPa

0

0

0

0

0

0

0.013

GPa



































:=

s

σ
1 1, 

σ
2 2, 

σ
3 3, 

σ
1 2, 

σ
1 3, 

σ
2 3, 

























100

2-

15

42

6

0



















MPa=:=

γ S s

4.643 10
4-



1.763- 10
4-



6.957- 10
5-



5.303 10
4-



7.576 10
5-



0 10
0



























=:=
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E

γ
1

γ
4

2

γ
5

2

γ
4

2

γ
2

γ
6

2

γ
5

2

γ
6

2

γ
3





















4.643 10
4-



2.652 10
4-



3.788 10
5-



2.652 10
4-



1.763- 10
4-



0 10
0



3.788 10
5-



0 10
0



6.957- 10
5-















=:=
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 3.1 Displacement by Double Integration

Determine the deflection at B for the following cantilevered beam.

2L/3 L/3

w

B
A

 Solution:  

At 0 x
2L

3


1. Moment Equation

E I
2

x
y



2
 Mx=

w L

3
x

5

18
w L

2
-=  

2. Integrate Once 

E I
x

y




w L

6
x
2


5

18
w L

2
 x- C1+=   

However we have at x=0, dy/dx=0, C1=0

3. Integrate Twice

E I y
w L

18
x
3


5 w L

2


36
x
2

- C2+=

Again we have at x=0, y=0, C2=0

At 
2L

3
x L

1. Moment Equation

E I
2

x
y



2
 Mx=

w L

3
x

5

18
w L

2
- w x

2L

3
-







x
2L

3
-

2











-=  

2. Integrate Once 

E I
x

y




w L

6
x
2


5

18
w L

2
 x-

w

6
x

2L

3
-





3

- C3+=   

Applying the boundary condition at x
2L

3
= , we must have 

dy

dx
 equal to the value coming frmo the left C

3
=0  

3. Integrate Twice

E I y
w L

18
x
3


5 w L

2


36
x
2

-
w

24
x

2L

3
-





4

- C4+=

Again following the same argument as above, C4=0

Substituting for x=L we obtain

y
163

1944

wL
4

E I
=
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 4.1 Live Load Reduction

A four storey office building has interior columns spaced 30ft apart in the two directions.  If the flat roof loading is

50 lb/ft2, determine the reduced live load supported by a typical interior column located on the ground level

 Solution:  

L0 50psf:=

AT 30ft 30 ft 900 ft
2

=:=

KLL 4:=

Lfloor L0 AT, KLL, ( ) L0 0.25
15

KLL AT
+








 psf:=

Lfloor Lfloor

L0

psf

AT

ft
2

, KLL, 






25 psf=:=

Reduction
Lfloor

L0
50 %=:=

Lroof 0.6 L0 30 psf=:=

F1 3 Lfloor AT Lroof AT+( ) 94.5 kip=:=

Note that without reduction the total load woul dhave been

F2 4 L0 AT 180 kip=:=
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 4.2 Wind Load

Wind blows on the side of the fully enclosed agricultural building located on open flat terrain in Oklahoma.  Determine the external
pressure acting on the roof.  Also, what is the internal pressure in the building which acts on the roof? Use linear interpolation to
determine qh and Cp.

50 ft

100 ft 10° 15 ft

 Solution:  

qz Kz KZt, Kd, V, I, ( ) 0.00256 Kz KZt Kd V
2

 I psf:=

KZt 1:=

Kd 1:=

V 90mph:=

I 0.87:=

qz Kz KZt, Kd, 
V

mph
, I, 





18.04 Kz psf

Kz15 0.85:=

qz15 qz Kz15 KZt, Kd, 
V

mph
, I, 





15.334 psf=:=

Kz20 0.9:=

qz20 qz Kz20 KZt, Kd, 
V

mph
, I, 





16.236 psf=:=

h 15ft
1

2
25 ft tan 10deg( )+ 17.204 ft=:=

qh qz15-

h 15ft-

qz20 qz15-

20ft 15ft-
=
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qh

qz20 qz15-

20ft 15ft-









h 15ft-( ) qz15+:=

qh 15.732 psf=

External pressure on windward side of roof 

p qh G, Cp, ( ) qh G Cp psf:=

G 0.85:=

L 50ft:=

h

L
0.344=

0.9- 0.7--

0.5 0.25-

0.9- Cp-

0.5
h

L
-

=

Cp 0.9-
0.9- 0.7--

0.5 0.25-
0.5

h

L
-





-:=

Cp 0.775-=

pWindward p
qh

psf
G, Cp, 









10.367- psf=:=

External pressure on leeward side of roof 

0.5- 0.3--

0.5 0.25-

0.5- Cp-

0.5
h

L
-

=

Cp 0.5-
0.5- 0.3--

0.5 0.25-
0.5

h

L
-





-:=

Cp 0.375-=

pLeeward p
qh

psf
G, Cp, 









5.018- psf=:=

Internal pressure

pint qh G, Cpi, ( ) qh- G Cpi:=

Cpi1 0.18:=

Cpi2 0.18-:=

pint1 pint qh G, Cpi1, ( ) 2.407- psf=:=

pint2 pint qh G, Cpi2, ( ) 2.407 psf=:=

20 of 159



Structural Analysis
Prof. Victor Saouma

Prepared by Christopher Segura

 4.3 Earthquake Load on a Frame

Determine the approximate earthquake forces for the ductile hospital frame structure shown below.  The dead load for each floor is

DL 200
lbf

ft
:=  and the live load is LL 400

lbf

ft
:= .  The structure is built on soft clay.  Use DL+0.5LL as the weight of each floor.  The

building is in seismic zone 3.     

400 lb/ft

400 lb/ft

20 ft

12 ft

12 ft

 Solution:  

1. The fundamental period of vibration is

T Ct hn, ( ) Ct hn

3

4
 sec:=

Ct 0.03:=

h 24ft:=

T T Ct
h

ft
, 





0.325s=:=

2. The C coefficient is

C S T, ( )
1.25 S

T

2

3

:=

S 2.0:=

C C S
T

sec
, 





5.286=:= > 2.75

Use C 2.75:=
3. The other coefficients are Z 0.3:= , I 1.25:= , RW 12:=
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4. Check
C

RW

2.75

12
= 0.23 0.075>=   OK!

5. The total vertical load is
L 20ft:=  frame width

W 2 DL 0.5 LL+( ) L 16000 lbf=:=
6. The total seismic base shear is

V
Z I C

RW
W 1375 lbf=:=

7. Since T < 0.7sec, there is no whiplash
8. The toal load on each floor is given by

h1 12ft:=

h2 24ft:=

F2

V h2

h1 h2+
916.7 lbf=:=  

F1

V h1

h1 h2+
458.3 lbf=:=
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 4.4 Earthquake Load on a Tall Building

Determine the approximate critical lateral loading for a 25 storey, ductile, rigid space frame concrete structure in the short direction.  The rigid
frames are spaced 25 ft apart in the cross section and 20 ft in the longitudinal direction.  The plan dimension of the building is 175x100 ft, and
the structure is 25(12ft)=300 ft high.  This office building is located in an urban environment with a wind velocity of V 70mph:=  and in seismic
zone 4.  For this investigation, an average building total dead load of DL 192psf:=  is used.  Soil conditions are unknown.  

 Solution:  
1. The total building weight is

L 100ft:=
B 175ft:=
W DL L B 25 84000 kip=:=  

2. The fundamental period of vibration for a rigid frame is

T Ct hn, ( ) Ct hn

3

4
 sec:=

Ct 0.03:=

h 25 12 ft 300 ft=:=

T T Ct
h

ft
, 





2.16 s=:= > 0.7s  OK!

3. The C coefficient is

C S T, ( )
1.25 S

T

2

3

:=

S 1.5:=

C C S
T

sec
, 





1.12=:= < 2.75

4. The other coefficients are Z 0.4:= , I 1:= , RW 12:=

5. Check
C

RW

1.12

12
= 0.093 0.075>=   OK!

6. The total seismic base shear along the critical short direction is

V
Z I C

RW
W 3139 kip=:=

7. Since T > 0.7sec, the whiplash effect must be considered

Ft 0.07
T

sec
 V 475 kip=:=

Hence the total triangular load is
Ftot V Ft- 2664 kip=:=

8. Let us check if wind load governs.  From table xx we conservatively assume a uniform wind pressure of 29 psf resulting in a total lateral
force of

p 29psf:=
Pw p h B 1522.5 kip=:=  < 3108 kip

The magnitude of the total seismic load is clearly larger than the totoal wind force
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 4.5 Hydrostatic Load

The basement of a building is 12 ft below grade. Ground water is located 9 ft below grade.  What thickness concrete slab is
required to exactly balance the hydrostatic uplift?

 Solution:  

The hydrostatic pressure must be countered by the pressure caused by the weight of the concrete. Since p=γh we equate the two
pressures and solve for h, the height of the concrete slab.

h 12ft:=

hwater 9ft:=

d h hwater- 3 ft=:=

γwater 62.4
lbf

ft
2

:=

γconcrete 150
lbf

ft
2

:=

γwater d γconcrete h=

h
γwater d

γconcrete
15 in=:=
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 4.6 Thermal Expansion/Stress

A low-rise building is enclosed along one side by a 100 ft-long clay masonry (α 3.6 10
6-


in

in Δ°F
:= , E 2400000psi:= )bearing wall. The

structure was built at a temperature of T 60Δ°F:=  and is located in the northern part of the United States where the temperature range is
between Tlow 20- Δ°F:=  and Thigh 120 Δ°F:= . 

 Solution:  

1. Assume that the wall can move freely with no restraint from cross-walls and foundations. The wall expansion and contraction
(summer and winter) are given by

ΔL α ΔT L=
ΔLSummer α Thigh T-( ) 100 ft 0.26 in=:=

ΔLWinter α Tlow T-( ) 100 ft 0.35- in=:=

2. We now assume (conservatively) that the free movement cannot occur (ΔL=0) hence the resulting stress would be equal to 

σ E ε= E
ΔL

L
= E

α ΔT L

L
= E α ΔT=

σ E α ΔT=
σSummer E α Thigh T-( ) 518 psi=:=

σWinter E α Tlow T-( ) 691- psi=:=

Note the tensile stress being beyond the masonry capacity. Cracking will occur.
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 5.1 Statically Indeterminate Cable Structures

A rigid plate is supported by two aluminum cables and a steel one.  Determine the force in each cable.

P

Al AlSteel h

If the rigid plate supports a load P, determine the stress in each of the three cables.

 Solution:  

1. We have three unknowns and only two independent equations of equilibrium.  Hence the problem is statically indeterminate to
the first degree.

Mz 0=    PAl
left

PAl
right

=

Fy 0=    2PAl PSt+ P=

Thus we effectively have two unknowns and one equation
2. We need to have a third equation to solve for the three unknowns. This will be derived from the compatability of the
displacements in all three cables i.e. all three displacements must be equal:

σ
P

A
=

ε
ΔL

L
=

ε
σ

E
=

Combine to obtain

ΔL
PL

AE
=

PAl L

EAl AAl

PSt L

ESt ASt
=    

PAl

PSt

EA( )
Al

EA( )
St

=

or EA( )
St

- PAl EA( )
Al

PSt+ 0=

3. Solution of this system of two equations with two unknowns yield:

2

EA( )
St

-

1

EA( )
Al









PAl

PSt








P

0









=
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PAl

PSt







2

EA( )
St

-

1

EA( )
Al









1-
P

0









=
1

2 EA( )
Al

 EA( )
St

+

EA( )
Al

EA( )
St

1-

2










P

0









=
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 5.2 Simply Supported Beam

Determine the reactions of the simply supported beam shown below.

6 ft 6 ft6 ft

a dcb

4 k/ft

60 k

36 k

The beam has 3 reactions.  We have 3 equations of static equilibrium.  Hence it is statically determinate.

 Solution:  

 Fx 0=     Rax 36kip- 0=  

Fy 0=     Ray Rdy+ 60kip- 4
kip

ft
12 ft- 0=

Mz
c 0=     12 Ray 6 Rdy- 60kip 6 ft- 0=

or

1

0

0

0

1

12

0

1

6-











Rax

Ray

Rdy















36kip

108kip

360kip











=      

Rax

Ray

Rdy













36kip

56kip

52kip











=

Alternatively we could have used another set of equations:

Mz
a 0=     60kip 6 ft 4

kip

ft
12 ft 12 ft+ Rdy 18 ft- 0=      Rdy 52kip=

Mz
d 0=     Ray 18 ft 60kip 12 ft- 4

kip

ft
12 ft 12 ft- 0=     Ray 56kip=

Check:

Fy 0=       56kip 52kip+ 60kip- 48kip- 0- kip=
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 5.3 Parabolic Load

Determine the reactions of the simply supported beam of length L subjected to a parabolic load w w0
x

L






2

=

L

A B

dW

2
0( )
x

w w
L

=

dx

 Solution:  

Since there are no axial forces, there are two unknowns and two equations of equilibrium. We have two equations of equilibrium    ( Fy
and M ), we judiciously start with the second one, as it would directly give us the reaction at B. Considering an infinitesimal element of

length dx, weight dW, an moment dM: 
      

Mz
A 0=

x 0=

x L=

xw0
x

L






2







d x RB L- 0=

RB
1

L
w0

L
4

4L
2









=
1

4
w0 L=

With RB determined, we solve for RA from

Fy 0=

RA
1

4
w0 L+

x 0=

x L=

xw0
x

L






2







d- 0=

RA

w0

L
2

L
3

3


1

4
w0 L-=

1

12
w0 L=
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 5.4 Three Span Beam

Determine the reactions of the following three span beam

4 ft 3 ft5 ft

a cb

4 k/ft

50 k

2 ft2 ft8 ft3 ft

d

30 k

4
3

40 k

4 ft 5 ft

a

40 k

Ray

Rax

S

F

3 ft

c

4 k/ft

2 ft2 ft8 ft3 ft

d

30 k

S

F
b

40 k

30 k

Rcy Rdy

 Solution:  

We have 4 unknowns (R
ax

,R
ay

,R
cy

, and R
dy

), three equations of equilibrium and one equation of condition ( Mb 0= ), thus the structure is

statically determinate. Though there are many approaches to solve for those four unknowns (all of them correct), a few are simpler to pursue.
In this case, it is easiest to "break" the structure into substructures and examine the free body diagram of each one of them separately.

1. Isolating ab:

Mz
b 0= 9ft Ray 40kip 5 ft- 0= Ray

40kip 5 ft

9ft
22.2 kip=:=

Mz
a 0= 40kip 4 ft S 9 ft- 0= S

40kip 4 ft

9ft
17.8 kip=:=

Fx 0= Rax 30kip:=

2. Isolating bd:

Mz
d 0= S- 18 ft 40kip 15 ft- 4

kip

ft
12 ft 6 ft- 30kip 2 ft- Rcy 12 ft+ 0=

Rcy

S 18 ft 40kip 15 ft+ 4
kip

ft
12 ft 6 ft+ 30kip 2 ft+

12ft
105.7 kip=:=

Mz
c 0= S- 6 ft 40kip 3 ft- 4

kip

ft
12 ft 6 ft+ 30kip 10 ft+ Rdy 12 ft- 0=

Rdy

S- 6 ft 40kip 3 ft- 4
kip

ft
12 ft 6 ft+ 30kip 10 ft+

12ft
30.1 kip=:=
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3. Check

Fy 0= Ray 40kip- 40kip- Rcy+ 4
kip

ft
12 ft- 30kip- Rdy+ 0- kip=      OK!
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 5.5 Three Hinged Gable Frame 

The three-hinged gable frames are spaced at 30 ft on center.  Determine the reactions components on the frame due to: 1) Roof
dead load of 20 psf of roof area; 2) Snow load of 30 psf of horizontal projection; 3) Wind load of 15 psf of vertical projection.
Determine the critical design values for the horizontal and vertical reactions.

60 ft
30

 ft

30
 ft

20 ft

15 ft

30 ft 30 ft

20 ft

15 ft

A

B

C 15 ft

17.5 ft

15 ft

Avv

Ahv

V

17.5 ft

H

Avv

Ahv

Cvv

Chv

a) b) c) Solution:  
1.  Due to smmetry, there is no vertical force transmitted by the hinge for snow and dead load, and thus we can consider only the left (or right)
side of the frame.
2.  Point equivalent loads:

a) Roof dead load per one side of frame is

DL 20psf 30 ft 30ft( )
2

15ft( )
2

+ 20.12 kip=:=
b) Snow load per one side of frame is

SL 30psf 30 ft 30 ft 27 kip=:=
c) Wind load per per frame (ignoring the suction) is

WL 15psf 30 ft 35 ft 15.75 kip=:=
3.  There are 4 reactions, 3 equations of equilibrium and one equation of condition; therefore, statically determinate.  Alternatively, by
symmetry there is no shear at the hinge, and we would have for the substructure two reactions at the support and one (horizontal) at the
hinge.
4.  The relationship between the horizontal and vertical reactions at A due to a centered vertical load, Ahv and Avv respectively is determined
by taking the moment with respect to the hinge (b):

Mz
B 0= 15 V 30 Avv- 35 Ahv+ 0=

Fy 0=           Avv V- 0=

Ahv

15Avv

35
=
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    Substituting for roof dead and snow load we obtain:
AvvDL DL 20.12 kip=:= BvvDL AvvDL 20.12 kip=:=

AhvDL

15AvvDL

35
8.62 kip=:= BhvDL AhvDL 8.62 kip=:=

AvvSL SL 27 kip=:= BvvSL AvvSL 27 kip=:=

AhvSL

15AvvSL

35
11.57 kip=:= BhvSL AhvSL 11.57 kip=:=

5.  The reactions due to wind load (blowing from left) are determined as follows:
a) Vertical reaction at A is determined by considering the entire structure and taking the moment with respect to C (c)

Mz
C 0= 15.75kip

20ft 15ft+

2






 60ft Avh- 0=

Avh

WL
20ft 15ft+

2








60ft
4.59 kip=:=

   Avh is the vertical reaction at A due to the horizontal load, and from equilibrium of forces in the y-direction, we have

Cvh Avh- 4.59- kip=:=

   (note that wind load does not have any vertical component)
b) The horizontal reaction at B is determined by considering the right substructure and taking the moment with respect to 
the internal hinge at B

Mz
B 0= 35ft Chh Cvh 30 ft- 0=

Chh

Cvh 30 ft

35ft
3.94- kip=:=

c) Horizontal reactino at A is taken by considering the entire structure and summing forces in the x-direction

Fx 0= WL Chh+ Ahh- 0=

Ahh WL Chh+ 11.81 kip=:=

   and note that A carries most of the horizontal load.
6. Finally, the supports should be designed for the most critical (plausible) combination of reactions

H AhvDL AhvSL+ Ahh+ 32.01 kip=:=

V AvvDL AvvSL+ Avh+ 51.72 kip=:=
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 5.6 Inclined Supports

Determine the reactions of the following two span beam resting on inclined supports.

6 ft 6 ft6 ft

a cb

40 k

6 ft8 ft

4

3 4

3

30 k 50 k
2

1

 Solution:  
A priori we would identify 5 reactions; however, we do have 2 equations of condition (one at each inclined support), thus with three equations
of equilibrium, we have a statically determinate system.

Mz
b 0= Ray 20 ft 40kip 12 ft- 30kip 6 ft- 50kip sin atan

2

1












 6 ft+ Rcy 12 ft- 0=

Ray 20 ft Rcy 12 ft- 40kip 12 ft 30kip 6 ft+ 50kip sin atan
2

1












 6 ft-=

Fx 0=
3

4
Ray 50kip cos atan

2

1












-
4

3
Rcy- 0=

Rcy
3

4

3

4
Ray 50kip cos atan

2

1












-





=
9

16
Ray 16.77kip-=

9

16
Ray Rcy- 16.77kip=

Solving for those two equations:
20

9

16

12-

1-











Ray

Rcy








391.672 kip

16.77kip









=

Ray

Rcy







14.37kip

8.69- kip









:=

The horizontal components of the reactions at a and c are

Rax
3

4
Ray 10.78 kip=:=

Rcx
4

3
- Rcy 11.59 kip=:=

Finally, we solve for Rby

Mz
a 0= 40kip 8 ft 30kip 14 ft+ Rby 20 ft- 50kip sin atan

2

1












 26 ft+ Rcy 32 ft- 0=

Rby

40kip 8 ft 30kip 14 ft+ 50kip sin atan
2

1












 26 ft+ Rcy 32 ft-

20ft
109.04 kip=:=

We check our results

Fy 0= Ray 40kip- 30kip- 50kip sin atan
2

1












- Rby+ Rcy+ 0 kip= OK!

Fx 0= Rax 50kip cos atan
2

1












- Rcx+ 0 kip= OK!
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 7.1 Truss Method of Joints

Using the method of joints, analyze the following truss

A
B C D

E

F
G

H

12
8

20 k 40 k 40 k

10'

32'

24' 24' 24' 24'

 Solution:  
1. R=3, m=13, 2j=16, and m+R=2j
2. We compute the reactions

Mz
E 0= 20kip 12kip+( ) 72 ft 40kip 8kip+( ) 48 ft+ 40kip 24 ft+ RAy 96 ft- 0=

RAy
20kip 12kip+( ) 72 ft 40kip 8kip+( ) 48 ft+ 40kip 24 ft+

96ft
:=

RAy 58 kip=

Fy 0= 20kip 12kip+ 40kip+ 8kip+ 40kip+ RAy- REy- 0=

REy 20kip 12kip+ 40kip+ 8kip+ 40kip+ RAy-:=

REy 62 kip=

3. Consider each joint separately:
Node A: Clearly AH is under compression and AB is under tension

58 k

FAB

FAH

A

Fy 0= FAHy- RAy+ 0=

FAHy RAy- 58- kip=:=

Ly 32ft:= Lx 24ft:= L Ly
2

Lx
2

+ 40 ft=:=

FAH
L

Ly
FAHy 72.5- kip=:= Compression
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Fx 0= FAHx- FAB+ 0=

FAB

Lx

Ly
RAy 43.5 kip=:= Tension

Node B:

B

20 k

FBH

43.5 k FBC

Fx 0= FBC 43.5kip:= Tension

Fy 0= FBH 20kip:= Tension

Node H:

H

12 k

FHG

FHC
72 k

20 k

FHCx

FHCyFAHy

FHGx

FHGyFAHx

Fx 0= FAHx FHCx- FHGx- 0=

43.5kip
24ft

24ft( )
2

32ft( )
2

+

FHC-
24ft

24ft( )
2

10ft( )
2

+

FHG- 0=

Fy 0= FAHy FHCy+ 12kip- FHGy- 20kip- 0= :

58kip
32ft

24ft( )
2

32ft( )
2

+

FHC+
10ft

24ft( )
2

10ft( )
2

+

FHG- 12kip- 20kip- 0=

This can be most conveniently written as
24ft

24ft( )
2

32ft( )
2

+

32ft

24ft( )
2

32ft( )
2

+

-

24ft

24ft( )
2

10ft( )
2

+

10ft

24ft( )
2

10ft( )
2

+













FHC

FHG








43.5kip

26kip









=

36 of 159



Structural Analysis
Prof. Victor Saouma

Prepared by Christopher Segura

Solving we obtain

FHC

FHG







24ft

24ft( )
2

32ft( )
2

+

32ft

24ft( )
2

32ft( )
2

+

-

24ft

24ft( )
2

10ft( )
2

+

10ft

24ft( )
2

10ft( )
2

+













1-

43.5kip

26kip










7.5-

52









kip=:=

FHC 7.5- kip= Compression

FHG 52 kip= Tension

Node E:

E

62 k

FED

FEF

Fy 0= FEFy 62kip:=

FEF
24ft( )

2
32ft( )

2
+

32ft
62 kip 77.5 kip=:= Compression

Fx 0= FED FEFx= :

FED 24
ft

32ft
62 kip 46.5 kip=:= Tension

The results of the analysis are summarized below

43.5 43.5 46.5 46.5

72
.5 20

32 2.
5

7.5 4 0 77.5

46.5

6258
43.5

52 52

58 62

12
8

20 40 40 
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4. We would check our calculations by verifying equilibrium of forces at a node not previously used, such as D.

 7.2 3D Truss

4'

2' 3'

2'

8'

X

Y

Z

Pz=600

B

C

D

A

 Solution:  

1. Consider the free body diagram of the entire truss

MAB 0= Cz 5 ft 600 3 ft- 0= Cz
600 3 ft

5ft
:=

Cz 360=

MCB 0= 600 2 ft Az 6 ft- 0= Az
600 2 ft

6ft
:=

Az 200=

Fz 0= Bz 200+ 360+ 600- 0= Bz 600 200- 360-:=

Bz 40=

Fx 0= Bx 0:=

Fy 0= Ay Cy- 0=

Mz 0= Ay 3 ft Cy 2 ft+ 0= Ay Cy= 0=

Ay 0:=

Cy 0:=
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2. Consider the free body diagram of joint B

Joint B

x

z

y

8 ft

2 ft

3 ft

B

40.0 lb

z FBD

FBA
FBC

40.0 lb

LBD 2ft( )
2

3ft( )
2

+ 8ft( )
2

+ 8.775 ft=:=  

Fz 0=
8- ft

LBD
FBD 40+ 0=

FBD 40
LBD-

8ft
 43.875-=:= Compression

Fx 0= FBDx FBC- 0=

FBDx
3- ft

LBD
FBD 15=:= Tension

Fy 0= FBDy FBA- 0=

FBDy
2- ft

LBD
FBD 10=:= Tension

3. FBD of joint A

8 ft

A

200 lb

FAD

x

y

z

4 ft

3 f
t

10.0 lb

FAC

39.8°
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LAD 8ft( )
2

3ft( )
2

+ 4ft( )
2

+ 9.434 ft=:=  

Fz 0=
8- ft

LAD
FAD 200+ 0=

FAD 200
LAD-

8ft
 235.85-=:= Compression

Fx 0= FADx FACx- 0=

tan α( )
5ft

6ft
= α atan

5

6






39.8 deg=:=

3ft

LAD
FAD FAC sin α( )- 0=

FAC

3ft

LAD
FAD-

sin 39.8deg( )
117.2=:= Tension

Fy 0= FBDy FBA- 0=

tan α( )
5ft

6ft
= α atan

5

6






39.8 deg=:=

FBA
2- ft

LBD
FBD 10=:= Tension

5. Joint C

x

y

z

c

8 ft

360 lb

2 ft

2 f
t39.8°

FAC =117 lb

FCD

LCD 8ft( )
2

2ft( )
2

+ 2ft( )
2

+ 8.485 ft=:=  

Fz 0= FCDz 360+ 0=
8- ft

LCD
FCD 360+ 0=

FCD 360-
LCD-

8- ft
 381.8-=:= Compression
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 7.3 Truss I, Matrix Method

Determine all member forces for the following truss

3

1 2
1

2
3

10

x

y

10
5

 Solution:  
1. We first determine the direction cosines

Member 1 (Nodes 1-2)
Node1: α11 1:= β11 0:= Node2: α21 1-:= β21 0:=

Member 2 (Nodes 2-3)

Node2: α22
2-

2
0.707-=:= β22

2

2
0.707=:= Node3: α32

2

2
0.707=:= β32

2-

2
0.707-=:=

Member 3 (Nodes 3-1)

Node2: α33
2-

2
0.707-=:= β33

2-

2
0.707-=:= Node3: α31

2

2
0.707=:= β31

2

2
0.707=:=

2. Next we write the equations of equilibrium
α11

β11

α21

β21

0

0

0

0

α22

β22

α32

β32

α31

β31

0

0

α33

β33

1

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0























F1

F2

F3

R1x

R1y

R2y

























0

0

0

0

0

10-



















+ 0=

F1

F2

F3

R1x

R1y

R2y























α11

β11

α21

β21

0

0

0

0

α22

β22

α32

β32

α31

β31

0

0

α33

β33

1

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0























1-

0

0

0

0

0

10-



















-

5

7.071-

7.071-

0

5

5



















=:=
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 7.4 Truss II, Matrix Method

Set up the statics matrix for the truss shown below

A
B C D

E

F
G

H

12
8

20 k 40 k 40 k

10'

32'

24' 24' 24' 24'

 Solution:  

1

2 3 4

6

7

8

1 2 3 4

5 6 7 8 9 10 11

12 13
10'

32'

24' 24' 24' 24'

5
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1. We first determine the direction cosines
24ft

24ft( )
2

32ft( )
2

+

0.6=

32ft

24ft( )
2

32ft( )
2

+

0.8=

10ft

24ft( )
2

10ft( )
2

+

0.385=

24ft

24ft( )
2

10ft( )
2

+

0.923=

2. Next we write the equations of equilibrium

2. Next we write the equations of equilibrium

1

0

1-

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

1-

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

1-

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

1-

0

0

0

0

0

0

0

0.6

0.8

0

0

0

0

0

0

0

0

0

0

0

0

0.6-

0.8-

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

1-

0

0

0

0

0.6-

0.8

0

0

0

0

0

0

0

0

0.6

0.8-

0

0

0

0

0

1

0

0

0

0

0

0

0

1-

0

0

0

0

0

0

0.6

0.8

0

0

0

0

0.6-

0.8-

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

1-

0

0

0

0

0

0

0

0

0

0

0

0

0.6-

0.8

0.6

0.8-

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.923-

0.385-

0.923

0.385

0

0

0

0

0

0

0

0

0

0

0.923-

0.385

0.923

0.385-

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0















































F1

F2

F3

F4

F5

F6

F7

F8

F9

F10

F11

F12

F13

R1x

R1y

R5y



























































0

0

0

20-

0

40-

0

40-

0

0

0

0

0

8-

0

12-















































+ 0=

 
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F1

F2

F3

F4

F5

F6

F7

F8

F9

F10

F11

F12

F13

R1x

R1y

R5y

























































1

0

1-

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

1-

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

1-

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

1-

0

0

0

0

0

0

0

0.6

0.8

0

0

0

0

0

0

0

0

0

0

0

0

0.6-

0.8-

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

1-

0

0

0

0

0.6-

0.8

0

0

0

0

0

0

0

0

0.6

0.8-

0

0

0

0

0

1

0

0

0

0

0

0

0

1-

0

0

0

0

0

0

0.6

0.8

0

0

0

0

0.6-

0.8-

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

1-

0

0

0

0

0

0

0

0

0

0

0

0

0.6-

0.8

0.6

0.8-

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.923-

0.385-

0.923

0.385

0

0

0

0

0

0

0

0

0

0

0.923-

0.385

0.923

0.385-

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0















































1-
0

0

0

20-

0

40-

0

40-

0

0

0

0

0

8-

0

12-















































-

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

43.5

43.5

46.5

46.5

-72.5

20

7.479

32.033

2.479

40

-77.5

-51.991

-51.991

0

58

62

=:=

 7.5 Truss, Method of Sections

Determine FBC and FHG in the truss below

A
B C D

E

F
G

H

12
8

20 k 40 k 40 k

10'

32'

24' 24' 24' 24'

 Solution:  

Cutting through members HG, HC, and BC, we first take the summation of forces with respect to H:
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A
B C D

E

F
G

H

12
8

20 k 40 k 40 k

10'

32'

24' 24' 24' 24'

B

H

58 k 20 k

FBCA

FHG

FHC

Mz
H 0= RAy 24 ft FBC 32 ft- 0=

RAy 58kip:= (From previous example)

FBC
24ft

32ft
RAy 43.5 kip=:= Tension

Mz
C 0= 58kip 48 ft 20kip 12kip+( ) 24 ft- FHGx 32 ft- FHGy 24 ft- 0=

58kip 48 ft 20kip 12kip+( ) 24 ft- 32ft FHG
24ft

24ft( )
2

10ft( )
2

+

- 24ft FHG
10ft

24ft( )
2

10ft( )
2

+

- 0=

FHG 52kip:= Compression

 8.1 Funicular Cable Structures

Determine the reactions and the tensions for the cable structure shown below

AAx

B

C

D
Dx

h = 6'

30' 40' 30'

12 k 6 k not to scale
Ay

Dy

Aθ

Bθ
Cθ HC

 Solution:  

We have 4 external reactions, however the horizontal ones are equal and we can use any one of a number of equations of conditions in
additiona to the three equations of equilibrium.  First, we solve for the vertical reactions Ay, Dy and then for the horizontal ones (which are
equal and opposite (|H| = Ax = -Dx). For this problem we could use the following 3 equations of static equilibrium ΣFx = ΣFy = ΣM = 0, however
since we do not have any force in the x direction, the first equation is of no avail. Instead, we will consider the following set ΣFy = ΣMA = ΣMB =
0. Alternatively, we can consider the problem as one with 8 unknowns (Ax, Ay, Dx, Dy, θA, θB, θC, and hC), to be solved through the 2
equations of equilibrium expressed at each of the four points of interesect.
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equations of equilibrium expressed at each of the four points of interesect.

1. Solve for Dy

Mz
A 0= 12kip 30 ft 6kip 70 ft+ Dy 100 ft- 0=

Dy
12kip 30 ft 6kip 70 ft+

100ft
7.8 kip=:=

2. Solve for Ay

Fy 0= Ay 12kip- 6kip- Dy+ 0=

Ay 12kip 6kip+ Dy- 10.2 kip=:=

3. Solve for the horizontal force by isolating the free body diagram AB

Mz
B 0= Ay 30 ft H 6 ft- 0=

H
Ay 30 ft

6ft
51 kip=:=

4. Solve for the sag at point C by isolating the free body diagram CD

Mz
C 0= Dy- 30 ft H hc+ 0=

hc

30ft Dy

H
4.6 ft=:=

5. Solve for the cable internal forces or tractions in this case

tan θA( ) 6ft

30ft
= θA atan

6ft

30ft






11.31 deg=:=

TAB
H

cos θA( )
52.01 kip=:=

tan θB( )
6ft hc-

40ft
= θB atan

6ft hc-

40ft









2.02 deg=:=

TBC
H

cos θB( )
51.03 kip=:=

tan θC( )
hc

30ft
= θC atan

hc

30ft









8.7 deg=:=

TCD
H

cos θC( )
51.59 kip=:=
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 8.2 Design of Suspension Bridge

Design the following 4 lane suspension bridge by selecting the cable diameters assuming an allowable cable strength of σall 190ksi:= .. The

bases of the tower are hinged in order to avoid large bending moments. The total dead load is estimated at 200 psf. Assume a sag to span
ratio of 1/5.

A

B C

DE F

120' 50'

100' 100'300'

A

B

E

TAB TBC

HAB HBC

FBE

 Solution:  

1. The dead load is carried by each cable with one half the total deal load or p1
1

2
200 psf 50 ft 5

kip

ft
=:=

2. Using the HS 20 truck (or its distributed equivalent load of 0.64kip/ft per lane), the uniform additional load per cable is
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p2 2 0.64
kip

ft
1.28

kip

ft
=:=

Thus the total design load is

p p1 p2+ 6.28
kip

ft
=:=

3. The thrust H is determined by
L 300ft:=
h 60ft:=

H
p L

2


8 h
1177.5 kip=:=

4. The maximum tension is

r
1

5
:= sag to span ratio

Tmax H 1 16r
2

+ 1508 kip=:=

5. Note that if we used the approximate formula we woul dhave obtained

TmaxApp H 1 8 r
2

+( ) 1554.3 kip=:=

6. The required cross sectional area of the cable along the main span should be equal to

A
Tmax

σall
7.94 in

2
=:=

which corresponds to a diameter

d
4 A

π
3.18 in=:=

7. We seek to determine the cable force in AB. Since the pylon cannot take any horizontal force, we should have the horizontal component of
Tmax equal and opposite to the horizontal component of TAB or 

TAB H
100ft( )

2
120ft( )

2
+

100ft
 1839 kip=:=

The cable area should be

A
TAB

σall
9.68 in

2
=:=  

which corresponds to a diameter

d
4 A

π
3.51 in=:=

8. To determine the vertical load acting on the pylon, we must add the vertical components of Tmax and TAB (VBC and VAB respectively).  We can
determine VBC from H and Tmax, thus

P
120ft

100ft
H Tmax

2
H

2
-+ 2355 kip=:=

Using A36 steel with an allowable stress of σA36 21ksi:= i, the cross sectional area of the tower should be

A
P

σA36
112 in

2
=:=

Note that buckling of such a tower might govern the final dimensions.
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Note that buckling of such a tower might govern the final dimensions.
9. If the cables were to be anchored to a concrete block, the volume of the block shoul dbe at least equal to

V

120ft

100ft
H

150
lbf

ft
3

9420 ft
3

=:=

 10.1 Simple Shear and Moment Diagram

Draw the shear and moment diagram for the beam shown below.

A

B C D

E

2 k/ft

4ft 4ft 4ft6ft

4
3

11 k 10 k

49 of 159



Structural Analysis
Prof. Victor Saouma

Prepared by Christopher Segura

 Solution:  

The free body diagram is drawn below

A B C D E

2 k

-6 k

-14 k
Slope= dV/dx=w=-2

dM/dx=+2 dM/dx=-6 -14<dM/dx <-6
dM/dx=+13

0+
52

=
52

52
+

12
=

64

64
-2

4=
40

2 k/ft
11 k

10 k
6 k

8 k
6 k

13 k 14 k
11 k

2 k13 k 8 k2 k

A

B C

D

E

Momen Diagram

13 k

A=(13)(4)=52 A=(6)(2)=12

A=(-6)(4)=-24 A=-4(6+14)/2=-40

Shear Diagram

Free Body  Diagram

Reactions are determined from the equilibrium equations

Fx 0= Ax- 6kip+ 0= Ax 6kip:=

MA 0= 11kip 4 ft 10kip
3

5
 10 ft+ 2

kip

ft
4 ft 16 ft+ Ey 18 ft- 0=

Ey

11kip 4 ft 10kip
4

5
 10 ft+ 2

kip

ft
4 ft 16 ft+

18ft
14 kip=:=

Fy 0= Ay 11kip- 10kip
4

5
- 2

kip

ft
4 ft- Ey+ 0=

Ay 11kip 8kip+ 2
kip

ft
4 ft+ Ey- 13 kip=:=

Shear are determined next
1. At A the shear is equal to the reaction and is positive.
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1. At A the shear is equal to the reaction and is positive.
2. At B the shear drops (negative load) by 11 k to 2 k
3. At C it drops again by 8 k to -6 k
4. It stays constant up to D and then it decreases (constant negative slope since the load is uniform and negative) by 2 k
    per linear foot up to -14 k
5. As a check, -14 k is also the reaction previously determined at E.

Moment is determined last
1. The moment at A is zero (hinge support)
2. The change in moment between A and B is equal to the area under the corresponding shear diagram, or 

ΔMBA 13kip 4 ft 52 kip ft=:=

3. Changes between other points are determined the same by taking the area under the shear diagram

 10.2 Frame Shear and Moment Diagram

Draw the shear and moment diagram of the following frame
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3k/ft

4

3
A

D

B C

36.0 k

52.96 k

64.06 k

3k/ft

30' 9'

12
'

 Solution:  

A

B

D
36

64.06

64.06
(36)(12)=432

36

3k/ft

139.8
42.37

3(15)-31.78=13.22

52.96

36

64.06

25.94

13.22

31.78

-

-

-

+

+

+

+

-

-

Shear Diagram

Moment Diagram

432 139.8

252

64.06

36

42.3

3
(52.96)=31.78

5

4
(52.96)=42.3

5

432

139.8

C139.8
25.96

36

13.22 42.37
139.8

C

36

64.06432

36

64.06-3(30)=25.94

23(30)
-432- +64.06(30)=139.8

2

432

36B
64.06

432

36

64.06
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Reactions are determined first

Fx 0= RAx
4

5
3

kip

ft
15 ft- 0= RAx

4

5
3

kip

ft
15 ft 36 kip=:=

MA 0= 3
kip

ft
30 ft 15 ft

3

5
3

kip

ft
15 ft 34.5 ft+

4

5
3

kip

ft
15 ft 6 ft- RDy 39 ft- 0=

RDy

3
kip

ft
30 ft 15 ft

3

5
3

kip

ft
15 ft 34.5 ft+

4

5
3

kip

ft
15 ft 6 ft-

39ft
52.96 kip=:=

Fy 0= RAy 3
kip

ft
30 ft-

3

5
3

kip

ft
15 ft- RDy+ 0=

RAy 3
kip

ft
30 ft

3

5
3

kip

ft
15 ft+ RDy- 64.04 kip=:=

We isolate each member and draw its free body diagram for each force component.
Shear 

1. For A-B the shear is constant, equal to the horizontal reaction at A and negative according to our previously defined
    sign convention, VA 36- kip:=

2. For member B-C at B, the shear must be equal to the vertical force which was transmitted along A-B, and which is
    equal to the vertical reaction at A, VB RAy 64.04 kip=:=

3. Since B-C is subjected to a uniform load, the shear along B-C will have a slope equal to -3 and in terms of x (measured
    from B to C) is equal to

VBC x( ) RAy 3x-:=

4. The shear along C-D is obtained by decomposing the vertical reaction at D into axial and shear components. Thus, at

    D the shear is equal to 
3

5
RDy 31.78 kip=  and is negative. Based on our sign convention for the load, the slope of the

    shear must be equal to -3 along C-D. Thus the shear at point C is such that Vc
5

3
9 ft 3

kip

ft
-

3

5
- RDy=  or

    Vc
5

3
9 ft 3

kip

ft

3

5
RDy- 13.22 kip=:= .  The equation for shear is given by (for x going from C to D)

VCD x( ) Vc 3x-:=

Moment
1. Along A-B, the moment is zero at A (since we have a hinge) and its slope is equal to the shear, thus at B the moment
    is equal to 36- kip 12 ft 432- kip ft=
2. Along B-C, the moment is equal todx

MBC MB
0

x

xVBC x( )




d+= 432- kip ft

0

x

xRAy 3x-( )




d+= 432- kip ft RAy x+
3x

2

2
-=

which is a parabola.  Substituting for x=30, we obtain at node C:

MC 432- kip ft RAy 30 ft+

3
kip

ft
30ft( )

2


2
- 139.2 kip ft=:=

3. If we need to determine the maximum moment along B-C, we know that 
dMBC

dx
0=  at the point where where V

BC
=0, 

    that is VBC x( ) RAy 3x-= 0= ,xmax

RAy

3
kip

ft

21.3 ft=:= .  In other words, the maximum moment occurs where the shear is
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   zero. Thus 

MBCmax 432- kip ft RAy xmax+

3
kip

ft
xmax( )2



2
- 251.5 kip ft=:=

4. Finally, along C-D the moment varies quadratically (since we had a linear shear), the moment first increases (positive
    shear), and then decreases (negative shear). The moment along C-D is given by

MCD MC
0

x

xVCD x( )




d+= MC
0

x

xVc 3x-( )




d+= MC Vc x+
3x

2

2
-=  which is a parabola. Substituting for 

   x =15ft, we obtain at node D

MD MC Vc 15 ft+ 3

kip

ft
15ft( )

2


2
- 0- kip ft=:= OK!
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 10.3 Frame Shear and Moment Diagram: Hydrostatic Load

The frame shown below is the structural support of a flume.  Assuming that the frames are spaced 2 ft apart along the length of the
flume, 
1. Determine all internal member end actions
2. Draw the shear and moment diagrams
3. Locate and compute maximum internal bending moments
4. If this is a reinforced concrete frame, show the location of reinforcement

A

B
E

F

6 
ft

.

3 ft. 3 ft.10 ft.

Density of water=62.4 lb/ft

Spacing of frames=2 ft.

H2O

C D

 Solution:  
The hydrostatic pressure causes lateral forces on the vertical members which can be treated as cantilevers fixed at the lower end.  The
pressure is linear and is given by p γ h, ( ) γ h:= . Since each frame supports a 2 ft wide section of the flume, the equation for w (pounds/ft) is

w h( ) 2ft 62.4
lbf

ft
3

h
124.8 h lbf

ft
2

:=

At the base wbase w 6ft( ) 0.749
kip

ft
=:= . Note that this is both the lateral pressure on the end walls as well as the uniform load on the

horizontal members.

2.246 k

4.493 k-ft

2 ft

2.246 k

.749 k/ft

2.246 k

5.99 k

.749 k/ft .749 k/ft

2 ft

2.246 k

x

y

2.246 k
4.493 k-ft 4.493 k-ft

4.493 k-ft

5.99 k

2.246 k

x

y

B

-2.246 k

x

Shear

x

Sh
ea

r

-2.246 k

Q
ua

dr
at

ic Q
uadratic

-2.246 k

2.246 k

3.744 k

-3.744 k

C D Em
- -

- -

+ +

x

y

y

x

y

C
ub

ic

4.493 k-ft

C
ubic

4.493 k-ft

4.
49

3 
k-

ft

4.
49

3 
k-

ft

-7.864 k-ft -7.864 k-ft

1.5 k-ft
B C D E

m- -
+

xx

y

End Actions

1. Base force at B is FBx
1

2
wbase 6 ft 2.246 kip=:=  

2. Base moment at B is  MB
1

3
FBx 6 ft 4.493 kip ft=:=

3. End forces at B for member B-E are equal and opposite

4. Reaction at C is RCy
1

2
wbase 16 ft 5.99 kip=:=

Shear forces
1. Base at B the shear force was determined eariler and was equal to FBx 2.246 kip= . Based on the orientation of the x-y

    axis, this is a negative shear.
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2. The vertical shear at B is zero (neglecting the weight of A-B)
3. The shear to the left of C is VCleft 0 wbase 3 ft- 2.246- kip=:=

4. The shear to the right of C is VCright VCleft RCy+ 3.744 kip=:=

Moment diagrams
1. At the base: B MB 4.493 kip ft=

2. At the support C, MC MB- wbase 3 ft
3ft

2
- 7.862- kip ft=:=

3. The maximum moment is equal to Mmax MC wbase 5 ft
5ft

2
+ 1.498 kip ft=:=

Design: Reinforcement should be placed along the fibers which are under tension, that is on the side of the negative moment. The figure
below schematically illustrates the location of the flexural reinforcement.  
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 10.4 Shear Moment Diagrams for Frame

Vba

Vba

-650'k(-52.5)(12)+(-20)

M bc

12'

A

30k
5k/ft

B H

M ba

8' 10'

D

G

H

V

4k/ft

15'

D

D

A
E

V

5k/ft

5'

30k

A

B C

10k

ba

20k

3.5'
-22.5k

-22.5+(-30)=-52.5

17.5k

17.5k

17.5-(5)(8)

-20'k

30.6'k

M ba

(17.5)(3.5)/2+(-22.5)(8-3.5)/2

(17.5)(3.5)/2

2k/ft

200'k

82.5k

450'k

52.5k 30k

00

650'k

Hbd

Vbd
M bd

M ba

Vba Vbc

CHECK

0

17.5-5x=0

450'k
(5

0)
(1

5)
-[

(4
)(

5)
/2

][
(2

)(
15

)/
3)

]

450'k

Hbd

Vbd
M bd

82.5k

20k

4k/ft 50k

50k

20k

(5
0)

-(
4)

(1
5)

/2

Hbc

M bc Vbc

Vbc

30k 10k
(10)+(2)(10)

M bc
-200'k

(10)(10)+(2)(10)(10)/2

B C

10k2k/ft
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 10.5 Shear Moment Diagrams for Inclined Frame

x

y

F/Fy=z/x

F/Fx=z/y

Fx/Fy=y/x
F

y

Fx

zF

A

B

C

D

E

20k

20'36'

20'

15'

10'10'
13'
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13'

26k
26k

2k/ft

12
5

13
3

5

4

H

V

a

a
V e

80
0k

'

2k/ft

60k

20k

60k

19.2k

800'k

(2
0)

(2
0)

+
(6

0-
20

)(
20

)/
219.2k 48.8k

48.8k

0k'
20k

1130'k 488'k

+
60

k
+

20
k

+25.4k

-26.6k

-23.1k

-39.1k
800'k

60
-(

2)
(2

0)

(6
0)

(2
0)

-(
2)

(2
0)

(2
0)

/2

26k
26k

17.72k

26.6k

778k'

0k

800k'
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-0.6-26

800'k
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800+(25.4)(13)

39.1k

28.8k

778k'

0k
0k'
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(39.1)(12.5)

-23.1-16

24
k 24

k10k
10k

18.46k

20
-1

0-
10

+25.4k

-26.6k

-23.1k
-39.1k

48
8+

(2
3.

1)
(1

2.
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77
7k

'
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-0.58k
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16
k

12k
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(20)(12)/(13)=18.46

(19.2)(5)/(13)=7.38

(19.2)(12)/(13)=17.72

(26.6)(13)/(12)=28.8

(26.6)(5)/(12)=11.1

(28.8)(3)/(5)=17.28

(20)(4)/(5)=16

(20)(3)/(5)=12
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(26)(12)/(13)=24

(20)(5)/13=7.7
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7.38k

20k 28.8k
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7.69k
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 10.6 3D Frame

4m

4m

2m

60 kN

x

z

y

A

B

C

D

20 kN/m

1. The frame has a total of 6 reactions (3 forces and 3 moments) at the support, and we have a total of 6 equations of equilibrium, 
    thus it is staticall determinate.
2. Each member has the following internal forces (defined in terms of the local coordinate system of each member x' - y'- z' such 
    that x is along the member)

Member
Axial Torsion

Nx' Vy' Vz' My' Mz' Tx'

C - D    
B - C     
A - B     

Internal Forces
 Moment Shear

Member

3. The numerical calculations for the analysis of the three dimensional frame are quite simple, however the main complexity  
    stems from the difficulty in visualizing the inter-relations between internal forces of adjacent members.
4. In this particular problem, rather than starting by determining the reactions, it is easier to determined the internal forces at the
    end of each member starting with member C-D.  Note that temporarily we adopt a sign convention which is compatible with the
    local coordinate systems.

C-D

Fy' 0=  Vy'C 20
kN

m
2 m 40 kN=:=

Fz' 0=  Vz'C 60kN:=

My' 0= My'C 60- kN 2 m 120- kN m=:=

Mz' 0= Mz'C 20
kN

m
2 m

2m

2
 40 kN m=:=
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B-C

Fx' 0=  Nx'B Vz'C 60 kN=:=

Fy' 0=  Vy'B Vy'C 40 kN=:=

My' 0=  My'B My'C 120- kN m=:=

Mz' 0=  Mz'B Vy'C 4 m 160 kN m=:=

Tx' 0= Tx'B Mz'C- 40- kN m=:=

A-B

Fx' 0=  Nx'A Vy'B 40 kN=:=

Fy' 0=  Vy'A Nx'B 60 kN=:=

My' 0=  My'A Tx'B- 40 kN m=:=

Mz' 0=  Mz'A Mz'B Nx'B 4 m+ 400 kN m=:=

Tx' 0= Tx'A My'B 120- kN m=:=

The interaction between axial forces N and shear V as well as between moments M and torsion T is clearly highlighted by this example.

120 kN-m

20 kN/m

120 kN-m

40 kN

40 kN

120 kN-m

40 kN

40 kN120 kN-m

40 kN

C

B

120 kN-m

120 kN-m 40 kN

x'

z'

z' x'

y'120 kN-m

120 kN-m

x'
y'

60 kN
40 kN-m

40 kN-m60 kN

160 kN-m 40 kN-m
60 kN

60 kN60 kN

40 kN-m

60 kN
40 kN-m

40 kN-m

60 kN

40 kN-m
60 kN

160 kN-m

160 kN-m

40 kN-m

60 kN

160 kN-m

400 kN-m

40 kN-m

z'y'

40 kN

40 kN

60 kN 12
0 

kN
-m

40
 k

N
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x'

D

C

z'

B

C

y'
x'

z'

B

C

y'
x'

z'160
120

40

y'

x'

D

C

z'
40

120

y'

A

B

x'

z'
y'

x'

A

B

x'

z'
y'

16040

400

120

A

B

V M T

M
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T
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V
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 11.1 Three Hinged Arch, Point Loads

Determine the reactions of the three-hinged arch shown below

80' 60'

33.75'

30'

20 k 

B

80 k 

26.25'
A

C

20' 20'

20 k B
30 k 

80 k 

A

C

HA

VA

VC

HC

VB VB

HB HB

30 k

 Solution:  

Four unknowns, three equations of equilibrium, one equation of condition - staticall determinate

Mz
C 0=

RAy 140 ft 80kip 30ft 26.25ft-( )+ 30kip 60ft 20ft+( )- 20kip 60ft 20ft-( )- RAx 26.25 ft+ 0=

RAy 140 ft RAx 26.25 ft+ 30kip 80 ft 20kip 40 ft+ 80kip 3.75 ft-=

RAy 140 ft RAx 26.25 ft+ 2900kip ft=

Fx 0= 80kip RAx- RCx- 0=

RAx RCx+ 80kip=

Fx 0= RAy RCy+ 30kip- 20kip- 0=

RAy RCy+ 50kip=

Mz
B 0= RAx 60 ft 80kip 30 ft- 30kip 20 ft- RAy 80 ft+ 0=

RAy 80 ft RAx 60 ft+ 80kip 30 ft 30kip 20 ft+=

RAy 80 ft RAx 60 ft+ 3000kip ft=

Solving those four equations simultaneously we have:

140

0

1

80

26.25

1

0

60

0

0

1

0

0

1

0

0











RAy

RAx

RCy

RCx



















2900

80

50

3000











=

Ay

Ax

Cy

Cx











140

0

1

80

26.25

1

0

60

0

0

1

0

0

1

0

0











1-
2900

80

50

3000













15.1

29.8

34.9

50.2











=:=

RAy

RAx

RCy

RCx

















Ay

Ax

Cy

Cx











kip

15.1

29.8

34.9

50.2











kip=:=

We can check our results by considering the summation with respect to B from the right:

Mz
B 0= 20- kip 20 ft RCx 33.75 ft- RCy 60 ft+ 0- kip ft=
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

 11.2 Semi-Circular Arch

Determine the reactions of the three-hinged staticall determinate semi-circular arch under its own dead weight w (per unit arc
length s, where ds=rdθ

R cos ?

R

A

B

C

R

A

B

?

dP=wRd ?

?

r?

 Solution:  

Reactions The reactions can be determined by integrating the load over the entire structure
1. Vertical Reaction is determined first 

MA 0= Cy- 2 R
θ 0=

θ π=

θwR




d R 1 cos θ( )+( )+ 0=

Cy
wR

2 θ 0=

θ π=

θ1 cos θ( )+( )




d=
πwR

2
=

2. Horizontal Reactions are determined next 

MB 0= Cx- R Cy R+
θ 0=

θ
π

2
=

θwR






d Rcos θ( )- 0=

Cz
πwR

2

wR

2 θ 0=

θ
π

2
=

θcos θ( )






d-=
π

2
1-





wR=

Internal Forces can now be determined

V

?

?

N
V

dP=wRd

M

? a

d a

a

V
N

? r

x

π
C = -1 wR

2
 
 
 

R(1-cosθ)

Rcosθ

Rcos α

xC

yC
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1. Shear Forces: Considering the free body diagram of the arch, and summing the forces in the radial direction (ΣFR=0) 

π

2
1-





- wRcos θ( )
π

2
wRsin θ( )+

α 0=

θ

αwR




d sin θ( )- V+ 0=

V wR
π

2
1-





cos θ( ) θ
π

2
-





sin θ( )+





=

2. Axial Forces: Similarly, if we consider the summation of forces in the axial direction (ΣFθ=0) 

π

2
1-





wRsin θ( )
π

2
wRcos θ( )+

α 0=

θ

αwR




d cos θ( )- N+ 0=

N wR θ
π

2
-





cos θ( )
π

2
1-





sin θ( )-





=

2. Moment: Now we can consider the third equation of equilibrium (ΣMz=0) 

π

2
1-





wR Rsin θ( )
π

2
wR R 1 cos θ( )-( )+

α 0=

θ
αwR





d R cos α( ) cos θ( )-( )+ M+ 0=

M wR
2 π

2
1 sin θ( )-( ) θ

π

2
-





cos θ( )+





=

Deflection are determined last
1. The real curvature ϕ is obtained by dividing the moment by EI

ϕ
M

EI
=

wR
2

EI

π

2
1 sin θ( )-( ) θ

π

2
-





cos θ( )+





=

2. The virtual force δ P


  will be a unit vertical point load in the direction of the desired deflection, causing a virtual internal
     moment

δ M



R

2
1 cos θ( )- sin θ( )-( )= 0 θ

π

2


3. Hence, application of the virtual work equation yields:

1 Δ 2

θ 0=

π

2

θ
wR

2

EI

π

2
1 sin θ( )-( ) θ

π

2
-





cos θ( )+






R

2
1 cos θ( )- sin θ( )-( )





 R






d=
wR

4

16EI
7 π

2
 18 π- 12-( )=
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 11.3 Statically Indeterminate Arch

Determine the value of the horizontal reaction component of the indicated two-hinged solid rib arch, as caused by a concentrated
vertical load of 10 k at the center line of the span. Consider shearing, axial, and flexural strains. Assume the rib is a W24x130 with

a total area of 38.21 in2, that it has a web area of 13.70 in2, a moment of inertia equal to 4,000 in4, E of 30,000 k/in2, and a

shearinf modulus of 13,000 k/in2.

35'

200'

P=10 k

C

B

R
=1

60
.3

6'
0.898 rad

A

 Solution:  

1. Consider that end C is placed on rollers, as shown below.

200'

P=10 k

CB

R
=1

60
.3

6'

0.898 rad

A

35'

Q

125.36'

P/2

V
=c

os
Q N=sin Q

1k Virtual
N=P/2 cosQ

V=P/2 sin Q

Q

A unit ficticious horizontal force is applied at C. The axial and shearinf components of this ficticious force and of the
vertical reaction at C, acting on any section θ in the right half of the rib, are shown at the right end of the rib in the figure
above.

2. The expression for the horizontal displacement of C is

1 ΔCh 2

C

B

sδ M



M

EI







d 2

C

B

sδ V



V

Aw G







d+ 2

C

B

sδ N



N

AE







d+=

3. From the figure above, for the rib from C to B

M
P

2
100 R cosθ-( )=

δ M


 1 R sinθ 125.36ft-( )=

V
P

2
sinθ=
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δ V


 cosθ=

N
P

2
cosθ=

δ N


 sinθ-=
ds Rdθ=

4. If the above values are substituted in the equation for the horizontal displacement of C and integrated between the limits of
    0.898 and π/2, the result will be

ΔCh 22.55in 0.023in+ 0.003in-=

ΔCh 22.57in:=

5. The load P is now assumed to be removed fro mthe rib, and a real horizontal force of 1 k is assumed to act toward the right at
    C in conjunction with the ficticious force of 1 k acting to the right at the same point. The horizontal displacement of C will be 
    given by

δChCh 2

C

B

sδ M



M


EI







d 2

C

B

sδ V



V


Aw G






d+ 2

C

B

sδ N



N


AE







d+= 2.309in 0.002in+ 0.002in+=

δChCh 2.313in:=

6. The value of the horizontal reaction component will be

HC

ΔCh

δChCh
kip 9.76 kip=:=

7. If only flexural strains are considered, the result would be

HC
22.55in

2.309in
kip 9.77 kip=:=

Comments
1. For the given rib and the single concentrated load at the center of the span it is obvious that the effects of shearing and axial
    strains are insignificant and can be disregarded.
2. Eroneous conclusions as to the relative importance of shearing and axial strains in the usual solid rib may be drawn, however, 
    from the values in the equation for ΔCh. These indicated that the effects of the shearing strains are much more significant thatn

    those of the axial strains. This is actually the case for the single concentrated load chosen for the demonstration, but
    only because the rib does not approximate the funicular polygon for the single load. As a result, the shearing components on 
    most sections of the rib are more important than would otherwise be the case.
3. The usual arch encountered in practice, however, is subjected to a series of loads, and the axis of the rib will approximate
    the funicular polygon for these loads. In other words, the line of pressure is nearly perpindicular to the right section at all points
    along the rib. Consequently, the shearing components are so small that the shearing strains are insignificant and are neglected
4. Axial strains, resulting in rib shortening, become increasingly important as the rise-to-span ratio of the arch decreases. It is 
    advisable to determine the effects of the rib by considering flexural strains only, and then to check for effects or rib shortening. 
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 11.4 Semi-Circular Box Girder

Determine the reactions of the semi-circular cantilevered box girder subjected to its own weight w.

O

R

A

B
C

y

x

z

?

?
r?

V

wRda

O

y

x

z

da
a

M

z

 Solution:  

Reactions are again determined first
From geometry we have OA=R, OB=Rcosθ, CD = BA = OA - OB = R - Rcosθ, EB = R(1+cosθ) and BC = Rsinθ. The
moment arms for the moments with respect to the x and y axis are BC and EB respectively. Applying three equations
of equilibrium we obtain

Fz
A

θ 0=

θ π=

θwR




d- 0= Fz
A

wRπ=

Mz
A

θ 0=

θ π=

θwR




d R sinθ- 0= Mz
A

2 w R
2

=

My
A

θ 0=

θ π=

θwR




d R 1 cosθ+( )- 0= My
A

w- R
2

 π=

Internal Forces are determined next
1. Shear Force:

Fz 0= V
0

θ

αwR




d- 0=

V wRθ=
2. Bending Moment:

MR 0= M
0

θ
αwR





d R sinα- 0=

M wR
2

1 cosθ-( )=
3. Torsion:

Mθ 0= T
0

θ

αwR




d R 1 cosα-( )+ 0=

T wR
2

- θ sinθ-( )=
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Deflection are determined last
We assume a rectangular cross-section of width b and heigh d=2b and a Poisson's ratio of ν 0.3:=
1. Noting that the member will be subjected to both flexural and torsional deformations, we seek to determine the two
    stiffnesses.

2. The flexural stiffness EI is given by EI E
b d

3


12
=

2Eb
4

3
=

3. The torsional stiffness of solid rectangular sections J kb
3

d=  where b is the shorter side of the section, d is the longer,

    and k is a factor equal to 0.229 for d/b=2. Hence G
E

2 1 ν+( )
=

E

2.6
= , and GJ

E

2.6
0.229 b

4
= 0.176E b

4
= .

4. Considering both flexural and torsional deformations, and replacing dx by rdθ:

δ M


 Δ

0

π

θδ M



M

EIz
 R






d

0

π

θδ T



T

GJ
 R






d+=  

where the real moments were given above.

5. Assuming a virtual downward force δ P


 1= , we have

δ M


 R sinθ=

δ T


 R- 1 cosθ-( )=
6. Substituting these expressions into the equation for displacement (in 4)

1 Δ
w R

2


EI 0

π

θR sinθ( ) 1 cosθ-( ) R




d
w R

2


GJ 0

π

θθ sinθ-( ) R 1 cosθ-( ) R




d+=

1 Δ
w R

4


EI
0

π

θsinθ sinθ cosθ-( )
1

0.265
θ θ cosθ- sinθ- sinθ cosθ+( )+








d=

Δ 20.56
w R

4


EI
=
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 11.5 Internal Forces in an Helicoidal Cantilevered Girder, Point Load

Determine the internal forces N, Vs, and Vw and the internal moments T, M, and Mw along the helicoidal cantilevered girder.

Isometric View

Plan View

Z

X Y

H

R

B

A

Ra

P

P

A

B

 Solution:  

1. We first determine the geometry in terms of the angle θ

x R θ, ( ) R cos θ( ):= y R θ, ( ) R sin θ( ):= z H θ, ( )
H

π
θ:=

2. To determine the unit vector n at any point we need the derivatives

dx R θ, ( )
θ

x R θ, ( )


R sin θ( )-:= dy R θ, ( )

θ
y R θ, ( )


R cos θ( ):= dz H θ, ( )

θ
z H θ, ( )



H

π
:=

and then determine the unit vector

n

R- sin θ( ) i R cos θ( ) j+
H

π
k+

R
2

sinθ( )
2

 R
2

cosθ( )
2

+
H

π






2

+








1

2

=
1

1
H

π R






2

+








1

2

sinθ- i cosθ j+
H

π R






k+





=  

Since the denominator depends only on the geometry, it will be designated K.
3. The strong bending axis lies in a horizontal plane, and its unit vector can thus be determined

n k
1

K

i

sinθ-

0

j

cosθ

0

k

H

π R

1











=
1

K
cosθ i sinθ j+( )=

and the absolute magnitude of this vector n k
1

K
= , and thus

s cosθ i sinθ j+=
4. The unit vector along the weak axis is determined

w s n=
1

K

i

cosθ

sinθ-

j

sinθ

cosθ

k

0

H

π R











=
1

K

H

π R
sinθ i

H

π R
cosθ j- k+





=
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5. With the geometry definition completed, we now examine the equilibrium equations.

F 0= F P-=

Mb 0= M L- P=

where 

L R R cosθ-( ) i 0 R sinθ-( ) j+ 0
θ

π
H-





k+=

and

M L P= R

i

1 cosθ-

0

j

sinθ-

0

k

θ-

π

H

R


P











= PR sinθ- i 1 cosθ-( ) j- =

and
M PR sinθ i 1 cosθ-( ) j+ =

6. Finally, the components of the force F Pk-=  and the moment M are obtained by appropriate dot products with the unit vectors

N F n=
1

K
- P

H

π R
=

Vs F s= 0=

Vw F w=
1

K
- P=

T M n=
PR

K
- 1 cosθ-( )=

Ms M s= PR sinθ=

Mw M w=
PH

π K
- 1 cosθ-( )=
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 12.1 Moment Area, Cantilevered Beam

Determine the deflection at Point A

A B C

w

1.5L L

4wL

25

tA/C

EI
M=

ρ

EI
M=

ρ

2 34wL 2wL
(25 )

25 5
L =

2wL

2

 Solution:  

EItAC
1

2

2- w L
2



5










5L

2







2

3

5L

2







1

3

w- L
2



2









 L
9L

4






+=
29- w L

4


24
=

Thus,

ΔA
29- w L

4


24 E I
=
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 12.2 Moment Area, Simply Supported Beam

Determine ΔC and θC for the following example

P

A BCa a 2a

C

C’

C”

tA/B C

B

?C

?B

?BC

Pa/2

A1

3Pa/4

A2 A3

A

 Solution:  

Deflection Δ
C
 is determined from ΔC c' c= c' c'' c'' c-= , c'' c tCB= , and c' c''

tAB

2
=

tAB
1

EI

3P a

4






a

2







2a

3







3P a

4






3a

2






 a
3a

3
+





+





=
5P a

3


2 E I
=

This is positive, thus above tangent from B

tCB
1

E I

P a

2







2a

2







2a

3






=
P a

3


3 E I
=

Positive, thus above tangent from B. Finally,

ΔC
1

2

5P a
3



2 E I










P a

3


3 E I
-=

11

12

P a
3



E I
=

Rotationa θC is 

θBC θB θC-=   =>  θC θB θBC-=

θBC A3=

θB

tAB

L
=

θC
5P a

3


2 E I

1

4a


P a

2






2a

2






-=
P a

2


8E I
=
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 12.3 Maximum Deflection

Determine the deflection at D and the maximum deflection at B

9P/5

D

? D

B

P

A C

L 4L/5

9tCA/5
tDA

P/5

4Px/5

4PL/5

 Solution:  

Deflection at D:

ΔD tDA
9

5
tCA-=

EItCA
1

2

4- P L

5






 L
L

3






=
2- P L

3


15
=

tCA
2- P L

3


15E I
=

EItDA
1

2

4- P L

5






 L
17L

15







1

2

4- P L

5







4L

5







8L

15






+=
234- P L

3


375
=

tDA
234- P L

3


375E I
=

Substituting we obtain

ΔD
48-

125

P L
3



E I
=

Maximum Deflection at B:

tCA
2- P L

3


15E I
=

θA

tCA

L
=

2- P L
2



15E I
=

θAB
1

E I

1

2

4P x

5






 x





=
2-

5

P x
2



E I
=

θA θAB=   =>  
2- P L

2


15E I

2-

5

P x
2



E I
= x

L

3
=

Δmax
4P x

5 E I






x

2







2x

3






=   at  x
L

3
=

Δmax
4 P L

3


45 3 E I
=
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 12.4 Frame Deflection

Complete the following example problem

tA/B

tC/B

?B

(b)

72/EI

72/EI

72/EI

x = 4'

x = 8'

(a)

6' 6' 6'

6 k

6 k

12 k12'

12 k

24 k

A

B
C D

90o ?B

6?B

(b) (c)
12'

6'

6'

20 k

120/EI

A

B C

20 k

10 k

x = 8'
120/EI

10 k

tAB

A D

B
B' C C'

12?B

? B

tangent @ B

tangent @ B

vertical line

?B

? B

tCB

?B

B'

deflected
position

90o

?B

?B
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 12.5 Frame Subjected to Temperature Loading

Neglecting axial deformation, compute displacement at A for the following frame

? TT = 60

h1 =25'

h 2
 =

10
'

t = 16"

L=20'

A

B C

D

? TB = 200

AA'A”

?B

?B

?B

?C

?C

 Solution:  
1. First let us sketch the deformed shape
2. BC flexes  =>  θB θC= 0

3. Rigid hinges at B and C with no load on AB and CD
4. Deflection at A

ΔA A A''= A A' A' A''+=

A A' ΔB= ΔC= θC h2=

A' A'' θB h1=

5. We need to compute θB and θC

θB

tCB

L
=

θC θCB θB+=   OR  θC

tBC

L
=

6. In order to apply the curvature area theorem, we need a curvature (or moment diagram)

1

ρ
α

TB TT-

h









=
M

E I
=

7. 

tCB A
L

2
=   =>  θB A

L

2







1

L






=
A

2
=   OR  θB

A-

2
=

8. 
θCB A=

θC θCB θB+=

θC A
A

2
-=

A

2
=

9. From above

ΔA θC h2 θB h1+=
A

2
h2

A

2
h1+=

A

2
h1 h2+( )=

A α
TB TT-

h









 L=

ΔA α
TB TT-

h









 L
1

2






 h1 h2+( )=
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10. Substitute

ΔA 6.5 10
6-

( ) 200 60-( )
20ft

16in


1

2
 35 ft:=

ΔA 2.867 in=

11. Other numerical values

θB θC=
A

2
=

θB
1

2
6.5 10

6-
( ) 200 60-

16in






 20 ft 0.006825 rad=:=

θC θB 0.006825=:=

M

EI

1

ρ
= α

TB TT-

h









=

ρ
1

6.5 10
6-

( ) 200 60-

16in












1465.2 ft=:=

12. In order to get M, we need E and I. Note the difference with other statically determinate structures; the stiffer the beam, the higher the
moment; the higher the moment, the higher the stress?  NO!!

13. σ
M y

I
=

E I

ρ

y

I
=

E y

ρ
=

14. ρ is constant  =>  BC is on arc of circle  M is constant and 
M

EI

d
2

y

dx
2

=   =>  
d

2
y

dx
2

M

EI
= c=   =>  y

cx
2

2
dx+ e+=

15. The slope is a parabola

1

ρ

M

EI
=

d
2

y

dx
2

1
dy

dx






2

+








3

2

=

Let us get curvature from the parabola slope and compare it with ρ

y
cx

2

2
dx+ e+=

dy

dx
cx d+=

d
2

y

dx
2

c=

at x=0, y=o, thus e=0
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at x=0, y=o, thus e=0

at x=0, 
dy

dx
θB= 0.006825- rad= , thus d 0.006825- rad=

at x=20 ft, 
dy

dx
θC= 0.006825rad= , thus c 20ft( ) 0.006825- 0.006825= , thus c 6.825 10

4-
=

y 6.825 10
4-


x
2

2
10x-









=

dy

dx
6.825 10

4-
 x 10-( )=

d
2

y

dx
2

6.825 10
4-

=

ϕ 6.825 10
4-

:=

ρ
1

ϕ
ft 1465.2 ft=:=     as expected!

If we were to use the exact curvature formula 

d
2

y

dx
2

1
dy

dx






2

+








3

2

ϕ
6.825 10

4-


1 0.006825( )
2

+ 

3

2

0.000682=:=

ρ
1

ϕ
ft 1465.3 ft=:=
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 12.6 Conjugate Beam

Analyze the following beam

P

4L/5
A

C D

L

4PL/5EI

A
C D

 Solution:  
3 equations of equilibrium and 1 equation of condition = 4 = number of reactions. Deflection at D = Shear at D of the corresponding conjugate
beam (Reaction at D) Take AC and ΣM with respect to C

RA L( )
4P L

5E I






L

2







L

3






- 0=

RA
2 P L

3


15E I
=

(Slope in real beam at A) As computed before. Let us dram the moment diagram for the conjugate beam

M
P

EI

2

15
L

2
 x

2

15
x

3
-





=
2 P

15 E I
L

2
x x

3
-( )=

Point of maximum moment (Δ
max

) occurs when 
dM

dx
0=

dM

dx

2 P

15 E I
L

2
3x

2
-( )= 0=   =>  x

L

3
=

as previously determined

x
L

3
=

M
2 P

15 E I
L

2 L

3










L

3









3

-








=  

M
4P L

3


45 3 E I
=   as before
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 12.7 Conjugate Beam

Analyze the following beam

(+)

A

6k 6k8k

10k10k

B

D C EADI = I = 450 4in EBI = I = 450 4in

DEI' = 2I = I = 900 4in

12 ft 6 ft 12 ft6 ft

M ( )k ft

 ( )x ft
12 18 24 36

120
144

 Solution:  

From simple observation, the reactions at A and B are equal to 10 k. The elastic load on the conjugate beam is then shown below.

720

EI

360

EI

CA

36

EI

1116

EI
10 ft

2 ft
3 ft

18 ft Cv

CM

C

A B

120

EI
60

EI

72

EI
60

EI

120

EI

12 ft 6 ft 12 ft6 ft

C

A B

10 ft8 ft 8 ft10 ft

720

EI

720

EI

72

EI

720

EI

1116

EI

1116

EI
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We next seek to determine the internal moment at C' in the conjugate beam. It is obtained from equilibrium:

Mz
B 0=

1116 kip ft
2



E I
18 ft

720 kip ft
2



E I
10 ft-

360 kip ft
2



E I
3 ft-

36 kip ft
2



E I
2 ft- MC'+ 0=

E 29 10
3
ksi:=

I 450in
4

:=
ΔC MC'=

ΔC'
720 kip ft

2


E I
10 ft

360 kip ft
2



E I
3 ft+

36 kip ft
2



E I
2 ft+

1116 kip ft
2



E I
18 ft- 1.554- in=:=

 13.1 Deflection of a Cantilever Beam

Determine the deflection of the cantilever beam with span L under a point load P at its free end.  Assume constant EI.

P

M=PL

x

 Solution:  

We
1

2
P Δf=

U

0

L

x
M

2
x( )

2 E I





d=

M P- x=

U P L, EI, ( )
P

2

2 EI 0

L

xx
2




d
L

3
P

2


6 EI
:=

1

2
P Δf

L
3

P
2



6 EI
=

Δf
P L

3


3 EI
=

Note that the solution of this problem was facilitated by the fact thatΔf is co-alligned with P.
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 13.2 Beam Deflection

Determine the deflection at point C.  E 29000ksi:=  , I 100in
4

:=

2 k/ft

A
A B

B

C C

15 k 45 k
0.5 k 1.5 k

1 k

20' 10'

dC

-x-0.5x

15x-x2

-x2Real Moment

Virtual Moment

x x

 Solution:  

For the virtual force method, we need to have two expressions for the moment, one due to the real load, and the other to the (unit)
virtual one.

Element x = 0 M δM
AB A 15x - x2  - 0.5x

BC C  - x2  - x
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For the virtual force method, we need to have two expressions for the moment, one due to the real load, and the other to the (unit) virtual
one.

ΔC δ P




0

L

xδ M



M x( )

EIz







d=

1 ΔC

0

20

x0.5- x( )
15x x

2
-

EI















d

0

10

xx-( )
x

2
-

EI















d+=

ΔC EI( )

0

20

x0.5- x( )
15x x

2
-

EI















d

0

10

xx-( )
x

2
-

EI















d+
2500

EI
:=

ΔC
2500kip ft

3


E I
1.49 in=:=

 13.3 Deflection of a Frame

Determine both the vertical and horizontal deflection at A for the frame shown.  E 200 10
6


kN

m
2

:=  , I 200 10
6

 mm
4

:=

1 kN

1 kN4 kN-m
5 kN-m

A B C

D

2 m2 m

5 m

50 kN100 kN-m

50 kN
1 kN

1 kN

 Solution:  

To analyze the frame we must determine analytical expressions for the moments along each member for the real load and the two
virtual ones. One virtual load is a unit horizontal load at A, and the other a unit vertical one at A
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+100

50x
+

+4

-x

x x

x

-

+

+

50 kN
1 kN

1 kN

4 kN-m100 kN-m 5 kN-m

50 kN 1 kN

1 kN

Element x = 0 M δMv δMh

AB A 0  - x 0
BC B  - 50x  - 2 - x 0
CD C 100 4  - x

Note that moments are considered positive when they produce compression on the inside of the frame. Substitution yields:

Δν δ P




0

L

xδ M


 x( )
M x( )

EIz







d=

1Δν

0

2

xx-
0( )

EI







d

0

2

x2- x-( )
50- x( )

EI







d+

0

5

x4
100

EI







d+=

Δν EI( )

0

2

xx-
0( )

EI







d

0

2

x2- x-( )
50- x( )

EI







d+

0

5

x4
100

EI







d+
7000

3 EI
:=

Δν
7000kN m

3


3 E I
5.833 cm=:=

Similarly for the horizontal displacement

Δh δ P




0

L

xδ M


 x( )
M x( )

EIz







d=
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1Δh

0

2

x0
0( )

EI







d

0

2

x0( )
50- x( )

EI







d+

0

5

xx-
100

EI







d+=

Δh EI( )

0

2

x0
0( )

EI







d

0

2

x0( )
50- x( )

EI







d+

0

5

xx-
100

EI







d+
1250

EI
-:=

Δh
1250- kN m

3


E I
3.125- cm=:=

 13.4 Rotation of a Frame

Determine the rotation of joint C for the frame shown.  E 29000ksi:=  , I 240in
4

:=
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A

B C

D
15'

10'

20'30 k

30 k

3 k/ft

?C

0.05 k
0.05 k

1 k-ft

 Solution:  

In this problem the virtual force is a unit moment applied at joint C, δ Me


 . It will cause an internal moment δ Mi


 .

Element x = 0 M δM
AB A 0 0
BC B 30x - 1.5x2  - 0.05x
CD D 0 0

Note that moments are considered positive when they produce compression on the outside of the frame. Substitution yields:

θC δ Me




0

L

xδ M



M x( )

EIz







d=

1 θC

0

20

x0.05- x( )
30x 1.5x

2
-

EI















d=

θC EI( )

0

20

x0.05- x( )
30x 1.5x

2
-

EI















d
1000

EI
-:=

θC
1000- kip ft

2


E I
0.021- rad=:=

 13.5 Truss Deflection

Determine the vertical deflection of joint 7 in the truss shown  E 30000ksi:=
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15'

4 @ 20'

20k 20k 20k
30k 30k

A=2 i
n

2

2 in2

1 
in

2

2 in2 2 in2 2 in2

2 in 2

2 in22 in2

1 
in

2

1 in
21 

in
21 in 2

1

1

2 2 3 3 4

4

5

5

6

6 7

7

8

8

9

10 11 12 13

1k

 Solution:  

Two analyses are required. One with the real load, and the other using a unit vertical load at joint 7. Results for those analyses are
summarized below. Note that advantage was taken of the symmetric load and structure.

Member
A                  

in2
L                  
ft

Pe                  

kip
δP             
kip

δPPL/A       

k-ft/in2 n
nδPPL/A       

k-ft/in2

1 & 4 2 25 -50 -0.083 518.75 2 1037.5
10 & 13 2 20 40 0.67 268 2 536

11 & 12 2 20 40 0.67 268 2 536
5 & 9 1 15 20 0 0 2 0
6 & 8 1 25 16.7 0.83 346.5 2 693
2 & 3 2 20 -53.3 -1.33 708.9 2 1417.8

7 1 15 0 0 0 1 0
Total 4220.3

Δ δ P




0

L

xδ P



P

A E







d=

1 Δ Σδ Pe



Pe L

A E
=

Δ

4220.3
kip ft

in
2

E
1.688 in=:=

 13.6 Torsional and Flexural Deformation

Determine the vertical deflection at A in the structure shown.  E 30000ksi:= , I 144in
4

:= , G 12000ksi:= , J 288in
4

:=
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5'

5'

5k

10k

A

B

C

1 k

 Solution:  
1. In this problem we have both flexural and torsional deformation. Hence we should determine the internal moment and torsion

 distribution for both the real and the unit virtual load.
2. Then we will use the following relation

δ P


 ΔA xδ M



M

EI







d xδ T



T

GJ







d+=

3. The moment and torsion expressions are given by

Element x = 0 M δM T δT
AB A 10x x 0 0
BC B 15x x 50 5

4. Substituting

δ P


 ΔA xδ M



M

EI







d xδ T



T

GJ







d+=

1 ΔA

0

5

xx
10x

EI







d

0

5

xx
15x

EI







d+

0

5

x5
50

GJ







d+=

ΔA E I, G, J, ( )

0

5

xx
10x

E I







d

0

5

xx
15x

E I







d+

0

5

x5
50

G J







d+
3125

3 E I

1250

G J
+:=

ΔA
3125kip ft

3


3 E I

1250kip ft
3



G J
+ 1.042 in=:=

 13.7 Flexural and Shear Deformations in a Beam

Determine the deflection of a cantilevered beam, of length L, subjected to an end force P due to both flexural and shear
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deformations. Assumed G=0.4E and a square solid beam cross section.

 Solution:  
1. The virtual work equation is

δ P


 Δ
0

L

xδ M


 x( ) dϕ x( )




d

0

L

xδ V


 x( ) γxy x( )




d+=

0

L

xδ M


 x( )
M x( )

EI







d

0

L

xδ V


 x( ) λ
V x( )

GA







d+=

2. The first integral yields for M=Px, and δ M 1 x=

0

L

xδ M


 x( )
M x( )

EI







d
P

EI 0

L

xx
2




d=

P

EI 0

L

xx
2




d
94280057135446.5 N ft

3


EI


3. The second integral represents the contribution of the shearing action to the total internal virtual work and hence to the total
displacement.

4. Both the real shear V and the virtual shear δ V


  are constant along the length of the member, hence

0

L

xδ V


 x( ) λ
V x( )

GA







d
λ

GA 0

L

x1 P( )




d=

λ

GA 0

L

x1 P( )




d
374606093684.841 GPa N ft

GA


5. Since λ 1.2:=  for a square beam; hence

I
h

4

12
=   and  A h

2
=

then

Δ
P L

3 E

12L
2

h
4

9

h
2

+








=
3P L

E h
2



1.33L
2

h
2

1+








=

6. Choosing L 20ft:=  and h 1.5ft:=    (L/h=13.3)

Δ
3P L

E h
2


1.33

20ft

1.5ft






2

 1+








=
3P L

E h
2


237 1+( )=

Thus the flexural deformation is 237 times the shear displacement. This comparison reveals why we normally neglect 
shearing deformation in beams. As the beam get shorter or deeper, or as L/h decreases, the flexural deformation 

decreases relative to the shear displacement. At L/h=5, the flexural deformation has reduced to 1.33 5
2

 33.25= times
the shear displacement.

 13.8 Thermal Effects in a Beam
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Consider the cantilever beam shown. If the beam is a steel, wide flange section, 2 m long and 200 mm deep, what is the angle of
rotation, θ1, at the end of the beam caused by the temperature effect? The original uniform temperature of the beam was 40C.

 ? 1

200 mm
70oC

230 oC

2 m

Virtual forces

δM=1

1

?1

+80oC

dx

df

100 mm

Thermal Gradient

100 mm

Strain

e=a? Tdx=11.7x10-6 (80)dx= 
936x10-6 dx

-80oC

 Solution:  

1. The external vurtual force conforming to the desired real displacement θ1 is a moment δ M


 1=  at the tip of the cantilever,

 producing an external work term of moment times rotation. The internal virtual force system for this cantilever beam is a

 uniform moment δ Mint


 1= .

2. The real internal deformation results from (a) the average beam temperature of 150C, which is 110C above that of the original
 temperature, and (b) the temperature gradient of 160C across the depth of the beam. 
3. The first part of the thermal effect produces only a lengthening of the beam and does not enter into the work equation since the
 virtual loading produces no axial force corresponding to an axial chnge in length of the beam.

4. The second effect (thermal gradient) produces rotation dϕ, and an internal virtual work term of 
0

L

xδ M


 ϕ




d

5. We determine the value of dϕ by considering an extreme fiber thermal strain as shown above. The angular rotation in the length
 dx is the extreme fiber thermal strain divided by half the beam depth.

M

EI

d
2

y

dx
2

=
dθ

dx
=

ε

y
= ϕ=

1 θ1
0

L

xδ M


 ϕ




d=

θ1

0

L

x1
α TB TT-( )

h







d=

θ1

11.7 10
6-


m

m
230 70-( ) 2 m

0.2m
0.01872 rad=:=

6. This example raises the following points
a) The value of θ1 would be the same for any shape of 200 mm deep steel beam that has its neutal axis of bending at 

middepth
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b) Curvature is produced only by thermal gradient and is independent of absolute temperature values.
c) The calculation of rotations by the method of virtual forces is simple and straightforward; the applied virtual force is a 

moment acting at a point where rotation is to be calculated.
d) Internal angular deformation dϕ has been calculated for an effect other than load-induced stresses. This extension of

 the method of virtual forces to treat inelastic displacements is obvious - all we need to know is a method for
 determining the inelastic internal deformations.
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 13.9 Deflection of a Truss

Determine the deflection at node 2 for the truss shown

12'

1
1

3

4

4

7

5

2

3

5

60 k 120 k

6

12' 12'

A=5.0 in2 each; 
E=10x103 ksi 60 120

-117.3-83.8

37.5 52.5
16

.8

-1
6.

8

-45.0

75.0 105.0

A

-0.50

-0.56 -0.56

0.25 0.25

0.
56

0.
56

0.5 0.51.0

-0.54

-1.124
-

1.574

0.45 0.63

0.
22

6

-0
.2

26

 Solution:  

Member
δP             
kip

Pe                  

kip
L                  
ft

A                  

in2
E                  

ksi
δPPL/AE       

1 0.25 37.5 12 5 10 x 103 22.5 x 10-4

2 0.25 52.5 12 5 10 x 103 31.5 x 10-4

3 -0.56 -83.8 13.42 5 10 x 103 125.9 x 10-4

4 0.56 16.8 13.42 5 10 x 103 25.3 x 10-4

5 0.56 -16.8 13.42 5 10 x 103 -25.3 x 10-4

6 -0.56 -117.3 13.42 5 10 x 103 176.6 x 10-4

7 -0.5 -45 12 5 10 x 103 54 x 10-4

Total 410.5 x 10-4

The deflection is thus given by

δ P


 Δ

1

7

n

δ Pe



PL

AE






=

=

Δ 410.5 10
4-

 ft 0.493 in=:=

91 of 159



Structural Analysis
Prof. Victor Saouma

Prepared by Christopher Segura

 13.10 Thermal Deflection of a Truss; I

The truss shown is built such that the lower chords are shielded from the rays of the sun. On a summer day the lower chords are
30F cooler than the rest of the truss members. What is the magnitude of the vertical displacement at joint 2 as a result of this
temperature difference?

 Solution:  
1. The virtual force system remains identical to that of the previous example because the desired displacement component is the
 same.
2. The real internal displacements are made up of the shortening of those members of the truss that are shielded from the sun.
3. Both the bottom chord members 1 and 2 thus shorten by

ΔL α ΔT L=

ΔL 0.0000128
in

in Δ°F






30 Δ°F( ) 12 ft 0.0553 in=:=

4. Then, 

1 Δ δ P


 ΔL=

Δ 0.25 ΔL-( ) 0.25 ΔL-( )+:=
Δ 0.0276- in=

5. The negative sign n the displacement indicates that it is in opposite sense of the displacement; the assumed direction is
 always identical to the direction of the applied virtual force.
6. Note that the same result would be obtained if we had considered the internal displacements to be made up of lengthening of all
 truss members above the bottom chord.
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 13.11 Thermal Deflection of a Truss; II

A six panel highway bridge is constructed with sidewalks outside the trusses so that the bottom chords are shaded. What will be the vertical
deflection component of the bottom chord at the center of the bridge when the temperature of the bottom chord is 40F (ΔT) below that of the

top chord, endposts, and webs? (coefficient of steel thermal expansion is α 0.0000065
1

Δ°F
:=

123

4

5 6

7 8 109 1128'

6@21'

1 k

 Solution:  
1. The deflection is given by

Δ δ P




0

L

xδ P



P

AE







d= δ Pi



Pi Li

AE
= δ Pi


 ΔLi= δ Pi


 α ΔT L=

where ΔL is the temperature change in length of each member, and δ P


  are the member virtual internal forces
2. Taking advantage of symmetry (Note that we ignor members 1-3 because we assumed that they had the reference temperature,
 and all other members are subjected to a relative temperature increase of 40F)

Member
L                  
ft

αΔTL
δP             
kip

δPΔL            

4 35 0.0091 0.625 0.00568
5 21 0.00546 0.75 0.00409
6 21 0.00546 1.13 0.00616
7 0 0 0 0
8 35 0.0091 -0.625 -0.00568
9 28 0.00728 0.5 0.00364
10 35 0.0091 -0.625 -0.00568
11 0 0 0 0

Total 0.00821

3. Hence the total deflection is
Δ 2 0.00821 ft 0.197 in=:=

4. A more efficient solution would have consisted in considering members 1, 2, and 3 only and applying ΔT=-40F, we would obtain
 the same displacement.
5. Note that the forces in members 1, 2, and 3 (-0.75, -0.375, and -0.375 respectively) were not included in the table because the
 corresponding ΔT=0.
6. A simple solution would have ΔT 40- Δ°F:=  in members 1, 2,and 3 thus 
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Member
L                  
ft

αΔTL
δP             
kip

δPΔL            

1 21 -0.00546 -0.75 0.004095
2 21 -0.00546 -0.375 0.0020475
3 21 -0.00546 -0.375 0.0020475

Total 0.00819

Δ 2 0.00819 ft 0.197 in=:=
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 13.12 Truss with Initial Camber

It is desired to provide 3 in. of camber at the center of the truss shown below by fabricating the endposts and top chord members
additionally long. How much should the length of each endpost and each panel of the top chord be increased?

1

32

6 @ 27'

1 k

36'

 Solution:  

1. Assume that eachtop chord is increased 0.1 in.

Member
δPint             

kip
ΔL               
in

δPΔL            

1 0.625 0.1 0.0625
2 0.75 0.1 0.075
3 1.125 0.1 0.1125

Total 0.25
Thus,

2 0.25 in 0.5 in=
2. Since the structure is linear and elastic, the required increase of length for each section will be

3in

0.5in
0.1 in 0.6 in=

3. If we use the practical value of 0.625in
0.625in 0.5 in

0.1in
3.125 in=
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 13.13 Prestressed Conrete Beam with Continuously Variable I

A prestressed concrete beam is made of variable depth for proper location of the straight pretensioning tendon. Determine the midspan

displacement (point c) produced by the dead weight of the girder. The concrete weighs w 23.6
kN

m
3

:=  and has E 25000MPa:= . The beam is

0.25m wide.

0.5 kN0.5 kN

0.5 kN

2.36 kN/m

3.54 kN/m

47.2 kN 47.2 kN
DC

20 m

0.6 m

1.0 m

0.25 m wide

A
BC

 Solution:  

1. We seek an expression for the real moment M. This is accomplished by first determining the reactions and then considering
 the free body diagram.
2. We have the intermediary resultant forces

R1 x( ) 0.25m x 0.6 m w
3.54 kN x

m
:=

R2 x( )
1

2
0.25 m x

0.4m

10m
 x w

0.118 kN x
2



m
2

:=

Hence,

M x( ) 47.2x 3.54x
x

2






- 0.118x
2 x

3






- 47.2 x 0.039- x
3

+ 1.77- x
2

+:=

3. The moment of inertia of the rectangular beam varies continuously and is given, for the left half of the beam, by

I x( )
1

12
b h

3
=

I x( )
1

12
0.25( ) 0.6 0.04x+( )

3
 0.021 0.04 x 0.6+( )

3
:=

4. Thus, the real angle changes produced by the dead load bending are

dϕ
M

EI
dx=

47.2 x 0.039- x
3

+ 1.77- x
2

+

E
1

48






 0.6 0.04x+( )
3



=

5. The virtual force system corresponding to the desired displacement is shown above with δ M



1

2
x=  for the left half of the span. Since the

beam is symmetrical, the virtual work equations can be evaluated for only one half of the beam and the final answer is then obtained by
multiplying the half-beam result by two.
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6. The direct evaluation of the integral ϕδ M







d  is difficult beause of the expression for dϕ. Hence we shall use a numerical procedure,

replacing the xδ M



M

EI












d  with the δ M



M

EI





Δx, where each quantity in the summation is evaluated at the center of the interval Δx

and held constant over the interval length. As Δx becomes very short, the solution approaches the exact answer.
7. An interval length of 1 meter, giving 10 elements in the half length of the beam, is chosen to establish an accurate result.
8. The internal virtual work quantity is then

0

L

2

xδ M


 x( )
M x( )

EI







d  ~ δ M


x( )
M x( )

EI
 Δx



 δ M


 x( )

M x( )

E
0.25

12






h
3



 Δx=
48

E
δ M


x( )

M x( )

h
3

 Δx







=

9. The summation for the 10 elements in the left half of the beam gives

Segment x h h3 M δM MδM/h3

1 0.5 0.62 0.238 23.2 0.25 24
2 1.5 0.66 0.288 66.7 0.75 174
3 2.5 0.7 0.343 106.4 1.25 388
4 3.5 0.74 0.405 150 1.75 648
5 4.5 0.78 0.475 173 2.25 820
6 5.5 0.82 0.551 200 2.75 998
7 6.5 0.86 0.636 222 3.25 1134
8 7.5 0.9 0.729 238 3.75 1224
9 8.5 0.94 0.831 250 4.25 1279
10 9.5 0.98 0.941 256 4.75 1292

Total 7981

10. The SI units should be checked for consistency. Letting the virtual force carry the units of kN, the virtual moment has the units of m-kN,
and the units of the equation

1

kN

m kN( ) m kN( )

MN

m
2

m
4



 m
m

1000
= mm=

11. Then

0

L

x
δ M


 M

EI






d

2
48

25000






 7981 1 mm 30.65 mm=

and the deflection at midspan is
Δc 30.65 mm:=

12. Acceptably accurate results may be obtained with considerably fewer elements (longer intervals Δx). Using four elements with centers at

2, 5, 8, and 10, the δ M



M

EI





Δx is

3 174( ) 3 820( )+ 3 1224( )+ 1 1292( )+ 7946=
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which is only 0.4% lower than the 10 element solution. If we go to two elements, 3 and 8, we obtain a summation of
5 388 5 1224+ 8060= which is 1% high. A one element solution, with x=5m and h=0.8m, gives a summation of 9136
which is 14.4% high and much less accurate than the 2 element solution.

13. Finally, it should be noted that the calculations involved in this example are essentially identical to those necessary in the 
     moment area method.

98 of 159



Structural Analysis
Prof. Victor Saouma

Prepared by Christopher Segura

 14.1 Steel Building Frame Analysis

A small, mass-produced industrial building is to be framed in structural steel with a typical cross as shown below. The engineer is considering
three different designs for the frame: (a) for poor or unknown soil conditions, the foundation for the frame may not be able to develop any
dependable horizontal forces at its bases. In this case the idealized base conditions are a hinge at one of the bases and a roller at the other;
(b) for excellent soil conditions with properly designed foundations, the base of the frame legs will have no tendency to move horizontally, and
the idealized base condition is that of hinges at both points A and D; and (c) a design intermediate to the above cases, with a steel tie member
capable of carrying only tension running between points A and D in the floor of the building. The foundations would not be expected to
provide any horizontal restraint for this latter case, and the hinge-roller details at points A and D would apply. Critical design loads for a frame
of this type are usually the gravity loads (deal load + snow load) and the combination of dead load and wind load. We will restrict our attention
to the first condition, and will use a snow load of S 30psf:=  and an estimated total dead load of D 20psf:= . With frames spaced at 

spacing 15ft:= t on centers along the length of the building, the design load is wtotal spacing S D+( ) 750
lbf

ft
=:= . If the frame is made of

steel beam sections 21 in. deep and weight 62 lb/ft of length (W 21x62), and the member for design (c) is tentatively chosen as a 2 in2 bar,
determine the bending moment digrams for the three designs and discuss the alternate solutions

RDv

12'

40'
b) Hinged support

Roof system

RDh

RAh

RAv
a) Roller support c) Roller with tie

Structure cross section

C
B

AD

Tie member

RDv

RDh

RDh

RDv

RAv

 Solution:  

Structure a This frame is statically determinate since it has three possible unknown external forces acting on it. Final bending
moments are shown below.

15k 15k 15k 15k 15k 15k

69ft.k

c)

150 ft.k 6.93k 6.93k

81ft.k83.3ft.k83.3ft.k

66.7ft.k

81ft.k

b)a)

6.75 k Tension
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Structure b Hinging both legs of the frame results in another unknown force, making the structure statically indeterminate to the first degree
(one redundant).
1. A lateral release at point A is chosen, with the redundant shearing force R1. The displacement Δ1 in the primary structure, as a result of the
real loading, shown in the figure below, is computed by virtual work.

2. The virtual force system produces virtual bending moment δ M


 , which is uniform across the top member of the frame.

Q=1

M=1.x
M=1.x

dM=1.x

M=w/2(Lx-x2)

x

1

c) Real load for determining f11

d) Moments produced by virtual forces and unit redundant

? 1

f11

b) Virtual forces

x

dM=M=12

dM=1.x

a) Moment caused by actual load on primary 
structure

The virtual moment acting through the real angle changes given the internal work term

1 Δ1

0

40

xδ M



M

EI







d=

3. Equating this to the external virtual work of 1 Δ1 , we have

1 Δ1

0

40

x12

1

2
0.75 40x x

2
-( )

EI








d kip ft
3

=

Δ1 EI( )

0

40

x12

1

2
0.75 40x x

2
-( )

EI








d kip ft
3


48000 ft

3
 kip

EI
:=

4. The equation of consistent displacement is Δ1 f11 R1+ 0= . The flexibility coefficient f11 is computed by applying a unit horizontal force at

the release and determining the displacement at the same point.
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5. It is seen that the real loading and the virtual loading are identical for the calculations, and

1 f11 2

0

12

xx
x

EI







d

0

20

x12
12

EI







d+










=

or

f11 EI( ) 2

0

12

xx
x

EI







d

0

20

x12
12

EI







d+










kip ft
3


6912 ft

3
 kip

EI
:=

6. solving for R1
1

EI
48000 6912R1+( ) 0=

or 

R1
48000

6912
kip 6.944 kip=:=

Structure c The frame with the horizontal tie between the points A and D has three unknown external forces. However, the structure is
statically indeterminate to the first degree since the tie member provides one degree of internal redundancy.
1. The logical release to choose is a longintudinal release in the tie member, with the associated longitudinal displacement and axial force.
2. The primary structure is the frame with the tie member released.

dM=1.x

f11

Release in tie member

? 1Q

1k

dQ=1

M=1.x M=1.x

dM=1.x

dM=M=12

a) Primary structure c) Virtual forces

e) Moments produced by virtual forces and unit 
redundants

b) Actual loading on primary structure

d) Real loading for computing f11

The compatability equation is based on the fact that the displacement at the release must be zero; that is, relative displacement of the two
sections of the tie at the point of release must be zero, or

Δ1 f11 R1+ 0=

where
Δ1 = displacement at release 1 in the primary structure, produced by the loading
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f11 = relative displacement at release 1 for a unit axial force in the member

R1 = force in the tie member in the original structure

3. Virtual work is used to determine both displacement terms.
4. The value of Δ1 is identical to the displacement for structure (b) because the tie member has no forces (and consequently no deformation)
in the primary structure. Thus,

Δ1
48000kip ft

3


30000ksi 1327 in
4

2.083 in=:=

5. The flexibility coefficient f11 is composed of two separate effects: a flexural displacement due to the flexibility of the frame, and the axial

displacement of the stressed tie member. The virtual and real loadins for this calculation are shown in the previous figure.

1 f11 2

0

12

xx
x

EI







d

0

20

x12
12

EI







d+










δ P



PL

EA
+=

1f11
6912

EI

1 1 40

EA
+=

f11
6912kip ft

3


30000ksi 1327 in
4

40 kip ft

30000ksi 2 in
2

+








1

kip
 0.308

in

kip
=:=

6. The equation of consistent deformation is
Δ1 f11 R1+ 0=

or

R1

Δ1-

f11
6.764- kip=:=

7. The two displacement terms in the equation must carry opposite signs to account for their differences in direction.

Comments The bending moment in the frame differes only slightly from that of structure (b). In other words, the tie member has such high
axial stiffness that it provides nearly as much restraint as the foundation of structure (b). Frames with tie members are used widely in industrial
buildings. A lesson to be learned here is that it is easy to provide high stiffness through an axially loaded member.
The maximum moment in frames (b) and (c) is about 55% of the maximum moment in frame (a). This effect of continuity and redundancy is
typical - the positive bending moments in the members are lowered while the joint moments are increased and a more economical design
can be realized. Finally, we should notice that the vertical reactions at the bases of the columns do not change with the degree of horizontal
restraint at the bases.
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 14.2 Analysis of Irregular Building Frame

The structural steel frame for the Church of the Holy Spirit, Penfield, New York is shown below. In this example we will discuss the
idealization of the structure and then determine the forces and bending moments acting on the frame.

E

A G W14-30

W30-108

61'-5" 21'-8"

D
W10-49

C

B
E

10'

F
W4-13

a) Geometry of frame

8'

15
'

8'

A

C D

B

c) Primary frame with angular 
release at B

A
B

C D

Eb) Idealized frame

dM=1

f) Reactions and moment for frame

M=7.86x2

23.8 k

w=0.8k/ft

5.5 k

35.2 k

47.1 k.ft

354 k.ft

w=0.72k/ft

d) Moment due to actual loading on structure

D

e) Moment dM due to dQ=1 at release 1

M=x/61.42

d

M=24.6x-0.4x2

dM=x/21.33

Q=1

A B

C

D
C

 Solution:  
1. The two main horizontal members of the frame are supported at points A and D by masonry walls.
2. The connection used at these points is not intended to transmit axial forces from the frame to the wall; accordingly, the axial forces in the
horizontal members are assumed to be zero and the joints at A and D are idealized as rollers that transmit vertical forces only. 
3. The base joint E is designed to resist both horizontal and vertical loads, but not moment, and is assumed to be a hinge.
4. Finally, joints B and C are designed to provide continuity and will be taken as rigid; that is, the angles of intersection of the members at the
joint do not change with applied loading.
5. The frame is simplified for analysis by removing the small 4 in. wide flange members EF and FG and replacing their load effect by applying
the roof load with acts on EF directly to the segment AG.
6. the idealized frame is shown above.
7. The dead load on the higher portion of the frame is pAB 25psf:=  times the frame spacing of spacing 13.33ft:= , or 

wAB pAB spacing 333
lbf

ft
=:=   along the frame.

8. The dead load on CD is less beacuse the weight of the frame member is substantially smaller, and the dead load is about pCD 19psf:= ,

or wCD pCD spacing 253
lbf

ft
=:= .

9. Snow load is S 35psf:=  over both areas, or wSnow S spacing 467
lbf

ft
=:= .

10. The total loads are then

Member AB:  wtotAB wAB wSnow+ 0.8
kip

ft
=:=

Member CD:  wtotCd wCD wSnow+ 0.72
kip

ft
=:=
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11. the frame has four unknown reaction components and therefore has one redundant. Although several different releases are possible, we
choose an angular (bending) release at point B.
12. The resulting primary structure is shown as (c) in the figure above, where the redundant quantitity R1 is the bending moment at point B.
13. The equation of compatability is

θ1 f11 M1+ 0=

where θ1 is the relative angular rotation corresponding to release 1 as produced by the actual loading, and f11 is the
flexibility coefficient for a unit moment acting at the release.

14. From virtual work we have

1 θ1 xδ M



M

EI







d=

and

1 f11 xδ M



M

EI







d=

where δ M


  and M are defined in (e) in the figure above.
15. Then

θ1 EIAB EICD, ( ) 1

EIAB
0

61.42

x
x

61.42
24.6x 0.4x

2
-( )






d
1

EICD
0

21.33

x
x

21.33
7.68x 0.36x

2
-( )






d+










:=

θ1 EIAB EICD, ( ) 291.31658667

EICD

7763.6329512000000002

EIAB
+

16. With IAB 4470in
4

:=  and ICD 290in
4

:=

θ1 E( )
291

E ICD

7764

E IAB
+








in
4


118411

43210 E
:=

17. Similarly

f11 EIAB EICD, EIBC, ( ) 1

EIAB
0

61.42

x
x

61.42






2



d
1

EICD
0

21.33

x
x

21.33






2



d+
1

EIBC 0

8

x1( )
2




d+:=

f11 EIAB EICD, EIBC, ( ) 8

EIBC

20.473

EIAB
+

7.11

EICD
+

18. With IBC 273in
4

:=

f11 E( )
8

E IBC

20.473

E IAB
+

7.11

E ICD
+








in
4

 simplify
0.058

E
:=

Note that the numerators of θ
1
 and f

11
 have units of 

kip ft
2



in
4

19. Applying the compatability equation,
118411

43210 E

0.058

E
M1+ 0=

and the bending moment at point B is 
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M1

118411

43210 E
-

0.058

E

kip ft 47.248- kip ft=:=

The reactions and moments in the structure are given in (f) in the figure above.
20. Once we have M1, the structure is by now statically determinate and from statics we can complete the shear and moment diagrams.
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 14.3 Redundant Truss Analysis

Determine the bar forces in the steel truss shown below using the flexibility method. The truss is part of a supporting tower for a
tank, and the 20 kN horizontal load is produced by wind loading on the tank.

a) Original Structure

0

0

c) Primary structure 
subjected to real load

Release

b) Primary structure

0

? 1q

-28.28

A
B

DC

3m

3m

20kN

20

20

20
20

-10

20

+14.1
4

20

20

20

20

20

f) Final results

+10

+10

-10

-14.14

-0.707

-0
.7

07
+1

1

f
11

-0.707

-0
.7

07

e) Action of unit force 
corresponding to redundant R1

d) Virtual load on 
primary structure

-0.707

-0
.7

07

-0.707

-0
.7

07

1

 Solution:  

1. Applying the criteria for indeterminancy 2 4 8= equations, 6 members + 3 reactions  =>  one degree of indeterminancy. A logitudnial
release in any of the six bars may be chosen.
2. Because the truss members carry only axial load, the longitudinal release is identical to actually cutting the member and removing its axial
force capability from the truss.
3. In analyzing the trusses with double diaganols it is both convenient and customary to select the release in one of the diganol members
because the resulting primary structure will be the conventional truss to which we are accustomed.
4. Choosing the diagonal member BC for the release, we cut it and remove its axial stiffness from the structure. The primary structure is
shown in (b) in the figure above.
5. The analysis problem reduces to applying an equation of compatability to the changes in length of the release member. The relative
displacement Δ1 of the two cut ends of member BC, as producued by the real loading, is shown in (d) in the figure above.
6. The displacement is always measured along the length of the redundant member, and since the redundant is unstressed at this stage of
the analysis, the displacement Δ1 is equal to the relative displacement of joint B with respect to joint C.
7. This displacement must be eliminated by the relative displacements of the cut ends of member BC when the redundant force is acting on
the member. The latter displacement is written in terms of the axial flexibility coefficient f11, and the desired equation of consistent deformation
is

Δ1 f11 R1+ 0=  

8. The quantity Δ1 is given by

1 Δ1 δ P



PL

AE






=

where δ P


  and P are given in (d) and (e) in the figure above, respectively 
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9. Similarly,

f11 δ P



P


L

AE









=

10. Evaluating these summations in tabular form:

Member
P                  

kN
δP             
kN

L                  
m

δPPL δPPL       

AB 0 -0.707 3 0 1.5
BD 0 -0.707 3 0 1.5

CD 20 -0.707 3 -42.42 1.5
AC 20 -0.707 3 -42.42 1.5
AD -28.28 1 4.242 -119.96 4.242
BC 0 1 4.242 0 4.242

Total -204.8 14.484

11. Since A = constant for each member

Δ1 δ P



PL

AE






=
204.8-

AE
kN

2
 m= and f11

14.484

AE
kN

2
 m=

then
1

AE
204.8- 14.484 R1+( ) 0=

12. the solution for the redundant force value is R1
204.8

14.484
kN 14.14 kN=:=

13. The final values for forces in each of the truss members are given by superimposing the forces due to the redundant and the forces due
to the real loading.
14. The real loading forces are shown in (c) in the figure above, while the redundant force effect is computed by multiplying the member
forces in (d) in the figure above by 2.83, the value of the redundant.

Member
δP             
kN

R1δP             
kN

P                 
kN

Ptotal                

kN
AB -0.707 -10 0 -10
BD -0.707 -10 0 -10
CD -0.707 -10 20 10
AC -0.707 -10 20 10
AD 1 14.14 -28.28 -14.14
BC 1 14.14 0 14.14

15. It is informative to compare the member forces from this solution to the approximate analysis obtained by assuming that the
double diagonals each carry half the total shear in the panel. The comparison is given in the figure below
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b) Approximate analysis

+14
.14

20 20

20
+

10

a) Exact analysis

20

20

2020

+10

+1
0

-10

-14.14

-10

-1
0

-1
0

+10
+14

.14

-14.14

20

It reveals that the approximate analysis is the same as the exact analysis for this particular truss. The reason for this is that the
stiffness provided by each of the diagonal members (against "shear" deformation of the rectangular panel) is the same, and
therefore they each carry an equal portion of the total shear accross the panel.
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 14.4 Truss with Two Redundants

Another panel with a second redundant member is added to the truss of the preceeding example

 Solution:  

1. The twice redundant truss is converted to a determinate primary structure by releasing two members of the truss; we choose
two diagonals (DB and BF).
2. Releasing both diagonals in a single panel, such as members AE and DB, is inadmissible since it leads to an unstable truss
form.
3. The member forces and required displacements for the real loading and for the two redundant forces in members DB and BF are
given in the figure below.

4k
15k

10'

2@10'

C

D
E

F

BA 15

a) Original structure; all A=4 in2

c) Action to unit force R1=1

-0
.7

07

1k

4

4

15
-5.82 -3.56

-1
.8

2

-3
.5

6

5.947.68

-5
.3

8

-5
.2

0

2.58

+5
.0

5

-8.38

e) Final results

4

4

9.5

0
5.5

b) Primary structure subjected to 
real load

-9.5

+13
.43

-9
.5

-1
5

4

-5
.5

-7.78

-9.5
-0.707

+1

-0
.7

07

-0.707

? 2

f11

-f21

? 1

d) Action of unit force R2=1

-0
.7

07

-0.707

-0
.7

07

-0.707

-f12

f22

1k

15k

4. Although the rela loading ordinarily stresses all members of the entire truss, we see that the unit forces corresponding to the redundant
stress only those members in the panel that contain the redundant; all other bar forces are zero.
5. Recognizing this fact enables us to solve the double diagonal truss problem more rapidly than a frame with multiple redundants.
6. The virtual work equations for computing the six required displacements (two due to load and four flexibilities) are

1 Δ1 δ P1



PL

AE






=

1 Δ2 δ P2



PL

AE






=

1 f11 δ P1



P1


L

AE









=

1 f21 δ P2



P1


L

AE









=

f12 f21=  by reciporocal theorem

1 f22 δ P2



P2


L

AE









=
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7. If we assume tension in a truss member as positive, use tensile unit loads when computing the flexibility coeeficients
corresponding to the redundants, and let all displacement terms carry their own signs, then in the for the redundants a positive
value of force indicates tension while a negative value menas the member is in compression.
8. The calculation of f22 involves only the six members in the left panel of the truss; f21 invloves only member BE.

9. The simple used for performing the displacement analyses, as summarized in tabular form, leads one quickly to the
compatability equations which state that the cut ends of both redundant members must match (there can be no gaps or overlaps
of members in the actual structure).

Δ1 Δ1 f11 f21 f22

δP1PL       δP2PL       δP1P1L       δP2P1L       δP2P2L       
AB -9.5 -0.707 0 806 0 60 0 0
BC -9.5 0 -0.707 0 806 0 0 60
CF -9.5 0 -0.707 0 806 0 0 60
EF 0 0 -0.707 0 0 0 0 60
DE 4 -0.707 0 -340 0 60 0 0
AD -5.5 -0.707 0 466 0 60 0 0
AE 7.78 1 0 1322 0 170 0 0
BE -15 -0.707 -0.707 1272 1272 60 60 60
CE 13.43 0 1 0 2280 0 0 170
BD 0 1 0 0 0 170 0 0
BF 0 0 1 0 0 0 0 170

Total 3528 5164 580 60 580

Member P                  P1             P2

10. The equations are
Δ1 f11 R1+ f12 R2+ 0=

Δ2 f21 R1+ f22 R2+ 0=

or

1

AE

580

60

60

580










R1

R2








1.-

AE

3528

5164









=

11. The final set of forces in the truss is obtained by adding up, for each member, the three separate effects. In terms of the forces shown in

the figure above, the force in any member is given by F P R1 P1


+ R2 P2


+=

AB -9.5 -0.707 0 3.676 0 -5.82
BC -9.5 0 -0.707 0 5.925 -3.56
CF -9.5 0 -0.707 0 5.925 -3.56
EF 0 0 -0.707 0 5.925 5.94
DE 4 -0.707 0 3.676 0 7.68
AD -5.5 -0.707 0 3.676 0 -1.82
AE 7.78 1 0 -5.2 0 2.58
BE -15 -0.707 -0.707 3.676 5.925 -5.38
CE 13.43 0 1 0 -8.38 5.05
BD 0 1 0 -5.2 0 -5.2
BF 0 0 1 0 -8.38 -8.38

R2P2 Ptotal             Member P                  P1             P2 R1P1             
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 14.5 Analysis of Nonprismatic Members

The nonprismatic beam is loaded with an end moment MA at its hinged end A. Determine the moment induced at the fixed end B

by this loading.

f) Moment diagram for A hinged, B fixed

c) Primary structure
g) Beam with end A fixed

b) Elastic curve

0.40L

e) Rotations produced by a unit value of redundant R1a) Beam with end B fixed

R1=1

BA 2II

d) Rotations produced by MA

?B

0.286L

h) Moment diagram for A fixed, B hinged

L/2 L/2

MA ?A MB

MA

MA

MB

MB

MB=2/3MA

MA=2/5MB

L
-
8EI

3L

16EI

AM L
-

8EIA5M L
-

16EI

MA

 Solution:  
1. The beam has one redundant force; we select MB as the redundant R1, and obtain the primary structure shown in the figure above. It can
be shown that the flexibility coefficients for unit moments applied at each end are those in (d) and (e) in the figure above, with a sing
convention of counterclockwise as positive.
2. The equation of consistent displacement at B is

MA- L

8E I

3

16

L

E I
 R1+ 0=

and the value of MB is

MB R1=
2

3
MA=

3. The resulting moment diagram is given in (f). We note that the inflection point is 0.4L from the fixed end. If the beam had a uniform value of I
across its span, the inflection point would be L/3 from the fixed end. Thus the inflection point shifts toward the section of reduced stiffness.
4. The end rotation θA is given by

θA
5

16

MA L

E I


1

8

2

3
MA






L

E I
-=

11

48

MA L

E I
=

5. The ratio of the applied end moment to rotation 
MA

θA
 is called the rotational stiffness and is
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MA

θA

48

11

E I

L
=

6. If we now reverse the boundary conditions, making A fixed and B hinged, and repeat the analysis for an applied moment MB, the resulting
moment diagram will be as given in (h) in the above figure. The moment induced at end A is only 40% of the applied end moment MB. The
inflection point is 0.286L from the fixed end A. The corresponding end rotation θB in (g) in the figure above is

θB
11

80

MB L

E I
=

7. The rotational stiffness 
MB

θB
 is

MA

θA

80

11

E I

L
=

8. A careful comparison of the rotational stiffnesses, and of the moment diagrams in (f) and (h) in the figure above, illustrate the fact that
flexural sections of increased stiffness attract more moment, and that inflection points always shift in the direction of decreased stiffness.
9. The approach illustrated here may be used to determine moments and end rotations in any type of non-prismatic member. The end
rotations need in the force analysis may be calculated by either virtual work or moment area (or by other methods). Complex variations in EI
are handles by numerical integration of the virtual work equation or by approximating the resultant M/EI area and their locations in the
moment area method.
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 14.6 Fixed End Moments for Nonprismatic Members

The beam of the previous example

 Solution:  
1. The beam has two redundant forces and we select MA and MB. Releasing these redundants, R1 and R2, we obtain the primary sturcture.
2. The equations of consistent deformations are

Δ1 f11 R1+ f12 R2+ 0=

Δ2 f21 R1+ f22 R2+ 0=

where  R1 is MA and R2 is MB. 
3. The values of Δ1 and Δ2, the end rotations produced by the real loading on the primary structure, can be computed by the virtual work
method.
4. The flexibility coefficients are also separately derived (not yet in these notes)
5. We define counterclockwise end moments and rotations as positive and obtain

L

E I

5

16

1-

8

1-

8

3

16














R1

R1








w L

3


E I

0.352-

0.0273









=

from which

R1 MA= 0.0742w L
2

=

R2 MB= 0.0961- w L
2

=

6. The stiffer end of the beam attracts 30% more than the flexible end.

7. For a prismatic beam with constant I, the fixed end moments are equal in magnitude (MA MB-=
w L

2


12
= ) and intermediate in value

between the two end moments determiend above.
8. Fixed end moments are an essential part of indeterminate analysis based on the displacement (stiffness) method and will be used
exclusively in the Moment Distribution method.
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 14.7 Rectangular Frame; External Load

EIC

EIB QC2

QC1

B

D

L

h

QB C

A

 Solution:  

1. The structure is statically indeterminate to the third degree, and the displacements (flexibility terms) are shown in the figure
above.
2. In order to evaluate the 9 flexibility terms, we refer tot he table.

2 k 5 k

Release 3Release 2Release 1

1k1k

10
 k

.f
t

1 ft.k

f33

f13

f23
f21

f31

f11? 3

? 1

? 2

2h+5L-10

5L-10
1

L

h

f32

f12

f22
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3. Substituting h 10ft:= , L 20ft:= , and EIB EIC= EI= , the flexibility matrix then becomes

f
1

EI

2667

3000

300-

3000

6667

400-

300-

400-

40











=

and the vector of displacements for the primary structure is

Δ
1

EI

12833-

31333-

1800











=

where the units are kips and feet.
4. The inverse of the flexibility matrix is

f
1-

10
3-

EI

2.4

0

18

0

0.375

3.75

18

3.75

197.5











=

5. Hence the reactions are determined from
R1

R2

R3













10
3-

EI

2.4

0

18

0

0.375

3.75

18

3.75

197.5












1

EI

12833-

31333-

1800
























1.601

5-

7.007











:=

R1

R2

R3













1.6

5-

7











=
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 14.8 Frame with Temperature and Support Displacements

The single bay frame, of the previous example, has a height h 10ft:=  and span L 20ft:=  and its two supportsrigidly connected and is
constructed of reinforced concrete. It supports a roof and wall partitions in such a manner that linear temperature variation occurs across the
depth of the frame members when inside and outside temperatures differ. Assume the member depth is constant at 1 ft, and that the
structure was built with fixed bases A and D at a temperature of 85F. The temperature is now 70F inside and 20F outside. We wish to
determine the reactions at D under these conditions. Assume that the coefficient of linear expansion of reinforced concrete is 

α 0.0000055
1

Δ°F
:= .

 Solution:  

1. Our analysis proceeds as before, with the [D] vector interpreted appropriately. The three releases shown in the previous example, will be
used.
2. The first stage in the analysis is the computation of the relative displacements Δ1Δ, Δ2Δ, Δ3Δ, of the primary structure caused by temperature
effects. These diaplcements are caused by two effects: axial shortening of the members because of the drop in average temperature (a
middepth of the members), and curvature of the members because of the temperature gradient.
3. In the following discussion the contributions to the displacements due to the axial strain are denoted with a single prime (') and those due to
curvature by a double prime (").
4. Consider the axial strain first. A unit length of frame member shortens as a result of the temperature decrease from 85F to 45F at the
midepth of the member. the strain is therefore

αΔT α 40 Δ°F 0.00022=:=
5. The effect of axial strain on the relative displacements needs little analysis. The horizontal member shortens by an amount 
αΔT 20 ft 0.0044 ft= . The shortening of the vertical members results in no relative displacement in the vertical direction. No rotation occurs.
6. We therefore have Δ'1Δ αΔT- 20 ft 0.0044- ft=:= , Δ'2Δ 0ft:= , and Δ'3Δ 0rad:=

7. The effect of curvature must also be considered. A frame element of length dx undergoes an angular strain as a result of the temperature
gradient. The change in length at an extreme fiber is

ε dx( ) α 25 Δ°F dx 0.0001375 dx:=
8. With the resulting real rotation of the cross section

dϕ dx( )
ε dx( )

0.5
rad 0.000275 dx rad:=

9. The relative displacements of the primary structure at D are found by the virtual force method.

10. A virtual force δ Q


  is applied in the direction of the desired displacement and the resulting moment diagram δ M


  determined.
11. The virtual work equation

δ Q


 Δ ϕδ M







d=

is used to obtain each of the desired displacements at D.
12. The results, which you should verify, are

Δ''1 0.0828ft:=

Δ''2 0.1104ft:=

Δ''3 0.01104- rad:=

13. Combining the effects of axial and rotational strain, we have
Δ1 Δ'1Δ Δ''1+ 0.0784 ft=:=

Δ2 Δ'2Δ Δ''2+ 0.1104 ft=:=

Δ3 Δ'3Δ Δ''3+ 0.01104- rad=:=

14. We now compute the reduntants caused by temperature effects

R f
1-

Δ-( )=
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R1

R2

R3













10
3-

EI 18 3.75 197.5( )

0.0784-

0.1104-

0.01104











=
0.0106

0.355









10
3-

 EI=

where the units are kips and feet.
15. You should construct the moment diagram for the structure using the values of the redundant found in the analysis.
16. Notice the stiffness term EI does not cancel out in this case. Internal forces and reactions in a statically indeterminate subject to effects
other than loads (such as temperature) are dependent on the actual stiffnesses of the structure.
17. The effects of axial strain caused by forces in the members have been neglected in this analsis. This is usual for low frames where
bending strain dominates behavior. To illustrate the significance of this assumption, consider member BC. We have found 

R1 10.6 10
6-


EI

EA
= . The tension in BC has this same value, resulting in a strain for the member of 10.6 10

6-


EI

EA
  .For a rectangular

member, 
I

A

b d
3



12 bd
=

d
2

12
= . In our case d=1ft, therefore the axial strain is 10.6 10

6-
 0.0833( ) 8.83 10

7-
= , which is several orders of

magnitude smaller than the temperature strain computed for the same member. We may therefore rest assured that neglecting axial strain
caused by forces does not affect the values of the redundants in a significant manner for this structure.
18. Now considert the effects of foundation movement on the same structure. The intermediate frame behavior depends on a structure that
we did not design: the earth. The earth is an essential part of nearly all structures, and we must understand the effects of foundation behavior
on structural behavior. for the purposes of this example, assume that a foundation has revealed the possibility of a clockwise rotation of the
support at D of 0.001 radians and a downward movement of the support at D of 0.12 ft. We wish to evaluate the redundants R1, R2, and R3

caused by this foundation movement.
19. No analysis is needed to determine the values of Δ1Δ, Δ2Δ, and Δ3Δ for the solution of the redundants. These displacements are found
directly from the support movements, with proper consideration, of the originally chosen sign convention which defined the positive direction
of the relative displacements. From the given support displacements, we find Δ1Δ 0:= , Δ2Δ 0.12ft:= , and Δ3Δ 0.001rad:= . Can you

evaluate these quantities for a casr in which the displacements occured at A instead of D?
20. The values of the redundants is given by

R f
1-

Δ-( )=
R1

R2

R3













10
3-

EI 18 3.75 197.5( )
0.12-

0.001









=
18

252.5-








10
3-

 EI=

with units in kips and feet.
21. A moment diagram may now be constructed, and other internal force quantities computed from the now known values of the redundants.
The redundants have been evaluated separately for effects of temperature and foundation settlement. These effects may be combined with
those due to loading using the principle of superposition.
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 14.9 Braced Bent with Loads and Temperature Change

The struss shown below represents an internal braced bent in an enclosed shed, with lateral loads of 20 kN at the panel points. A
temperature drop of 30C may occur on the other members (members 1-2, 2-3, 3-4, 4-5, and 5-6). We wish to analyze the truss for
loading and for temperature effects.

 Solution:  

1. The first step in the analysis is the definition of the two redundants. The choice of forces in diagonals 2-4 and 1-5 as redundants facilitates
the computations because some of the load effects are easy to analyze.
2. The computations are organized in tabular form in Table ??. The first column gives the force in each bar caused by a unit load (1 kN)

corresponding to release 1. These are denoted p
i

 and also represent the bar force 
q1


δ Q1



 caused by a virtual forceδ Q1


  applied at the same

location. Column 3 lists the same quantitiy for a unit load and for a virutal force δ Q2


  applied at release 2. These three columns constitute a

record of the truss analysis needed for this problem.

7.76

4.
85

2.
91

2.
91

2.91

4.
85

4.85

20kN

20kN 4

L=3m 

L=3m 

2

1 6

5

3

R2

R1

-9.0

-18.5

-7.5

39
.4

12
.5

-7
.5

-4
1.

4

-17.6 10
.7

-26.2

30
.3

-6
.8

7
-4

.1
1

Verticals: 500 mm2 ; Webs: 250 mm2; E=200,000 N/mm2; a=1.0x10-5/ oC

-6.87
-4.11

c) Forces due to lateral load
d) Forces due to 
temperature dropb) Redundant forcesa) Structure

3. Column 4 gives the value of L/EA for each bar in terms of Lc/EAc of the vertical members. This is useful because the term L/EA cancels out
in some of the calculations.
4. The method of virtual work is applied directly to compute the displacements Δ1Q and Δ2Q corresponding to the releases and caused by the

actual loads. Apply a virtual force δ Q1


  at release 1. The internal virtual forces q1


 are found in column 2. The internal virtual work q1


Δl  is

found in column 5 as the product of columns 1, 2 and 4. The summation of column 5 is Δ1q 122.42-
Lc

EAc
= . Similarly, column 6 is the

product of columns 1, 3, and 4, giving Δ2q 273.12-
Lc

EAc
= .

5. The same method is used to compute the flexibilities. In this case, the real loading is a unit load corresponding to release 1 leading to f11
and f21, and then to release 2 leading to f12 and f22. Column 7 shows the computation for f11. It is the product of column 2, representing force

due to the real unit load with column 2 representing force due to a virtual force δ Q1


  at the same location (release 1) multiplied by column 4 to

include the Lc/EAc term. Column 8 derives from columns 2, 3, and 4 and leads to f21. Columns 9 and 10 are the computations for the
remaining flexibilities.
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6. We have assumed that a temperature drop of 30C occurs in the outer members. The corresponding length changes are found in column
11. Again using the virtual work method, column 12 tabulates the internal virtual work of th virtual forces through displacements Δl where for
each bar,  Δl αlΔT= . Column 12 is therefore the product of columsn 2 and 11. The summation of the elements of column 12 is the
displacement Δl  corresponding to release 1. Column 13 repeats this process for Δ2 corresponding to release 2.
7. The tabulated information provides the necessary terms for a matrix solution of the problem. We have

f
8.66

1

1

8.66









Lc

EAc
=

Δq
122.42-

273.12-








Lc

EAc
=

ΔΔ
6.36

4.24









10
4-

 Lc=  

therefore

f
1- 0.117

0.0134-

0.0134-

0.117









EAc

Lc
=

8. The redundant forces due to the applied load are

R f
1-

ΔQ-( )=

R 0.0134- 0.117( )
EAc

Lc


122.42

273.12










Lc

EAc
=

10.66

30.32









=

9. Thus R1 10.66kN= , R2 30.32kN=

10. The redundant forces due to the temperature drop are R f
1-

ΔΔ-( )=

R 0.0134- 0.117( )
EAc

Lc


6.36-

4.24-








 10
4-

 Lc=
6.87-

4.11-








10
5-

 EAc=

11. Thus with E 200
kN

mm
2

:= , Ac 500mm
2

:=

R1 6.87- 10
5-

 E Ac 6.87- kN=:=

R2 4.11- 10
5-

 E Ac 4.11- kN=:=

12. Using the redundant forces from each of these analyses, the remainder of the bar forces are computed by simple equilibrium. Table ??
contains such computations. The bar forces in any bar is the force in column 1 added to that in column 2 multiplied by R1 plus that is column 3
multiplied by R2. This follows from the fact that columns 2 and 3 are bar forces caused by a force of unitiy corresponding to each of the
redundants. The results of the calcultations are shown for the applied loading and for the temperature drop. The forces caused by the
temperature drop are similar in magnitude to those caused by wind load in this example. Temperature differences, shrinkage, support
settlement, or tolerance errors can cause important effects in statically indeterminate structures.
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 15.1 Approximate Analysis of a Frame Subjected to Vertical and Horizontal Loads

Draw the shear and moment diagrams for the following frame.

14'

20' 30' 24'

16'

15 k

30 k

0.25 k/ft

0.50 k/ft

20' 30' 24'

16'1 2

8765

43

141312

11109

 Solution:  

The analysis should be conducted in conjunction with the free body diagram shown below.
Vertical Loads

0.56 0.7 0.45 0.81

4.5 5.6 3.6 6.5

4.5 5.6 3.6 6.5

0.64 0.8 0.930.51

4.5 5.6 3.6 3.6

5.64.5 3.6 6.5

9.
0

20
.2

20
.2

13
.09.

0

13
.0

0.64

4.
5

10
.1

6.
5

10
.14.

5

6.
5

7.
5

7.
5 6.
0

6.
0

2.
5

2.
5

3.
75

3.
75

0.8 0.51 0.93

5.
0

5.
0

3.
0

3.
0

0.56 0.7 0.45 0.81
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Gravity Loads

w12 0.25
kip

ft
:= w13 w12 0.25

kip

ft
=:= w14 w12 0.25

kip

ft
=:=

w9 0.5
kip

ft
:= w10 w9 0.5

kip

ft
=:= w11 w9 0.5

kip

ft
=:=

Approximate Equations

Mleft w L, ( ) 0.045- w L
2

:= Maximum negative moment at girder end

Mcent w L, ( ) 0.08 w L
2

:= Maximum positive moment

1. Top Girder Moments
M12lft Mleft w12 20ft, ( ) 4.5- kip ft=:=

M12cnt Mcent w12 20ft, ( ) 8 kip ft=:=

M12rgt M12lft 4.5- kip ft=:=

M13lft Mleft w13 30ft, ( ) 10.125- kip ft=:=

M13cnt Mcent w13 30ft, ( ) 18 kip ft=:=

M13rgt M13lft 10.125- kip ft=:=

M14lft Mleft w14 24ft, ( ) 6.48- kip ft=:=

M14cnt Mcent w14 24ft, ( ) 11.52 kip ft=:=

M14rgt M14lft 6.48- kip ft=:=

2. Bottom Girder Moments
M9lft Mleft w9 20ft, ( ) 9- kip ft=:=

M9cnt Mcent w9 20ft, ( ) 16 kip ft=:=

M9rgt M9lft 9- kip ft=:=

M10lft Mleft w10 30ft, ( ) 20.25- kip ft=:=

M10cnt Mcent w10 30ft, ( ) 36 kip ft=:=

M10rgt M10lft 20.25- kip ft=:=

M11lft Mleft w11 24ft, ( ) 12.96- kip ft=:=

M11cnt Mcent w11 24ft, ( ) 23.04 kip ft=:=

M11rgt M11lft 12.96- kip ft=:=

3. Top Column Moments
M5top M12lft 4.5- kip ft=:=

M5bot M5top- 4.5 kip ft=:=

M6top M12rgt- M13lft+ 5.625- kip ft=:=

M6bot M6top- 5.625 kip ft=:=

M7top M13rgt- M14lft+ 3.645 kip ft=:=

M7bot M7top- 3.645- kip ft=:=

M8top M14rgt- 6.48 kip ft=:=

M8bot M8top- 6.48- kip ft=:=
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4. Bottom Column Moments
M1top M5bot M9lft+ 4.5- kip ft=:=

M1bot M1top- 4.5 kip ft=:=

M2top M6bot M9rgt- M10lft+ 5.625- kip ft=:=

M2bot M2top- 5.625 kip ft=:=

M3top M7bot M10rgt- M11lft+ 3.645 kip ft=:=

M3bot M3top- 3.645- kip ft=:=

M4top M8bot M11rgt- 6.48 kip ft=:=

M4bot M4top- 6.48- kip ft=:=

14'

20' 30' 24'

16
'1 2

8
76

43

141312

11109

0.25 k/
ft

0.50 k/
ft

-9.0 

-4.5 -10.1 -10.1 

-13.0 -20.2 -20.2 

+8.0 +18.0 +11.5 

+16.0 
+32.0 

+23.0 

-6.5 -6.5 -4.5 

-9.0 -4.5 

-4.5 

+4.5 

+4.5 +5.6 

+5.6 
-5.6 

-5.6 +3.6 

+3.6 

-3.6 

-3.6 

-6.5 

-6.5 
+6.5 

+6.5 

5. Top Girder Shear

V12lft

w12 20 ft

2
2.5 kip=:=

V12rgt V12lft- 2.5- kip=:=

V13lft

w13 30 ft

2
3.75 kip=:=

V13rgt V13lft- 3.75- kip=:=

V14lft

w14 24 ft

2
3 kip=:=

V14rgt V14lft- 3- kip=:=

6. Bottom Girder Shear

V9lft

w9 20 ft

2
5 kip=:=

V9rgt V9lft- 5- kip=:=

V10lft

w10 30 ft

2
7.5 kip=:=

V10rgt V10lft- 7.5- kip=:=

V11lft

w11 24 ft

2
6 kip=:=

V11rgt V11lft- 6- kip=:=
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7. Column Shears
h5 14ft:= h6 h5 14 ft=:= h7 h5 14 ft=:= h8 h5 14 ft=:=

h1 16ft:= h2 h1 16 ft=:= h3 h1 16 ft=:= h4 h1 16 ft=:=

V5

M5top

h5

2

0.643- kip=:=

V6

M6top

h6

2

0.804- kip=:=

V7

M7top

h7

2

0.521 kip=:=

V8

M8top

h8

2

0.926 kip=:=

V1

M1top

h1

2

0.563- kip=:=

V2

M2top

h2

2

0.703- kip=:=

V3

M3top

h3

2

0.456 kip=:=

V4

M4top

h4

2

0.81 kip=:=

-0
.6

4

-0
.8

0

+
0.

51

+
0.

93

-0
.5

6

-0
.7

0

+
0.

45

+
0.

81

+2.5
+3.75

-3.75

+3.0

-3.0

+5.0

-5.0

+7.5

-7.5
-6.0

+6.0
-2.5
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8. Top Column Axial Forces
P5 V12lft 2.5 kip=:=

P6 V12rgt- V13lft+ 6.25 kip=:=

P7 V13rgt- V14lft+ 6.75 kip=:=

P8 V14rgt- 3 kip=:=

9. Bottom Chord Axial Forces
P1 P5 V9lft+ 7.5 kip=:=

P2 P6 V10rgt- V9lft+ 18.75 kip=:=

P3 P7 V11rgt- V10lft+ 20.25 kip=:=

P4 P8 V11rgt- 9 kip=:=

Horizontal Loads

17
.5

17
.5

17.5

17
.5

17
.5

17
.5

17
.5

77
.5

77
.5

77
.5

77
.5

77
.5

77
.5

35 35 17.5

17.5 35 35 17.5

60 120 120 60

60 120
120 60

15

30

2.5 5 5 2.5

7.5 15 15 7.5

7.515157.5

2.5 5 5 2.5
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Horizontal Loads
F5 15kip:=

F1 30kip:=

Approximate Equations

Vext F n, ( )
F

2 n
:=

nbays 3:=

1. Column Shears
V5 Vext F5 nbays, ( ) 2.5 kip=:=

V6 2 V5 5 kip=:=

V7 2 V5 5 kip=:=

V8 V5 2.5 kip=:=

V1 Vext F1 F5+ nbays, ( ) 7.5 kip=:=

V2 2 V1 15 kip=:=

V3 2 V1 15 kip=:=

V4 V1 7.5 kip=:=

2. Top Column Moments

M5top

V5 h5

2
17.5 kip ft=:=

M5bot M5top- 17.5- kip ft=:=

M6top

V6 h6

2
35 kip ft=:=

M6bot M6top- 35- kip ft=:=

M7top

V7 h7

2
35 kip ft=:=

M7bot M7top- 35- kip ft=:=

M8top

V8 h8

2
17.5 kip ft=:=

M8bot M8top- 17.5- kip ft=:=

3. Bottom Column Moments

M1top

V1 h1

2
60 kip ft=:=

M1bot M1top- 60- kip ft=:=

M2top

V2 h2

2
120 kip ft=:=

M2bot M2top- 120- kip ft=:=

M3top

V3 h3

2
120 kip ft=:=

M3bot M3top- 120- kip ft=:=

M4top

V4 h4

2
60 kip ft=:=

M M- 60- kip ft=:=

125 of 159



Structural Analysis
Prof. Victor Saouma

Prepared by Christopher Segura

M4bot M4top- 60- kip ft=:=

4. Top Girder Moments
M12lft M5top 17.5 kip ft=:=

M12rgt M12lft- 17.5- kip ft=:=

M13lft M12rgt M6top+ 17.5 kip ft=:=

M13rgt M13lft- 17.5- kip ft=:=

M14lft M13rgt M7top+ 17.5 kip ft=:=

M14rgt M14lft- 17.5- kip ft=:=

5. Bottom Girder Moments
M9lft M1top M5bot- 77.5 kip ft=:=

M9rgt M9lft- 77.5- kip ft=:=

M10lft M9rgt M2top+ M6bot- 77.5 kip ft=:=

M10rgt M10lft- 77.5- kip ft=:=

M11lft M10rgt M3top+ M7bot- 77.5 kip ft=:=

M11rgt M11lft- 77.5- kip ft=:=

-60 ‘k

-17.5 ‘k -35 ‘k -35 ‘k -17.5 ‘k

-60 ‘k-120 ‘k-120 ‘k

60 ‘k120 ‘k120 ‘k
60 ‘k

17.5 ‘k

35 ‘k 35 ‘k 17.5 ‘k

-77.5 ‘k -77.5 ‘k -77.5 ‘k

77.5 ‘k 77.5 ‘k 77.5 ‘k
-17.5 ‘k -17.5 ‘k -17.5 ‘k

17.5 ‘k17.5 ‘k17.5 ‘k

14'

20' 30' 24'

16'

14'

20' 30' 24'

16'

6. Top Girder Shear

V12lft

2- M12lft

20ft
1.75- kip=:=

V12rgt V12lft 1.75- kip=:=

V13lft

2- M13lft

30ft
1.167- kip=:=

V13rgt V13lft 1.167- kip=:=

V14lft

2- M14lft

24ft
1.458- kip=:=

V14rgt V14lft 1.458- kip=:=
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7. Bottom Girder Shear

V9lft

2- M9lft

20ft
7.75- kip=:=

V9rgt V9lft 7.75- kip=:=

V10lft

2- M10lft

30ft
5.167- kip=:=

V10rgt V10lft 5.167- kip=:=

V11lft

2- M11lft

24ft
6.458- kip=:=

V11rgt V11lft 6.458- kip=:=

8. Top Column Axial Forces (+ve tension, -ve compression)
P5 V12lft- 1.75 kip=:=

P6 V12rgt V13lft- 0.583- kip=:=

P7 V13rgt V14lft- 0.292 kip=:=

P8 V14rgt 1.458- kip=:=

8. Bottom Column Axial Forces (+ve tension, -ve compression)
P1 P5 V9lft- 9.5 kip=:=

P2 P6 V10rgt- V9lft+ 3.167- kip=:=

P3 P7 V11rgt- V10lft+ 1.583 kip=:=

P4 P8 V11rgt+ 7.917- kip=:=
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 16.1 Propped Cantilever Beam

Find the end moments for the beam

1

20 kN

2 3

10 m 5 m

 Solution:  
1. The beam is kinematicall indeterminate to the third degreee (θ2, Δ3, θ3), however by replacing the overhang by a fixed end moment equal
to 100 kN-m at support 2, we reduce the degreee of kinematic indeterminancy to one (θ2).
2. The equilibrium relation is

M21 100kN m- 0=

3. The member end moments in terms of the rotations are

M12 2 E K12 2 θ1 θ2+( )=
2

10
E I θ2=

M21 2 E K12 θ1 2 θ2+( )=
4

10
E I θ2=

4. Substituting into the equilibrium equations

θ2
10

4E I
M21=

250

EI
=

or

M12
2

10
EI θ2=

2 EI

10

250

EI
= 50kN m=
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 16.2 Two-Span Beam, Slope Deflection

Draw the moment diagram for the two span beam

20' 15' 15'

1

79.52

40.97

0

5 kips2 kip/ft

2
3

?2

?3

 Solution:  
1. The unknows are θ2 and θ3

2. The equilibrium relations are
M21 M23+ 0=

M32 0=

3. The fixed end moments are given by

M12F M21F-=
w- L

2


12
= M12F

2-
kip

ft






- 20ft( )
2



12
66.667 kip ft=:=

M23F M32F-=
PL-

8
= M23F

5- kip( )- 30ft( )

8
18.75 kip ft=:=

4. The member end moments in terms of the rotations are

M12 2 E K12 θ2 M12F+=
2EI

L1
θ2 M12F+=

EI

10
θ2 M12F+=

M21 2 E K12 2θ2( ) M21F+=
4EI

L1
θ2 M21F+=

EI

5
θ2 M21F+=

M23 2 E K23 2θ2 θ3+( ) M23F+=
2EI

L2
2θ2 θ3+( ) M23F+=

EI

7.5
θ2

EI

15
θ3+ M23F+=

M32 2 E K23 θ2 2θ3+( ) M32F+=
2EI

L2
θ2 2θ3+( ) M32F+=

EI

15
θ2

EI

7.5
θ3+ M32F+=

5. Substituting in the equilibrium equations
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5. Substituting in the equilibrium equations
EI

5
θ2 M21F+

EI

7.5
θ2+

EI

15
θ3+ M23F+ 0= =>

EI

5
θ2

EI

7.5
θ2+

EI

15
θ3+ 47.917 kip ft=

EI

15
θ2

EI

7.5
θ3+ M32F+ 0= =>

EI

15
θ2

EI

7.5
θ3+ 18.75 kip ft=

or

EI
5

1

1

2










θ2

θ3








718.755

281.25









=

EIθ2

EIθ3







5

1

1

2









1-
718.755

281.25










128.473

76.388









=:=

6. Substituting for the moments

M12

EIθ2 kip ft

10
M12F+ 79.514 kip ft=:=

M21

EIθ2 kip ft

5
M12F- 40.972- kip ft=:=

M23

EIθ2 kip ft

7.5

EIθ3 kip ft

15
+ M23F+ 40.972 kip ft=:=

M32

EIθ2 kip ft

15

EIθ3 kip ft

7.5
+ M23F- 0 kip ft=:=
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 16.3 Two-Span Beam, Slope Deflection, Initial Deflection

Determine the end moments for the previous problem if the middle support settles by 6 in.

 Solution:  
1. Since we are performing a linear elastic analysis, we can separately analyze the beam for support settlement, and then add the moments
to those due to the applied loads.
2. The unknowns are θ2 and θ3

3. The equilibrium relations are
M21 M23+ 0=

M32 0=

4. The member end moments in terms of the rotations are

M12 2 E K12 θ2 3
Δ

L12
-








=
2EI

20
θ2 3

0.5

20
+





=
EI

10
θ2

3EI

400
+=

M21 2 E K12 2θ2 3
Δ

L12
-








=
2EI

20
2θ2 3

0.5

20
+





=
EI

5
θ2

3EI

400
+=

M23 2 E K23 2θ2 θ3+ 3
Δ

L23
-








=
2EI

30
2θ2 θ3+ 3

0.5

30
+





=
EI

7.5
θ2

EI

15
θ3+

EI

300
+=

M32 2 E K23 θ2 2θ3+ 3
Δ

L23
-








=
2EI

30
θ2 2θ3+ 3

0.5

30
+





=
EI

15
θ2

EI

7.5
θ3+

EI

300
+=

5. Substituting into the equilibrium equations
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5. Substituting into the equilibrium equations
EI

5
θ2

3EI

400
+

EI

7.5
θ2+

EI

15
θ3+

EI

300
+ 0=

EI

3
θ2

EI

15
θ3+

13- EI

1200
=

EI

15
θ2

EI

7.5
θ3+

EI

300
+ 0=

EI

15
θ2

EI

7.5
θ3+

EI-

300
=

or

EI
100

20

20

40










θ2

θ3







 EI

13-

4

1-











=

which will give

θ2

θ3







100

20

20

40









1- 13-

4

1-













11

360
-

7

720
-













:=

6. Thus the additional moments due to the settlement are

M12 EI( )
EI

10
θ2

3EI

400
+ simplify

EI

225
:=

M21 EI( )
EI

5
θ2

3EI

400
+ simplify

EI

720
:=

M23 EI( )
EI

7.5
θ2

EI

15
θ3+

EI

300
+ simplify 0.0013888888888888888889- EI:=

M32 EI( )
EI

15
θ2

EI

7.5
θ3+

EI

300
+ simplify 3.7037037037037037037e-24- EI:=

 16.4 Frame, Slope Deflection

Determine the end moments for the frame
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 Solution:  
1. The effect of the 35 cantilever can be included by replacing it with its end moment.

M3 w- L
L

2
= M3 3

kip

ft
6 ft 6

ft

2
54 kip ft=:=

2. The unknown displacements and rotations are
Δ2 and θ2 at joint 2
θ3 and θ4 at joints 3 and 4
We observe that due to the lack of symmetry, there will be a lateral displacement in the frame, and neglecting axial 
deformations, Δ2 Δ3=

3. The equilibrium relations are 
M23 M32+ 0=

M32 M34+ 54- kip ft=

M43 0=

V12 V43+ 10kip- 0=

Thus we have four unknown displacements and four equations. However, the last two equations are in terms of of the
shear forces, and we need to have them in terms of the end moments. This can be achieved through the following
equilibrium relations

V12

M12 M21+ 50+

L12
=

V43

M34 M43+

L34
=

Hence, all four equations are now in terms of the moments.
4. The fixed end moments for member 23 are

4. The fixed end moments for member 23 are

M21F
PL-

8
= M21F

10- kip 10 ft

8
12.5- kip ft=:=

M23F
w- L

2


12
= M21F

3-
kip

ft
20ft( )

2


12
100- kip ft=:=

5. The member end moments in terms of the rotations are

M12 2 E K12 θ2 3
Δ2

L12
-









 M12F+= 0.2EI θ2 0.3Δ2-( ) 12.5+=

M21 2 E K12 2θ2 3
Δ2

L12
-









 M21F+= 0.2EI 2θ2 0.3Δ2-( ) 12.5-=

M23 2 E K23 2θ2 θ3+( ) M23F+= 0.1EI 2θ2 θ3+( ) 100+=

M32 2 E K32 θ2 2θ3+( ) M32F+= 0.1EI θ2 2θ3+( ) 100-=

M34 2 E K34 2θ3 θ4+ 3
Δ2

L34
-









= 0.2EI 2θ3 θ4+ 0.3Δ2-( ) 100+=

M43 2 E K34 θ3 2θ4+ 3
Δ2

L34
-









= 0.2EI θ3 2θ4+ 0.3Δ2-( ) 100+=

6. Substituting into the equilibrium equations and dividing by EI
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6. Substituting into the equilibrium equations and dividing by EI

6θ2 θ3+ 0.6Δ2-
875-

EI
=

θ2 6θ3+ 2θ4+ 0.6Δ2-
460

EI
=

θ3 2θ4+ 0.3Δ2- 0=

 and the last equilibrium equation is obtained by substituting V12 and V43 and multiplying by 10/EI

θ2 θ3+ θ4+ 0.4Δ2-
83.3-

EI
=

or

EI

6

1

0

1

1

6

1

1

0

2

2

1

0.6-

0.6-

0.3-

0.4-













θ2

θ3

θ4

Δ2


















1

EI

875-

460

0

83.3-











=

which will give
θ2

θ3

θ4

Δ2

















1

EI

294.8-

68.4

240.6-

1375.7-











=

7. Substituting into the slope deflection equations gives the end moments 
M12

M21

M23

M32

M34

M43























36

47.88-

47.88

115.8-

61.78

0



















=
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 16.5 Box Culvert Slope Deflection

Draw the shear and moment diagram for the following box girder

16'

18
'

A

B C

D

0.2 k/ft

0.8 k/ft 0.8 k/ft

16'

18
'

A

B C

D

0.2 k/ft

0.8 k/ft 0.8 k/ft

 Solution:  
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1. From symmetry θB θC-= , and at the baseθA θD= 0= .

2. The fixed end moments are given by

FEMBC
w L

2


12
= FEMBC

0.2
kip

ft
16ft( )

2


12
4.267 kip ft=:=

FEMCB
w- L

2


12
= FEMCB

0.2
kip

ft
16ft( )

2


12
- 4.267- kip ft=:=

FEMAB
w L

2


20
= FEMAB

0.8
kip

ft
18ft( )

2


20
12.96 kip ft=:=

FEMBA
w L

2
( )-

30
= FEMBA

0.8
kip

ft
18ft( )

2


30
- 8.64- kip ft=:=

3. The moments are given by

MBC
2EI

16
2θB θC+( ) FEMBC+=

EI

8
θB 4.267+=

MBA
2EI

18
2θB 0+( ) FEMBA+=

2EI

9
θB 8.64-=

MAB
2EI

18
2θB( ) FEMAB+=

EI

9
θB 12.96+=

4. Equilibrium at joint B
MBA MBC+ 0=

2EI

9
θB 8.64-

EI

8
θB+ 4.267+ 0=

θB EI( )
8.64 4.267-

2EI

9

EI

8
+

12.594

EI
:=

5. Substitute θB to get the moments

MBC
EI

8

12.594

EI






 4.267+





kip ft 5.841 ft kip:=

MAB
EI

9

12.594

EI






 12.96+





kip ft 14.359 ft kip:=

MBA
2EI

9

12.594

EI






 8.64-





kip ft 5.841- ft kip:=

6. Member forces are determined from statics. Careful, the moment diagram is now based on the so-called "design" sign convention.
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16'

18
'

A

B C

D

0.2 k/ft

0.8 k/ft 0.8 k/ft

5.84

0.2 k/ft

1.61.6

1.931.93

5.845.84

1.6
1.6

5.84

0.56

V

M

1.6

1.6

VAB=5.27

VBA=1.93

14.36

5.84

V

1.93

5.27

9.
3'

5.84

14.36

6.06

M

0.8

 16.6 Continuous Beam

Solve for the moments at A and B by moment distribution, using (a) the ordinary method, and (b) the simplified method.
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12' 10' 10'

10
kK=5 K=3

A CB

10
k

25 25

Fixed end 
moments due 
to the load

Release C, 
balance 
Moment

37.5
0

14.1 0

Sum the 
moments at B

Release B, 
Distribute 
Moments23.4

12.5

25

25

Carry over 
to B

Carry over from 
B to A and 
from B to C14.1

7.0
23.411.7

Release C, 
balance Moment

1.3 02.2

3.5

7.0

7.0
Carry over to B

Carry over from 
B to A and from 
B to C

From previous step

14.1
7.0

23.411.7

Release C, 
balance Moment

0.1 00.2

0.3

0.6

0.6
Carry over at B

0.1 0.60.20.1

Carry over 
from B to A 
and from B to 
C

1.3 0.62.21.1

1.3 0.62.21.1

From previous step

MAB=- 11.7 - 1.1 - 0.1= - 12.9

MBA= - 23.4 - 2.2 - 0.2= - 25.8

MBC =  25 + 12.5 - 14.1 + 3.5 - 1.3 + 0.3 - 0.1 = 25.8

MCB = - 25.0 + 25.0 - 7.0 + 7.0 - 0.6 + 0.6 = 0.0

12.9
25.8 25.8

3.22
3.716.293.22

12.9

25.8

37.1

Moment Diagram

Free Body Diagram

Release B, 
Distribute 
Moments

Release B, 
Distribute 
Moments

1

2

3

4

5

6

6

7

8

9

10

10

11

12

13

14

 Solution:  

For this example the fixed-end moments are computed as follows:

MBCF
PL

8
= MBCF

10kip 20 ft

8
25 kip ft=:=

MCBF MBCF- 25- kip ft=:=

2. Since the relative stiffness is given in each span, the distribution factors are

DFAB

KAB

ΣK
=

5

∞ 5+
= 0=

DFBA

KBA

ΣK
=

5

5 3+
= 0.625=

DFBC

KBC

ΣK
=

3

5 3+
= 0.375=

DFCB

KCB

ΣK
=

3

3
= 1=

3. The balancing computations are shown below.

Joint A C
Member AB BA BC CB

K 5 5 3 3

B
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Joint A C
Member AB BA BC CB

K 5 5 3 3
DF 0 0.625 0.375 1

25 -25
12.5 25

-11.7 -23.4 -14.1 -7
3.5 7

-1.1 -2.2 -1.3 -0.6
0.3 0.6

-0.1 -0.2 -0.1
Total -12.9 -25.8 25.8 0

B

FEM

4. The above solution is that referred to as the ordinary method, so named to designate the manner of handling the balancing at
the simple support at C. It is known, of course, that the final moment must be zero at this support because it is simple
5. Consequently, the first step is to balance the fixed-end moment at C to zero. The carry-over is then amde immediately to B.
When B is balanced, however, a carry-over must be made back to C simply because the relative stiffness of BC is based on end C
of this span being fixed. It is apparent, however, that the moment carried back to C (in this case -7.0) cannot exist at this joint.
Accordingly, it is immediately balanced out, and a carry-over is again made to B, this carry-over being considerably smaller than
the first. Now B is again balanced, and the process continues until the numbers involved become too small to have any practical
value.
6. Alternatively, we can use the simplified method. It was previously shown that if the support at C is simple and a moment is
applied at B, then the resistance of the span BC to this moment is reduced to three-fourths the value it would have had wit C fixed.
Consequently, the relative stiffness of span BC is reduced to three-fourths of the value given, it will not be necessary to carry over
to C.

Joint A C
Member AB BA BC CB

K 5 5 2.25 3
DF 0 0.69 0.31 1

FEM 25 -25
12.5 25

-12.9 -25.8 -11.7
Total -12.9 -25.8 25.8 0

B

7. From the standpoint of work involved, the advantage of the simplified method is obvious. It should always be used when the external
(terminal) end of a member rests on a simple support, but it does not apply when a structure is continuous at a simple support. Attention is
called to the fact that when the opposite end of the member is simply supported, the reduction factor for the stiffness is always 3/4 for a
prismatic member but a variable quantity for a nonprismatic member.
8. One valuable feature of the tabular arrangement is that of dropping down one line for each balancing operation and making the carry-over
on the same line. The practice clearly indicates the order of balancing the joints, which in turn makes it possible to check back in the event of
an error. Moreover, the placing of the carry-over on the same line with the balancing moments definitely decreases the chances of omitting a
carry-over.
9. The correctness of the answers may ina sense be checked by verifying ΣM 0=  at each joint. However, even though the final answers
satisfy this equation at every join, this is in no way a check on the inital fixed end moments. These fixed end moments, therefore, should be
checked with great care before beginning the balancing operation. Moreover, it occasionally happens that conpensating errors are made in
the balancing, and these errors will not be apparent when cheking ΣM 0=  at each joint.

10. To draw the final shear and moment diagram, we start by drawing the free body diagram of each beam segment with the computed
moments, and then solve from statics for the reactions
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moments, and then solve from statics for the reactions

12.9kip ft 25.8kip ft+ 12ft VA- 0= VA
12.9kip ft 25.8kip ft+

12ft
3.225 kip=:=

VA VBL+ 0= VBL VA- 3.225- kip=:=

25.8kip ft 10kip 10 ft+ 20ft VBR- 0= VBR
25.8kip ft 10kip 10 ft+

20ft
6.29 kip=:=

6.29kip VC+ 10kip- 0= VC 10kip 6.29kip- 3.71 kip=:=

VBL- VBR- RB+ 0= RB VBL VBR+ 3.065 kip=:=

Check: RA RB+ RC+ 10kip- 0= VA RB+ VC+ 10kip- 0 kip=

MBC VC 10 ft 37.1 kip ft=:=
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 16.7 Continuous Beam

Using the simplified method of moment distribution, find the moments in the following continuous beam. The values of I as
indicated by the various values of K, are different for the various spans. Determine the values of the reactions, draw the shear and
bending moment diagrams, and sketch the deflected structure.

0.5 k 1 k 1 k 0.2 kips/ft

10' 20'

10'5'5'

K = 20 K = 60 K = 30

20' 15'

 Solution:  

1. Fixed-end moments
MAOF 0.5- kip 10 ft 5- kip ft=:=

For the 1 kip load:

MABF
P a b

2


L
2

= MABF1
1kip 5 ft 15ft( )

2


20ft( )
2

2.812 kip ft=:=

MBAF
P a

2
 b

L
2

= MBAF1
1kip 5ft( )

2
 15 ft

20ft( )
2

0.938 kip ft=:=

For the 4 kip load:

MABF
P L

8
= MABF4

4kip 20 ft

8
10 kip ft=:=

MBAF4 MABF4- 10- kip ft=:=

For the uniform load:

MCDF
w L

2


12
= MCDF

0.2
kip

ft
15ft( )

2


12
3.75 kip ft=:=

MDCF MCDF- 3.75- kip ft=:=
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2. The balancing operation is shown below

Joint D
Member AO AB BA BC CB CD DC

K 0 20 15 60 60 40 40
DF 0 1 0.2 0.8 0.6 0.4 0

-5 12.8 -10.9 3.8 -3.8
-7.8 -3.9

2.9 11.9 5.9
-2.9 -5.8 -3.9 -1.9

0.6 2.3 1.1
-0.3 -0.7 -0.4 -0.2

0.1 0.2
Total -5 5 -11.2 11.2 0.5 -0.5 -5.9

C

FEM

A B

3. The only new point in this example is the method of handling the overhanging end. It is obvious that the final internal moment at
A must be 5 kip-ft and, accordingly, the first step is to balance out 7.8 kip-ft of the fixed end moment at AB, leaving the required 5
kip-ft for the internal moment at AB. Since the relative stiffness of BA has been reduced to three-fourths of its original value, to
permit considering the support at A as simple in balancing, no carry-over from B to A is required.
4. The easiest way to determine the reactions is to consider each span as a free body. End shears are first determined as caused
by the loads alone on each span and, following this, the end shears caused by the end moments are computed. These two
shears are added algebraically to obtain the net end shear for each span. An algebraic summation of the end shears at any
support will give the total reaction.
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 16.8 Continuous Beam, Initial Settlement

For the following beam find the moments at A, B, and C by moment distribution. The support at C settles by 0.1 in. Use E 30000ksi:=

10 k5 kips/ft

10'20'

I = 2400 in4

K = 10

30'

I = 1200 in4

K = 10

I = 7200 in4

K = 20

 Solution:  

1. Fixed-end moments
Uniform load:

MABF
w L

2


12
= MABF

5
kip

ft
20ft( )

2


12
166.667 kip ft=:=

MBAF MABF- 166.667- kip ft=:=

Concentrated load:

MCDF
P L

8
= MCDF

10kip 30 ft

8
37.5 kip ft=:=

MDCF MCDF- 37.5- kip ft=:=

Moments caused by deflection:

MBCF
6EI Δ

L
2

= MBCF
6 E 1200 in

4
0.1 in

10ft( )
2

125 kip ft=:=

MCBF MBCF 125 kip ft=:=

MCDF
6EI Δ

L
2

-= MCDF
6 E 7200 in

4
0.1 in

30ft( )
2

- 83.333- kip ft=:=

MDCF MCDF 83.333- kip ft=:=

2. Moment distribution

Joint A D
Member AB BA BC CB CD DC

K 10 10 10 10 15 20
DF 0 0.5 0.5 0.4 0.6 1

167 -167 38 -38
125 125 -83 -83

60 121
-28 -56 -84

17 35 35 17
-3 -7 -10

1 2 1
Total 185 -130 130 79 -79 0

FEM

B C
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The fixed-end moments caused by a settlement of supports have the same sign at both ends of each span adjacent to the settling
support. The above computations have been carried to the nearest kip-ft, which for the moments of the magnitudes involved, would
be significantly close for purposes of design.
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 16.9 Frame

Find all moments by moment distribution for the following frame. Draw the bending moment diagram and the deflected structure.

18'

26'

12'

18 k

I = 390 in4

K = 15
KM = 15/26

I = 260 in4

K = 10
KM = 10/26

I = 360 in4

 Solution:  
1. The first step is to perform the usual moment distribution. The reader should fully understand that this balancing operation adjusts the
internal moments at the ends of the members by a series of corrections as the joints are considered to rotate, until ΣM 0=  at each joint. The
reader should also realize that during this balancing operation no translation of any joint is permitted.
2. The fixed-end moments are

MBCF
18kip 12 ft 6ft( )

2


18ft( )
2

24 kip ft=:=

MCBF
18kip 6 ft 12ft( )

2


18ft( )
2

- 48- kip ft=:=

3. Moment distribution

Joint A D
Member AB BA BC CB CD DC

K 10 10 20 20 15 15
DF 0 0.333 0.667 0.571 0.429 0

24 -48
13.7 27.4 20.6 10.3

-6.3 -12.6 -25.1 -12.5
3.6 7.1 5.4 2.7

-0.6 -1.2 -2.4 -1.2
0.3 0.7 0.5 0.2

-0.1 -0.2
Total -6.9 -13.9 13.9 -26.5 26.5 13.2

B C

FEM
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4. The final moments listed in the table are correct only if there is no translation of any joint. It is therefore necessary to determine whether or
not, with the above moments existing, there is any tendency for side lurch of the top of the frame.
5. If the frame is divided into three free bodies, the result will be as shown below.

Inspection of this sketch indicates that if the moments of the first balance exist in the frame, there is a net force of 1.53kip 0.8kip- 0.73 kip=
tending to sway the frame to the left. In order to prevent side-sway, and thus allow these moments to exist (temporarily for the purpose of the
analysis), it is necessary that an imaginary horizontal force ce considered to act to the right at B or C. This force is designated as the artificial
joint restraint (abbreviated as AJR) and is shown below.

6. This illustration shows the complete load system which would have to act on the structure if the final moments of the first balance are to be
correct. The AJR, however, cannot be permitted to remain, and thus its effect must be cancelled. This may be accomplished by finding the
moments in the frame resulting from a force equal but opposite to the AJR and applied at the top.
7. Although it is not possible to make a direct solution for the moments resulting from this force, they may be determined inddirectly. Assume
some unknown force P acts on the frame, as shown below, and causes it to deflect laterally to the left, without joint rotation, through some
distance Δ. Now, regardless of the value of P and the value of the resulting Δ, the fixed-end moments induced in the ends of the columns
must be proprtional to the respective values of KM. 

Recalling that the fixed end moment is MF 6EI
Δ

L
2

= 6EKM Δ= , where KM
1

L
2

=
K

L
=  we can write

Δ
MABF

6E KM
=

MDCF

6E KM
=

MABF

MDCF

KMAB

KMDC
=

10

15
=

These fixed-end moments could, for example, have values of -10 and -15 kip-ft, or -20 and -30, or -30 and -45, or any other combination so
long as the above ratio is maintained. The proper procedure is to choose values for the fixed-end moments of approximately the same order
of magnitude as the original fixed-end moments due to the real loads. This will result in the same accuracy for the results of the balance for
the side-sway correction that was realized in the first balance for the real loads. Accordingly, it will be assumed that P, and the resulting Δ, are
of such magnitude as to result in fixed-end moments shown below.
8. Obviously ΣM 0=  is not satisfied for joints B and C in this deflected frame. Therefore, these joints must rotate until equilibrium is reached.
The effect of this rotation is determined in the distribution below.

Joint A D
Member AB BA BC CB CD DC

K 10 10 20 20 15 15
DF 0 0.333 0.667 0.571 0.429 0

-30 -30 -45 -45
12.9 25.8 19.2 9.6

2.8 5.7 11.4 5.7
-1.6 -3.3 -2.4 -1.2

0.2 0.5 1.1 0.5
-0.3 -0.2 -0.1

Total -27 -23.8 23.8 28.4 -28.4 -36.7

B C

FEM
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9. During the rotation of joints B and C, as represented by the above distribution, the value of Δ has remained constant, with P varying in
magnitude as required to maintain Δ.
10. It is now possible to determine the final value of P simply by adding the shears in the columns. The shear in any member, without external
loads applied along its length, is obtained by adding the end moments algebraically and dividing by the length of the member. The final value
of P is the force necessary to maintain the deflection of the frame after the joints have rotated. In other words, it is the force which will be
consistent with the displacement and internal moments of the structure as determined by the second balancing operation. Hence this final
value of P will be called the consistent joint force (abbreviated as CJF).
11. The consistent joint force is given by

CJF
27kip ft 23.8kip ft+

26ft

28.4kip ft 36.7kip ft+

26ft
+ 4.458 kip=:=

and inspection clearly indicates that the CJF must act to the left.
12. Obviously, then, the results of the last balance above are moments which will exist in the frame when a force of 4.45 kip acts to the left at
the top level. It is necessary, however, to determine the moments resulting from a force of 0.73 kip acting to the left at the top level, and some
as yet unknown factor "z" times 4.45 kip will be used to represent this force acting to the left.
13. The free body diagram for the member BC is shown above. ΣH 0=  must be satisfied for this figure, and if forces to the left are
considered as positive, the result is 4.45z 0.73- 0= , and 

z
0.73

4.45
0.164=:=

If this factor is applied to the moments obtained from the second balance, the result will be the moments caused by a force of 0.73 kip acting
to the left at the top level. If these moments are then added to the moments obtained from the first balance, the result will be the final moments
for the frame, the effect of the AJR having been cancelled. The combintaion of moments is shown below.

Joint A D
Member AB BA BC CB CD DC

M from 1st balance -6.9 -13.9 13.9 -26.5 26.5 13.2
z x M from 2nd balance -4.4 -3.9 3.9 4.7 -4.7 -6

Final Moments -11.3 -17.8 17.8 -21.8 21.8 7.2

B C

14. If the moments are correct, the shears in the two columns of the frame shoul dbe equal and opposite to satisfy ΣH 0=  for the entire
frame. This check is expressed

11.3kip ft 17.8kip ft+

26ft

21.8- kip ft 7.2- kip ft+

26ft
+ 0 kip=

and
1.12kip 1.11kip- 0.01 kip=  (nearly)

The signs of all moments taken from the previous table have been reversed to give the correct signs for the end moments external to the
columns. It will be remembered that the moments considered in moment distribution are always internal for each member. However, the
above check actually considers each column as a free body and so external moments must be used.
15. The moment under the 18 kip load is obtained by treating BC as a free body:

M18 5.77kip 12 ft 17.8kip ft- 51.44 kip ft=:=

16. The direction of side lurch may be determined from the obvious fact that the frame will always lurch in a direction opposite to the AJR. If
required, the magnitude of this side lurch may be found. The procedure which follows will apply.

A force P of sufficient magnitude to result in the indicated column moments and the lurch Δ was applied to the frame. During the second
balance this value of Δ was held constant as the joints B and C rotated, and the value of P was considered to vary as necessary. The final

value of P was found to be 4.45 kip. Since Δ was held constant, however, its magnitude may be determined from the equation M 6EI
Δ

L
2

= ,

where M is the fixed-end moment for either column, I is the moment of inertia for that column, and L is the length. This Δ will be the lurch for
4.45 kip acting at the top level. For any other force acting horizontally, Δ would vary proportially and thus the final lurch of the frame would be
the factor z multiplied by Δ determined above.
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 16.10 Frame with Side Load

Find by moment distribution the moments in the following frame

18'

26'

12'

18 k

I = 390 in4

K = 15
KM = 15/26

I = 260 in4

K = 10
KM = 10/26

I = 360 in4

5 k

 Solution:  

The first balance will give the results shown

AB BA BC CB CD DC
-7.2 -14.6 14.6 -22.5 22.5 0

A check of the member BC as a free body for ΣH 0=  will indicate that an AJR is necessary as follows:

AJR 0.84kip+ 0.87kip- 5kip- 0=

from which 
AJR 5kip 0.87kip+ 0.84kip- 5.03 kip=:=  in the direction assumed

The values of KM for the two columns are shown, with KM for column CD being K/2L because of the pin at the bottom. The horizontal
displacement Δ of the top of the frame is assumed to cause the fixed-end moments shown there. These moments are proportional to the
values of KM and of approximately the same order of magnitude as the original fixed-end moments due to the real loads. The results of
balancing out these moments are

AB BA BC CB CD DC
-34.4 -28.4 28.4 23.6 -23.6 0
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CJF
34.4kip ft 28.4kip ft+ 23.6kip ft+

26ft
3.323 kip=:=

and
5.03 3.32z- 0=

from which

z
5.03kip

CJF
1.514=:=

The final results are

AB BA BC CB CD DC
M from 1st balance -7.2 -14.6 14.6 -22.5 22.5 0
z x M 2nd balance -52.1 -43 43 35.8 -35.8 0

Final moments -59.3 -57.6 57.6 13.3 -13.3 0

If these final moments are correct, the sum of the column shears will be 5 kip

ΣV
59.3 kip ft 57.6kip ft+ 13.3kip ft+

26ft
5.01 kip=:=

The 5 kip horizontal load acting at C enters into the problem only in connection withthe determination of the AJR. If this load had been applied
to the column CD between the ends, it would have resulted in intial fixed-end moments in CD and these would be computed in the usual way.
In addition, such a load would have enetered into the determination of the AJR, since the horizontal reaction of CD against the right end of BC
would have been computed by treating CD as a free body.
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 17.1 Beam

Considering the figure, let P1 2P= , M PL= ,P2 P= , and P2 P= . Solve for the displacements.

FLEXIBILITY STIFFNESS

?2

?1

A
B C

L/2 L/2 L/2 L/2

P2
P1

Statically Determinate

[f]{R}+{? }={0}

P2P1

1

f21
f11

1

f22
f12

? 2

Displacements due to 
Actual Load

? 1

Applied Forces

P1

-P1/2-P1/2

-P1L/8
P2L/8

P1L/8

Kinematically Determinate

[K]{? }={M} +{NEF}

SNEF2

A B
-P2/2-P2/2

P2-P2L/8

B C

SNEF1

A
B

C

1

K12
K22

K21

K11 1

Applied 
Displacments

Nodal Equivalent Forces

 Solution:  
1. Using the previously defined sign convention (counterclockwise positive)

ΣNEF1

P1 L

8

P2 L

8
-=

2P L

8

P L

8
-=

P L

8
=

ΣNEF2
P L

8
=

2. If it takes 4EI/L ( k44AB) to rotate AB and 4EI/L ( k22BC) to rotate BC, it will take a total force of 8EI/L to simultaneously rotate AB and BC

(Note that a rigid joint is assumed)

3. Hence, K11 which is the sum of the rotational stiffnesses at global d.o.f. 1, will be equal to K11
8EI

L
= ; similarly, K21

2EI

L
=       (k42BC)

4. If we rotate dof 2 by a unit angle, then we will have K22
4EI

L
=  and K12

2EI

L
=

5. The equilibrium relation can be written as
8EI

L

2EI

L

2EI

L

4EI

L













θ1

θ2








PL

0









PL

8

PL

8













+=

or 

PL
PL

8
+

PL

8













8EI

L

2EI

L

2EI

L

4EI

L













θ1

θ2







=

We note that the matrix corresponds to the structure's stiffness matrix, and not the augmented one.
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6. The two by two matrix is next inverted

θ1

θ2







8EI

L

2EI

L

2EI

L

4EI

L













1-
PL

PL

8
+

PL

8













=

17

112

P L
2



EI


5-

112

P L
2



EI
















=

7. Next we need to determine both the reactions and the internal forces.
8. Recall that for each element p k δ= , and in this case p P=  and δ Δ=   for element AB. The element stiffness matrix has been previously
derived, and in the case of the global and local d.o.f. are the same.
9. hence, the equilibrium equation for element AB, at the element level, can be written as

p1

p2

p3

p4

















12EI

L
3

6EI

L
2

12EI

L
3

-

6EI

L
2

6EI

L
2

4EI

L

6EI

L
2

-

2EI

L

12EI

L
3

-

6EI

L
2

-

12EI

L
3

6EI

L
2

-

6EI

L
2

2EI

L

6EI

L
2

-

4EI

L

























0

0

0

17

112

P L
2



EI




















2P

2

2PL

8

2P

2

2- PL

8





















+=   

Solving

p1 p2 p3 p4( ) 107

56
P

31

56
PL

5

56
P

5

14
PL





=

10. Similarly, for element BC:

p1

p2

p3

p4

















12EI

L
3

6EI

L
2

12EI

L
3

-

6EI

L
2

6EI

L
2

4EI

L

6EI

L
2

-

2EI

L

12EI

L
3

-

6EI

L
2

-

12EI

L
3

6EI

L
2

-

6EI

L
2

2EI

L

6EI

L
2

-

4EI

L

























0

17

112

P L
2



EI


0

5-

112

P L
2



EI
























P

2

PL

8

P

2
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or

p1 p2 p3 p4( ) 7

8
P

9

14
PL

1-

7
P 0





=

11. This simple example calls for the following observations:
a) Node A has contributions from element AB only, while node B has contributions from both AB and BC
b) We observe that p3AB p1BC  even though they both correspond to a shear force at node B, the difference between

   them is equal to the reaction at B. Similarly, p4AB p2BC  due to the externally applied moment at B

c) From this analysis, we can draw the complete free body diagram and then the shear and moment diagrams
    which is what the engineer is most interested in for design purposes.
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 17.2 Frame

Whereas in the first example all local coordinate systems were identical to the global one, in this example we consider the
orthogonal frame shown below.

Y

y

X

x

y

x
P

M
P/2

H

L/2 L/2

? 2 ?3

? 1

C C

B

AA

EI

P

C

A

BB

w

w

A
B

C

1 K11

K31K21

1

C

B
A

K12

K32K22

A B

C

1 rad.
K33K23 K13

 Solution:  

1. Assuming axial deformations, we do have three global degress of freedom Δ1, Δ2, and θ3.
2. Constrain all degrees of freedom, and thus make the structure kineamatically determinate.
3. Determine the nodal equivalent forces for each element in its own local coordinate system (the first three values are associated with the first
node, and the last three with the second node):

p1 v1 m1 p2 v2 m2( ) 0
P-

2

PL-

8
0

P-

2

PL

8






=  Member AB

p1 v1 m1 p2 v2 m2( ) 0
wH-

2

w- H
2



12
0

wH-

2

w H
2



12









=  Member BC

4. Summing the nodal equivalent forces at node B in global coordinates we have

P1 P2 P3( ) wH-

2

P-

2

PL

8

w H
2



12
-









=

5. Next, we apply a unit displacement in each of the three global degrees of freedom, and we seek to determine the structure global stiffness
matrix. Each entry Kij of the global stiffness matrix will correspond to the internal force in degreee of freedome i, due to a unit displacement in

degree of freedom j.
6. Recalling the force displacement relations derived earlier, we can assemble the global stiffness matrix in terms of contributions from both AB
and BC.
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Ki1 Ki2 Ki3

Δ1 Δ2 Δ3

AB EA/L 0 0

BC 12EI/H3 0 6EI/H2

AB 0 12EI/L3 -6EI/L2

BC 0 EA/H 0
AB 0 -6EI/L2 4EI/L

BC 6EI/H2 0 4EI/H

K1j

K2j

K3j

7. Summing up, the structure global stiffness matrix [K] is

K

EA

L

12EI

H
3

+

0
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H
2
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L
3
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H
+
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L
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H
2
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L
2
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L

4EI

H
+



















=

8. The global equation of equilibrium can now be written
EA

L
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H
3

+
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3
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+
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H
2
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L
2
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L
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H
+











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
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


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
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
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
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-=

9. Solve for the displacements
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-








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






=

10. To obtain the element internal forces, we will multiply each element stiffness matrix by the local displacements. For element AB, the local
and global coordinates match, thus
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p1
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11. For element BC, the local and global coordinates do not match, hence we will need to transform the dispalcements from their global to
their local components. But since vector (displacement and load) and matrix transformation have not yet been covered, we not by inspection
that the relationship between global and local coordinates for element BC is 

Local δ1 δ2 θ3 δ4 δ5 θ6

Global 0 0 0 Δ2 -Δ1 θ3

and we observe that there are no local or global displacements associated with dof 1-3; Hence, the internal forces for element BC
are given by:
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Note that the element is defined as going from C to B hence x,y,z correspond to Y, -X, Z.
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