YD := RD := $\ldots \mathcal{G}^{\text {Y.xls }}$..) MR.xIS

Definition

\square Objective function
$\mathrm{T}:=\left\lvert\, \begin{array}{r}\text { for } \mathrm{i} \in 1 . . \mathrm{Voll1}_{0,1} \\ \mathrm{~T}_{\mathrm{i}} \leftarrow \mathrm{T}_{\mathrm{i}}-\mathrm{T} 0_{\mathrm{i}-1} \\ \mathrm{~T} \begin{array}{r}\text { al }:=0.467\end{array} \\ \end{array}\right.$
$\mathrm{Y}(\mathrm{a} 2, \mathrm{aa}, \mathrm{ab}, \mathrm{ac}, \mathrm{ad}):=$

$$
\begin{aligned}
& \text { for } \mathrm{i} \in 0 . . \text { Vol11 }{ }_{0,1} \\
& \mathrm{Y}_{\mathrm{i}} \leftarrow \sum_{\mathrm{i}=0}^{\mathrm{i}}\left[\left[[\mathrm { a } \cdot \mathrm { aa } \cdot \operatorname { e x p } [\frac { - \mathrm { ac } } { \mathrm { R } \cdot (\mathrm { TT } 1 _ { \mathrm { i } } + 2 7 3) }] + \mathrm { a } \cdot \mathrm { ab } \cdot \operatorname { e x p } [\frac { - \mathrm { ad } } { \mathrm { R } \cdot (\mathrm { TT } 1 _ { i } + 2 7 3) }]] \cdot \operatorname { e x p } \left[-\sum_{\mathrm{i}=0}^{\mathrm{i}}\left[\mathrm{aa} \cdot \exp \left[\frac{-\mathrm{ac}}{\mathrm{R} \cdot\left(\mathrm{TT} 1_{\mathrm{i}}+273\right)}\right]+\mathrm{ab} \cdot \exp \left[\frac{-\mathrm{ad}}{\mathrm{R} \cdot\left(\mathrm{TT} 1_{\mathrm{i}}+273\right)}\right]\left[\cdot \mathrm{T}_{1}\right] \cdot \mathrm{T}_{1}\right]\right.\right.\right.
\end{aligned}
$$

You fooled me (and maybe yourself) by using "i" in different places for different things. And I was wrong when I said that Mathcad would handle it anyway.
You have to decide which of the folling two interpretations is the one you had in mind:
$\mathrm{Y} 1(\mathrm{a} 2, \mathrm{aa}, \mathrm{ab}, \mathrm{ac}, \mathrm{ad}):=\mid$ for $\mathrm{n} \in 0 . . \mathrm{Voll1}_{0,1} \quad$ note the upper limit "i" in the second sum

$$
Y_{n} \leftarrow \sum_{i=0}^{n}\left[[\mathrm { a } 1 \cdot \mathrm { aa } \cdot \operatorname { e x p } [\frac { - \mathrm { ac } } { \mathrm { R } \cdot (\mathrm { TT } 1 _ { \mathrm { i } } + 2 7 3) }] + \mathrm { a } 2 \cdot \mathrm { ab } \cdot \operatorname { e x p } [\frac { - \mathrm { ad } } { \mathrm { R } \cdot (\mathrm { TT } 1 _ { \mathrm { i } } + 2 7 3) }]] \cdot \operatorname { e x p } \left[-\sum_{\mathrm{k}=0}^{\mathrm{i}}\left[\mathrm{aa} \cdot \exp \left[\frac{-\mathrm{ac}}{\mathrm{R} \cdot\left(\mathrm{TT} 1_{\mathrm{k}}+273\right)}\right]+\mathrm{ab} \cdot \exp \left[\frac{-\mathrm{ad}}{\mathrm{R} \cdot\left(\mathrm{TT} 1_{\mathrm{k}}+273\right)}\right]\left[\cdot \mathrm{T}_{1}\right] \cdot \mathrm{T}_{1}\right]\right.\right.
$$

or is it rather this one:

Both variants can be speeded up significantly:

$\mathrm{Y} 1_{\text {speed }}(\mathrm{a} 2, \mathrm{aa}, \mathrm{ab}, \mathrm{ac}, \mathrm{ad}):=$

$$
\begin{aligned}
& \text { for } \mathrm{i} \in 0 . . \text { Voll1 }_{0,1} \\
& \operatorname{Tmp}_{\mathrm{i}} \leftarrow \exp \left[-\mathrm{T}_{1} \cdot \sum_{\mathrm{k}=0}^{\mathrm{i}}\left[\mathrm{aa} \cdot \exp \left[\frac{-\mathrm{ac}}{\mathrm{R} \cdot\left(\mathrm{TT} 1_{\mathrm{k}}+273\right)}\right]+\mathrm{ab} \cdot \exp \left[\frac{-\mathrm{ad}}{\mathrm{R} \cdot\left(\mathrm{TT} 1_{\mathrm{k}}+273\right)}\right]\right]\right. \\
& \text { for } \mathrm{n} \in 0 . . \text { Vol11 }{ }_{0,1} \\
& \left.\mathrm{Y}_{\mathrm{n}} \leftarrow \mathrm{~T}_{1} \cdot \sum_{\mathrm{i}=0}^{\mathrm{n}} \llbracket \text { al } \cdot \mathrm{aa} \cdot \exp \left[\frac{-\mathrm{ac}}{\mathrm{R} \cdot\left(\mathrm{TT} 1_{\mathrm{i}}+273\right)}\right]+\mathrm{a} 2 \cdot \mathrm{ab} \cdot \exp \left[\frac{-\mathrm{ad}}{\mathrm{R} \cdot\left(\mathrm{TT} 1_{\mathrm{i}}+273\right)}\right] \cdot \mathrm{Tmp}_{\mathrm{i}}\right] \\
& \mathrm{Y}
\end{aligned}
$$

Y2 speed $^{(\mathrm{a} 2, \mathrm{aa}, \mathrm{ab}, \mathrm{ac}, \mathrm{ad})}:=$

$$
\begin{aligned}
& \text { for } \mathrm{n} \in 0 . . \operatorname{Vol11} 1_{0,1} \\
& \mathrm{Tmp} \leftarrow \exp \left[-\sum_{\mathrm{k}=0}^{\mathrm{n}}\left[\mathrm{aa} \cdot \exp \left[\frac{-\mathrm{ac}}{\mathrm{R} \cdot\left(\mathrm{TT} 1_{\mathrm{k}}+273\right)}\right]+\mathrm{ab} \cdot \exp \left[\frac{-\mathrm{ad}}{\mathrm{R} \cdot\left(\mathrm{TT} 1_{\mathrm{k}}+273\right)}\right]\right] \cdot \mathrm{T}_{1}\right] \\
& \mathrm{Y}_{\mathrm{n}} \leftarrow \mathrm{Tmp} \cdot \mathrm{~T}_{1} \cdot \sum_{\mathrm{i}=0}^{\mathrm{n}}\left[\mathrm{a} 1 \cdot \mathrm{aa} \cdot \exp \left[\frac{-\mathrm{ac}}{\mathrm{R} \cdot\left(\mathrm{TT} 1_{\mathrm{i}}+273\right)}\right]+\mathrm{a} 2 \cdot \mathrm{ab} \cdot \exp \left[\frac{-\mathrm{ad}}{\mathrm{R} \cdot\left(\mathrm{TT} 1_{\mathrm{i}}+273\right)}\right]\right.
\end{aligned}
$$

OK, before going any further lets check whats different and lets introduce a timer to see if the "speed" routines do what they are supposed to do (the caclulation take a few seconds/minutes, be patient):
$\operatorname{timer}(\mathrm{f}):=\left\{\begin{array}{l}\mathrm{t} 1 \leftarrow \operatorname{time}(0) \\ \mathrm{R} \leftarrow \mathrm{f}\left(0.86,10^{5}, 10^{5}, 76800,14000\right) \\ \binom{\operatorname{time}(0)-\mathrm{t} 1}{\mathrm{R}}\end{array}\right.$

$\binom{$ time_Y }{YY}$:=\operatorname{timer}(\mathrm{Y})$	$\binom{$ time_Y1 }{ YY1 }$:=\operatorname{timer}(\mathrm{Y} 1)$	$\binom{$ time_Y2 }{ YY2 }$:=\operatorname{timer}(\mathrm{Y} 2)$	$\left(\begin{array}{c}\text { time_Y1 } \\ \text { sp } \\ \mathrm{YY} 1_{\mathrm{sp}}\end{array}\right):=\operatorname{timer}\left(\mathrm{Y} 1_{\text {speed }}\right)$	$\left(\begin{array}{c}\text { time_Y2 } \\ \text { sp } \\ \mathrm{YY} 2_{\text {sp }}\end{array}\right):=\operatorname{timer}\left(\mathrm{Y} 2_{\text {speed }}\right)$
time_Y $\mathrm{s}=11.549 \mathrm{~s}$	time_Y1 $\cdot \mathrm{s}=11.755 \mathrm{~s}$	time_Y2 $\cdot \mathrm{s}=22.861 \mathrm{~s}$	time_Y $1_{\text {sp }} \cdot \mathrm{s}=0.158 \mathrm{~s}$	time_Y2 ${ }_{\text {sp }} \cdot \mathrm{s}=0.14 \mathrm{~s}$

So I guess we can speak about a significant improvement by both "speed" variants

$$
\begin{aligned}
& |\mathrm{YY}-\mathrm{YY} 1|=0 \quad\left|\mathrm{YY} 1-\mathrm{YY} 1_{\mathrm{sp}}\right|=7.699 \times 10^{-15} \begin{array}{l}
\text { The shown deviation is within the numerical tolerance. We can probably say that your } \\
\text { original routine } Y \text { and my modifications Y1 and Y1 } \\
\text { speed yield the very same result. }
\end{array} \\
& |\mathrm{YY}-\mathrm{YY} 2|=18.997 \quad\left|\mathrm{YY} 2-\mathrm{YY} 2_{\mathrm{sp}}\right|=0 \quad \begin{array}{l}
\text { So the second interpretation of your expression with the many equal indices "i" differs } \\
\text { from your original but I have no idea which interpretation is the correct one for your task }
\end{array} \\
& \text { Anyway, Y2 and Y2 }{ }_{\text {speed }} \text { yield the very same result. }
\end{aligned}
$$

Put any of the two speed-functions (whichever you think is the correct one) in the definition of OF and see if the solve block yields a result in reasonable time now.
At least OF calculates now approx. 50000 times faster than in your original sheet ;-)

$$
\text { OF1 }(\mathrm{a} 2, \mathrm{aa}, \mathrm{ab}, \mathrm{ac}, \mathrm{ad}):=\left\lvert\, \begin{aligned}
& \mathrm{YY} \leftarrow 100 \mathrm{Y}_{\text {speed }}(\mathrm{a} 2, \mathrm{aa}, \mathrm{ab}, \mathrm{ac}, \mathrm{ad}) \\
& \sum_{\mathrm{i}=0}\left(\mathrm{Yexp}_{\mathrm{i}}-\mathrm{YY}_{\mathrm{i}}\right)^{2}
\end{aligned} \quad\right. \text { Just a test: } \quad \text { timer }(\mathrm{OF} 1)=\binom{0.155}{1.981 \times 10^{6}}
$$

aa $:=10^{5}$
$\mathrm{ab}:=10^{5}$
ac $:=76800$
ad $:=140000$
a2 $:=0.86$
$\mathrm{t} 1:=\operatorname{time}(0)$
Given

$$
\begin{array}{lll}
10^{3} \leq \text { aa } \leq 10^{6} & 10^{5} \leq \mathrm{ab} \leq 10^{8} & 70000 \leq \text { ac } \leq 120000 \\
120000 \leq \text { ad } \leq 170000 & \text { a } 1 \leq \mathrm{a} 2 \leq 1 &
\end{array}
$$

$\left(\begin{array}{c}\mathrm{a} 2 \\ \mathrm{aa} \\ \mathrm{ab} \\ \mathrm{ac} \\ \mathrm{ad}\end{array}\right):=\operatorname{Minimize}(\mathrm{OF} 1, \mathrm{a} 2, \mathrm{aa}, \mathrm{ab}, \mathrm{ac}, \mathrm{ad})=\left(\begin{array}{c}0.531 \\ 1.672 \times 10^{5} \\ 1.037 \times 10^{5} \\ 7 \times 10^{4} \\ 1.7 \times 10^{5}\end{array}\right)$
$(\operatorname{time}(0)-\mathrm{t} 1) \mathrm{s}=1.372 \cdot \mathrm{~min} \quad$ Time it took for the solve block to finish
Check if the constraints are all OK:

$$
\begin{array}{ll}
10^{3} \leq \mathrm{aa} \leq 10^{6}=1 & 10^{5} \leq \mathrm{ab} \leq 10^{8}=1 \\
120000 \leq \mathrm{ad} \leq 170000=1 & \mathrm{a} 1 \leq \mathrm{a} 2 \leq 1=1
\end{array}
$$

$$
\left(\begin{array}{c}
0.531 \\
1.672 \times 10^{5} \\
1.037 \times 10^{5} \\
7 \times 10^{4} \\
1.7 \times 10^{5}
\end{array}\right)
$$

OF1 $(\mathrm{a} 2, \mathrm{aa}, \mathrm{ab}, \mathrm{ac}, \mathrm{ad})=1.622 \times 10^{4}$

Now the same with variant 2

OF2(a2, aa, ab, ac, ad) $:=\left\lvert\, \begin{aligned} & \mathrm{YY} \leftarrow 100 \mathrm{Y}_{\text {speed }}(\mathrm{a} 2, \mathrm{aa}, \mathrm{ab}, \mathrm{ac}, \mathrm{ad}) \\ & \text { Vol11 }_{0,1} \\ & \sum_{\mathrm{i}=0}\left(\mathrm{Yexp}_{\mathrm{i}}-\mathrm{YY}_{\mathrm{i}}\right)^{2}\end{aligned}\right.$
$\operatorname{timer}(\mathrm{OF} 2)=\binom{0.135}{4.955 \times 10^{5}}$
aa $:=10^{5} \quad$ ab $:=10^{5}$
ac := 76800
ad $:=140000$
$\mathrm{a} 2:=0.86$
t1 := time(0)

Given

$$
\begin{array}{lll}
10^{3} \leq \mathrm{aa} \leq 10^{6} & 10^{5} \leq \mathrm{ab} \leq 10^{8} & 70000 \leq \mathrm{ac} \leq 120000 \\
120000 \leq \mathrm{ad} \leq 170000 & \mathrm{a} 1 \leq \mathrm{a} 2 \leq 1 &
\end{array}
$$

$\left(\begin{array}{c}\mathrm{a} 2 \\ \mathrm{aa} \\ \mathrm{ab} \\ \mathrm{ac} \\ \mathrm{ad}\end{array}\right):=\operatorname{Minimize}(\mathrm{OF} 2, \mathrm{a} 2, \mathrm{aa}, \mathrm{ab}, \mathrm{ac}, \mathrm{ad})=\left(\begin{array}{c}1 \\ 1000 \\ 1.557 \times 10^{7} \\ 1.2 \times 10^{5} \\ 1.2 \times 10^{5}\end{array}\right)$
$(\operatorname{time}(0)-\mathrm{t} 1) \mathrm{s}=3.099 \cdot \mathrm{~min} \quad$ Time it took for the solve block to finish

Check if the constraints are all OK:

$10^{3} \leq \mathrm{aa} \leq 10^{6}=0$	$10^{5} \leq \mathrm{ab} \leq 10^{8}=1$	$70000 \leq \mathrm{ac} \leq 120000=1$
$120000 \leq \mathrm{ad} \leq 170000=1$	$\mathrm{a} 1 \leq \mathrm{a} 2 \leq 1=0$	So we see that two constraints were not respected!

OF2 $(\mathrm{a} 2, \mathrm{aa}, \mathrm{ab}, \mathrm{ac}, \mathrm{ad})=3.014 \times 10^{4}$

Time111 := \mid for $\mathrm{i} \in 0 .$. Voll1 $_{0,1}-$ Voll11 $_{0,1}$
Time $111_{\mathrm{i}} \leftarrow$ Time $11_{i+\text { Voll11 }}{ }_{0,1}$
Time111

