define an half-sine pulse
$\operatorname{Amax}:=1 \quad \omega_{\mathrm{f}}:=571.2$
$\theta:=0 \quad f_{f}:=\frac{\omega_{f}}{2 \cdot \pi}$
$\mathrm{T}_{\mathrm{f}}:=\frac{1}{\mathrm{f}_{\mathrm{f}}} \quad$ tpulse $:=\frac{\mathrm{T}_{\mathrm{f}}}{2}$

$$
\text { tpulse }=5.5 \times 10^{-3}
$$

Units!

$$
\text { Amax }:=1 \cdot g \quad \omega_{f}:=90.909 \mathrm{Hza} \quad f_{f}:=\frac{\omega_{f}}{2 \cdot \pi}=90.909 \mathrm{~Hz} \quad T_{f}:=f_{f}^{-1} \quad \text { tpulse }:=\frac{T_{f}}{2}=\left(5.5 \cdot 10^{-3}\right) \mathrm{s}
$$

$$
\frac{571.2}{2 \cdot \pi}=90.909
$$

Iotal analysis tume is	tend $:=200 \cdot \mathrm{~T}_{\mathrm{f}}$	tend $:=200 \cdot T_{f}=2.2 \mathrm{~s}$
Number of time step	nsteps $:=5000$	nsteps $:=5000$
Analysis time step	$\Delta \mathrm{t}:=\frac{\text { tend }}{\text { nsteps }}$	$\Delta t:=\frac{\text { tend }}{\text { nsteps }}=\left(4.4 \cdot 10^{-4}\right) \mathrm{s}$
Tme range	$\mathrm{t}:=0, \Delta \mathrm{t} .$. tend	$t_{t}:=0 \cdot \mathrm{~s}, \Delta t .$. tend

$a_{b}(t):=$	Amax $\cdot \sin \left(\omega_{f} \cdot t+\theta\right)$ if $t \leq$ tpulse
0 otherwise	

You're creating a function

$a_{b}(t):=A \max \cdot \sin \left(\omega_{f} \cdot t\right) \cdot(t \leq t p u l s e)$

$$
\mathrm{i}:=0,1 . .2000 \quad \mathrm{fn}_{\mathrm{i}}:=\mathrm{i} \quad \zeta:=0
$$

$$
\begin{aligned}
& \mathrm{SRS}_{\mathrm{i}}:=\| \mathrm{w}_{\mathrm{i}} \leftarrow 2 \cdot \pi \cdot \mathrm{fn}_{\mathrm{i}} \\
& \left.\max \left[\left\lvert\, \frac{\mathrm{w}_{\mathrm{i}}}{\sqrt{1-\zeta^{2}}} \cdot \int_{0}^{\mathrm{t}} \mathrm{a}_{\mathrm{b}}(\mathrm{t}) \cdot \mathrm{e}^{-\zeta \cdot \mathrm{w}_{1} \cdot(\mathrm{t}-\tau)} \cdot \sin \left[\mathrm{w}_{\mathrm{i}} \cdot \sqrt{\left(1-\zeta^{2}\right)} \cdot(\mathrm{t}-\tau)\right] \mathrm{d} \tau\right.\right]\right] \\
& i:=0 \ldots 3200 \quad \omega n_{i}:=\frac{i}{10} \cdot H z a \quad \zeta:=0
\end{aligned}
$$

$$
\frac{2000}{2 \cdot \pi}=318.31
$$

I'm not sure exactly what you're trying to do here, but since $\zeta=0$ this can be simplified. The problem with the code above is that t is not defined; it is supposed to be the end point of your integration by τ

The most direct and intuitive way to generate an SRS from a shock waveform is the following procedure:[2]
Pick a damping ratio (or equivalently, a quality factor Q) for your SRS to be based on;
Pick a frequency f, and assume that there is a hypothetical Single Degree of Freedom (SDOF) system with a damped natural frequency of f;
Calculate (by direct time-domain simulation) the maximum instantaneous absolute acceleration experienced by the mass element of your SDOF at any time during (or after) exposure to the shock in question. This acceleration is a; Draw a dot at (f,a);
Repeat steps 2-4 for many other values of f, and connect all the dots together into a smooth curve.
The resulting plot of peak acceleration vs test system frequency is called a Shock Response Spectrum. It is often plotted with frequency in Hz , and with acceleration in units of g

$$
S R S(\omega):=\max \left(\mid \omega \cdot \int_{0 \cdot s}^{\text {tend }} a_{b}(\tau) \cdot \sin (\omega \cdot(\text { ten } d-\tau)) \mathrm{d} \tau \mid\right)
$$

