$$
f(x):=2 \cdot\left(e^{-x}-e^{-2 \cdot x}\right) \quad<- \text { given equation }
$$

When there is only one variable, it normally should automatically solve to it. (You don't have to type 'x,').

```
\(f^{\prime}(x):=\frac{\mathrm{d}^{1}}{\mathrm{~d} x^{1}} f(x) \xrightarrow{\text { simplify }} 4 \cdot e^{-2 \cdot x}-2 \cdot e^{-x} \quad<-\) derivating
```

$f^{\prime}(x)=0 \xrightarrow{\text { solve }} 0$ <- Pay close attention to the QUOTATION MARK, not solving without the ', x '.

$$
f^{\prime}(x)=0 \xrightarrow{\text { solve }, x} 0.69314718055994530942 \quad \text { <- solving }
$$

$$
h(x):=\frac{\mathrm{d}^{1}}{\mathrm{~d} x^{1}} f(x) \xrightarrow{\text { simplify }} 4 \cdot e^{-2 \cdot x}-2 \cdot e^{-x} \quad \begin{aligned}
& <- \text { derivating the same function, but NOT } \\
& \text { USING THE QUOTATION MARK }
\end{aligned}
$$

$$
h(x)=0 \xrightarrow{\text { solve }} 0.69314718055994530942 \quad \begin{aligned}
& \text { It solves without me having } \\
& \text { to write ', } \mathrm{x} \text { '. }
\end{aligned}
$$

So how does the naming of the function (adding and removing a quotation mark) affect the variable or something else? It is just a different name of the fuction!!!

