$$
\begin{aligned}
& \mathrm{P}_{\mathrm{s}}:=1200 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad \rho_{\mathrm{s}}:=1200 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \\
& \beta:=0.03491 \mathrm{rad} \\
& \mathrm{~m}_{\mathrm{s}}:=0.1 \frac{\mathrm{~kg}}{\mathrm{~s}} \quad m_{s}:=0.1 \frac{\mathrm{~kg}}{\mathrm{~s}} \\
& \mathrm{q}_{\mathrm{s}}:=\frac{\mathrm{m}_{\mathrm{s}}}{\rho_{\mathrm{s}}} \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}}=8.333 \times 10^{-5} \frac{\mathrm{~m}^{6}}{\mathrm{~s}^{2}} \quad \frac{\mathrm{~m}_{s}}{\rho_{s}}=\left(8.333 \cdot 10^{-5}\right) \frac{\mathrm{m}^{3}}{\mathrm{~s}}
\end{aligned}
$$

Both ρ_{s} and m_{s} are dimensioned variables, don't multiply by units again.

$$
H u_{x}(z):=H_{x}(z) \cdot U n i t s O f(m)
$$

$$
\begin{aligned}
& \text { Given } \\
& -1 \cdot \frac{\mathrm{~d}}{\mathrm{~d} z} \mathrm{H}_{\mathrm{x}}(\mathrm{z})=\frac{-3 \cdot \tan \left(\frac{\Theta}{\text { UnitsOf(rad)}}\right)}{4 \cdot \pi \cdot\left(\frac{\mathrm{n}}{\text { UnitsOf(rpm)}}\right)} \cdot \frac{\left.\left(\frac{\mathrm{m}_{\mathrm{s}}}{\text { UnitsOf }\left(\frac{\mathrm{kg}}{\mathrm{~s}}\right)}\right)\right)}{\left(\frac{\rho_{\mathrm{s}}}{\text { UnitsOf }\left(\frac{\mathrm{kg}}{\mathrm{~m}^{3}}\right)}\right)} \cdot\left[\left(\frac{\mathrm{R}_{\mathrm{w}}}{\text { UnitsOf(m)}}\right)^{2}-\left[\left(\frac{\mathrm{R}_{\mathrm{w}}}{\text { UnitsOf(m) }}\right)-\left(\mathrm{H}_{\mathrm{x}} \mathrm{C}\right.\right.\right. \\
& \mathrm{H}_{\mathrm{x}}\left(\frac{\mathrm{~L}_{\text {retort }}}{\operatorname{UnitsOf}(\mathrm{m})}\right)=0.011 \\
& z:=0,0.1 . . \frac{L_{\text {retort }}}{\text { UnitsOf(m) }} \quad \text { You don't need to define } z \\
& \mathrm{H}_{\mathrm{x}}:=\operatorname{Odesolve}(z, 0) \\
& \mathrm{H}_{\mathrm{x}}(0)=\mathbf{I}
\end{aligned}
$$

