The curves are obtained from a large number of one dimensional dynamic analyses, i.e. on flat seabed and neglecting bending and axial deformation of the pipe.
One should note that all cases with high values of N, K and M do not necessarily represent realistic physical conditions. The given values are not valid for extreme cases requiring a pipe specific weight s_{g} larger than 3. Neither should this method be used for $s_{\mathrm{g}}<1.05$. The specific weight of a pipe is given by:

$$
\begin{equation*}
s_{g}=1+\frac{2}{\pi} \cdot N \cdot K \cdot L \tag{3.33}
\end{equation*}
$$

At deep waters, K may be very small whereas the presence of current gives a large value of M. In such cases it is recommended to require absolute stability according to [3.6].
$L_{\text {stable }}$ is independent of sea state duration whereas L_{10} is valid for 1000 waves and can be assumed to be proportional to the number of waves τ in the sea state. If $L<L_{\text {stable, }}$, then displacement should conservatively be regarded as varying linearly with number of waves in the sea state:

$$
\begin{equation*}
Y_{\tau}=0.5+(10-0.5) \cdot \frac{\tau}{1000}=0.5+0.0095 \cdot \tau \tag{3.34}
\end{equation*}
$$

E.g. a three hour sea state with $T_{\mathrm{u}}>10.8 \mathrm{~s}$ will expose the pipe to less than 1000 waves, and the expected displacement can be scaled down accordingly.
Linear interpolation can be performed in M and K.
Required weight for an intermediate displacement criterion can be calculated according to the following formula:

$$
\begin{equation*}
\log L_{Y}=\log L_{\text {stable }}+\frac{\log \left(L_{\text {stables }} / L_{10}\right)}{\log (0.5 /(0.01 \cdot \tau))} \cdot \log (Y / 0.5) \tag{3.35}
\end{equation*}
$$

This design approach is applicable to $N \leq 0.024$ for clay and $N \leq 0.048$ for sand.
Interpolation can be performed in G_{c} for clay assuming L to be proportional with $\sqrt{G_{c}}$. (The effect of varying soil density for pipes on sand has been neglected.) Note that the curves are valid for $G_{c} \leq 2.78$ only. For higher values of G_{c} it is recommended to require absolute stability.
Minimum pipe weight required to obtain a virtually stable pipe can found from the following design points independent of N :

Table 3-2 Minimum weight, $L_{\text {stable }} /(2+M)^{\mathbf{2}}$, for pipe on sand, $K \geq 10$

M	10	15	20	30	40	≥ 60
≤ 0.2	1.50	1.42	1.35	1.25	1.22	1.22
0.4	1.82	1.70	1.61	1.53	1.50	1.50
0.5	2.19	1.97	1.83	1.69	1.61	1.61
0.6	2.65	2.35	2.18	1.99	1.85	1.72

M	K	10	15	20	30	40
≥ 60						
0.8	3.05	2.55	2.32	2.13	2.01	1.90
1.0	3.05	2.55	2.40	2.20	2.06	1.95
1.5	2.65	2.45	2.36	2.24	2.11	2.09
2.0	2.50	2.40	2.35	2.27	2.22	2.19
4.0	2.45	2.40	2.39	2.37	2.37	2.37
≥ 10	2.50	2.50	2.50	2.50	2.50	2.50

For $K \leq 5$, the required weight is more dependant on N and minimum pipe weight required to obtain a virtually stable pipe can found from the following design points:
Table 3-3 Minimum weight, $L_{\text {stable }} /(2+M)^{\mathbf{2}}$, for pipe on sand, $K \leq 5$

M	N	0.003	0.006	0.012	0.024
≤ 0.2	1.55	1.45	1.34	1.24	1.13
0.4	2.00	1.65	1.34	1.24	1.13
0.5	3.30	2.60	1.91	1.24	1.13
0.6	3.75	3.07	2.38	1.70	1.13
0.8	4.00	3.45	2.90	2.36	1.81
1.0	3.90	3.50	3.10	2.71	2.31
1.5	3.25	3.13	3.00	2.88	2.75
2.0	2.75	2.75	2.75	2.75	2.75
4.0	2.60	2.60	2.60	2.60	2.60
≥ 10	2.50	2.50	2.50	2.50	2.50

Figure 3-11 Minimum weight, $\boldsymbol{L}_{\text {stable }} /(\mathbf{2 + M})^{\mathbf{2}}$, for pipe on sand
Minimum pipe weight required to limit the lateral displacement to 10 pipe diameters for pipes on sand can found from the following design points:
Table 3-4 Minimum weight, $L_{10} /(2+M)^{2}$, for pipe on sand

K M	$=5$	10	15	20	30	40	60	≥ 100
≤ 0.2	0.20	0.41	0.61	0.81	0.69	0.69	0.69	0.69
0.4	0.31	0.62	0.93	0.81	0.75	0.72	0.70	0.70
0.5	0.34	0.69	1.03	0.93	0.83	0.78	0.75	1.00
0.6	0.79	1.20	1.13	1.10	1.07	1.05	1.03	1.02
0.8	0.85	1.40	1.37	1.35	1.33	1.33	1.32	1.31
1.0	1.60	1.50	1.47	1.45	1.43	1.43	1.42	1.41
1.5	1.80	1.70	1.67	1.65	1.63	1.63	1.62	1.61
2.0	1.90	1.80	1.77	1.75	1.73	1.73	1.72	1.71
4.0	2.10	2.00	1.97	1.95	1.93	1.93	1.92	1.91
≥ 10	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50

