Pharmacokinetics dose response with 2 compartment model - For GFR Identificaiton: (The data are from EI. Christina Excel)

Xtime Yconcentration

7	375.97
10	296.1
15	219.73
20	188.4
25	169.52
30	149.8
45	124.76
60	110.36
90	93.29
120	78.47
150	67.42
180	62.52

Project parameters	
Dose injection [mg] $\quad D:=2500$	
Duration_injection [min] $\tau:=3$	
Initial Concentration	
$\begin{aligned} & \text { in Central comp't } \\ & {[\mathrm{mg} / \mathrm{l}]} \end{aligned}$	$c 10:=0$
	$c 20:=0$
Infusionrate: (for an infusion pump)	$\rho:=0$

[^0]
Source: Eur J Clin Chem Clin Biochem 1995; 33 (no 4) pp. 201-209

```
con10:=c10 con20:=c20 Irate:=\rho Dosis:=D \tau=3
k01(vol1,clearance):=\frac{clearance}{vol }1000}k21(t21):=\frac{\operatorname{ln}(2)}{t21
k12(vol1,vol2,t21):=k21(t21)}\cdot\frac{vol1}{vol2
X10(vol1):=con10\cdotvol1
X20(vol2):=con20.vol2
x1s(vol1,clearance )}:=\frac{\frac{\mathrm{ Dosis }}{\tau}}{k01(\mathrm{ vol1,clearance })
x2s(vol1,vol2,t21,clearance):=x1s(vol1,clearance)}\cdot\frac{k21(t21)}{k12(vol1,vol2,t21)
y1s(vol1,clearance)}:=\frac{Irate}{k01(vol1,clearance)
y2s(vol1,vol2,t21,clearance):=y1s(vol1,clearance)}\cdot\frac{k21(t21)}{k12(vol1,vol2,t21)
ksum(vol1,vol2,t21,clearance):=k01(vol1,clearance) +k21(t21)+k12(vol1,vol2,t21)
```



```
\lambda1(vol1,vol2,t21,clearance):=-0.5\cdot(ksum(vol1,vol2,t21,clearance)-diskrim(vol1,vol2,t21,clearance))
\lambda2(vol1,vol2,t21,clearance):=-0.5\cdot(ksum(vol1,vol2,t21,clearance)+diskrim(vol1,vol2,t21,clearance))
a(vol1,vol2,t21,clearance )}:=\frac{k01(\mathrm{ vol 1, clearance })+k21(t21)+\lambda1(vol1,vol2,t21,clearance}{)
b(vol1,vol2,t21, clearance ):=
M1 (vol1,vol2,t21,clearance ):=\frac{(X10(vol1)-x1s(vol1,clearance))\cdotb(vol1,vol2,t21,clearance)-(X20(vol 2)-x2s(vol1,vol2,t21,clearance))}{b(vol1,vol2,t21,clearance)-a(vol1,vol2,t21,clearance)}
M2(vol1,vol2,t21,clearance ):=\frac{(X20(vol2)-x2s(vol1,vol2,t21,clearance ))-(X10(vol1)-x1s(vol1,clearance))\cdota(vol1,vol2,t21,clearance)}{b(vol,vol2,t21,clearance)-a(vol1,vol2,t21,clearance)}
```



```
\(N 1(\) vol 1, vol \(2, t 21\), clearance \():=\frac{(x 1 \tau(\text { vol } 1, \text { vol } 2, t 21, \text { clearance })-y 1 s(\text { vol } 1, \text { clearance })) \cdot b(\text { vol } 1, \text { vol } 2, t 21, \text { clearance })-(x 2 \tau(\text { vol } 1, \text { vol2,t21,clearance })-y 2 s(\text { vol } 1, \text { vol } 2, t 21, \text { clearance }))}{b(\text { vol } 1, \text { vol } 2, t 21, \text { clearance })-a(\text { vol } 1, \text { vol } 2, t 21, \text { clearance })}\)
\(N 2(\) vol1, vol \(2, t 21\), clearance \():=\frac{(x 2 \tau(\text { vol } 1, \text { vol } 2, t 21, \text { clearance })-y 2 s(\text { vol } 1, \text { vol } 2, t 21, \text { clearance }))-(x 1 \tau(\text { vol } 1, \text { vol2,t21, clearance })-y 1 s(\text { vol } 1, \text { clearance })) \cdot a(\text { vol } 1, \text { vol } 2, \text { t21, clearance })}{b(v o l 1, v o l 2, t 21, c l e a r a n c e)-a(v o l 1, v o l 2, t 21, c l e a r a n c e)}\)
                        b(vol1, vol2,t21, clearance)-a(vol1,vol2,t21, clearance)
part \(1 X 1(t\), vol1, vol2 \(2, t 21\), clearance \():=M 1(\) vol 1, vol \(2, t 21\), clearance \() \cdot e^{\lambda 1(\text { vol1 }, \text { vol2 }, \text { t21, clearance })(t)}+M 2(\) vol 1, vol \(2, t 21\), clearance \() \cdot e^{\lambda 2(v o l 1, \text { vol2,t21, clearance })(t)}+x 1 s(\) vol 1, clearance \()\)
part \(2 X 1(t\), vol 1, vol \(2, t 21\), clearance \():=N 1(\) vol 1, vol2,\(t 21\), clearance \() \cdot e^{\lambda 1(\text { vol } 1, \text { vol2 }, t 21, \text { clearance })(t-\tau)}+N 2(\) vol 1, vol \(2, t 21\), clearance \() \cdot e^{\lambda 2(\text { vol } 1, \text { vol2 }, t 21, \text { clearance })(t-\tau)}+y 1 s(\) vol 1, clearance \()\)
model_analy \(X 1(t\), vol 1, vol \(2, t 21\), clearance \():=\frac{1}{\text { vol } 1} \cdot\) if \(0 \leq t<\tau\)
    part1X1 (t,vol1, vol 2, t21, clearance \()\)
    else
    \(\|\) part \(2 X 1(t\), vol 1, vol \(2, t 21\), clearance \()\)
```



```
model_analy \(X 2(t\), vol 1, vol \(2, t 21\), clearance \():=\frac{1}{v o l 2} \cdot\) if \(0 \leq t<\tau\)
    part1X2(t,vol1,vol2,t21, clearance \()\)
    else
\(\|\) part \(2 X 2(t\), vol1, vol2, t21, clearance \()\)
```

Note: the symbolic substitution does only work with the legacy symbolic processor (muPAD) in Prime 6.0

Final model with the kk-Values:
model_analykX1 $(t, k k 01, k k 12, k k 21, v o l 1):=\frac{1}{v o l} \cdot \cdot$ if $0 \leq t<\tau$
|partk1X1 (t,vol1, kk01, kk12,kk21)
$\|$ partk2X1(t,vol1,kk01,kk12,kk21)
model_analy $k X 2(t, k k 01, k k 12, k k 21$, vol 1$):=\frac{k k 12}{k k 21 \cdot v o l 1} \cdot \begin{aligned} & \text { if } 0 \leq t<\tau \\ & \| \text { part } k 1 X 2(t, v o l 1, k k 01, k k 12, k k 21) \\ & \text { else }\end{aligned}$
$\|$ part $2 X 2(t, v o l 1, k k 01, k k 12, k k 21)$

Residuals- Function with vol1, vol2, t21 and clearance:

Residuals- Function with k-values:

residk $(k 01, k 12, k 21$, vol 1$):=Y$ concentration - model_analykX1 (Xtime $, k 01, k 12, k 21, v o l 1)$
$\sqrt[4]{4}$
$0=r e s i d k\left(e s t _k 01, e s t _k 12, e s t _k 21, e s t _v o l 1\right)$
$\left[\begin{array}{l}a n a _k 01 \\ a n a _k 12\end{array}\right.$
$\left.\begin{aligned} & a n a _k 12 \\ & a n a _k 21\end{aligned} \right\rvert\,:=\operatorname{minerr}($ est_k01, est_k12,est_k21,est_vol1)
ana_vol 1
Pragmatical relationships:

clearance $:=a n a _k 01 \cdot 1000 \cdot a n a _v o l 1$

 $t 21:=\frac{\ln (2)}{a n a _k 21} \quad$ vol2 $:=a n a _v o l 1 \cdot \frac{a n a _k 21}{a n a _k 12}$ $\frac{\operatorname{SSE}(\text { ana_vol } 1, \text { vol2,t21, clearance })}{8}=26.635$
The following terms are manuelly substituted

```
\(k 01(\) vol 1, clearance \():=\frac{\text { clearance }}{\text { vol } 1 \cdot 1000} \quad k 21(t 21):=\frac{\ln (2)}{t 2}\)
\(X 20 k(k k 12, k k 21, v o l 1):=\frac{\operatorname{con} 20 \cdot k k 21 \cdot v o l 1}{k k 12}\)
\(x 1 s k(k k 01):=\frac{\text { Dosis }}{\tau \cdot k k 01}\)
\(x 2 s k(k k 01, k k 12, k k 21):=\frac{\text { Dosis } \cdot k k 21}{\tau \cdot k k 01 \cdot k k 12}\)
\(y 1 s k(k k 01):=\frac{\text { Irate }}{k k 01}\)
\(y 2 s k(k k 01, k k 12, k k 21):=\frac{k k 21}{k k 01 \cdot k k 12}\)
\(k s u m k(k k 01, k k 12, k k 21):=k k 01+k k 21+k k 12\)
\(\operatorname{diskrimk}(k k 01, k k 12, k k 21):=\sqrt{k s u m k(k k 01, k k 12, k k 21)^{2}-4 \cdot k k 01 \cdot k k 12}\)
\(\lambda k 1(k k 01, k k 12, k k 21):=-0.5 \cdot(k s u m k(k k 01, k k 12, k k 21)-\operatorname{diskrimk}(k k 01, k k 12, k k 21))\)
\(\lambda k 2(k k 01, k k 12, k k 21):=-0.5 \cdot(k s u m k(k k 01, k k 12, k k 21)+\operatorname{diskrimk}(k k 01, k k 12, k k 21))\)
\(a k(k k 01, k k 12, k k 21):=\frac{k k 01+k k 21+\lambda k 1(k k 01, k k 12, k k 21)}{k k 12}\)
\(b k(k k 01, k k 12, k k 21):=\frac{k k 21}{}\)
    \(k k 12+\lambda k 2(k k 01, k k 12, k k 21)\)
```



```
model_analy \(k X 1(t, k k 01, k k 12, k k 21, v o l 1):=\frac{1}{v o l 1} \cdot\) if \(0 \leq t<\tau\)
    \(\| M 1 k(k k 01, k k 12, k k 21, v o l 1) \cdot e^{\lambda k 1(k k 01, k k 12, k k 21)(t)}+M 2 k(k k 01, k k 12, k k 21, v o l 1) \cdot e^{\lambda k 2(k k 01, k k 12, k k 21)(t)}+x 1 s k(k k 01)\)
    else
    \(\| N 1 k(k k 01, k k 12, k k 21, v o l 1) \cdot e^{\lambda k 1(k k 01, k k 12, k k 21)(t-\tau)}+N 2 k(k k 01, k k 12, k k 21, v o l 1) \cdot e^{\lambda k 2(k k 01, k k 12, k k 21)(t-\tau)}+y 1 s k(k k 01)\)
```


end $:=500$
model_analykX1 (Xtime2,parm_a,parm_b,parm_c,parm_d)
$\left[\begin{array}{l}\text { parm_a } \\ \text { parm_b } \\ \text { parm_c } \\ \text { parm_d }\end{array}\right]:=\left[\begin{array}{c}k_{01} \\ k_{12} \\ k_{21} \\ \text { anak_vol } 1\end{array}\right]=\left[\begin{array}{l}0.02 \\ 0.04 \\ 0.078 \\ 4.136\end{array}\right]$
model_analyX1(Xtime2, parm_a, parm_b, parm_c,parm_d)
$\left[\begin{array}{l}\text { parm_a } \\ \text { parm_b } \\ \text { parm_c } \\ \text { parm_d }\end{array}\right]:=\left[\begin{array}{c}\text { ana_vol1 } \\ \text { vol2 } \\ t 21 \\ \text { clearance }\end{array}\right]=\left[\begin{array}{r}4.136 \\ 8.131 \\ 8.864 \\ 81.199\end{array}\right]$
model_analyX1(Xtime2,parm_a,parm_b,parm_c,parm_d) model_analyX2 (Xtime2, parm_a, parm_b,parm_c,parm_d) Yconcentration

Solution of the ODE by numerical solution

$\left[\begin{array}{l}X 1 \\ X 2\end{array}\right]:=\operatorname{Sol}\left(k_{01}, k_{12}, k_{21}, V_{1}\right)$

Residuals comparition of numerical \& analytical solutions

Pragmatical
relationships

$$
V_{2}:=V_{1} \cdot\left(\frac{k_{21}}{k_{12}}\right) \quad \text { Clearance }:=k_{01} \cdot 1000 \cdot V_{1} \quad t 21:=\frac{\ln (2)}{k_{21}}
$$

Xtime $2:=0$..end
$i:=0 . . \operatorname{last}(X t i m e)$
$e r y _a n a:=r e s i d\left(a n a k _v o l 1, a n a k _v o l 2, a n a k _t 21, a n a k _c l e a r a n c e\right)$

SSEnum $:=$ Sery ${ }^{2}$
$\frac{\text { SSEnum }}{8}=26.635$

Evaluation of the convergence by truncating the endpoint from 50 min to the end

For convergence check the data should be analysed with the
endpoint where the time $>=60 \mathrm{~min}$.
begintime $:=60$
analyseend $:=7$

inputDATA $:=\operatorname{augment}($ Xtime,Yconcentration $)$
inputDATA $=\left[\begin{array}{cl}7 & 375.97 \\ 10 & 296.1 \\ 15 & 219.73 \\ 20 & 188.4 \\ 25 & 169.52 \\ 30 & 149.8 \\ 45 & 124.76 \\ 60 & 110.36 \\ 90 & 93.29 \\ 120 & 78.47 \\ 150 & 67.42 \\ 180 & 62.52\end{array}\right]$
$a:=$ WRITEEXCEL("DATA_Prime.xlsx", inputDATA)
$\left[\begin{array}{lll}k_{01} & k_{12} & k_{21} \\ V_{1}\end{array}\right]$:=[$\left.\begin{array}{llll}0.016 & 0.04 & 0.03 & 6\end{array}\right]$

```
Rather than residuals, calculate the predicted values and equate those to the input values.
```

```
[ X1 [
Xt\leftarrowtrunca(Xtime, endpoint)
X1(Xt)
    V
```

Params(endpoint):=Minerr $\left(k_{01}, k_{12}, k_{21}, V_{1}\right)$
$\left[\begin{array}{l}k_{01} \\ k_{12} \\ k_{21} \\ V_{1}\end{array}\right]:=$ Params (last (Xtime) $)$
Pragmatical
relationships:

$$
\left[\begin{array}{c}\text { Clearance } \\ V_{1} \\ V_{2} \\ t 21\end{array}\right]=\left[\begin{array}{r}81.199 \\ 4.136 \\ 8.131 \\ 8.864\end{array}\right]
$$

$\left[\begin{array}{l}k_{01} \\ k_{12} \\ k_{21} \\ V_{1}\end{array}\right]=\left[\begin{array}{l}0.02 \\ 0.04 \\ 0.078 \\ 4.136\end{array}\right]$

Model-Definitions

$$
\text { model }_{a}\left(k_{01}, k_{12}, k_{21}, V_{1}, \text { myTime }\right):=\| \begin{aligned}
& {\left[\begin{array}{l}
X 1 \\
X 1 \\
X 2
\end{array}\right] \leftarrow \operatorname{Sol}\left(k_{01}, k_{12}, k_{21}, V_{1}\right)} \\
& \frac{X 1(m y T i m e)}{V_{1}}
\end{aligned}
$$

$\left[\begin{array}{l}X 1 \\ X 2\end{array}\right]:=\operatorname{Sol}\left(k_{01}, k_{12}, k_{21}, V_{1}\right)$

X2 (Xtime 2)
X1 (Xtime 2)
Yconcentration. V_{1}

Calculation of the standard deviation with the Fisher's Info Matrix:

diff: $=0.000001$
Calculate the Products of the
Sensi-Matrice

$$
\operatorname{Adj}(\operatorname{diff}, i, n):\left|\left|\begin{array}{l}
a \leftarrow 0 \\
a_{n-1} \leftarrow 0 \\
a \leftarrow a+1 \\
a_{i} \leftarrow a_{i}+\operatorname{diff} \\
a
\end{array}\right|\right.
$$

To use this for different analyses, you need to porivde the endpoint and also parameterize the parameter values (rather than use the current worksheet values).

$$
\begin{aligned}
& \text { Derivs(pars, diff, endpoint): }=\| \text { for } i \in 0 . .3 \\
& {\left[\begin{array}{l}
{\left[\begin{array}{l}
A k_{01} \\
A k_{12} \\
A k_{21} \\
A V_{1}
\end{array}\right] \leftarrow \overline{(\text { pars } \cdot \operatorname{Adj}(\text { diff, }, i, 4))}}
\end{array}\right.} \\
& X 11(\text { myTime }) \leftarrow \text { model }_{a}\left(A k_{01}, A k_{12}, A k_{21}, A V_{1}, m y T i m e\right) \\
& A k_{01} \\
& {\left[\begin{array}{c}
A k_{12} \\
A k_{21}
\end{array}\right] \leftarrow \overline{(\text { pars } \cdot \operatorname{Adj}(- \text { diff }, i, 4))}} \\
& A V_{1} \\
& X 12(\text { myTime }) \leftarrow \text { model }_{a}\left(A k_{01}, A k_{12}, A k_{21}, A V_{1}, \text { myTime }\right) \\
& X t \leftarrow \text { trunca }(\text { Xtime, endpoint) } \\
& D^{(i)} \leftarrow \overrightarrow{X 11(X t)-X 12(X t)} \\
& \text { 2•diff-pars }{ }_{i}
\end{aligned}
$$

DerivM $:=$ Derivs $\left(\left[\begin{array}{l}k_{01} \\ k_{12} \\ k_{21} \\ V_{1}\end{array}\right]\right.$, diff, last (Xtime $\left.)\right)$
SSE (endpoint,$\left.V_{1}\right):=\sum_{i=0}^{\text {endpoint }}\left(\left(\text { Yconcentration }_{i}-\frac{X 1\left(\text { Xtime }_{i}\right)}{V_{1}}\right)^{2}\right)$
num of Params:=4
degree_of_freedom(endpoint) $:=$ endpoint $+1-$ num_of_Params
$\boldsymbol{C}_{\boldsymbol{M}}:=\operatorname{identity}($ rows $($ Xtime $)) \cdot \sigma_{\boldsymbol{M}}{ }^{2}$
FisherInfoMat:= DerivM $^{\mathrm{T}} \cdot C_{M}{ }^{-1} \cdot$ DerivM
$\sqrt{\frac{\text { SSE }\left(\text { last }(\text { Xtime }), V_{1}\right)}{\text { degree_of_freedom }(\operatorname{last}(\text { Xtime }))}}=5.161$
$\operatorname{last}($ Xtime $)=11$
degree_of_freedom $(\operatorname{last}(X t i m e))=8$

FisherInfoMat $:=$ DerivM $^{\mathrm{T}} \cdot$ DerivM $\cdot\left(\frac{\text { degree_of_freedom }(\operatorname{last}(\text { Xtime }))}{\operatorname{SSE}\left(\operatorname{last}(\text { Xtime }), V_{1}\right)}\right)$

VAR KOV Parm $:=$ FisherInfoMat $^{-1}$
FisherInfoMat $=\left[\begin{array}{cccc}4.012 \cdot 10^{6} & -1.472 \cdot 10^{6} & 1.113 \cdot 10^{6} & 4.755 \cdot 10^{4} \\ -1.472 \cdot 10^{6} & 7.724 \cdot 10^{5} & -5.57 \cdot 10^{5} & -2.006 \cdot 10^{4} \\ 1.113 \cdot 10^{6} & -5.57 \cdot 10^{5} & 6.269 \cdot 10^{5} & 2.284 \cdot 10^{4} \\ 4.755 \cdot 10^{4} & -2.006 \cdot 10^{4} & 2.284 \cdot 10^{4} & 910.227\end{array}\right]$
VAR_KOV $_{\text {Parm }}=\left[\begin{array}{cccc}2.039 \cdot 10^{-6} & 3.715 \cdot 10^{-6} & 6.741 \cdot 10^{-6} & -1.938 \cdot 10^{-4} \\ 3.715 \cdot 10^{-6} & 1.038 \cdot 10^{-5} & 1.589 \cdot 10^{-5} & -3.64 \cdot 10^{-4} \\ 6.741 \cdot 10^{-6} & 1.589 \cdot 10^{-5} & 4.444 \cdot 10^{-5} & -0.001 \\ -1.938 \cdot 10^{-4} & -3.64 \cdot 10^{-4} & -0.001 & 0.031\end{array}\right]$

SSE $\left(\right.$ last $($ Xtime $\left.), V_{1}\right)=213.081$

$$
\left[\begin{array}{l}
\sigma k_{01} \\
\sigma k_{12} \\
\sigma k_{21} \\
\sigma V_{1}
\end{array}\right]:=\sqrt{\operatorname{diag}\left(\text { FisherInfoMat }^{-1}\right)}
$$

$\left[\begin{array}{c}\sigma k_{01} \\ \sigma k_{12} \\ \sigma k_{21} \\ \sigma V_{1}\end{array}\right]:=\sqrt{\operatorname{diag}\left(\text { FisherInfoMat }^{-1}\right)}$

95\% Confidence Intervall:
$\left[\begin{array}{l}k_{01} \\ k_{12} \\ k_{21} \\ V_{1}\end{array}\right]-\mathrm{qt}(0.975$, degree_of_freedom $(\operatorname{last}($ Xtime $))) \cdot\left[\begin{array}{c}\sigma k_{01} \\ \sigma k_{12} \\ \sigma k_{21} \\ \sigma V_{1}\end{array}\right]=\left[\begin{array}{c}0.016 \\ 0.032 \\ 0.063 \\ 3.729\end{array}\right]$
$\left[\begin{array}{l}k_{01} \\ k_{12} \\ k_{21} \\ V_{1}\end{array}\right]+\mathrm{qt}\left(0.975\right.$, degree_of_freedom(last(Xtime))) $\cdot\left[\begin{array}{l}\sigma k_{01} \\ \sigma k_{12} \\ \sigma k_{21} \\ \sigma V_{1}\end{array}\right]=\left[\begin{array}{c}0.023 \\ 0.047 \\ 0.094 \\ 4.544\end{array}\right]$

RESULTS of system parameters with standard deviations (central differences): $-->$ When the σ_{M} is not known!! $\sigma_{M}{ }^{2}$ is estimed as SSE/degree of freedom
$\left[\begin{array}{l}k_{01} \\ k_{12} \\ k_{21} \\ V_{1}\end{array}\right]=\left[\begin{array}{l}0.02 \\ 0.04 \\ 0.078 \\ 4.136\end{array}\right] \quad\left[\begin{array}{l}\sigma k_{01} \\ \sigma k_{12} \\ \sigma k_{21} \\ \sigma V_{1}\end{array}\right]=\left[\begin{array}{l}1.42798 \mathrm{E}-003 \\ \vdots\end{array}\right]$

RESULTS calculated in SAAM II with its std dev of the parameters: (When σ_{m} is known)

$\left[\begin{array}{l}k_{01} \\ k_{12} \\ k_{21} \\ V_{1}\end{array}\right]=\left[\begin{array}{l}0.02 \\ 0.04 \\ 0.078 \\ 4.136\end{array}\right] \quad\left[\begin{array}{l}\sigma k_{01} \\ \sigma k_{12} \\ \sigma k_{21} \\ \sigma V_{1}\end{array}\right]=\left[\begin{array}{l}1.42798 \mathrm{E}-003 \\ \vdots\end{array}\right]$

Calculation of the Variance / Std Dev of the Clearance with Fisher

clearance $:=1000 \cdot V_{1} \cdot k_{0}$

learance $=81.199$

Arrange the matrix, so that 1 st paramter is V_{1} and second k_{0}
$V a r i a n c e _d x:=\left[\begin{array}{ll}V A R _K O V_{\text {Parm }_{3,3}} & V A R _K O V_{\text {Parm }_{0,3}} \\ V A R _K O V_{P_{\text {arm }}^{0,3}} & V A R _K O V_{P_{\text {arm }}^{0,0}}\end{array}\right]$
$\operatorname{Jacob}\left(1000 \cdot V_{1} \cdot k_{01},\left[\begin{array}{l}V_{1} \\ k_{01}\end{array}\right]\right)=\left[\begin{array}{ll}19.63 & 4.136 \cdot 10^{3}\end{array}\right]$
$\left[1000 \cdot k_{01} 1000 \cdot V_{1}\right]=\left[\begin{array}{ll}19.63 & 4.136 \cdot 10^{3}\end{array}\right]$
$F I M:=\left(\left[\begin{array}{lll}1000 \cdot k_{01} & 1000 \cdot V_{1}\end{array}\right] \cdot\right.$ Variance_d $\left.^{2} \cdot\left[\begin{array}{lll}1000 \cdot k_{01} & 1000 \cdot V_{1}\end{array}\right]^{\mathrm{T}}\right)$

Var_Cl:=FIM
$V a r_{-} C l=15.453$
$\sigma_{\text {Clearance }}:=\sqrt{V a r_{-} C l}$
$\sigma_{\text {Clearance }}=3.931$

Email from Brad Bell:
Suppose that we have a derived function
$h+d h \sim=h(x)+h(x)$ * $d x$

or your case below $\mathrm{x}=(\mathrm{V} 1, \mathrm{k} 01)^{\wedge} \mathrm{T}$
$h(x)=1000$ * $x 1$ * $x 2$
$h^{\prime}(x)=1000 *\left[x^{2}, x 1\right]$
Variance (dx) $=\left[\begin{array}{l}{[C 11, ~ C 12} \\ {[C 21, ~ C 22}\end{array}\right]$

EXLResult $=\left[\begin{array}{rrr}60 & 115.174 & 7.536 \\ 90 & 97.086 & 7.356 \\ 120 & 89.962 & 5.415 \\ 150 & 85.901 & 4.225 \\ 180 & 81.199 & 3.931\end{array}\right]$

$$
\frac{\left(\text { Result }^{T}\right)^{(0)}}{\operatorname{augment}\left(\left(\left(\text { Result }^{\mathrm{T}}\right)^{(0)}\right)+\left(\text { Result }^{\mathrm{T}}\right)^{(1)},\left(\text { Result }^{\mathrm{T}}\right)^{(0)}-\left(\text { Result }^{\mathrm{T}}\right)^{(1)}\right)}
$$

$\left(\text { Result }{ }^{T}\right)^{(3)}$
EXLResult:=WRITEEXCEL("CL_EXCEL.xls",EXLResult, 1,1, ",")

Analyse of the Calculation method used in SAAM

$\frac{4.40726-V_{1}}{-\sigma V_{1}}=-1.532$	this is z for the SAAM results
$z\left(1-\frac{\alpha}{2}\right)=1.96^{\prime}$	this is z according Wikibooks.org
$\alpha:=0.05$	qnorm $(0.975,0,1)=1.96$

$P\left(\bar{X}-z\left(1-\frac{\alpha}{2}\right) \cdot \frac{\sigma}{\sqrt{n}} \leq \mu \leq \bar{X}+z\left(1-\frac{\alpha}{2}\right) \cdot \frac{\sigma}{\sqrt{n}}\right)=1-\alpha$

SOLUTION: in SAAM the T-Distribution is used:
$\mathrm{qt}(0.975$, degree_of_freedom $($ last $($ Xtime $)))=2.306$
This is the t-Distribution for $\alpha / 2$ and dfreedom

Source:

http://de.wikipedia.org/wiki/Studentsche_t-Verteilung

Beispidsweise gilt für die Schätzung des Erwartungswertes einer normalverteilten Grundgesamtheit: Wenn die unabhängigen Zufallsvariablen $X_{1}, X_{2}, \ldots, X_{n}$ identisch normalverteilt sind mit den Parametern μ und σ, dann unterliegt die stetige Zufallsgröße

$$
\begin{aligned}
& \qquad t_{n-1}=\frac{\bar{X}-\mu}{S} \sqrt{n} \\
& \qquad S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}
\end{aligned}
$$

die Stichprobenvarianz ist, einer Studentschen t-Verteilung mit ($n-1$) Freiheitsgraden
Das 95%-Konfidenzintervall für den Mittelwert μ wäre dann

$$
\bar{x}-t \cdot \sqrt{\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{n(n-1)}} \leq \mu \leq \bar{x}+t \cdot \sqrt{\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{n(n-1)}}
$$

wobeit durch $F(t \mid n-1)=0,975$ bestimmt ist. Dieses Intervall ist etwas größer als dasjenige, welches sich mit bekanntem σ aus der Verteilungsfunktion der Normalverteilung bei gleichem Konfidenzniveau ergeben hätte $\left(\mu \in\left(\bar{x} \pm 1,96 \cdot \frac{\sigma}{\sqrt{n}}\right)\right)$.

Appendix: From Dissertation von Veronika Boltz:

The FisherInfoMatrix is:

This last calculations lead to the following approximation for the desired covariance matrix:

$$
\mathbf{V}(\hat{\mathbf{p}})=\left[\mathbf{J}^{T} \mathbf{R}^{-1} \mathbf{J}\right]^{-1} .
$$

where the Jacobi matrix \mathbf{J} is evaluated at $\mathbf{p}=\hat{\mathbf{p}}$
So, what does this mean for our model?
So, what does this mean for our model? have one measurement series per patient we don't know the reAs we only have one measurement series per patient we don t know the re-
quired error variances $\sigma^{2}\left(t_{l}\right)$. But we can estimate the value of σ^{2} through quired error variances $\sigma^{2}\left(t_{l}\right)$.

$$
\begin{equation*}
s^{2}=\frac{Q(\hat{\mathbf{p}})}{n-m} \tag{7.8}
\end{equation*}
$$

which is the residual sum of squares $Q(\hat{\mathbf{p}})$ divided by the degrees of freedom (number of measurements minus the number of parameters),

We therefore arrive at the following approximation for the covariance matrix of the parameter estimates:

$$
\mathbf{V}(\hat{\mathbf{p}})=\left[\mathbf{J}^{T} \mathbf{J}\right] \frac{n-m}{Q(\hat{\mathbf{p}})}
$$

Having estimated $\mathbf{V}(\hat{\mathbf{p}})$ the diagonal elements $v_{i i}\left(\hat{p}_{i}\right)$ of $\mathbf{V}(\hat{\mathbf{p}})$ provide the desired variances of the parameter estimates, so that the accuracy with which the parameter p_{i} can be estimated may be expressed in terms of its standard deviation by

$$
\hat{p}_{i} \pm \sqrt{v_{i i}\left(\hat{p}_{i}\right)}
$$

$f_{i j}=\sum_{l=1}^{N} \frac{1}{\sigma^{2}\left(t_{l}\right)} \frac{\partial y\left(t_{l}\right)}{\partial p_{i}} \frac{\partial y\left(t_{l}\right)}{\partial p_{j}}$

The calculation with SAAM II is as follows:

1) Define $S D=1$ in the DATA WINDOW for the DATA
2) RUN the calculation and export t,plasma and s1_res as TABLE in the TABLE WINDOW
3) Import the TABLE into EXCEL and calculate SSE = s1_res*s1_res and sigma (see the formular below at the red arrow Note: 6 is the actual number of parameters HERE: must be 4) 4) SET SD = sigma and calculate the model once more to get the proper parameter standard deviations

t	plasma	s1_res	SSE	sigma					
0	-		0,000000000						
5	-		0,000000000						
5			0,000000000						
7	893	$-1,40 \mathrm{E}+00$	1,965744203						
10	708	3,275	10,725625000						
15,25	514	$-1,46 \mathrm{E}+00$	2,143559528						
20,25	419	$-1,44 \mathrm{E}+00$	2,068821956						
25	361	-4,57E+00	20,876766192						
30,08	332	6,486	42,068196000						
45	253	1,016	1,032256000						
60,33	203	-5,74E-01	0,330049101						
75,33	167,6	$-1,78 \mathrm{E}+00$	3,160715066						
90	141,9	$-2,17 \mathrm{E}+00$	4,702478990						
105			0,000000000						
120	108,7	0,934	0,872356000						
135			0,000000000						
150	88,2	4,689	21,986721000						
165			0,000000000						
180	63,6	$-2,39 E+00$	5,718172213						
205			0,000000000						
222,5			0,000000000						
240	41	$-1,29 \mathrm{E}+00$	1,672417968						
265			0,000000000						
282,5			0,000000000						
300	28,4	0,962	0,925444000						
325			0,000000000						
342,5			0,000000000						
360	17,4	-4,57E-01	0,208946809						
385			0,000000000						
410			0,000000000						
435			0,000000000		WURZEL(((ABS(SUMME(E:E))))/(ANZAHL(D:D)-6))	WURZEL(($\operatorname{ABS(SUMME(E:E))))/(ANZAHL(D:D)-6))~}$			
457,5			0,000000000						
480	7,3	-2,77E-01	0,076868117						
500			0,000000000						
500			0,000000000						
				3,3102477					

Appendix: Equations from Source: Eur J Clin Chem Clin Biochem 1995; 33 (no 4) pp. 201-209

$$
\begin{array}{rlr}
\lambda_{1}= & -1 / 2\left(\left(k_{01}+k_{21}+k_{12}\right)\right. \\
& \left.-\left(\left(k_{01}+k_{21}+k_{12}\right)^{2}-4 k_{01} k_{12}\right)^{1 / 2}\right) \text { (Eq. 9) } \\
\lambda_{2}= & -1 /\left(\left(\left(k_{01}+k_{21}+k_{12}\right)\right.\right. & \\
& \left.+\left(\left(k_{01}+k_{21}+k_{12}\right)^{2}-4 k_{01} k_{12}\right)^{1 / 2}\right) & \text { (Eq. 10) } \tag{Eq.22}\\
\mathrm{a}= & \left(k_{01}+k_{21}+\lambda_{1}\right) / k_{12} & \text { (Eq. 11) } \\
\mathrm{b}= & \mathrm{k}_{21} /\left(\mathrm{k}_{12}+\lambda_{2}\right) & \text { (Eq. 12) } \\
\mathrm{x}_{1 \mathrm{~s}}= & (\mathrm{D} / \tau) / \mathrm{k}_{01} & \text { (Eq. 13) } \\
\mathrm{x}_{2 \mathrm{~s}}= & \mathrm{x}_{1 \mathrm{~s}}\left(\mathrm{k}_{21} / k_{12}\right) & \text { (Eq. 14) } \\
\mathrm{y}_{1 \mathrm{~s}}= & \rho / \mathrm{k}_{01} & \text { (Eq. 15) } \\
\mathrm{y}_{2 \mathrm{~s}}=y_{1 \mathrm{~s}}\left(k_{21} / k_{12}\right) & \text { (Eq. 16) }
\end{array}
$$

$$
\begin{aligned}
N_{1}= & \left(\left(x_{1 \tau}-y_{1 s}\right) b\right. \\
& \left.-\left(x_{2 \tau}-y_{2 s}\right)\right) /(b-a) \\
N_{2}= & \left(\left(x_{2 \tau}-y_{2 s}\right)\right. \\
& \left.-\left(x_{1 \tau}-y_{1 s}\right) a\right) /(b-a)
\end{aligned}
$$

$$
\text { If } \begin{aligned}
& 0 \leq t<\tau: \\
& x_{1}(t)= M_{1} \exp \left(\lambda_{1} t\right) \\
&+M_{2} \exp \left(\lambda_{2} t\right)+x_{1 s} \\
& x_{2}(t)= M_{1} a \exp \left(\lambda_{1} t\right) \\
&+M_{2} b \exp \left(\lambda_{2} t\right)+x_{2 s}
\end{aligned}
$$

If $\tau \leq t<T_{c}$:

$$
\begin{align*}
x_{1}(t)= & N_{1} \exp \left(\lambda_{1}(t-\tau)\right) \\
& +N_{2} \exp \left(\lambda_{2}(t-\tau)\right)+y_{1 s} \tag{Eq.25}\\
x_{2}(t)= & N_{1} a \exp \left(\lambda_{1}(t-\tau)\right) \\
& +N_{2} b \exp \left(\lambda_{2}(t-\tau)\right)+y_{2 s} \tag{Eq.26}
\end{align*}
$$

The temporal profiles of the concentrations $\mathrm{c}_{1}(\mathrm{t})$ and $\mathrm{c}_{2}(\mathrm{t})$ in their respective compartments are defined by Eqs. 27 and 28:

$$
\begin{align*}
& \mathrm{c}_{1}(\mathrm{t})=\mathrm{x}_{1}(\mathrm{t}) / \mathrm{V}_{1} \tag{Eq.27}\\
& \mathrm{c}_{2}(\mathrm{t})=\mathrm{x}_{2}(\mathrm{t}) / \mathrm{v}_{2} \tag{Eq.28}
\end{align*}
$$

[^0]: TOL $:=10^{-9}$

