
Square Wave ODE Example 1 (State Space Solver):

This example is meant to show how to use a square wave to drive a mass, spring, damper system. I wanted
to use the state space solver for this. However, towards the end, I found a big problem with the state space solver. It
seems to output velocity. However, you can't calculate the velocity it comes up with on your own, using the time and
displacement output. This makes trying to compute the mass kinetic energy and acceleration very questionable. Once I
ran into this problem, I created a similar example using odesolve. This removes the uncertainty that comes with the
state space solver. Also, the state space solver uses Force/mass as the amplitude of the forcing function. This causes
additional confusion later on.

Second Order ODE that describes the physics:

m
2

τ
x τ()d

d

2
 b

τ
x τ()d

d
+ k x τ()+ F

0
cos ωF τ()= Note; A0

F0

m
= ω0()2 k

m
=

ζ .01:= Damping Ratio

Defining Inputs:

When the damping is low and the forcing
function oscillates at the natural frequency,
resonance will occur.m 60:= k 1 10

1
:= ω0

k

m
0.408248=:=

ωf ω0 1.0:= F0 1:= init
0

0









:= t1 0:= b ζ 2 m ω0():= b 0.489898=

n 300:= Number of Cycles t2 n
2 π

ωf









:=

npoints 100 n 3 10
4

=:= intvls npoints 1- 2.9999 10
4

=:=

Fs
ωf

2 π
0.064975=:= tmax t2 4.617179 10

3
=:=

A0

F0

m
0.016667=:= The state space solution uses this value as the forcing function magnitude

tstep
tmax

intvls
0.153911=:= d 10%:= Duty Cycle A A0 0.016667=:=

Solving the second order ODE using the Mathcad State Space ODE Solver:

τ
x τ()d

d
A τ() x τ() B τ() u τ()+= State space representation of the second order ODE from above.

u1 τ() A0 cos ωf τ():= Note; the forcing function amplitude is divided by mass

u2 τ() A mod τ
1

Fs
, 




Fs d





 τ tmax<():= Note; the forcing function amplitude is divided by mass

A τ()

0

ω0()2-

1

b-

m











:= B τ()
0

1









:=

u τ() u2 τ():= Enter u1 or u2 as the forcing function

sol statespace init t1, t2, intvls, A, B, u, ():= t sol 0
 

:= x sol 1
 

:= v sol 2
 

:=

0 1 10
3 2 10

3 3 10
3 4 10

3
0

5 10
3-

0.01

0.015

0.02

u t()


t

0 1 10
3 2 10

3 3 10
3 4 10

3
1-

0.5-

0

0.5

1

x

t

Note; mass is in the equations below, because the forcing function amplitude was divided by mass.

max x()

F0

k









9.989117= Amplification Factor

When the damping ratio is .01, classical solutions state that the above should equal 50. Moreover, the dynamic
displacement should be 50x the static spring displacement. The above is used to serve as a check. Notice what
happens when you switch to a square wave. Also note what happens when you change the duty cycle of the square
wave. You will find that classical solutions come with a lot of 'ands, ifs, and buts'. Therefore, it's better to just solve the
ODE rather than use classical simplifications. Solving the ODE was very difficult in the old days 'pre-computer'.
Therefore, classical solutions gained wide spread use.

Note how the number of cycles affects this as well. You need about 300 cycles to get to the classical solution. This
makes viewing the wave forms impossible. So you can switch to something like 5 cycles, to see the waves.

i 1 intvls 1-..:= intvls 2.9999 10
4

=

Δt
i

t
i 1+ t

i 1--:= Δx
i

x
i 1+ x

i 1--:=

v1
i

Δx
i

Δt
i

:= Checking the mass velocity

ke
i

.5 m v
i()2:= Calculating the mass kinetic energy

ke1
i

.5 m v1
i()2:= Checking the mass kinetic energy

a
i

v
i 1+ v

i 1--

Δt
i

:= Calculating the mass acceleration

0 1 10
4 2 10

4 3 10
4

0.6-

0.4-

0.2-

0

0.2

0.4

0.6

vi

v1i

i

0 1 10
4 2 10

4 3 10
4

0

1

2

3

4

5

kei

ke1i

i

0 1 10
4 2 10

4 3 10
4

0.2-

0.1-

0

0.1

0.2

ai

i

Reaction Forces:

rf_mass
i

m a
i

:= rf_damping
i

b v1
i

:= rf_spring
i

k x
i

:=

rf_total
i

rf_mass
i

rf_damping
i

+ rf_spring
i

+:=

uvec
i

u t
i():=

check
i

m uvec
i

 rf_total
i

-:= The check should equal zero, due to Newton's third law

0 1 10
4 2 10

4 3 10
4

10-

5-

0

5

10

rf_massi

i

0 1 10
4 2 10

4 3 10
4

0.2-

0.1-

0

0.1

0.2

rf_dampingi

i

0 1 10
4 2 10

4 3 10
4

10-

5-

0

5

10

rf_springi

i

0 1 10
4 2 10

4 3 10
4

0.5-

0

0.5

1

1.5

m uveci

rf_totali

i

0 1 10
4 2 10

4 3 10
4

0.6-

0.4-

0.2-

0

0.2

0.4

0.6

checki

i

max check() 0.498337=

min check() 0.501569-=

max check()

F0
49.833668 %=

min check()

F0
50.156869- %=

v
i

-32.561889·10
-35.110458·10
-37.635672·10

0.010128

0.012576

0.014973

0.017307

0.019571

0.021754

0.023845

0.023283

0.022628

0.021884

0.021055

0.020144

...

= v1
i

-32.559394·10
-35.106163·10
-37.629698·10

0.01012

0.012566

0.01496

0.017294

0.019556

0.021737

0.02319

0.023268

0.022613

0.02187

0.021042

0.020133

...

=

ke
i

-41.968982·10
-47.835034·10
-31.749105·10
-33.077049·10
-34.74504·10
-36.725604·10
-38.986322·10

0.01149

0.014197

0.017058

0.016263

0.015361

0.014367

0.013299

0.012173

...

= ke1
i

-41.965149·10
-47.821871·10
-31.746369·10
-33.072321·10
-34.737185·10
-36.714166·10
-38.972267·10

0.011473

0.014175

0.016133

0.016243

0.015341

0.014349

0.013282

0.01216

...

=

