
Square Wave ODE Example 1 (State Space Solver):

This example is meant to show how to use a square wave to drive a mass, spring, damper system. I wanted
to use the state space solver for this. However, towards the end, I found a big problem with the state space solver. It
seems to output velocity. However, you can't calculate the velocity it comes up with on your own, using the time and
displacement output. This makes trying to compute the mass kinetic energy and acceleration very questionable. Once I
ran into this problem, I created a similar example using odesolve. This removes the uncertainty that comes with the
state space solver. Also, the state space solver uses Force/mass as the amplitude of the forcing function. This causes
additional confusion later on.

Second Order ODE that describes the physics:
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Solving the second order ODE using the Mathcad State Space ODE Solver:
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Note; mass is in the equations below, because the forcing function amplitude was divided by mass.
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When the damping ratio is .01, classical solutions state that the above should equal 50. Moreover, the dynamic
displacement should be 50x the static spring displacement. The above is used to serve as a check. Notice what
happens when you switch to a square wave. Also note what happens when you change the duty cycle of the square
wave. You will find that classical solutions come with a lot of 'ands, ifs, and buts'. Therefore, it's better to just solve the
ODE rather than use classical simplifications. Solving the ODE was very difficult in the old days 'pre-computer'.
Therefore, classical solutions gained wide spread use.

Note how the number of cycles affects this as well. You need about 300 cycles to get to the classical solution. This
makes viewing the wave forms impossible. So you can switch to something like 5 cycles, to see the waves.
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