
Square Wave ODE Example 2 (odesolve):

This example file is meant to show how to drive a mass, spring, damper system with a square wave. For comparison
purposes, you can also use a cosine wave. u1 is the cosine wave, u2 is the square wave. The odesolve solver is used to
solve the second order ordinary equation. It has the benefit of making more useful output, to compute velocity,
acceleration, and kinetic energy. The state space solver is a little faster, however, it's output seems to be problematic
when wanting to calculate the aforementioned information. There is a seperate example that uses the state space
solver.

Second Order ODE that describes the physics:

m
2

τ
x τ()d

d

2
 b

τ
x τ()d

d
+ k x τ()+ F

0
cos ωF τ()= Note; A0

F0

m
= ω0()2 k

m
=

ζ .01:= Damping Ratio
When the damping is low and the forcing
function oscillates at the natural frequency,
resonance will occur.

Defining Inputs:

m 60:= k 1 10
1

:= ω0
k

m
0.408248=:= b ζ 2 m ω0():= b 0.489898=

ωf ω0 1.0:= F0 1:= init
0

0

:= t1 0:=

n 10:= Number of Cycles t2 n
2 π

ωf

:=

npoints 100 n 1 10
3

=:= intvls npoints 1- 999=:=

Fs
ωf

2 π
0.064975=:= tmax t2 153.90598=:=

tstep
tmax

intvls
0.15406=:= d 10%:= Duty Cycle A F0 1=:=

t 0 tstep, tmax..:=

u1 τ() F0 cos ωf τ():= Cosine Wave

u2 τ() A mod τ
1

Fs
,

Fs d

 τ tmax<():= Square Wave

u τ() u1 τ():= Enter u1 or u2 as the forcing function

Given

m
2

τ
x τ()d

d

2
 b

τ
x τ()d

d
+ k x τ()+ u τ()=

x 0() 0= x' 0() 0=

x Odesolve τ tmax, intvls, ():=

0 50 100 150
1-

0.5-

0

0.5

1

u t()

t

0 50 100 150
3-

2-

1-

0

1

2

3

x t()

t

Using odesolve makes calculating the amplification factor more difficult. You have to dump the odesolve 'function' output
into matrices, so that the max displacement can be calculated.

i 0 intvls..:= j 1 intvls 1-..:= p 2 intvls 2-..:=

tvec
i

tstep i:=

xvec
i

x tvec
i()

:= uvec

i
u tvec

i()

:=

vvec
j

xvec
j 1+ xvec

j 1--

tvec
j 1+ tvec

j 1--
:=

kevec
j

.5 m vvec
j()2:=

avec
p

vvec
p 1+ vvec

p 1--

tvec
p 1+ tvec

p 1--
:=

max xvec() 2.203604=

max xvec()

F0

k

22.036045= Amplification Factor

When the damping ratio is .01, classical solutions state that the above should equal 50. Moreover, the dynamic
displacement should be 50x the static spring displacement. The above is used to serve as a check. Notice what
happens when you switch to a square wave. Also note what happens when you change the duty cycle of the square
wave. You will find that classical solutions come with a lot of 'ands, ifs, and buts'. Therefore, it's better to just solve the
ODE rather than use classical simplifications. Solving the ODE was very difficult in the old days 'pre-computer'.
Therefore, classical solutions gained wide spread use.

Note how the number of cycles affects this as well. You need about 300 cycles to get to the classical solution. This
makes viewing the wave forms impossible. So you can switch to something like 5 cycles, to see the waves.

Using odesolve, rather than state space, makes the following calculations simpiler. However, they are much slower and
seem to have more error.

t tstep 2 tstep, tmax tstep-..:=

v t()
t
x t()d

d
:= Calculating mass velocity versus time

ke t() .5 m v t()()
2

:= Calculating mass kinetic energy versus time

a t()
2
t
x t()d

d

2
:= Calculating mass acceleration versus time

0 50 100 150
3-

2-

1-

0

1

2

3

x t()

xvecj

t j tstep,

0 50 100 150
1-

0.5-

0

0.5

1

v t()

vvecj

t j tstep,

0 50 100 150
0

10

20

30

ke t()

kevecj

t j tstep,

0 50 100 150 200
0.4-

0.2-

0

0.2

0.4

a t()

avecp

t p tstep,

Reaction Forces:

rf_mass t() m a t():= rf_damping t() b v t():= rf_spring t() k x t():=

rf_mass1
p

m avec
p

:= rf_damping1
p

b vvec
p

:= rf_spring1
p

k xvec
p

:=

rf_total t() rf_mass t() rf_damping t()+ rf_spring t()+:=

rf_total1
p

rf_mass1
p

rf_damping1
p

+ rf_spring1
p

+:=

check t() u t() rf_total t()-:= The check should equal zero, due to Newton's third law

check1
p

uvec
p

rf_total1
p

-:=

0 50 100 150
30-

20-

10-

0

10

20

30

rf_mass t()

rf_mass1p

t p tstep,

0 50 100 150
0.6-

0.4-

0.2-

0

0.2

0.4

0.6

rf_damping t()

rf_damping1p

t p tstep,

0 50 100 150
30-

20-

10-

0

10

20

30

rf_spring t()

rf_spring1p

t p tstep,

0 50 100 150
2-

1-

0

1

2

u t()

rf_total t()

uvecp

rf_total1p

t t, p tstep, p tstep,

0 50 100 150
0.3-

0.2-

0.1-

0

0.1

check t()

check1p

t p tstep,

0 50 100 150
0.04-

0.02-

0

0.02

0.04

check1p

p tstep

checkvec
j

check tvec
j():=

max checkvec()

F0
7.116793 %=

max check1()

F0
3.026125 %=

min checkvec()

F0
26.86829- %=

min check1()

F0
2.912631- %=

