Demonstration of Fourier series

First, create variables for odd harmonics, even harmonics, and all harmonics. Odd harmonic variable would be 1 for an odd number, and 0 for an even number. The even harmonic variable would be 1 for an even number, and 0 for an odd number. The all variable would be 1 for odd or even.

$$
\operatorname{odd}(i):=\bmod (i, 2) \quad \text { even }(i):=\bmod (i+1,2) \quad \operatorname{all}(i):=1
$$

For a specific time function, determine wheter there are only odd, eve, or all harmonics

$$
\operatorname{oddeven}(i):=\operatorname{odd}(i)
$$

Select how many harmonics you want to view

$$
n:=5
$$

Create a function that is based on the Fourier series from calculations or from Table 9-2

$$
g(i, t):=\frac{2 \cdot \sin (i \cdot \pi \cdot t)}{i \cdot \pi}
$$

Determine the resulting time functino, placing the appropriate odd/even function in the summation sign

$$
f(t):=\sum_{i=0}^{n} g(i, t) \cdot \operatorname{odd}(i)
$$

Determine the time axis (based on the fundamental frequency)

