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Preface

2005 is the "World Year of Physics" and it marks the 100th anniversary of Albert

Einstein's publication of papers on the photoelectric effect, Brownian motion, and

the special theory of relativity. All four papers on these three topics appeared in the

year 1905.

But modern physics, i.e., modern quantum physics really began in 1901, when Max

Planck propounded the notion that material bodies, but especially blackbodies [1],

emit and absorb thermal radiation in discrete quanta of energy, rather than

continuously.

Planck's Radiation Law 

Planck's hypothesis of quantized absorption and emission of radiation made it

possible for him to derive a radiation law that applies to blackbody emission at all

wavelengths and all frequencies, a universal law that succeeds in spectral regions

where the prior radiation laws of Rayleigh, Jeans and Wien had failed. Planck

received the Nobel Prize in physics in 1918 for his quantum theory of radiation.

The Mathcad 11 worksheet, "Modeling Blackbody Radiation," revisits how Max

Planck integrated the blackbody radiation curve for an arbitrary Kelvin temperature,

T, over all possible wavelengths of thermal emission, to arrive at the

Stefan-Boltzmann law. The Maple symbolic processing capability of Mathcad is

invoked at key points of the derivation and Bernoulli numbers are used to evaluate

the infinite series that is crucial to the derivation. Finally, Mathcad's X-Y Plot

capability is used to plot the blackbody radiation curve for 2.725 degrees Kelvin.

Discovery of the Cosmic Microwave Background

Planck's radiation law is not just of historical interest. In 1964 Arno Penzias and

Robert Wilson discovered radio noise emanating from all directions of the sky that

is consistent with thermal emission from a blackbody at an equilibrium temperature

of just a few degrees Kelvin. They deduced in 1965 that this radio noise is the

cosmic microwave background (CMB). For this they were awarded a Nobel Prize in

1978 [2].

By the 1960s there were two competing theories of the origin of the cosmos, the

"steady state" theory and the "Big Bang" theory. Existence of the CMB was

predicted by the Big Bang theory, but not by the steady state theory. So when the

CMB was found by Penzias and Wilson, most physicists and astronomers came to

accept the Big Bang theory and to reject the steady state theory.
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Definitive Measurements by the Cosmic Background Explorer

More recently, the Cosmic Background Explorer (COBE) mission measured the

CMB in all directions of space, from space (i.e., from Earth orbit). Its measurements

of energy density vs. frequency fit almost perfectly on Planck's radiation curve for a

blackbody at 2.725 degrees Kelvin. But small "ripples" in energy density were in

fact found; these are believed to be evidence of variations in the early universe's

energy density. Since these variations are thought to have seeded star and galaxy

formation, it would have been a setback for the Big Bang theory had they not been

found.

NOTE AND REFERENCE

[1] A blackbody is an ideal body that absorbs all incident radiation and re-emits it

as light energy distributed over the entire electromagnetic spectrum.

[2] Mather, John C. and Boslough, John, The Very First Light, Basic Books, New

York, 1996; pp. 49-50 and 64. John Cromwell Mather was the original proposer and

project scientist for the COBE mission. The COBE satellite was launched on

November 

18, 1989. 
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In The Theory of Heat Radiation [1], Max Planck derives his remarkable formula for the space

density of energy of uniform, monochromatic, non-polarized radiation of frequency ν, as emitted by

a blackbody at Kelvin temperature T, as follows: 
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Here h is Planck's constant, c is the velocity of light, and k is Boltzmann's constant. Planck goes

on in [1] to integrate the space density of blackbody radiation energy over all frequencies, and

thereby arrives at the Stefan-Boltzmann Law,
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What I propose to do in this worksheet is to 

    (a) determine the Stefan-Boltzmann constant, σ, as a function of h, c, and k, using Mathcad; 

     

    (b) explore some of the mathematics hidden in the rather facile evaluation of the definite integral

in Eq. 2 that can be obtained via Mathcad's Maple symbolic engine.

But before proceeding, I'd like to quote the book that I used in my study of physical chemistry [2], 

"The derivation by Planck in 1901 of a radiation law which covers the entire frequency range [of

blackbody radiation] is regarded as the beginning of modern physics,

ρλ = 8πhcλ-5(ehc/λkT - 1)-1." ( 3)

(Below we will plot below Planck's equation in terms of wavelength, λ, rather than frequency, ν.)
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Determination of the Stefan-Boltzmann Constant

If we make the change of variable x = hν/kT, then ν = (kT/h)x, and dν = (kT/h)dx. As x goes from 0

to infinity, ν also goes from 0 to infinity, so we have  
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When we use Mathcad's Maple symbolic engine to evaluate the definite integral on the right, we

get
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So the Stefan-Boltzmann constant, σ, is given by
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If we were to stop now, we would fail to appreciate a most satisfying interplay between

mathematics and physics: evaluation of an important infinite series using Bernoulli numbers.

An Exploration in Mathematical Physics, Using Mathcad

How did Maple arrive at its evaluation of the definite integral in Eq. 5? To answer this question, we

must evaluate the integral by hand. First of all, we expand the denominator of the integrand in

powers of e-x. We get the following 
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If we integrate all terms of Eq. 8 in the same manner as the first, we obtain the same results as

Maple: 
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Two more applications of the integration-by-parts recipe yield

xx
3

e
x−

⋅
⌠
⌡

d x
3

− e
x−

⋅ x3 x
2

⋅ e
x−

⋅
⌠
⌡

d+=
(12)

is applied to the integral (9) to determine that
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We can integrate each term on the right using the technique of integration by parts.  E.g.,

starting with the integral
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Therefore,
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We subract the antiderivatives evaluated at x = 0 from the antiderivatives evaluated at x = infinity.

All that remains is the sequence of values
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The infinite series on the right is not trivial to evaluate, but it can be shown to be 
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(It is, in fact, shown in Knopp [3] that 
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where B2p is the 2p-th Bernoulli number. The first six Bernoulli numbers are B1 = -1/2, B2 = 1/6,

B3 = 0, B4 = -1/30, B5 = 0, and B6 = 1/42. With p = 2, the expression on the right of Eq. 17

yields the constant on the right of Eq. 16. See also Arfken [4], Courant [5], and Jeffrey [6] for

related material on Bernoulli polynomials and Bernoulli numbers.)
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It might seem strange to express Planck's radiation law with differentials. But if we don't, we can

arrive at an erroneous expression for the radiation distribution law embodied in Eq. 3. (Planck

deals with this in [1, p. 16].) There is no minus sign in front of the λ-based radiation formula of Eq.

22 because integration of ν from 0 to infinity is like integration of λ from infinity to zero, i.e., we

omit the minus sign with the understanding that the dλ-integration will be from zero to infinity.
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Therefore, Planck's radiation law, Eq. 1, transforms to
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so that the integral in the Stefan-Boltzmann law, Eq. 2, transforms to
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It is customary in physical chemistry to plot blackbody radiation curves as a function of

wavelength, not frequency. Since wavelength is related to frequency by 

Transformation from Frequency to Wavelength

which is what Mathcad's Maple symbolic engine "knew" all along.
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We thus have that
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Plotting Blackbody Radiation Curves

With Planck's radiation law expressed in terms of wavelength, λ, we can now plot blackbody

radiation curves. But first we need to set h, c, and k. We use the values from the second edition of

Physics Vade Mecum [7]. 

h 6.6260755 10
27−

⋅:= erg sec

c 2.99792458 10
10

⋅:= cm sec-1

k 1.380658 10
16−

⋅:= erg Kelvin-1

These values allow us to calculate the Stefan-Boltzmann constant, σ.

σ
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What we want to do now is to plot a blackbody radiation curve for a particular value of T. Let's plot

at T = 2.725 Kelvins, since that is the temperature of the cosmic background radiation remaining

from the Big Bang, as measured by John C. Mather et al. [8] during the Cosmic Background

Explorer (COBE) mission.

T 2.725:=
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In the plot below, note that the wavelength, λ, is in cm, and that the values of ρ(λ) are plotted over

a range of values from 0 to 3x10-12 erg per cm3, per cm interval of wavelength.
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Planck's law for blackbody radiation, Eq. 1, transforms to
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and the CMB spectrum becomes
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