This file calculate the speeds and torques of all members of a planetary gear set as well as the F, S \& T loads for the planet gear. The required inputs are the "status" of each component, for column 5 of the input matrix "size" - ring, sun, carrier are either:

$$
\begin{aligned}
& \text { fixed }=1, \\
& \text { input }=2, \\
& \text { free }=3,
\end{aligned}
$$

The units convention for the "size" matrix is (for all of column 3 \& column 7-row 2):

$$
1=\mathrm{ft} \quad 2=\mathrm{m}
$$

The units convention for input torque is:

$$
1=\mathrm{lbf}^{*} \mathrm{ft} \quad 2=\mathrm{N}^{*} \mathrm{~m}
$$

The units convention for mass is:

$$
1=\mathrm{lb} \quad 2=\mathrm{gm}
$$

Assign speed and torque inputs: $\quad \omega_{\text {in }}:=1 \mathrm{rpm} \quad \tau_{i n}:=2500000 \mathrm{~N} \cdot \mathrm{~m}$

"Size" Matrix Entry Guide							
\# Teeth	Gear PDs	Unit	Tooth Angles	Elements' Status	Other Info	Planet Mass	
Ring \# Teeth	Ring PD	Unit Code	Gear tooth Pressure Angle	Ring Gear Status	0	Planet Gear Mass	
Planet \# Teeth	Planet PD	Unit Code	Gear Tooth Helix Angle	0	Sun Gear Hand 1=left 2 = right	Planet Gear mass units code	
Sun \# Teeth	Sun PD	Unit Code	0	Sun Gear Status	\# Planet Gears	0	
0	Carrier PD	Unit Code	0	Carrier Status	0	0	

size $:=\left[\begin{array}{cccccccc}60 & 1.2 & 2 & 20 & 1 & 0 & 1.10^{-3} \\ 15 & 0.6 & 2 & 0 & 0 & 1 & 2 \\ 30 & 0.3 & 2 & 0 & 3 & 4 & 0 \\ 0 & 0.8 & 2 & 0 & 2 & 0 & 0\end{array}\right] \quad$ Ring \quad Planet \quad Sun \quad input $:=\left[\begin{array}{ccc}0 & 0 & 2 \\ 0 & 0 & 2 \\ \frac{\omega_{i n}}{r p m} & \frac{\tau_{i n}}{N \cdot m} & 2\end{array}\right]$ RING \quad SUN

Output quantities of the planetary are found in "out1", below as follows:
Row 1 - all ring gear outputs
Row 2 - all planet gear outputs
Row 3 - all sun gear outputs
Row 4 - all carrier outputs
Column 1 - rotational speeds [rpm]
Column 2 - torque [see unit convention from input matrix above]
Column 3 - unit [see convention documented above]
Column $4-F, S, T$ and Cb (centrifugal load on the planet bearing/shaft) [unit convention]
Column 5 - planet bearing radial and thrust load [unit convention]

$$
\begin{gathered}
\omega \\
\text { out1 }=\left[\begin{array}{rcccc}
0.000 & 1.667 \cdot 10^{6} & 2.000 & \text { unit } & \text { F,S,T,FCb }
\end{array} \quad\right. \text { Fbrg,Tbrg } \\
-4.000
\end{gathered}
$$

