This file calculate the speeds and torques of all members of a planetary gear set as well as the F, S &T loads for the planet gear. The required inputs are the "status" of each component, for column 5 of the input matrix "size" - ring, sun, carrier are either:

fixed = 1,	
input = 2,	
fron - 2	

free = 3,

The units convention for the "size" matrix is (for all of column 3 & column 7-row 2):

1 = ft2 = mThe units convention for input torque is:1 = lbf * ft2 = N*m

The units convention for mass is:

1 = lb 2 = gm

Assign speed and torque inputs: $\omega_{in} := 1 rpm$ $\tau_{in} := 2500000 N \cdot m$

"Size" Matrix Entry Guide								
# Teeth	Gear PDs	Unit	Tooth Angles	Elements' Status	Other Info	Planet Mass		
Ring # Teeth	Ring PD	Unit Code	Gear tooth	Place Coor Status	0	Planet Gear		
			Pressure Angle	Ring Gear Status	U	Mass		
Planet # Teeth	Planet PD	Unit Code	Gear Tooth Helix Angle		Sun Gear Hand	Planet Gear		
				0	1=left	mass units		
					2=right	code		
Sun # Teeth	Sun PD	Unit Code	0	Sun Gear Status	# Planet Gears	0		
0	Carrier PD	Unit Code	0	Carrier Status	0	0		

-		60	1.2	2	20	1	0	1.10-3	1 1 1 1 1 1
-	size≔	15	0.6	2	0	0	1	2	1 1
1		30	0.3	2	0	3	4	0	1 1
		0	0.8	2	0	2	0	0	1

 $\begin{bmatrix} \omega_{in} & \frac{\tau_{in}}{rpm} & \frac{\tau_{in}}{N \cdot m} & 2 \end{bmatrix}$ Output quantities of the planetary are found in "out1", below as follows:

Ring

Sun

Planet

Row 1 - all ring gear outputs

- Row 2 all planet gear outputs
- Row 3 all sun gear outputs

Row 4 - all carrier outputs

Column 1 - rotational speeds [rpm]

Column 2 - torque [see unit convention from input matrix above]

Column 3 - unit [see convention documented above]

Column 4 - F, S, T and Cb (centrifugal load on the planet bearing/shaft) [unit convention] Column 5 - planet bearing radial and thrust load [unit convention]

	ω		uni	t F,S,T,FCb	Fbrg,Tbrg	
out1=	0.000 -4.000 3.000 1.000	0.000	0.000 2.000	0.000	0.000 0.000	

Ring Planet Sun Carrier

speed torque unit

0

0

2

2

0

0

input :=

RING

SUN

CARRIER