The vertical post is secured by three cables. The cables are pre-tensioned so that the resultant of F, Q and P is directed along the z-axis if $F=120 N$, find P, Q and R

Force_dir $(x, y, z):=\operatorname{stack}\left(\frac{x}{\sqrt{x^{2}+y^{2}+z^{2}}}, \frac{y}{\sqrt{x^{2}+y^{2}+z^{2}}}, \frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}\right)$
F Force_dir $(0,8,12)=\left(\begin{array}{c}0 \\ 0.5547 \\ 0.8321\end{array}\right)$
P Force_dir $(6,8,12)=\left(\begin{array}{c}0.3841 \\ 0.5121 \\ 0.7682\end{array}\right)$
Q Force_dir $(6,6, \quad 12)=\left(\begin{array}{c}0.4082 \\ 0.4082 \\ 0.8165\end{array}\right)$
R Force_dir $(0,0,1)=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$
$\underset{M}{\mathrm{~F}}:=120 \mathrm{~N}$
$\mathrm{P}:=1 \mathrm{~N}$
$\mathrm{Q}:=1 \mathrm{~N}$
$\underset{W}{R}:=1 \mathrm{~N}$

Given
F•Force_dir $(0,8,12)+P \cdot$ Force_dir($6,8,12)+Q \cdot F o r c e _d i r(6,6,12)+R \cdot F o r c e _d i r(0,0,1)=0$

$$
\left(\begin{array}{l}
\mathrm{P} \\
\mathrm{M} \\
\underset{M}{M_{n}} \\
\mathrm{R}
\end{array}\right):=\operatorname{Find}\left(\left(\begin{array}{l}
\mathrm{P} \\
\mathrm{Q} \\
\mathrm{R}
\end{array}\right)\right) \quad\left(\begin{array}{l}
\mathrm{P} \\
\mathrm{Q} \\
\mathrm{R}
\end{array}\right)=\left(\begin{array}{c}
74.269 \\
69.878 \\
213.956
\end{array}\right) \cdot \mathrm{N}
$$

