Parametric Technology Corporation

Pro/ENGINEER® Wildfire® 5.0
VB API User’s Guide

July 2010

Copyright © 2010 Parametric Technology Corporation and/or Its Subsidiary Companies. All Rights
Reserved.

User and training guides and related documentation from Parametric Technology Corporation and its
subsidiary companies (collectively "PTC") are subject to the copyright laws of the United States and other
countries and are provided under a license agreement that restricts copying, disclosure, and use of such
documentation. PTC hereby grants to the licensed software user the right to make copies in printed form of
this documentation if provided on software media, but only for internal/personal use and in accordance with
the license agreement under which the applicable software is licensed. Any copy made shall include the PTC
copyright notice and any other proprietary notice provided by PTC. Training materials may not be copied
without the express written consent of PTC. This documentation may not be disclosed, transferred, modified,
or reduced to any form, including electronic media, or transmitted or made publicly available by any means
without the prior written consent of PTC and no authorization is granted to make copies for such purposes.

Information described herein is furnished for general information only, is subject to change without notice,
and should not be construed as a warranty or commitment by PTC. PTC assumes no responsibility or
liability for any errors or inaccuracies that may appear in this document.

The software described in this document is provided under written license agreement, contains valuable
trade secrets and proprietary information, and is protected by the copyright laws of the United States and
other countries. It may not be copied or distributed in any form or medium, disclosed to third parties, or used
in any manner not provided for in the software licenses agreement except with written prior approval from
PTC.

UNAUTHORIZED USE OF SOFTWARE OR ITS DOCUMENTATION CAN RESULT IN CIVIL DAMAGES
AND CRIMINAL PROSECUTION. PTC regards software piracy as the crime it is, and we view offenders
accordingly. We do not tolerate the piracy of PTC software products, and we pursue (both civilly and
criminally) those who do so using all legal means available, including public and private surveillance
resources. As part of these efforts, PTC uses data monitoring and scouring technologies to obtain and
transmit data on users of illegal copies of our software. This data collection is not performed on users of
legally licensed software from PTC and its authorized distributors. If you are using an illegal copy of our
software and do not consent to the collection and transmission of such data (including to the United States),
cease using the illegal version, and contact PTC to obtain a legally licensed copy.

Important Copyright, Trademark, Patent, Licensing, and Data Collection Information:
e For Windchill products, select About Windchill at the bottom of the product page.

e For CADDS 5, click the "i" button on the main menu.

¢ For InterComm products, on the Help main page, click the link for Copyright.

¢ For other products, click Help > About on the main menu of the product.

¢ For products with an Application button, click the button and then navigate to the product information.

UNITED STATES GOVERNMENT RESTRICTED RIGHTS LEGEND

This document and the software described herein are Commercial Computer Documentation and Software,
pursuant to FAR 12.212(a)-(b) (OCT"95) or DFARS 227.7202-1(a) and 227.7202-3(a) (JUN’95), and are
provided to the US Government under a limited commercial license only. For procurements predating the
above clauses, use, duplication, or disclosure by the Government is subject to the restrictions set forth in
subparagraph (¢)(1)(ii) of the Rights in Technical Data and Computer Software Clause at DFARS
252.227-7013 (OCT’88) or Commercial Computer Software-Restricted Rights at FAR 52.227-19(c)(1)-(2)
(JUN’87), as applicable. 04012010

Parametric Technology Corporation, 140 Kendrick Street, Needham, MA 02494 USA

About This Guide

This section contains information about the contents and conventions of this user
guide.

Topic

Purpose
Audience

Contents

Prerequisites

Documentation

Software Product Concerns and Documentation Comments

Purpose

Thismanual describes how to usethe VB API, aVisua Basic toolkit for Pro/
ENGINEER. The VB APl makes possible the development of Visual Basic
programs that access the internal components of a Pro/ENGINEER session, to
customize Pro/ENGINEER models.

Audience

This manual is intended for experienced Pro/ENGINEER users who are familiar
with Visual Basic or another object-oriented language.

Contents

Thismanual contains the chapters that describe how to work with different
functions provided by Visua Basic APIs.

Prerequisites

This manual assumes you have the following knowledge:

Pro/ENGINEER
Visual Basic for Applications (Office macros)
Visual Basic .NET 2005
Other languages with the built-in capability to use COM servers:
- JavaScript
- VB.Script
-C++
-C#

O O O O

Documentation

The documentation for Visual Basics APIsincludes the following:

o TheVB APl User's Guide.

o Anonline browser that describes the syntax of the Visual Basic functions and
provides alink to the online version of this manual. The online version of the
documentation is updated more frequently than the printed version. If there are any
discrepancies, the online version is the correct one.

Conventions

The following table lists conventions and terms used throughout this book.

Convention Description

The pound sign (#) is the convention used for a UNIX

#
prompt.
UPPERCASE Pro/ENGINEER-type menu name (for example, PART).
Windows-type menu name or menu or dialog box option
Boldface (for example, View), or utility. Boldface font is also used

for keywords, VB APl methods, names of dialog box
buttons, and Pro/ENGINEER commands.

Mbnospace Code samples appear in courier font like this. Java aspects
(Couri er) (methods, classes, data types, object names, and so on) also
appear in Courier font.
Important information appearsin italics like this. Italic font
Emphasis isalso used for file names and uniform resource locators
(URLS).
An environment in Pro/ENGINEER in which you can
Mode perform a group of closely related functions (Drawing, for
example).
An assembly, part, drawing, format, layout, case study,
Model
sketch, and so on.
Solid A part or an assembly.
Notes:

. Important information that should not be overlooked appearsin notes
like this.

. All references to mouse clicks assume the use of aright-handed
mouse.

Software Product Concerns and Documentation
Comments

For resources and servicesto help you with PTC software products, see the PTC
Customer Service Guide. It includesinstructions for using the World Wide Web or
fax transmissions for customer support.

In regard to documentation, PTC welcomes your suggestions and comments. Y ou
can send feedback in the following ways:

o Send comments electronically to doc-webhel p@ptc.com.
o Fill out and mail the PTC Documentation Survey in the customer service guide.

Overview of the VB API

This section provides an overview of the VB APIs.
Topic

Introduction

Getting Started

Object Types
Programming Considerations

Introduction

The VB API for Pro/ENGINEER Wildfire 4.0 is an asynchronous application that can be used from any COM-enabled
application including Visua Basic.NET (VB.NET), Visual Basic for Applications (VBA), and external Internet Explorer
instances using scripting.

Visual Basic.NET Applications
Y ou can use the VB API for Pro/ENGINEER Wildfire 4.0 to:
o Create a VB.NET form capable of starting or connecting to Pro/ENGINEER non-graphically, accepting user inputs and driving
model modifications or deliverables.

o Create a VB.NET application that may or may not have its own User Interface (Ul). The application should be able to establish
one or more Pro/ENGINEER Ul or event listeners in session, and process those events using VB.NET code.

Visual Basic for Applications
The VB APIs provide support for accessing Pro/ENGINEER from Visual Basic-enabled products such as Microsoft Excel,
Microsoft Word, or Microsoft Access. The COM interface is provided to control Pro/ENGINEER asynchronously and use the

PFC API's to access its properties.

Y ou can a so access data from OLE objects embedded in Pro/ENGINEER. The OLE abjects can include VB code that can be
used to drive the model from which the object is contained.

Limitations of the VB API

The asynchronous COM server has the following limitations:

o API calsto Pro/ENGINEER should be made only from a single thread. Other threads can process non Pro/ENGINEER data
and set data to be seen by the Pro/ENGINEER thread, but only one thread can communicate with Pro/ENGINEER.
o Only one active connection can be made to a single Pro/ENGINEER session at one time.

Getting Started

Setting Up a VB Application

For your application to communicate with Pro/ENGINEER, you must set the PRO_COMM MSG_EXE environment variable to the
full path of the executable, pr o_comm nsg. exe. Typicaly, the path to the executableis[Pr o/ E | oadpoi nt]/[machi ne
type] / obj / pro_comm nsg. exe, where nachi ne type isi 486_nt for 32-bit Windows and x86e_wi n64 for 64-bit
Windows installations.

Set PRO_COMM _MSG_EXE as.
1. Click Start > Settings > Control Panel
2. Click System. The System Properties windows opens.
3. Inthe Advanced tab, click the Environment Variables button.

4. Add PRO_COW MSG_EXE to System variables.

Registering the COM Server
To register the COM server, runthevb_api _regi st er. bat filelocated at [pr oe_I| oadpoi nt]/ bi n.
To unregister the COM server, runthevb_api _unr egi st er. bat filelocated at [pr oe_I| oadpoi nt]/ bi n.
After the COM server isregistered with the system, whenever an application tries to access the types contained in this server
the server starts automatically. By default, Windows starts services such as pf cl scom exe in the Windows system directory
(c: \wi nnt\ syst em 32). Because the server will aso start new sessions of Pro/ENGINEER from the process working

directory, you may want to control the server run directory. Y ou can configure the server to start in a specific directory by
setting the system environment variable PFCLS_START_DI Rto any existing directory on your computer.

Setting Project References for the VB API

Set thereferenceto Pro/ E VB APl Type Library for Pro/E WIdfire 4.0 through your project. Inthe VBA
environment set this reference as follows:

1. Click Tools>References

2. Check the box for Pro/E VB API TypelLibrary for Pro/E Wildfire 4.0 as shown in the following figure.

<@ Microsoft Visual Basic - Async_Mode_Example.xls - [Sheet1 [Code]]

21 File Edt Wiew Insert Format Debug Run | Tools | Add-Ins Window Help

g - By T .|% References. ..
Project - YBAProject x| | (General)
= H | | e—— Macras. ..
- E ¥YE

-5

i [

References - VBAProject

Available References: (0] 4

| Wisual Basic For Applications Zancel

| Microsoft Excel 10,0 Object Library
v OLE Auktomation

| Microsoft Office 10.0 Object Library Browse...
| Microsoft Forms 2,0 Obiject: Librar J

¢ g

P ro)E VE APT Tvpe Library For ProfE WildFire 4.0
145 Helper COM Component 1.0 Tvpe Library
IAS RADIUS Protocal 1.0 Type Library Pricrity
Acrobat Access 3.0 Type Library Help
AcrolEHelper 1.0 Type Library ﬂ

Active DS Type Library

Active Setup Conkrol Library

ActiveMovie conkral bvpe libeary

adnhe Srenhat 7.0 Rrowsser Cankenl Toene |ikeaes 1,000

< | >

ProfE VB &PI Twpe Library For ProfE Wildfire 4.0
Location: \\balaji\pdist_olportsrclspalsystern_14i486_nt\objipFelscom. e:

Language: Standard

Laliguagc. gl idarid | |

In the VB.NET environment, set this reference as follows:
1. Click Project>Properties>Add Reference>COM

2. Check the box for Pro/E VB API TypeLibrary for Pro/E Wildfire 4.0 as shown in the following figure.

w Community Help

ol b o @ S=[E 0 |l Ey b (4 P -
lid_th. o Check¥BAErr

Add Reference

NET | oM |F‘ru:ujeu:ts | Browse | Recent | ket
Component Mame = Typelib e, Path & pfcls.dl

PortalConnect 1.0 Type Library 1.0 Z:\Proc F Syskem.d
PPServer 1.0 Type Library 1.0 I, [Swstern. Oy
Preview 1.0 Type Library 1.0 TR ' Syskem. O
ProfE WE API Tvpe Library For ProfE Wildfire 4.0 Y1balaji i Swstem. Oy
prockexe 1.0 Twpe Library 1.0 TR F Syskem.
Projwdiz 1.0 Twpe Library 1.0 Z:\Proc Y Syeskem,

promotescript 1.0 Tvpe Library
PYactiver Activer Control module
pwwercheck_ie Activel Contral module T,
query 7.0 Twpe Library Z\Prog—

1.0 CProc
1.0
1.0
1.0
Query 8,0 Type Library 1.0 Z:\Proc
1.0
1.0
1.0
1.0

Z:\Proc

QuickTimeCheck object 1.0 Tvpe Library CProc
RAssiskance 1.0 Tvpe Library TR
rchdwekl 1.0 Twpe Library TR,
RMCClientHAsk 1.0 Twne | ibrary TR

Ok] [Cancel]

Remaove
Imported narmespaces: Reference. ..

|Miu:ru:usu:uFt.5.-'isuaIBasic Web Reference. ..

Micrasoft, VisualBasic
Swskem

System. Collections
Syskemn, Collections, Generic
Syskem.Data

Syskemn, Drawing
Swskem,Diagnostics
System.Windows, Forms

Object Types

The VB API is made up of anumber of classesin many modules. The following are the main class types:

o Pro/ENGINEER-Related Classes--Contain unique methods and properties that are directly related to the functionsin Pro/
ENGINEER. See the section "Pro/ENGINEER-Related Classes' for more information.

o Compact Data Classes--Classes containing data needed as arguments to some VB methods. See the section, "Compact Data
Classes’, for additional information.

o Union Classes--Classes with a potential to contain multiple types of values. See the section "Unions" for additional information.

o Sequence Classes--Expandable arrays of objects or primitive data types. See the section " Sequences' for more information.

o Array Classes--Arraysthat are limited to a certain size. See the section "Arrays' for more information.

o Enumeration Classes--Enumerated types, which list arestricted and valid set of options for the property. See the section
"Enumeration Classes" for more information.

o Module-Level Classes--Contain static methods used to initialize certain VB objects. See the "Module-Level Classes' section
for more information.

o ActionListener Classes--Enable you to specify code that will run only if certain eventsin Pro/ENGINEER take place. See the
Action Listeners sectionfor more information.

Each class shares specific rules regarding initialization, attributes, methods, inheritance, or exceptions. The following sections
describe these classes in detail.

Pro/ENGINEER-Related Classes

The Pr o/ ENG NEER- Rel at ed O asses contain methods that directly manipulate objectsin Pro/ENGINEER. Examples of
these objects include models, features, and parameters.

Initialization

Y ou cannot construct one of these objects using the keyword New. Instead, you should obtain the handle to a Pro/ENGINEER-
related object by creating or listing that object with a method on the parent object in the hierarchy.

For example, | pfcBaseSession.CurrentModé returnsal pf cModel object set to the current model and | pfcPar ameter Owner.
CreateParam returns a newly created parameter object for manipulation.

Properties

Properties within Pro/ENGINEER-rel ated objects are directly accessible. Some attributes that have been designated as
read-only can be accessed but not modified by the VB API.

Methods

Y ou must invoke methods from the object in question and first initialize that object. For example, the following calls are
illegd:

Di mwi ndowas pf cl s. | pf cW ndow;
wi ndow. Acti vate(); * The wi ndowhas not yet
" beeninitialized.
Repaint (); " Thereis noinvoking object.

Thefollowing calls are legal:

Di mwi ndowAs Pf cl s. | pf cW ndow

Di msessi onas pfcls. | pfcSession

Di masyncConnecti on as pfcls. | pf cAsyncConnecti on
Di mCasync as Newpf cl s. CCpf cAsyncConnecti on

asyncConnect i on = Casync. Connect (DBNul | . Val ue, DBNul | . Val ue, DBNul | . Val ue, DBNul | . Val ue)
sessi on =asyncConnecti on. Sessi on;
wi ndow=sessi on. Current Wndow, ' Youhaveinitialized
' t he wi ndowobj ect .
wi ndow. Act i vat e()
wi ndow. Repai nt ()

Inheritance

Many Pro/ENGINEER-related objects inherit methods from other interfaces. In VB.NET and VBA, you must have an object of
the correct type for the compiler and IDE to resolve the methods you wish to call. For example, an | pf cConponent Feat

object could use the methods and properties as follows:

I pfcObject

I pfcChild

I pfcActionSource
IpfcModel Item

| pfcFeature

| pfcComponentFest

O o o o o o

The following are the approaches to using an object's inherited methods:
1. You can code the method call directly even though it is not available in Intellisense.
Di mconponent Feat as pfcl s. | pf cConponent Feat
MsgBox (" Feat ur e nunber: " &conponent Feat . Nunber) ;
Note:
Thisworksin VB.NET but islikely to result in acompilation error in VBA.

2. You can create another object of the appropriate type and assign it the object handle, and then call the required method.

Di mconponent Feat as pfcl s. | pf cConponent Feat
D mf eat as pfcls. | pfcFeature

f eat = component Feat
MsgBox (" Feat ur e nunber: " &f eat. Nunber);

Compact Data Classes

Compact data classes are data-only classes. They are used for arguments and return values for some VB APl methods. They do
not represent actual objectsin Pro/ENGINEER. Other than a difference in how they are initialized, compact data classes have
similar requirements to Pro/ENGINEER-rel ated classes.

Initialization

Y ou can create these compact data objects using a designated Cr eat e method which resides on the CC version of the compact
class. You instantiate the CC class object with the keyword New.

For example,

' C ass obj ect, owns Creat e()

Di mt abl eCel | Cr eat e As Newpf cl s. CCpf cTabl eCel |
Di mt abl eCel | As pfcls. | pfcTabl eCel |

Set tabl eCel | =tabl eCel | Create. Create(1, 1)

Unions

Unions are classes containing potentially several different value types. Every union has a discriminator property with the
predefined name, di scr . This property returns a value identifying the type of datathat the union object holds. For each union

member, a separate property is used to access the different datatypes. It isillegal to attempt to read any property except the one
that matches the value returned from the discriminator. However, any property that switches the discriminator to the new value
type can be modified.

Thefollowing is an example of aVB APl union:

I nterfacel pf cPar anval ue

Descri ption

Thi s cl ass descri bes t he val ue of t he paranet er.

Uni on Di scri m nant

Property di scr as | pf cPar anVal ueType [r eadonl y]

Ret urns t he uni on di scri m nant val ue.

Property Summary

Property Bool Val ue as Bool ean

| f the paraneter typeis PARAM BOOLEAN, t hisis aBool eanval ue.
Pr operty Doubl eVal ue as Doubl e

| f the paraneter typeis PARAM DOUBLE, t hi sis adoubl eval ue.
Property | nt Val ue as Long

| f the paraneter typeis PARAM I NTEGER, thisis aninteger val ue.
Property Not el d as Long

| f the paraneter typeis PARAM NOTE, thisisanoteidentifier.
Property StringVal ueas String

I f the paraneter typei s PARAM STRING thisisastringval ue.

Sequences

Sequences are expandable arrays of primitive data types or objectsin the VB API. All sequence classes have the same methods
for adding to and accessing the array. Sequence classes are typically identified by aplural name, or the suffix seq.

Initialization
Y ou can create instances of these classes directly by instantiating the appropriate class object:
Properties

The read-only Count attribute i dentifies how many members are currently in the sequence. Y ou may also access members of
the sequence using the | t emproperty or directly:

Di mnodel as | pf cvbdel
nodel =nodel s (0)

Methods
Sequence objects always contain the same methods. Use the following methods to access the contents of the sequence:

Append()--Adds a new item to the end of the array

Clear()--Removes dl items from the array

Insert()--Inserts anew item at any location of the array

InsertSeq()--1nserts the contents of a sequence of items at any location of the array
Set()--Assigns one item in the array to the input item

Remove()--Removes arange of items from the array

O o o o o g

Inheritance

Sequence classes do not inherit from any other VB API classes. Therefore, you cannot use sequence objects as arguments
where any other type of VB API object is expected, including other types of sequences. For example, if you have alist
of | pf cMbdel I t ens that happen to be features, you cannot use the sequence asiif it were a sequence of | pf cFeat ur es.

To construct the array of features, you must insert each member of the | pf cModel | t ens list into the new | pf cFeat ur es list.

Arrays

Arrays are groups of primitive types or objects of a specified size. An array can be one- or two- dimensional. The online

reference documentation indicates the exact size of each array class.

Initialization

Y ou can create instances of these classes directly by instantiating the appropriate class object:

Properties

Y ou may read members of the sequence using the I t emproperty or directly as an array:

Di mpoi nt as | pf cPoi nt 3D
Dimmatrix as | pfcMatri x3D

MsgBox (" Yval ue of point: " &point.ltem(1))
MsgBox (" (2, 2) valueof matrix: " &matrix (2, 2))

Methods

Array objects contain only the Set method, which assigns one item in the array to the input item.

Enumeration Classes
In the VB API, an enumeration class defines alimited number of values that correspond to the members of the

enumeration. Each value represents an appropriate type and may be accessed by name. In the Epf cFeat ur eType enumeration
class, the value Epf c FEATTYPE_HOLE represents a Hole feature in Pro/ENGINEER. Enumeration classes in the VB API

generally have names of the form Epf cXYZType or Epf cXYZSt at us.

Initialization
Y ou can directly refer to instance of this class:

Di mt ype as Epf cFeat ureType
t ype = Epf cFeat ur eType. Epf cFEATTYPE_HOLE

Attributes

An enumeration class is made up of constant integer properties. The names of these properties are all uppercase and describe
what the attribute represents. For example:

o EpfcPARAM_INTEGER--A valuein the EpfcParamV alueType enumeration class that is used to indicate that a parameter
stores an integer value.

o Epfc TEM_FEATURE--An value in the EpfcM odel ltemType enumeration class that is used to indicate that a model itemisa
feature.

An enumeration class always has an integer value named <t ype>_ni | , which is one more than the highest acceptable
numerical value for that enumeration class.

Module-Level Classes

Some modulesin the VB APl have one class that contains special functions used to create and access some of the other classes
in the package. These module classes have the naming convention, CM+ the name of the module, for example CMVpf cSel ect .

Initialization

Y ou can create instances of these classes directly by instantiating the appropriate class object:

Di mntel ect as NewCVpf cSel ect

Methods

Module-level classes contain only static methods used for initializing certain VB APl objects.

Action Listeners

Action Listeners notify you of eventsin Pro/ENGINEER. They are also the basis for customization of the Pro/ENGINEER
User Interface. ActionListeners are not supported from VBA.

Initialization
In VB.NET, you can create and assign an ActionListener class as follows.

Create a class implementing the listener in question. It should define all the inherited methods, even if you want to only execute
code for afew of the listener methods. Those other methods should be implemented with an empty body.

The class should also implement the interface | pf cAct i onLi st ener, which has no methods.

The class should aso implement | Cl PCl i ent Obj ect . This method defines the object type to the CIP code in the server. This
method returns a String which is the name of the listener type interface, for example, | pf cSessi onAct i onLi st ener.

Privat e Cl ass Model Event Li st ener
| mpl erent s | pf cMbdel Event Act i onLi st ener
| mpl ement s |1 Cl PA i ent Obj ect
| mpl ement s | pf cActi onLi st ener

Public FunctionGetdientlinterfaceNane() As String _
I mpl enents I CIPA i entChject.GetdientlnterfaceNane
GetdientlnterfaceNane =" | pf cModel Event Acti onLi st ener
End Functi on
"Function : OnAfterMdel Copy
"Purpose : Thisnmethodisexecutedafter successfully
copyi ng a nodel .
Publ i ¢ Sub OnAft er Mbdel Copy(ByVval _Fromvdl As
pfcls. | pfcMdel Descriptor, ByVal _ToMll As
pfcls. | pfchMdel Descriptor) | npl ements
pfcls. | pfchMdel Event Acti onLi st ener. OnAft er Mbdel Copy
' Met hod Body
End Sub
"Function : OnAfterMdel Renane
"Purpose : Thisnmethodis executedafter successfully
renam ng a nodel .
Publ i ¢ Sub OnAft er Model Renanme(ByVal _Fromvidl As
pfcls. | pfcMdel Descriptor, ByVal _ToMll As
pfcl s. | pf cModel Descriptor) I mpl ement s
pfcl s. | pf cModel Event Acti onLi st ener . OnAf t er Model Renane

' Met hod Body
End Sub
Publ i ¢ Sub OnAft er Model CopyAl | (ByVval _FronmMil As

pfcls. | pfcMdel Descriptor, ByVal _ToMll As
pfcls. | pfcMdel Descriptor) | npl ements

pfcl s. | pf cModel Event Acti onLi st ener. OnAf t er Model CopyAl |

End Sub
Publ i ¢ Sub OnAft er Model Del et e(ByVal _Descr As

pfcls. | pfcMdel Descriptor) | npl ements
pfcl s. | pf cModel Event Acti onLi st ener. OnAft er Model Del et e

End Sub
Publ i ¢ Sub OnAft er Model Er ase(ByVal _Descr As

pfcls. | pfchMdel Descriptor) | npl ements
pfcl s. | pf cModel Event Acti onLi st ener. OnAf t er Model Er ase

End Sub

End C ass
Exceptions
Action listeners cause methods to be called outside of your application start and stop methods. Therefore, you must include

exception-handling codeinside the Act i onLi st ener implementation if you want to respond to exceptions. In some methods

called before an event, propagating al pf cXCancel Pr oEAct i on exception out of your method will cancel the impending
event.

Programming Considerations
Theitemsin this section introduce programming tips and techniques used for programming with the VB API .
Application Hierarchy

The rules of object orientation require a certain hierarchy of object creation when you start aVVB application. The application
must iterate down to the level of the object you want to access. For example, to list all the datum axes contained in the hole
featuresin all modelsin session, do the following:

1. Usethe method CCpfcAsyncConnection.Connect to connect to an existing session of Pro/ENGINEER.
Di mconnecti on As | pf cAsyncConnecti on

Di mcl assAsyncConnect i on As NewCCpf cAsyncConnect i on

connecti on =cl assAsyncConnect i on. Connect (DBNul I . Val ue, DBNul | . Val ue, DBNul | . Val ue,
DBNul | . Val ue)

2. Get ahandle to the session of Pro/ENGINEER for the current active connection:

Di m sessi on As | pf cBaseSessi on
session = connection. Sessi on

3. Get the modelsthat are loaded in the session:
Di m nodel s As | pfcMdel s
nodel s = sessi on. Li st Model s()

4, Get the handle to the first model in thelist:

Di m nodel As | pfcMdel

nodel = nodel s[0]
5. Get the feature model itemsin each model:

Dmitens As |pfcMdelltens

itens = nodel . Listltens (EpfcModellteniType. Epfcl TEM FEATURE)
6. Filter out the features of type hole:

if (feature. Feat Type = EpfcFeat ureType. Epf cFEATTYPE_HOLE) t hen
7. Get the subitemsin each feature that are axes:

Di m axes As | pfchModel Itens

axes = feature. ListSubltens (EpfcMdelltenilype. Epfcl TEM AXIS)

Optional Arguments and Tags
Many methods in the VB API are shown in the online documentation as having optional arguments.
For example, the | pfcM odelltemOwner .Listltems() method takes an optional Type argument.
| pf cModel Itens Li st1tens (Type as | pf cModel 1t enifype [optional 1);
In VB.Net, you can pass the keyword Not hi ng in place of any such optional argument. In VBA, use Nul | in place of any such
optional argument. The VB APl methods that take optional arguments provide default handling for Not hi ng parameters

which is described in the online documentation.

Note:
Y ou can only pass Nothing in place of arguments that are shown in the documentation to be optional.

Optional Returns for the VB API Methods

Some methods in the VB API have an optional return. Usually these correspond to lookup methods that may or may not find an
object to return. For example, the pfcBaseSession.GetM odel method returns an optional model:

Functi on Get Model (Nane as String, Type as | pf cModel Type) as | pf cMbdel [opti onal]

The VB API might return Not hi ng in certain cases where these methods are called. Y ou must use appropriate value checksin
your application code to handle these situations.

Parent-Child Relationships between the VB API Objects
Some VB API objects inherit from either the interface | pf cObj ect . Parent or | pf cObj ect . Chi | d. These interfaces are
used to maintain a relationship between the two objects. This has nothing to do with object-oriented inheritance, but rather,
refers to the relationship between the itemsin Pro/ENGINEER. In the VB API, the Child is owned by the Parent.

Property Introduced:

. IpfcChild.DBParent

The I pfcChild.DBParent property returns the owner of the child object. The application developer must know the expected
type of the parent in order to useit in later calls. The following table lists parent/child relationshipsin the VB API.

Parent Child

IpfcSession | IpfcModel

IpfcSession | IpfcWindow

IpfcModel IpfcModel Item

IpfcSolid | pfcFeature

IpfcModel | pfcParameter

IpfcModel | pfcExternal DataA ccess

I pfcPart IpfcMaterial

IpfcModel IpfcView

IpfcModel2D | IpfcView2D

IpfcSolid I pfcX Section

IpfcSession | IpfeDIl (Pro/TOOLKIT)

IpfcLinkApplication (J

IpfcSession Link)

Run-Time Type Identification in the VB API
The VB API and Visua Basic provide several methods to identify the type of an object.

Many VB API classes provide read access to atype enumerated class. For example, the | pf cFeat ur e class has al pfcFeature.
FeatType property, returning a pf cFeat ur eType enumeration value representing the type of the feature. Based upon the type,
auser can recognize that the | pf cFeat ur e object is actually a particular subtype, such as| pf cConponent Feat , whichisan
assembly component.

Support for Embedded OLE Objects

OLE objects, when activated by the user, can include VB code that can be used to drive the model from which the object is
contained. The VB API provides a special property in embedded Microsoft Word, Microsoft Excel and Microsoft PowerPoint
documents that can directly return the connection ID of the Pro/ENGINEER session that launched the process containing the
OLE object. For information about getting the connection ID from the container, refer to the "VB APl Fundamentals:

Controlling Pro/ENGINEER" section.

The user application code embedded in the OLE object passes the connection ID string to CCpfcConnectionld.Create() and
CCpfcAsyncConnection.ConnectByl d() to establish the connection. The code may then obtain the owner model of the OLE
object by retrieving the current model from the session using standard PFC APIs.

For example,

Di ml s As Newpf cl s. CCpf cAsyncConnect i on
Di maCAs pfcl s. | pf cAsyncConnecti on

D mcl d As Newpf cl s. CCpf cConnecti onl d

Di mi d As pfcl s. | pf cConnectionld

Di msessi on As pfcl s. | pf cBaseSessi on

Di mmodel As pfcl s. | pf cModel

Set id=cld. Create(connectionld)
Set aC=1s. Connect Byl d(i d, DBNul | . Val ue, DBNul | . Val ue)

Set sessi on =aC. Sessi on
Set nodel =sessi on. Current Mbdel

Exceptions
All PFC methods that fail may throw exceptions as Syst em Runt i me. | nt er opSer vi ces. COVExcept i on.

The type of the exception can be obtained from the Message property of this exception.

Try
sessi on. Set Confi gOpti on("no_way", "no_how")
Cat ch ex As Excepti on
MsgBox(ex. Message) ' W1 | showpf cExceptions: : | pf cXTool ki t Not Found

End Try

The description property returns the full exception description as[Exception type]; [additional details].
The exception type is the module and exception name, for example, pf cExcept i ons: : | pf cXTool ki t Checkout Conflict.

The additional details include information that was contained in the exception when it was thrown by the PFC layer, such as
conflict descriptions for exceptions caused by server operations and error details for exceptions generated during drawing
creation.

PFC Exceptions

The PFC exceptions are thrown by the classes that make up the VB API's public interface. The following table describes these
exceptions.

Exception Purpose

An attempt to read contents of an external data object that has been

f cExcepti ons: : | pf cXBadExt er nal Dat a .
P Pt P terminated.

Indicates attempt to read the wrong type of data from the

f cExcept i .1 pf cXBadGet Ar gVal .
prebxceptions: - Tptestba gvaiue IpfcArgVaue union.

Indicates attempt to read the wrong type of data from the

f cExcepti ons: : | pf cXBadGet Ext er nal Dat a .
P P P | pfcExternal Data union.

pf cExceptions: :

| pf cXBadGet Par anVal ue

Indicates attempt to read the wrong type of data from the
| pfcParamValue union.

pf cExceptions: :

| pf cXBadQut | i neExcl udeType

Indicates an invalid type of item was passed to the outline
cal culation method.

pf cExceptions: :

| pf cXCancel ProEActi on

This exception type will not be thrown by VB API methods, but you
may instantiate and throw this from certain ActionListener methods
to cancel the corresponding action in Pro/ENGINEER.

pf cExceptions: :

I pf cXCannot Access

The contents of aVVB API object cannot be accessed in this situation.

pf cExceptions: :

| pf cXEnpt yStri ng

An empty string was passed to a method that does not accept this
type of input.

pf cExceptions::

| pf cXI nval i dEnunmval ue

Indicates an invalid value for a specified enumeration class.

pf cExceptions: :

| pf cXl nval i dFi | eNane

Indicates a file name passed to a method was incorrectly structured.

pf cExceptions: :

I pfcXl nval i dFi | eType

Indicates amodel descriptor contained an invalid file type for a
reguested operation.

pf cExceptions: :

| pf cXl nval i dMvbdel |t em

Indicates that the item requested to be used is no longer usable (for
example, it may have been deleted).

pf cExceptions: :

| pf cXl nval i dSel ecti on

Indicates that the | pfcSelection passed isinvalid or ismissing a
needed piece of information. For example, its component path,
drawing view, or parameters.

pf cExceptions: :
| pf cXJLi nkAppl i

cati onException

Contains the details when an attempt to call code in an external J
Link application failed due to an exception.

pf cExceptions::

I pf cXJLi nkAppl i cationl nactive

Unable to operate on the requested | pfcLinkA pplication object
because it has been shut down.

pf cExceptions::

I pf cXJLi nkTaskNot Found

Indicates that the J-Link task with the given name could not be found
and run.

pf cExceptions::

| pf cXMbdel Not | nSessi on

Indicates that the model is no longer in session; it may have been
erased or deleted.

pf cExceptions::

| pf cXNegat i veNunber

Numeric argument was negative.

pf cExceptions: :

| pf cXNunber TooLar ge

Numeric argument was too large.

pf cExceptions: :

| pf cXPr oEVAsNot Connect ed

The Pro/ENGINEER session is not available so the operation failed.

pf cExcepti ons: : | pf cXSequenceToolLong Sequence argument was too long.

pf cExceptions: : | pfcXStringTooLong String argument was too long.

pf cExcepti ons: : | pf cXUni npl ement ed I ndi cates unimplemented method.

Indicates that afile extension does not match a known Pro/

pf cExcepti ons: : | pf cXUnknownModel Ext ensi on ENGINEER model type.

Pro/TOOLKIT Errors

The | pf cXTool ki t Err or exception types provide access to error codes from Pro/TOOLKIT functions that the VB API uses
internally and to the names of the functions returning such errors. | pf cXTool ki t Er r or isthe exception you are most likely to
encounter because the VB API isbuilt on top of Pro/TOOLKIT. The following table liststhe | pf cXTool ki t Err or types
method and shows the corresponding Pro/TOOLKIT constant that indicates the cause of the error.

IpfcXToolkitError Child Class Pro/TOOLKIT Error #
pf cExceptions: : | pf cXTool ki t Gener al Err or PRO_TK_CGENERAL_ERROR -1
pf cExceptions: : | pf cXTool ki t Badl nput s PRO_TK_BAD_| NPUTS -2
pf cExcepti ons: : | pf cXTool ki t User Abor t PRO_TK_USER_ABORT -3
pf cExcepti ons: : | pf cXTool ki t Not Found PRO TK_E_NOT_FOUND -4
pf cExcepti ons: : | pf cXTool ki t Found PRO_TK_E_FOUND -5
pf cExceptions: : | pf cXTool ki t Li neTooLong PRO_TK LI NE_TOO _LONG -6
pf cExceptions: : | pf cXTool ki t Cont i nue PRO_TK_CONTI NUE -7
pf cExceptions: : | pf cXTool ki t BadCont ext PRO_TK_BAD_CONTEXT -8
pf cExcepti ons: : | pf cXTool ki t Not | npl enent ed PRO_TK_NOT_| MPLEMENTED -9
pf cExcepti ons: : | pf cXTool ki t Qut Of Menory PRO_TK_OUT_OF MEMORY '10
pf cExcepti ons: : | pf cXTool ki t ConmrEr r or PRO_TK_COW _ERROR _11

pf cExcepti ons: : | pf cXTool ki t NoChange PRO TK_NO CHANGE »
pf cExcepti ons: : | pf cXTool ki t Suppr essedPar ent s PRO_TK_SUPP_PARENTS '13
pf cExcepti ons: : | pf cXTool ki t Pi ckAbove PRO_TK_PI CK_ABOVE ;I.4
pf cExceptions: : | pfcXTool kit nval i dDi r PRO _TK I NVALI D_DI R '15
pf cExceptions: : | pfcXTool kitlnvalidFile PRO _TK_ I NVALI D_FI LE -16
pf cExceptions: : | pfcXTool kitCantWite PRO_TK_CANT_WRI TE '17
pf cExceptions: : | pf cXTool ki t1nval i dType PRO_TK | NVALI D_TYPE -18
pf cExceptions: : | pfcXTool ki tlnvalidPtr PRO_TK_ | NVALI D_PTR '19
pf cExcepti ons: : | pf cXTool ki t Unavai | abl eSecti on PRO_TK_UNAV_SEC '20
pf cExceptions: : | pf cXTool kitlnval i dvatri x PRO_TK_I NVALI D_MATRI X '21
pf cExceptions: : | pf cXTool ki t | nval i dNane PRO_TK | NVALI D_NAME '22
pf cExcepti ons: : | pf cXTool ki t Not Exi st PRO_TK_NOT_EXI ST '23
pf cExcepti ons: : | pf cXTool ki t Cant Open PRO_TK_CANT_OPEN '24
pf cExceptions: : | pf cXTool ki t Abort PRO_TK_ABORT '25
pf cExceptions: : | pf cXTool ki t Not Val i d PRO_TK_NOT_VALI D -26
pf cExceptions: : | pfcXTool ki t1nvalidltem PRO _TK_I NVALI D_I TEM B

27

pf cExcepti

ons:

: 1 pf cXTool ki t MsgNot Found

PRO_TK_MSG_NOT_FOUND

28
pf cExcepti ons: : | pf cXTool ki t MsgNoTr ans PRO_TK_MSG_NO TRANS _29
pf cExcepti ons: : IpfcXTool ki t MsgFnt Er r or PRO TK MSG FMI_ERROR 530
pf cExceptions: : | pf cXTool ki t MsgUser Qui t PRO TK M5G USER QUI T 531
pf cExcepti ons: : | pf cXTool ki t MsgTooLong PRO_TK_MSG _TOO LONG ;32
pf cExceptions: : | pf cXTool ki t Cant Access PRO_TK_CANT_ACCESS 2_33
pf cExceptions: : | pf cXTool ki t Gbsol et eFunc PRO TK_OBSOLETE_FUNC ;34
pf cExceptions: : | pf cXTool ki t NoCoor dSyst em PRO_TK_NO_COCORD_SYSTEM -35
pf cExceptions: : | pf cXTool ki t Ambi guous PRO_TK_E_AMBI GUOUS -36
pf cExceptions: : | pf cXTool ki t DeadLock PRO_TK_E_DEADLOCK ,'37
pf cExceptions: : | pf cXTool ki t Busy PRO_TK_E_BUSY -38
pf cExcepti ons: : | pf cXTool ki t | nUse PRO TK_E_I N_USE '39
pf cExcepti ons: : | pf cXTool ki t NoLi cense PRO_TK_NO_LI CENSE ;10

¢ . 1 of ki | . | PRO_TK_BSPL_UNSUI TABLE_ -
pf cExcepti ons: : | pf cXTool ki t Bspl Unsui t abl eDegr ee DEGREE a1

¢ . 1 of ki | PRO _TK_BSPL_NON_STD_END _ -
pf cExcepti ons: : | pf cXTool ki t Bspl NonSt dEndKnot s KNOTS 42

) _ _ PRO_TK_BSPL_MULTI _I NNER_ -

pf cExceptions: : | pf cXTool ki t Bspl Mul ti | nner Knot s

KNOTS

43

pf cExcept i

ons:

: I pf cXTool ki t BadSrf Crv

PRO_TK_BAD_SRF_CRV

44
pf cExceptions: : | pf cXTool ki t Enpty PRO TK_EMPTY ;15
pf cExcepti ons: : | pf cXTool ki t BadDi mAt t ach PRO TK_BAD DI M ATTACH ;16
pf cExcepti ons: : | pf cXTool ki t Not Di spl ayed PRO TK_NOT_DI SPLAYED ;17
pf cExcepti ons: : | pf cXTool ki t Cant Modi fy PRO TK_ CANT_MODI FY ;18
pf cExceptions: : | pf cXTool ki t Checkout Confl i ct PRO TK CHECKOUT CONFLI CT ;19
pf cExcepti ons: : | pf cXTool ki t Cr eat eVi ewBadSheet PRO_TK_CRE_VI EW BAD SHEET ;30
pf cExcepti ons: : | pf cXTool ki t Cr eat eVi ewBadMVbdel PRO TK_CRE_VI EW BAD MODEL ;31
pf cExceptions: : | pf cXTool ki t Cr eat eVi ewBadPar ent PRO TK_CRE_VI EW BAD PARENT ;52
pf cExceptions: : | pf cXTool ki t Cr eat eVi ewBadType PRO TK _CRE_VI EW BAD TYPE :53
pf cExcepti ons: : | pf cXTool ki t Cr eat eVi ewBadExpl ode PRO_TK_CRE_VI EW BAD EXPLCDE ;54
pf cExceptions: : | pf cXTool ki t Unat t achedFeat s PRO_TK_UNATTACHED_FEATS '55
pf cExcepti ons: : | pf cXTool ki t Regener at eAgai n PRO_TK_REGEN_AGAI N -56
pf cExceptions: : | pf cXTool ki t Drawi ngCr eat eErrors PRO_TK_DWGCREATE_ERRCRS '57
pf cExceptions: : | pf cXTool ki t Unsupport ed PRO_TK_UNSUPPORTED :58
pf cExcepti ons: : | pf cXTool ki t NoPer mi ssi on PRO_TK_NO_PERM SSI ON -

59

pf cExceptions: : | pf cXTool ki t Aut henti cati onFail ure PRO_TK_AUTHENTI CATI ON_FAI LURE -60
pf cExceptions: : | pf cXTool ki t AppNoLi cense PRO_TK_APP_NO_LI CENSE ;)2
pf cExceptions: : | pf cXTool ki t AppExcessCal | backs PRO_TK_APP_XS CALLBACKS ;33
pfcExceptions: : | pf cXTool ki t AppSt ar t upFai | ed PRO_TK_APP_STARTUP_FAI L ;34
pf cExceptions: : -

| pf cXTool ki t Appl nitializationFail ed PRO_TK APP_INIT_FAIL 95
pf cExcepti ons: : | pf cXTool ki t AppVer si onM snat ch PRO TK_APP_VERSI ON M SMATCH -96
pf cExceptions: : -

| pf cXTool ki t AppConmuni cati onFai | ure PRO_TK_APP_COMMLFAI LURE 97
pf cExcepti ons: : | pf cXTool ki t AppNewVer si on PRO TK_APP_NEW VERSI ON -98

The exception pf cExcept i ons: : | pf cXPr odevErr or represents ageneral error that occurred while executing a Pro/
DEVELORP function and is equivalent to an pf cExcept i ons: : | pf cXTool ki t Gener al Error exception.

The pf cExcepti ons: : | pf cXExt er nal Dat aErr or exception types and its children are thrown from External Data
methods. See the section on External Data for more information.

VB API Fundamentals:Controlling Pro/ENGINEER

This section explains how to use the VB API to establish a connection to Pro/ENGINEER.
Topic

Overview

Simple Asynchronous Mode

Starting and Stopping Pro/ENGINEER
Connecting to a Pro/ENGINEER Process
Full Asynchronous Mode
Troubleshooting VB API Applications

Overview

Asynchronous mode is a multiprocess mode in which theVB API application and Pro/ENGINEER can
perform concurrent operations. The VB API application (containing its own main() method) is started
independently of Pro/ENGINEER and subsequently either starts or connects to a Pro/ENGINEER process.
Depending on how your asynchronous application handles messages from Pro/ENGINEER, your application
can be classified as either ssimple or full. The following sections describe simple and full asynchronous
mode.

Simple Asynchronous Mode

A simple asynchronous application does not implement away to handle requests from Pro/ENGINEER.
Therefore, the VB API cannot plant listeners to be notified when events happen in Pro/ENGINEER.
Consequently, Pro/ENGINEER cannot invoke the methods that must be supplied when you add, for
example, menu buttons to Pro/ENGINEER.

Despite this limitation, a simple asynchronous mode application can be used to automate processes in Pro/
ENGINEER. The application may either start or connect to an existing Pro/ENGINEER session, and may
access Pro/ENGINEER in interactive or in anon graphical, non interactive mode. When Pro/ENGINEER is
running with graphics, it is an interactive process available to the user.

When you design a VB API application to run in ssmple asynchronous mode, keep the following pointsin
mind:

o The Pro/ENGINEER process and the application perform operations concurrently.
o None of the application's listener methods can be invoked by Pro/ENGINEER.

Starting and Stopping Pro/ENGINEER

The following methods are used to start and stop Pro/ENGINEER when using the VB API applications.

Methods Introduced:

. CCpfcAsyncConnection.Start()
. IpfcAsyncConnection.End()

A VB application can spawn and connect to a Pro/ENGINEER process with the method
CCpfcAsyncConnection.Start(). After this method returns the asynchronous connection object, the VB
API application can call the Pro/ENGINEER process using the appropriate APIs. In the interactive mode,
you can also access the Pro/ENGINEER session when it is running.

The asynchronous application is not terminated when Pro/ENGINEER terminates. Thisis useful when the
application needs to perform Pro/ENGINEER operations intermittently, and therefore, must start and stop
Pro/ENGINEER more than once during a session.

The application can connect to or start only one Pro/ENGINEER session at any time. If the VB API
application spawns a second session, connection to the first session islost.

To end any Pro/ENGINEER process that the application is connected to, call the method
I pfcAsyncConnection.End().

Setting Up a Noninteractive Session

Y ou can spawn a Pro/ENGINEER session that is both noninteractive and nongraphical. In asynchronous

mode, include the following strings in the Pro/ENGINEER start or connect call to CCpfcAsyncConnection.
Start():

o -g:no_graphics--Turn off the graphics display.
o -i:rpc_input--Causes Pro/ENGINEER to expect input from your asynchronous application only.

Note:
Both of these arguments are required, but the order is not important.

The syntax of the call for a noninteractive, nongraphical session is as follows:

Di maCas | pf cAsyncConnecti on

Di mccACas New Ccpf cAsyncConnecti on

aC=ccAC. Start ("pro-g:no_graphics-i:rpc_input"”, <text_dir>);
where pro is the command to start Pro/ENGINEER.

Example Code for Visual Basic.NET

This example demonstrates how to use the VB API to start Pro/ENGINEER asynchronously, retrieve a
Session and to open amodel in Pro/ENGINEER.

| mports pfcls
Publ i ¢ O ass pf cAsynchr onousMbdeExanpl es

Publ i ¢ Sub runPr oE(ByVal exePath As String, ByVal workDir As Stri ng)

D masyncConnecti on As | pf cAsyncConnect i on = Not hi ng

D mcACAs CCpf cAsyncConnecti on
Di msessi on As | pf cBaseSessi on

"First Argunent : ThepathtothePro/ Eexecutabl eal ongw t hcommand
"lineoptions. -i and-gflags make Pro/ ENG NEERr uni n non-graphi c,

‘non-interactive node
" Second Argunent: Stringpathtonenuandnessagefiles.

cAC = New CCpf cAsyncConnecti on

asyncConnecti on=cAC. Start (exePath+" -g: no_graphics
-i:rpc_input”, ".")

sessi on =asyncConnecti on. Sessi on

Di mdescModel As | pf cMbdel Descri pt or
Di mnodel As | pf cModel

descModel = (NewCCpf cMbdel Descriptor). Create
(Epf cModel Type. Epf cMDL_PART, "part Model . prt", Not hi ng)
nodel =session. Retri eveModel (descMdel)

Cat ch ex As Excepti on
MsgBox(ex. Message. ToString + Chr (13) +ex. StackTrace. ToStri ng)

Finally

I f Not asyncConnecti on | s Not hi ng AndAl so
asyncConnecti on. | sRunni ng Then
asyncConnecti on. End()
End | f
End Try
End Sub

End d ass
Example Code for Visual Basic for Applications
This example demonstrates the VB API syntax in amacro written in Visual Basic for Applications, for

example, as would be run by a button in a Microsoft Word document or Microsoft Excel spreadsheet. This
example isidentical to the previous example, except for the syntax.

Privat e Sub bt nRun_dC i ck()
Di masyncConnecti on As | pf cAsyncConnect i on
Di mcACAs CCpf cAsyncConnecti on
Di msessi on As | pf cBaseSessi on
Di mdescMbdel As | pf cModel Descri pt or
Di mdescMbdel Cr eat e As CCpf cMbdel Descri pt or
Di mnmodel As | pf civodel
Di mworkDir As String
Di mposi tionAs | nt eger
On Error GoTo RunError

"First Argunment : The pathtothe Pro/ Eexecut abl e al ongw t h command
"lineoptions. -i and-gflags make Pro/ ENG NEERruni n non-graphi c,
'non-interactive node

" Second Argunent: Stringpathtonenuandnessagefil es.

Set cAC= New CCpf cAsyncConnecti on

Set asyncConnection=cAC. Start (txt ExePath. Text +" -g: no_graphics
-i:rpc_input", ".")

Set sessi on =asyncConnecti on. sessi on

"Cet current directory
"Set it asworkingdirectory

wor kDi r = Act i veWor kbook. Ful | Nane
position=InStrRev(workDir, "\'")
wor kDi r =Left (workDir, position)

sessi on. ChangeDi rectory (wor kDi r)

Set descModel Cr eat e = New CCpf cMbodel Descri pt or

Set descMbdel =descMdel Creat e. Creat e(Epf cModel Type. Epf cMDL_PART,
"part Model . prt"™, dbnul |)

Set nodel =session. Retri eveMbdel (descModel)

I f Not asyncConnectionl s Not hi ng Then
| f asyncConnecti on. | sRunni ng Then
asyncConnecti on. End
End | f
End | f

RunError:
I f Err. Nunber <>0 Then
MsgBox " Process Fai | ed: Unknown error occured." +Chr(13) + _
"Error No: " +CStr(Err. Nunber) + Chr(13) + _
"Error: " +Err.Description, vbCritical, "Error"

I f Not asyncConnecti on | s Not hi ng Then

| f asyncConnecti on. | sRunni ng Then
asyncConnecti on. End
End | f
End | f
End | f

End Sub

The following figure displays the button in Microsoft Excel designed for the above application.

Flez=s & ers ure that ervironment wari ables "PEO_COMM_MS G EXE" and "PRO_DIRECTORY™ are set and
nm=d & running before running the example

Pra/E Executable Path otportsredspgisvstemn 1486 nthobjstop.exe

Run Async

Connecting to a Pro/ENGINEER Process

Methods Introduced:
. CCpfcAsyncConnection.Connect()
. CCpfcAsyncConnection.ConnectWs()
. CCpfcAsyncConnection.GetActiveConnection()
. IpfcAsyncConnection.Disconnect()

A simple asynchronous application can also connect to a Pro/ENGINEER process that is already running on
alocal computer. The method CCpfcAsyncConnection.Connect() performs this connection. This method
failsto connect if multiple Pro/ENGINEER sessions are running. If several versions of Pro/ENGINEER are
running on the same computer, try to connect by specifying user and display parameters. However, if severa
versions of Pro/ENGINEER are running in the same user and display parameters, the connection may not be
possible.

CCpfcAsyncConnection.ConnectW () connects to both Pro/ENGINEER and Pro/INTRALINK 3.x
workspaces simultaneously.

pfcAsyncConnection.l pfcAsyncConnection _GetActiveConnection returns the current connection to a
Pro/ENGINEER session.

To disconnect from a Pro/ENGINEER process, call the method | pfcAsyncConnection.Disconnect().

Connecting Via Connection ID

Methods Introduced:

. IpfcAsyncConnection.GetConnectionld()
. IpfcConnectionld.ExternalRep

. CCpfcConnectionld.Create()

. CCpfcAsyncConnection.ConnectByld()

Each Pro/ENGINEER process maintains a unique identity for communications purposes. Use thisID to
reconnect to a Pro/ENGINEER process.

The method | pfcAsyncConnection.GetConnectionl d() returns a data structure containing the connection
ID.

If the connection id must be passed to some other application the method | pfcConnectionl d.Exter nalRep
provides the string external representation for the connection I1D.

The method CCpfcConnectionl d.Create() takes a string representation and creates a Connectionld data
object. The method CCpfcAsyncConnection.ConnectByld() connects to Pro/ENGINEER at the specified
connection ID.

Note:
Connection IDs are unique for each Pro/ENGINEER process and are not maintained after you quit
Pro/ENGINEER.

Status of a Pro/ENGINEER Process
Method Introduced:
. IpfcAsyncConnection.IsRunning()

To find out whether a Pro/ENGINEER process is running, use the method
pfcAsyncConnectionAsyncConnection.| sRunning.

Getting the Session Object
Method Introduced:
. IpfcAsyncConnection.Session

The method | pfcAsyncConnection.Session returns the session object representing the Pro/ENGINEER
session. Use this object to access the contents of the Pro/ENGINEER session. See the Session Objects

section for additional information.

Full Asynchronous Mode

Full asynchronous mode is identical to the simple asynchronous mode except in the way the VB API
application handles requests from Pro/ENGINEER. In simple asynchronous mode, it is not possible to

process these requests. In full asynchronous mode, the application implements a control loop that ™ listens”
for messages from Pro/ENGINEER. As aresult, Pro/ENGINEER can call functions in the application,
including callback functions for menu buttons and notifications.

Note:
Using full asynchronous mode requires starting or connecting to Pro/ENGINEER using the methods
described in the previous sections. The difference is that the application must provide an event loop
to process calls from menu buttons and listeners.

Methods Introduced:
. IpfcAsyncConnection.EventProcess()
. IpfcAsyncConnection.WaitForEvents()
. IpfcAsyncConnection.InterruptEventProcessing()
. IpfcAsyncActionListener.OnTerminate()

The control loop of an application running in full asynchronous mode must contain a call to the method

I pfcAsyncConnection.EventPr ocess(), which takes no arguments. This method allows the application to
respond to messages sent from Pro/ENGINEER. For example, if the user selects a menu button that is added
by your application, pfcAsyncConnection.AsyncConnection.EventPr ocess processes the call to your
listener and returns when the call completes. For more information on listeners and adding menu buttons, see
the Session Objects chapter.

The method | pfcAsyncConnection.WaitFor Events() provides an alternative to the development of an
event processing loop in afull asynchronous mode application. Call this function to have the application
wait in aloop for events to be passed from Pro/ENGINEER. No other processing takes place while the
application is waiting. The loop continues until 1 pfcAsyncConnection.InterruptEventProcessing() is
caled from aVB callback action, or until the application detects the termination of Pro/ENGINEER.

It is often necessary for your full asynchronous application to be notified of the termination of the Pro/
ENGINEER process. In particular, your control loop need not continue to listen for Pro/ENGINEER
messages if Pro/ENGINEER is no longer running.

An AsyncConnect i on object can be assigned an Action Listener to bind atermination action that is
executed upon the termination of Pro/ENGINEER. The method | pfcAsyncActionListener.OnTerminate()
handles the termination that you must override. It sends a member of the class| pf cTer mi nati onSt at us,
which is one of the following:

o EpfcTERM_EXIT--Normal exit (the user clicks Exit on the menu).
o EpfcTERM_ABNORMAL--Quit with error status.
o EpfcTERM_SIGNAL--Fatal signal raised.

Y our application can interpret the termination type and take appropriate action. For more information on
Action Listeners, see the Action Listeners section.

Example Code

The following asynchronous class is a fully asynchronous application. It follows the procedure for afull

asynchronous application:

1. The application establishes listeners for Pro/ENGINEER events, in this case, the menu button and
the termination listener.

2. The application goesinto a control loop calling EventPr ocess which allows the application to
respond to the Pro/ENGINEER events.

Publ i c A ass pf cFul | AsyncExanpl e
Privat e asyncConnecti on As pfcl s. | pf cAsyncConnecti on

Publ i ¢ Sub New(ByVal exePat h As String, byVal workDir as String)
Try
start ProE(exePat h, wor kDi r)
addTer m nati onLi st ener ()
addMenuAndBut t on()
asyncConnecti on. Wai t For Event s()

Cat ch ex As Excepti on
MsgBox(ex. Message. ToString + Chr (13) +ex. StackTrace. ToStri ng)
Finally
| f Not asyncConnecti on | s Not hi ng AndAl so asyncConnecti on. | sRunni ng Then
asyncConnect i on. End()
End | f

End Try

End Sub

"Function : startProE
"Purpose : Start newPro/ ENG NEERsessi on and changeto current
directory.

Privat e Sub startProE(ByVal exePath As String, ByVal workDi r As
String)
asyncConnecti on = (NewCCpf cAsyncConnection). Start (exePath, ".")
asyncConnecti on. Sessi on. ChangeDi rectory
(System Envi ronnent. Current Di rect ory)

"Function : addTerni nationLi st ener
"Purpose : Thisfunctionaddsterm nationlistenertothe
' Pr o/ ENG NEER sessi on.

Privat e Sub addTer m nati onLi st ener ()
Di mt ermi nati onLi st ener As NewPr oEExi t Li st ener ()
Try
asyncConnecti on. AddAct i onLi st ener (term nati onLi st ener)
Cat ch ex As Excepti on
MsgBox(ex. Message. ToStri ng + Chr (13) +ex. StackTrace. ToStri ng)
End Try

1

End Sub

Class : ProEExitlListener

Purpose : Thisclassmnust inplenment thelistnerinterfaceal ong
withthecorrect client interfacenanme. The OnTerm nate
functioniscalledwhenthePro/ ENG NEERsessi oni s ended
by t he user.

Private d ass ProEExi t Li stener
| mpl enent s | pf cAsyncActi onLi st ener
| mpl ement s | Cl PCl i ent Obj ect
| mpl enent s | pf cActi onLi st ener

Public FunctionGetdientlnterfaceName() As Stringl npl enents
pfcls.ICIPCientoject.GtdientlnterfaceNanme
GetdientlnterfaceNane ="1pfcAsyncActionLi stener”
End Functi on

Publ i ¢ Sub OnTer mi nat e(ByVal _Status As I nteger) | npl ements
pfcls. | pfcAsyncActionLi stener. OnTerm nate
D maCAs pfcl s. | pf cAsyncConnecti on

aC=(NewCCpf cAsyncConnecti on). Get Acti veConnecti on
aC. I nterrupt Event Processi ng()

MsgBox (" ProEExi ted")
End Sub

End C ass

Function : addMenuAndButton
Purpose : Thisfunctiondenonstratestheusageof U functionsto
add a newnenu and buttont o Pro/ ENG NEER.

Privat e Sub addMenuAndBut t on()
Di msessi on As pfcls. | pfcSessi on
Di mi nput Command As | pf cU Cormand
Di mbut t onLi st ener As | pf cU CormandAct i onLi st ener
Di mexi t Command As | pf cUl Cormand
Di meLi st ener As | pf cU CommandAct i onLi st ener

Try
sessi on =asyncConnecti on. Sessi on
but t onLi st ener = NewBut t onLi st ener ()
eLi st ener = NewExi tLi stener ()

"Commandiscreatedwhichwi || beassociatedwiththebutton. The cl ass

1

i npl enmentingtheactionlistener nust be gi venas i nput.

i nput Command =sessi on. Ul Cr eat eCommand(" | NPUT" ,
but t onLi st ener)
exi t Command = sessi on. Ul Cr eat eConmand(" EXI T", eLi stener)

"Menuiscreatedandbuttonsarecreatedi nthe nenu

sessi on. U AddMenu(" VB- Async", "W ndows",
" pf cAsynchr onousModeExanpl es. t xt ", Not hi ng)

sessi on. U AddBut t on(exi t Conmmand, " VB- Async", Not hi ng, _
"USEREXxi t Listener", "USERExi t Hel p",
" pf cAsynchr onousModeExanpl es. t xt")

sessi on. U AddBut t on(i nput Command, " VB- Async", Not hi ng, _
" USERAsync App", "USERAsync Hel p",
"pf cAsynchr onousModeExanpl es. t xt ")

Cat ch ex As Excepti on
MsgBox(ex. Message. ToStri ng + Chr (13) +ex. StackTrace. ToStri ng)
End Try

End Sub
"Class : ButtonListener
"Purpose : Thisclassnust inplenent thelistnerinterfaceal ong

' withthecorrect client interfacename. The OnConmand
' functioniscall edwhentheuser buttonis pressed.

Private d ass ButtonLi stener
I npl ement s pfcl s. | pf cU CommandAct i onLi st ener
| mpl ement s | Cl P i ent Qbj ect

Public FunctionGetCientlnterfaceName() As String_
| mpl enents I CI PA i entQbject. GetdientlnterfaceNane
GetdientlnterfaceNanme ="1pfcU ConmandActi onLi st ener”
End Functi on

Publ i ¢ Sub OnCommand() | npl enent s
pfcls. | pfcU CommandActi onLi st ener. OnComrand
Me. User Functi on()
End Sub

Publ i ¢ Sub User Funct i on()
MsgBox (" User Button Pressed")

End Sub
End d ass
"Class : ExitlListener
"Purpose : Thisclassnust inplenent thelistnerinterfaceal ong

! withthecorrect client interfacenane. The OnComrand
' functioniscall edwhentheuser buttonispressedto
! exit thesessionlistener.

Private d ass Exi t Li stener
I npl enment s pfcl s. | pf cU CommandActi onLi st ener
I mpl ement s | Cl PA i ent Obj ect

Public FunctionGetdientlnterfaceNanme() As String_
| mpl enents I CI PA i ent Qbject. GetdientlnterfaceNane
GetCientlnterfaceNanme ="1pfcU ConmandActi onLi st ener”
End Functi on

Publ i ¢ Sub OnCommand() | npl enent s
pfcl s. | pf cU CommandAct i onLi st ener. OnCommand
Me. User Functi on()
End Sub

Publ i ¢ Sub User Functi on()
D maCAs pfcl s. | pf cAsyncConnecti on

aC= (NewCCpf cAsyncConnecti on) . Get Acti veConnecti on
aC. I nterrupt Event Processi ng()

MsgBox(" Li st ener Exited")
End Sub

End d ass

End d ass

Message and Menu Fi | e

#

#

VB- Async

VB- Async

#

#
USER#ASync#App
Async Button

#

#

USER#Async#Hel p
Butt on added vi a Async Appl i cati on
#

#

Troubleshooting VB API Applications

General Problems

pf cExcepti ons. XTool ki t Not Found exceptiononthefirst call to CCpfcAsyncConnection. Start ()
on W ndows.

Make sure your command is correct. If it is not afull path to a script or executable, make sure $PATH is set
correctly. Try full path in the command: if it works, then your $PATH isincorrect.

pf cExcepti ons. XTool ki t Gener al Error or pf cExcepti ons. XTool kit CormError onthefirst call to
CCpf cAsyncConnection. Start () or CCpf cAsyncConnecti on. Connect ()

o Make sure the environment variable PRO_COMM_MSG_EXE is set to the full path to pro_comm_msg,

including <filename.exe>.
o Make sure the environment variable PRO_DIRECTORY is set to the Pro/ENGINEER installation directory.

o Make sure name service (nmsd) is running.

CCpf cAsyncConnect i on. Start () hangs, eventhough Pro/ ENG NEERal r eady st art ed

Make sure name service (nmsd) is also started along with Pro/ENGINEER. Open Task Manager and ook
for nnsd. exe inthe process listing.

The VB API Online Browser

This section describes how to use the online browser provided with the VB APIWizard.
Topic

Online Documentation -- VB APIWizard

Online Documentation -- VB APIWizard

The VB API provides an online browser called the VB APIWizard that displays detailed documentation. This browser
displays information from the VB APl User's Guide and API specifications derived from the VB API header file data.

The VB APIWizard contains the following items:

o Definitions of the VB APl modules

o Definitions of the VB API classes and interfaces and their hierarchical relationships

o Descriptions of the VB APl methods

o Declarations of datatypes used by the VB APl methods

o TheVB API User's Guide that you can browse by topic or by class

o Code examples for the VB APl methods (taken from sample applications provided as part of thethe VB API installation)
Read the Release Notes and README file for the most up-to-date information on documentation changes.

Note:
The VB API User's Guideis also available in PDF format at the following location:

<Pr o/ ENG NEERI oadpoi nt >/ vbapi / vbug. pdf
Installing the APIWizard

The Pro/ENGINEER installation procedure automatically installs the VB APIWizard. Thefilesresidein adirectory under the
Pro/ENGINEER load point. The location for the VB APIWizard filesis:

<Pr o/ ENG NEERI oadpoi nt >/ vbapi / vbdoc
Starting the APIWizard
Start the VB APIWizard by pointing your browser to:

<Pr o/ ENG NEERI oadpoi nt >/ vbapi / vbdoc/ i ndex. ht m

Y our web browser will display the VB APIWizard datain a new window.
Web Browser Environments
The APIWizard supports Netscape Navigator version 4 and later, and Internet Explorer version 5 and later.

For APIWizard use Internet Explorer, the recommended browser environment requires installation of the Java2 plug-in.

For Netscape Navigator, the recommended browser environment requires installation of the Java Swing foundation class. If
this classis not loaded on your computer, the APIWizard can load it for you. This takes several minutes, and is not persistant

between sessions. See Loading the Swing Class Library for the procedure on loading Swing permanently.

Loading the Swing Class Library

If you access the APIWizard with Internet Explorer, download and install Internet Explorer's Java2 plug-in. Thisis preferred
over installing the Swing archive, as Swing degrades access time for the APIWizard Search function.

If you access the APIWizard with Netscape Navigator, follow these instructions to download and install the Java Foundation
Class (Swing) archive:

Download the Java Foundation Class (Swing) Archive

Modifying the Java Class Path on UNIX Platforms

Modifying the Java Class Path on NT Platforms

Download the Java Foundation Class (Swing) Archive

1

5.

6.

Go to the Java Foundation Class Download Page.

. Go to the heading Downloading the JFC/Swing X.X.X Release, where X.X.X isthe latest JFC version.

Click on the standard TAR or ZIPfile link to go to the heading Download the Standard Version.
Do not download the "installer” version.
Select afile format, click Continue, and follow the download instructions on the subsequent pages.

Uncompress the downloaded bundle.

After downloading the swing-X.X.Xfcs directory (where X.X.X is the version of the downloaded JFC) created when
uncompressing the bundle, locate the swingall.jar archive. Add this archive to the Java Class Path as shown in the next
sections.

Modifying the Java Class Path on UNIX Platforms

Follow these steps to make the Java Foundation Class (Swing) available in UNIX shell environments:

1.

4,

If the CLASSPATH environment variable exists, then add the following line to the end of file ~/.cshrc
setenv CLASSPATH "${ CLASSPATH} :[path_to_swingall.jar]"
Otherwise, add the following line to ~/.cshrc

setenv CLASSPATH ".:[path_to_swingall.jar]"

. Save and close ~/.cshrc.

. Enter the following command:

source ~/.cshrc

This setsthe CLASSPATH environment variable in the current shell. All new shellswill be aso be affected.

Close and restart your internet browser from shell that uses the new class path data.

Modifying the Java Class Path on NT Platforms

Follow these steps to make the Java Foundation Class (Swing) available on Windows NT Platforms:

1. Click on Start -- Settings -- Control Panel.
2. Inthe System Properties window, select the Environment tab.

3. Check inthe User Variables display areafor the ClassPath variable as shown in the following figure.

System Properties EHE |
StartupShutdown I Hardware Frofilez | [Jzer Profiles |
General I Performance E nivironment
Suztem VW anables;
W arable | Walue |;|

PROCESSOR_AR... =86

PROCESSOR_IDE... =36 Family & Model 3 Stepping 4, Genuinelntel
PROCESSOR_LE.. B J
PROCESSOR_RE... 0303

windr CAWINNT =l

Uzer Wanables for Lzer:

Wariable | Walue |
ClazzFath C:\Program Files\BDED. 1 beanbox\tmphomgs, .
Path C:hbatch_testyproe2000Nbin

TEMP CATEMP

TMP CATEMP

Wanahle: IEIassF‘ath

Value: IE:HF’ngram Filez\BDK.1.1\beanboxstmphmydpplet:C: usershjay

Set | Delete |

(]9 I Cancel | Apply |

If the ClassPath variable exists, then follow these steps:

1. Click on ClassPath in the Variable column. The value of ClassPath will appear in the Value text field.
2. Append the path to the swingall.jar archive to the current value of ClassPath:

...;[path_to_swingall_archive];.

Use the semicolon as the path delimiter before and after the path to the archive, and the period (.) at the end of the variable

definition. There must be only one semicolon-period ";." entry in the ClassPath variable, and it should appear at the end of the
class path.

If the ClassPath variable does not exist, then follow these steps:
1. Inthe Variabletext field, enter ClassPath.
2. Inthe Valuetext field, enter:
[path_to_swingall_archive];.
There must be a semicolon-period ";." entry at the end of the ClassPath variable.

3. Click the Set button.

4. Click the Apply button.
5. Click the OK button.

6. Close and restart your internet browser. Y ou do not need to reboot your machine.

Automatic Index Tree Updating

With your browser environment configured correctly, following alink in an APIWizard HTML file causesthe treein the
Selection frame to update and scroll the tree reference that corresponds to the newly displayed page. Thisis automatic tree
scrolling.

If you access the APIWizard through Netscape's Java2 plug-in, this feature is not available. Y ou must install the Java
foundation class called Swing for this method to work. See Loading the Swing Class Library for the procedure on loading
Swing.

If you access the APIWizard with Internet Explorer, download and install the Internet Explorer Java2 plug-in to make
automatic tree scrolling available.

APIWizard Interface

The APIWizard interface consists of two frames. The next sections describe how to display and use these frames in your Web
browser.

Modules/Classes/Interfaces/Topic Selection Frame

This frame, located on the left of the screen, controls what is presented in the Display frame. Specify what data you want to
view by choosing either the VB API Modules, Classes, I nterfaces, Exceptions, Enumerated Types, or The VB API User's
Guide.

In M odules mode, this frame displays an a phabetical list of the VB APl modules. A module isalogical subdivision of
functionality within the VB API; for example, the pf cFani | y module contains classes, enumerated types, and collections
related to family table operations. The frame can also display VB API classes, interfaces, enumerated types, and methods as
subnodes of the modules.

In Classes mode, this frame displays an aphabetical list of the VB API classes. It can also display the VB APl methods as
subnodes of the classes.

In I nterfaces mode, this frame displays an alphabetical list of the VB API interfaces.
In Exceptions mode, this frame displays an alphabetical list of named exceptionsinthe VB API library.
In Enumerated Types mode, this frame displays an aphabetical list of the VB APl enumerated type classes.

In The VB API User's Guide mode, this frame displays the VB API User's Guide table of contentsin atree structure. All
chapters are displayed as subnodes of the main The VB API User's Guide node.

The Modules/Classes/I nterfaces/Topic Selection frame includes a Find button for data searches of the VB API User's Guide or
of API specifications taken from header files. See the section APIWizard Search Feature (Find) for more information on the
Find feature.

Display Frame
This frame, located on the right of the screen, displays:

o The VB API module defintions

The VB API class or interface defintions and their hierarchial relationships
The VB API method descriptions

User's Guide content

Code examples for the VB API methods

a o a a

The following figure displays the APIWizard interface layout.

‘3 VB AP1 Wildfire 4.0 (VB) APIWizard - Microsoft Internet Explorer A=

‘ File Edt View Favorites Took Help e

| hddress ‘.éj hictp:/frdweb, prc. comfpbosee) sportsrc fspafsystem_1 fapps/apiwizardfoutputipfovbvbepi_wildfre/IESwi Y: Go
Find About This Guide g

The VB AP Wildfire 4.0 User's Guide | hd

The VB APl Wildfire 4.0 User's Guide ™|

T ﬁ:l This section contans information about

™ fj Ouerview of the VB AP the contents and conventions of this

o= D VB AP Fundamentals:Contralling Pro wger guide,

o=]:J The VB AP Online Browser]

¢ [[) Session Objects Topic

o= a Selection Purpose

= (1 Menus, Commands, and Pop-up men | Aﬂmu(ﬁmce

& [C] Models Contents

e [1]) Drawings Prerecuisites

= (2] Solid Documentation

o D Windows and Views Software Product Concerns and Documentation Cor

¢ [2]) Modelitem

> [Features Purpose

o= D Geometry Evaluation

. D Dimensions and Parameters 1] This manual descnb cslhow b:rlusc the

> [0 Relations VE APL a Visual Basic toclkt for

Pro/ENGINEEE. The VE APT makes
possible the development of Visual
Basic programs that access the miermal

L a Assemblies and Components
&= () Family Tables

&[] Action Listeners components of a Pro/ENGINEEE.
& f:l Interface | | sessien, to customize Pro/ENGINEEE.
o =70 Simlified Representations | ™| models. M
‘ I | vl | & »
| &] toplet apinizard started © Trusted shes

Navigating the Modules/Classes/Interfaces/Topic Selection Tree

Access al VB APIWizard online documentation for modules, classes, interfaces, enumerated types, methods, or the VB API
User's Guide from the M odules/Classes/Interfaces/Topic Selection frame. This frame displays a tree structure of the data.
Expand and collapse the tree as described below to navigate this data.

To expand the tree structure, first select the Modules, Classes, Interfaces, Exceptions, Enumerated Types, or the VB API
User's Guide at the top of the Modules/Classed/Interfaces/Topic Selection frame. The APIWizard displays the tree structure in
acollapsed form. The switch icon to the far left of anode (i.e. amodule, a class, an interface, or chapter name) signifies that
this node contains subnodes. If a node has no switch icon, it has no subnodes. Clicking the switch icon (or double-clicking on
the node text) toggles the switch to the down position. The APIWizard then expands the tree to display the subnodes. Select a
node or subnode, and the APIWizard displays the online datain the Display frame.

Browsing the VB API Modules

View the VB APl modules by choosing M odules at the top of the Modules/Classes/Interfaces/Topic Selection frame. In this

mode, all the VB API Modules and Classes are displayed in alphabetical order. The following tree displays the layout of the
VB API modulesin the alphabetical order.

The Display frame for each VB APl module displays the information about the classes, enumerated types, and collections that
belong to the module. Click the switch icon next to the desired module name, or double-click the module name text to view
the clasess, interfaces, or enumerated types. Y ou can also view the methods for each class or interface in the expanded tree by
clicking the switch icon next to the class or interface name, or by double-clicking the name.

The following figure shows the collapased tree layout for the VB APl modules.

Firvid
VB APl Modules -
VB APl Modules -
‘e
. m Clazs IpfcArguments
o E:I Clazs CMpfcArgument
o EJ Intde IpfcArgValue
o= D Inte IpfeArgument
@ Enum EpficArgValueType
o m pfcAssembly
o EJ pfocAsyncCon nection
o EJ picBase
o= D pleCommand
o= D picCom ponentFeat
o m plcDetail
o= E:J picDiagram
o E:I plcDimension
o= D pleDimension2D
- [3 picDisplay
o= m pieDrawing
o E:J picDrawingFormat
o E:I picExceptions
o= D picExport
- [3 picExternal
o= m picFamily
o EJ picFeature
o C:I plcGeometry

|4

Browsing the VB API User's Guide

View the VB API User's Guide by choosing VB API User's Guide at the top of the Modules/Classed/Interfaces/Topic
Selection frame. In this mode, the APIWizard displays the User's Guide section headings.

View asection by clicking the switch icon next to the desired section name or by double-clicking the section name. The
APIWizard then displays atree of subsections under the selected section. The text for the selected section and its subsections
appear in the Display frame. Click the switch icon again (or double-click the node text) to collapse the subnodes listed and
display only the main nodes.

The following figure shows the collapsed tree layout for the table of contents of the VB API User's Guide.

Find
The VB API Wildlire 4.0 User's Guide
The VB API Wildfire 4.0 User's Guide

o= Ea About This Guide

o a Overview of the VB APl

o a VE APl Fundamentals: Controlling Pro/ENGINEER
o E] The VB APl Online Browser

o m Session Objects

o a Selection

o a Menus, Commands, and Pop-up menus

o E Models

o m Drawings .
> (£ Solid |
o @ Windows and Views

o= a Modelltem

o E3 Features

o= EJ Ceometry Evaluation

o a Dimensions and Parameters

o= a Relations

o= E3 Assemblies and Components

o m Family Tables

o= a Action Listeners

o a Interface

o= a Sim plified Representations

o= a Task Based Application Libraries
o= m Graphics

o a External Data

__Jr] 4

[4]

APIWizard Search Feature (Find)

The APIWizard supports searches for specified strings against both the VB API User's Guide and API definition files. Click
the Find button on the Modul es/Classes/I nterfaces/ Topi¢c Selection frame to display the APIWizard Search dialog.

Note:

The APIWizard Search Mechanism is slow when accessed through Internet Explorer's Default Virtual Machine. For
better performance, access the APIWizard through Internet Explorer's Java2 plug-in.

The following figure shows the APIWizard search dialog box with the results for the Except i on search string.

£ APIWizard Search Window M=

Enter Search Stringi(s) |Exceptinn | Search

[Options Search APl References [] Search Manuals

[] case Sensitive @ API Names .

i1 API Definitions

Marme Found Under
picExceptions Maodule pfeExceptions
IpfedLinkApplicationException Exception IpfedlinkApplicationExcepnti...
ExceptionDescription Froperty ExceptionCescription

Help Close

|Java Applet Window

The Sear ch dialog box contains the following fields, buttons, and frames:

Enter Search String(s)

)

Enter the specific search string or stringsin thisfield. By default, the browser performs a non-case-sensitive search.
Search/Stop

a

Select the Search button to begin a search. During a search, this button name changes to Stop. Select the Stop button to stop a
search.
Search API References

m}

Select this button to search for data on APl methods. Select the API Names button to search for method names only. Select
the Definitions button to search the APl method names and definitions for specific strings.
o Search Manuals

Select this button to search the VB API User's Guide data. Select the Table of Contents button to search on TOC entries only.
Select the I ndex button to search only the Index. Select the Contents button to search on al text in the VB API User's Guide.
o Case Senditive

Select this button to specify a case-sensitive search.
o Name

Thisframe displays alist of strings found by the APIWizard search.
Found Under

)

This frame displays the location in the online help data where the APIWizard found the string.
o Hel p

Select this button for help about the APIWizard search feature. The APIWizard presents this help datain the Display frame.
Supported Search Types
The APIWizard Search supports the following:

o Case sensitive searches
o Search of APl names and definitions, VB APl User's Guide data, or both
o Search of API data by API names only or by APl names and definitions

o Search of VB API User's Guide by Table of Contents only, by Index, or on the User's Guide contents (the entire text).
o Wildcard searches--valid characters are:

- * (asterisk) matches zero or more non-whitespace characters

- ? (question mark) matches one and only one non-whitespace character

Tosearchfor any stringcontai ningthecharacters Get, any nunber of ot her characters, and
t he char act er s Nane

Get * Nane

Tosearchfor any stringcontainingthecharacters Get, one ot her character, andt he
char act er s Nane

Get ?Nane

Tosearchfor any stringcontaini ngthecharacters Get, one or nore ot her characters, andthe
char act er s Nane

Get ?* Nane

TosearchonthestringFeature, fol |l owed by an*

Feature*

TosearchonthestringFeature, foll owed by a?

Feature\?

TosearchonthestringFeature, fol |l owed by a\
Feat ur e\ \

o Search string containing white space-- Search on strings that contain space characters (white space) by placing double- or
single-quote characters around the string.

"fam |y tabl e"
' Model * net hods'

o Search on multiple strings--Separate multiple search strings with white space (tabs or spaces). Note that the default logical
relationship between multiple search strings is OR.

To return all strings matching GetName OR Getld, enter:

Get *Name Get *I d

Note:
This search specification a so returns strings that match both specified search targets.

For example:

Ful | Namre

returns M odel.GetName and M odel Descriptor .GetFullName

If a string matches two or more search strings, the APIWizard displays only one result in the search table, for example:

Ful I * *Name

returns onlyoneentry for each Ful | Nane property f ound.

M x quot ed and non- quot ed stri ngs as fol | ows:

Get*Nane "fanilytable"

returns all i nstances of stringscontinai ngGet and Nane, or stringscontainingfanilytable.

Performing an APIWizard Search

a [m) m} a

Follow these steps to search for information in the APIWizard online help data:

Select the Find icon at the top of the Modules/Classes/Interfaces/Topic Selection frame.

Specify the string or strings to be searched for in the Enter Search String field.

Select Case Sensitive to specify a case-sensitive search. Note that the default search is non-case-sensitive.

Select either or both of the Search APl References and Search User's Guide buttons. Select the options under these buttons as
desired.

Select the Search button. The APIWizard turns this button red and is renames it Stop for the duration of the search.

If the APIWizard finds the search string in the specified search area(s), it displays the string in the Name frame. In the Where
Found frame, the APIWizard displays links to the online help data that contains the found string.

During the search, or after the search ends, select an entry in the Name or Where Found frames to display the online help data
for that string. The APIWizard first updates the M odules/Classed/I nterfaces/Topic Selection frame tree, and then presentsin
the Display frame the online help data for the selected string.

Session Objects

This section describes how to program on the session level using the VB API.
Topic

Overview of Session Objects
Directories
Accessing the Pro/ENGINEER |nterface

Overview of Session Objects

The Pro/ENGINEER Sessi on object (contained in the class | pf cSessi on) isthe highest level object inthe VB API.

Any program that accesses data from Pro/ENGINEER must first get a handle to the Sessi on object before accessing
more specific data.

The Sessi on object contains methods to perform the following operations:

o Accessing models and windows (described in the Models and Windows chapters).
o Working with the Pro/ENGINEER user interface.

o Allowing interactive selection of items within the session.

o Accessing global settings such as line styles, colors, and configuration options.

The following sections describe these operations in detail. Refer to the chapter Controlling Pro/ENGINEER for more
information on how to connect to a Pro/ENGINEER session.

Directories

Methods Introduced:
. IpfcBaseSession.GetCurrentDirectory()
. IpfcBaseSession.ChangeDirectory()

The method | pfcBaseSession.GetCurrentDir ectory() returns the absolute path name for the current working
directory of Pro/ENGINEER.

The method | pfcBaseSession.ChangeDir ector y()changes Pro/ENGINEER to another working directory.
File Handling
Methods Introduced:
. IpfcBaseSession.ListFiles()
. IpfcBaseSession.ListSubdirectories()

The method | pfcBaseSession.ListFiles() returns alist of filesin adirectory, given the directory path. Y ou can filter
thelist to include only files of a particular type, as specified by the file extension. Use the EpfcFILE_LIST_ALL

option to include all versions of afilein thelist; use EpfcFILE _LIST _LATEST to include only the latest version.

Starting with Pro/ENGINEER Wildfire 5.0 M040, the method | pfcBaseSession.ListFiles() can also list instance
objects when accessing Windchill workspaces or folders. A PDM location (for workspace or commonspace) must be
passed as the directory path. The following options have been added in the Epf cFi | eLi st Opt enumerated type:

o EpfcFILE_LIST_ALL_INST--Same asthe EpfcFILE_LIST_ALL option. It returnsinstances only for PDM locations.

o EpfcFILE_LIST_LATEST_INST--Same asthe EpfcFILE_LIST_LATEST option. It returns instances only for PDM
locations.

The method | pfcBaseSession.ListSubdirectories() returns the subdirectoriesin a given directory location.
Configuration Options
Methods Introduced:
. IpfcBaseSession.GetConfigOptionValues()
. IpfcBaseSession.SetConfigOption()
. IpfcBaseSession.LoadConfigFile()

Y ou can access configuration options programmatically using the methods described in this section.

Use the method | pfcBaseSession.GetConfigOptionValues() to retrieve the value of a specified configuration file
option. Pass the Name of the configuration file option as the input to this method. The method returns an array of
values that the configuration file option is set to. It returns asingle value if the configuration file option is not a multi-
valued option. The method returns anull if the specified configuration file option does not exist.

The method | pfcBaseSession.SetConfigOption() is used to set the value of a specified configuration file option. If the
option is amulti-value option, it adds a new value to the array of values that already exist.

The method | pfcBaseSession.L oadConfigFile() loads an entire configuration file into Pro/ENGINEER.
Macros
Method Introduced:
. IpfcBaseSession.RunMacro()

The method | pfcBaseSession.RunM acro() runs amacro string. A VB APl macro string is equivalent to a Pro/

ENGINEER mapkey minus the key sequence and the mapkey name. To generate a macro string, create a mapkey in
Pro/ENGINEER. Refer to the Pro/ENGINEER online help for more information about creating a mapkey.

Copy the Value of the generated mapkey Option from the Tools>Options dialog box. An example Vaueisasfollows:

$F2 @QVAPKEY_LABELt est ;

~Activate main_dlg cur” "~ ProCndMbdel New. file”;
~Activate new K ;

The key sequence is $F2. The mapkey name is @/APKEY_LABELt est . The remainder of the string following the first
semicolon is the macro string that should be passed to the method | pfcBaseSession.RunMacr o).

In this case, it is as follows:
~Activate nmain_dlg_cur " ProCndModel New. file™;

~Activate new ~OK;

Note:
Creating or editing the macro string manualy is not supported as the mapkeys are not a supported scripting
language. The syntax is not defined for users and is not guaranteed to remain constant across different
datecodes of Pro/ENGINEER.

Macros are executed from synchronous mode only when control returns to Pro/ENGINEER from the VB APl program.
Macros are stored in reverse order (last in, first out).

Macros are executed as soon as they are registered. Macrosare run in the same order that they are saved.
Colors and Line Styles
Methods Introduced:
. IpfcBaseSession.SetStdColorFromRGB()
. IpfcBaseSession.GetRGBFromStdColor()
. IpfcBaseSession.SetTextColor()
. IpfcBaseSession.SetLineStyle()
These methods control the general display of a Pro/ENGINEER session.
Use the method | pfcBaseSession.SetStdColor FromRGB() to customize any of the Pro/ENGINEER standard colors.
To change the color of any text in the window, use the method | pfcBaseSession.SetTextColor ().

To change the appearance of nonsolid lines (for example, datums) use the method | pfcBaseSession.SetL ineStyle().

Accessing the Pro/ENGINEER Interface

The Sessi on object has methods that work with the Pro/ENGINEER interface. These methods provide access to the
message window.section

The Text Message File

A text message file is where you define strings that are displayed in the Pro/ENGINEER user interface. Thisincludes
the strings on the command buttons that you add to the Pro/ENGINEER number, the help string that displays when the
user's cursor is positioned over such a command button, and text strings that you display in the Message Window. Y ou
have the option of including atrandation for each string in the text message file.

Restrictions on the Text Message File
Y ou must observe the following restrictions when you name your message file:

o The name of the file must be 30 characters or less, including the extension.

The name of the file must contain lower case characters only.

Thefile extension must be three characters.

The version number must be in the range 1 to 9999.

All message file names must be unique, and all message key strings must be unique across al applications that run
with Pro/ENGINEER. Duplicate message file names or message key strings can cause Pro/ENGINEER to exhibit
unexpected behavior. To avoid conflicts with the names of Pro/ENGINEER or foreign application message files or
message key strings, PTC recommends that you choose a prefix unique to your application, and prepend that prefix to
each message file name and each message key string corresponding to that application

[} [} [[

Note:

Message files are loaded into Pro/ENGINEER only once during a session. If you make a change to the message
file while Pro/ENGINEER is running you must exit and restart Pro/ENGINEER before the change will take
effect.

Contents of the Message File

The message file consists of groups of four lines, one group for each message you want to write. The four lines are as
follows:

1. A string that acts as the identifier for the message. This keyword must be unique for all Pro/ENGINEER
messages.

2. Thestring that will be substituted for the identifier.

This string can include placeholders for run-time information stored in ast ri ngseq object (shown in Writing
M essages to the Message Window).
3. Thetrandation of the message into another language (can be blank).

4. Anintentionally blank line reserved for future extensions.
Writing a Message Using a Message Pop-up Dialog Box
Method Introduced:
. IpfcSession.UIShowMessageDialog()

The method | pfcSession.Ul ShowM essageDial og() displays the Ul message dialog. The input arguments to the
method are:

o Message--The message text to be displayed in the dialog.

o Options--An instance of the IpfcMessageDia ogOptions containing other options for the resulting displayed message.
If thisis not supplied, the dialog will show a default message dialog with an Info classification and an OK button. If
thisis not to be null, create an instance of this options type with pfcUl.pfcUl.MessageDia ogOptions_Create(). Y ou
can set the following options:

- Buttons--Specifies an array of buttons to include in the dialog. If not supplied, the dialog will include only the
OK button. Use the method | pfcM essageDial ogOptions.Buttons to set this option.

- DefaultButton--Specifies the identifier of the default button for the dialog box. This must match one of the
available buttons. Use the method | pfcM essageDial ogOptions.DefaultButton to set this option.

- DialogL abel--The text to display as the title of the dialog box. If not supplied, the label will be the english
string "Info". Use the method | pfcM essageDial ogOptions.DialogL abel to set this option.

- MessageDialogType--The type of icon to be displayed with the dialog box (Info, Prompt, Warning, or Error).
If not supplied, an Infoicon is used. Use the method | pfcM essageDial ogOptions.MessageDial ogType to set
this option.

Accessing the Message Window

The following sections describe how to access the message window using the VB API. Thetopics are as follows:

o Writing Messages to the Message Window
o Writing Messages to an Internal Buffer

Writing Messages to the Message Window

Methods Introduced:

. IpfcSession.UIDisplayMessage()

. IpfcSession.UIDisplayLocalizedMessage()

. IpfcSession.UIClearMessage()
These methods enable you to display program information on the screen.
The input arguments to the methods | pfcSession.UI DisplayM essage() and | pfcSession.UI DisplayL ocalizedM essage
() include the names of the message file, a message identifier, and (optionally) ast ri ngseq object that contains upto
10 pieces of run-time information. For pfcSession.Session.Ul DisplayM essage, the stringsinthe st ri ngseq are
identified as %0s, %s, ... ¥®@s based on their location in the sequence. For pfcSession.Session.

Ul DisplayL ocalizedM essage, the stringsinthe st ri ngseq areidentified as %0w, %dw, ... ¥®w based on their location

in the sequence. To include other types of run-time data (such as integers or reals) you must first convert the data to
strings and store it in the string sequence.

Writing Messages to an Internal Buffer

Methods Introduced:
. IpfcBaseSession.GetMessageContents()
. IpfcBaseSession.GetLocalizedMessageContents()

The methods | pfcBaseSession.GetM essageContents() and | pfcBaseSession.GetL ocalizedM essageContents()
enable you to write a message to an internal buffer instead of the Pro/ENGINEER message area.

These methods take the same input arguments and perform exactly the same argument substitution and trandlation as

the | pfcSession.Ul DisplayM essage() and | pfcSession.UI DisplayL ocalizedM essage() methods described in the
previous section.

Message Classification

Messages displayed in the VB API include a symbol that identifies the message type. Every message typeisidentified
by aclassification that begins with the characters %C. A message classification requires that the message key line (line
onein the message file) must be preceded by the classification code.

Note:
Any message key string used in the code should not contain the classification.

The VB API applications can now display any or al of the following message symbols:

o Prompt--This VB APl message is preceded by a green arrow. The user must respond to this message type. Responding
includes, specifying input information, accepting the default value offered, or canceling the application. If no actionis
taken, the progress of the application is halted. A response may either be textual or aselection. The classification for

Prompt messagesis %CP.
o Info--ThisVB API message is preceded by a blue dot. Info message types contain information such as user requests or
feedback from the VB API or Pro/ENGINEER. The classification for Info messagesis %CI.

Note:
Do not classify messages that display information regarding problems with an operation or process as Info.
These types of messages must be classified as Warnings.

o Warning--This VB APl message is preceded by atriangle containing an exclamation point. Warning message types
contain information to alert usersto situations that could potentially lead to an error during alater stage of the process.
Examples of warnings could be a process restriction or a suspected data problem. A Warning will not prevent or
interrupt a process. Also, a Warning should not be used to indicate a failed operation. Warnings must only caution a
user that the completed operation may not have been performed in a completely desirable way. The classification for
Warning messages is %CW.

o Error--ThisVB APl message is preceded by a a broken square. An Error message informs the user that a required task
was not completed successfully. Depending on the application, afailed task may or may not require intervention or
correction before work can continue. Whenever possible redress this situation by providing a path. The classification
for Error messages is %CE.

o Critical--This VB APl messageis preceded by ared X. A Critical message type informs the user of an extremely
serious situation that is usually preceeded by loss of user data. Options redressing this situation, if available, should be
provided within the message. The classification for a Critical messagesis %CC.

Exanpl e Code: WitingaMessage

The following example code demonstrates how to write a message to the message window. The program uses the
message file mymessages.txt, which contains the following lines:

USERError: %s of code %ds at 92s
Error: %9s of code %ds at %@s

#

#

Publ i c Sub print Error(ByVal sessionAs pfcls.|pfcSession, ByVal | ocati onAs String,
_ByVal err As String, ByVal errorCode As | nt eger)
D mnessage As | stringseq

Try
message = NewCstri ngseq
nmessage. Set (0, err)
message. Set (1, error Code. ToStri ng)
message. Set (2, | ocati on)

sessi on. U D spl ayMessage(" pf cSessi onChj ect sExanpl es. t xt ",
_"USERError: %0s of code %ds at %2s",
_message)

Cat ch ex As Excepti on
MsgBox(ex. Message. ToString + Chr (13) +ex. StackTrace. ToStri ng)
Exit Sub
End Try
End Sub

Reading Data from the Message Window

Methods Introduced:
. IpfcSession.UIReadIntMessage()
. IpfcSession.UIReadRealMessage()
. IpfcSession.UIReadStringMessage()

These methods enable a program to get data from the user.

The I pfcSession.UI Readl ntM essage() and | pfcSession.Ul ReadReal M essage() methods contain optional arguments
that can be used to limit the value of the datato a certain range.

The method | pfcSession.Ul ReadStringM essage() includes an optional Boolean argument that specifies whether to
echo characters entered onto the screen. Y ou would use this argument when prompting a user to enter a password.

Displaying Feature Parameters
Method Introduced:
. IpfcSession.UIDisplayFeatureParams()

The method | pfcSession.Ul DisplayFeatur eParams() forces Pro/ENGINEER to show dimensions or other parameters
stored on a specific feature. The displayed dimensions may then be interactively selected by the user.

File Dialogs
Methods and Properties Introduced:
. IpfcSession.UlOpenFile()
. CCpfcFileOpenOptions.Create()
. IpfcFileOpenOptions.FilterString
. IpfcFileOpenOptions.Preselecteditem
. IpfcFileUIOptions.DefaultPath
. IpfcFileUlOptions.DialogLabel
. IpfcFileUlOptions.Shortcuts
. CCpfcFileOpenShortcut.Create()
. IpfcFileOpenShortcut.ShortcutName
. IpfcFileOpenShortcut.ShortcutPath
. IpfcSession.UlSaveFile()

. CCpfcFileSaveOptions.Create()

. IpfcSession.UlSelectDirectory()

. CCpfcDirectorySelectionOptions.Create()

. IpfcBaseSession.UIRegisterFileOpen()

. CCpfcFileOpenRegisterOptions.Create()

. IpfcFileOpenRegisterOptions.FileDescription

. IpfcFileOpenRegisterOptions.FileType

. IpfcFileOpenRegisterListener.FileOpenAccess()

. IpfcFileOpenRegisterListener.OnFileOpenRegister()

. IpfcBaseSession.UIRegisterFileSave()

. CCpfcFileSaveRegisterOptions.Create()

. IpfcFileSaveRegisterOptions.FileDescription

. IpfcFileSaveRegisterOptions.FileType

. IpfcFileSaveRegisterListener.FileSaveAccess()

. IpfcFileSaveRegisterListener.OnFileSaveRegister()
The method | pfcSession.UI OpenFile() opens the relevant Pro/ENGINEER dialog box for opening files and browsing
directories. The method lets you specify several options through the input arguments| pf cFi | eOpenOpt i ons and
| pf cFi |l eUl Options.

Use the method CCpfcFileOpenOptions.Create() to create anew instance of the | pf cFi | eOpenQpt i ons object.
This object contains the the following options:

FilterString--Specifies the filter string for the type of file accepted by the dialog box. Multiple file types should be
listed with wildcards and separated by commas, for example, "*.prt, *.asm". Use the property | pfcFileOpenOptions.
FilterString to set this option.

Presel ectedltem--Specifies the name of an item to preselect in the dialog box. Use the property | pfcFileOpenOptions.
Presel ecteditem to set this option.

Thel pf cFi | eUl Opt i ons object contains the the following options:

DefaultPath--Specifies the name of the path to be opened by default in the dialog box. Use the property
I pfcFileUl Options.DefaultPath to set this option.
DialoglL abel--Specifies the title of the dialog box. Use the property IpfcFileUlOptions.DialoglL abel to set this option.
Shortcuts--Specifies an array of file shortcuts of the type | pfcFileOpenShortcut. Create this object using the method
pfcUl.FileOpenShortcut_Create. This object contains the following attributes:

- ShortcutName--Specifies the name of shortcut path to be made available in the dialog box.

- ShortcutPath--Specifies the string for the shortcut path.

Use the property | pfcFileUl Options.Shortcutsto set the array of file shortcuts.

The method | pfcSession.Ul OpenFile() returns the file selected by you. The application must use other methods or
techniques to perform the desired action on the file.

The method | pfcSession.Ul SaveFile() opens the Pro/ENGINEER dialog box for saving afile. The method accepts
options similar to | pfcSession.Ul OpenFile() through the | pf cFi | eSaveOpti ons and | pf cFi | eUl Opt i ons objects.
Use the method CCpfcFileSaveOptions.Create() to create a new instance of the | pf cFi | eSaveQpt i ons object.
When using the Save dialog box, you can set the name to a non-existent file. The method pfcSession.Session.

Ul SaveFile returns the name of the file selected by you; the application must use other methods or techniques to
perform the desired action on thefile.

The method | pfcSession.Ul SelectDir ector y() prompts the user to select a directory using the Pro/ENGINEER dialog
box for browsing directories. The method accepts options through the | pf cDi r ect or ySel ecti onOpt i ons object
whichissimilar to the | pf cFi | eUl Opt i ons object (described for the method | pfcSession. Ul OpenFile()). Specify
the default directory path, the title of the dialog box, and a set of shortcuts to other directories to start browsing. If the
default path is specified as NULL, the current directory is used. Use the method CCpfcDirectorySelectionOptions.
Create() to create anew instance of the | pf cDi rect or ySel ecti onOpt i ons object. The method pfcSession.Session.

Ul SelectDirectory returns the selected directory path; the application must use other methods or techniques to perform
other relevant tasks with this selected path.

The method | pfcBaseSession.Ul Register FileOpen() registers anew file type in the File > Open dialog box in Pro/
ENGINEER. This method takesthe | pf cFi | eOpenRegi st er Opti ons and | pf cFi | eOpenRegi st er Li st ener
objects asits input arguments. These objects are as follows:

[}

I pfcFileOpenRegisterOptions--This object contains the options for registering an open operation. Use the method
CCpfcFileOpenRegisterOptions.Create() to create a new instance of the object. It contains the following options:
- FileDescription--Specifies the short description of the file type to be opened. This description appears for the
file typein the File > Open dialog box. Use the property |pfcFileOpenRegisterOptions.FileDescription to
modify this option.
- FileType--Specifies the file type to be opened. The file type appears as the file extension in the File > Open
dialog box. Use the property IpfcFileOpenRegisterOptions.FileType to modify this option.
| pfcFileOpenRegisterListener--This object provides the action listener methods for the new file type to be registered.
The method | pfcFileOpenRegisterListener.FileOpenAccess() is called to determine whether the new file type can be
opened using the File > Open dialog box. The method | pfcFileOpenRegisterListener.OnFileOpenRegister() is called
on clicking Open for the newly registered file type.

[}

The method I pfcBaseSession. Ul RegisterFileSave() registers anew file typein the File > Save a Copy dialog box in
Pro/ENGINEER. This method takesthe | pf cFi | eSaveRegi st er Opti ons and | pf cFi | eSaveRegi st er Li st ener
objects asits input arguments. These objects are described as follows:

o |pfcFileSaveRegisterOptions--This object contains the options for registering a save operation. Use the method
CCpfcFileSaveRegisterOptions.Create() to create a new instance of the object. It contains the following options:

- FileDescription--Specifies the short description of the file type to be saved. This description appears for the
filetypein the File > Save a Copy diaog box. Use the property |pfcFileSaveRegi sterOptions.FileDescription to
modify this option.

- FileType--Specifies the file type to be saved. The file type appears as the file extension in the File > Save a
Copy dialog box. Use the property | pfcFileSaveRegisterOptions.FileType to modify this option.

o IpfcFileSaveRegisterListener--This object provides the action listener methods for the new file type to be registered.
The method | pfcFileSaveRegisterListener.FileSaveAccess() is called to determine whether the new file type can be
saved using the File > Save a Copy dialog box. The method | pfcFileSaveRegisterListener.OnFileSaveRegister() is
called on clicking OK for the newly registered file type.

Customizing the Pro/ENGINEER Navigation Area

The Pro/ENGINEER navigation area includes the Model and Layer Tree pane, Folder browser pane, and Favorites
pane. The methods described in this section enable the VB API applications to add custom panes that contain Web
pages to the Pro/ENGINEER navigation area.

Adding Custom Web Pages
To add custom Web pages to the navigation area, the VB API application must:
1. Add anew paneto the navigation area.
2. Set anicon for this pane.
3. Set the URL of the location that will be displayed in the pane.
Methods Introduced:
. IpfcSession.NavigatorPaneBrowserAdd()
. IpfcSession.NavigatorPaneBrowserlconSet()
. IpfcSession.NavigatorPaneBrowserURLSet()

The method | pfcSession.Navigator PaneBrowser Add() adds a new pane that can display a Web page to the
navigation area. The input parameters are;

o PaneName--Specify a unique name for the pane. Use this name in susbsequent calls to IpfcSession.
NavigatorPaneBrowserl conSet() and pfcSession.Session.NavigatorPaneBrowserURL Set.

o lconFileName--Specify the name of the icon file, including the extension. A valid format for theicon file isthe PTC-
proprietary format used by Pro/ENGINEER .BIF, .GIF, .JPG, or .PNG. The new paneis displayed with the icon
image. If you specify the value as NULL, the default Pro/ENGINEER icon is used.

The default search paths for finding the icons are:

- <ProENGINEER | oadpoint>/text/resource

- <Application text dir>/resource

- <Application text dir>/(language)/resource

The location of the application text directory is specified in the registry file.
o URL--Specify the URL of the location to be accessed from the pane.

Use the method | pfcSession.Navigator PaneBrowser | conSet() to set or change the icon of a specified browser panein
the navigation area.

Use the method | pfcSession.Navigator PaneBr owser URL Set() to change the URL of the page displayed in the
browser pane in the navigation area.

Example: Customizing the Pro/ENGINEER Navigation Pane

The following sample code shows you how to customize the Pro/ENGINEER navigation pane.

I nportspfcls

"Function : addNavPane
"Purpose : Thisfunctiondenpnstrateshowtoaddanavigator pane.
Publ i ¢ Sub addNavPane(ByVal sessi on As | pf cSessi on, _

ByVal nane As String, _

ByVal i con_pathAs String, ByVal url As String)

Try

If (icon_path="") Then

i con_pat h = Not hi ng

End | f

sessi on. Navi gat or PaneBr owser Add(nane, i con_path, url)
Cat ch ex As Excepti on

MsgBox(ex. Message. ToStri ng + Chr (13) +ex. StackTrace. ToStri ng)
End Try

End Sub

"Function : changeNavPaneURL

"Purpose : Thisfunctiondenpnstrates howtochange anavi gator
' pane url .

Publ i ¢ Sub changeNavPaneURL(ByVal sessi on As | pf cSessi on, _
ByRef nane As String, _
ByRef url As Stri ng)
Try
sessi on. Navi gat or PaneBr owser URLSet (nane, url)
Cat ch ex As Excepti on
MsgBox(ex. Message. ToString + Chr (13) +ex. StackTrace. ToStri ng)
End Try

End Sub

"Function : changeNavPanel con

"Purpose : Thisfunctiondenonstrateshowtochange anavi gator
' panei con.

Publ i ¢ Sub changeNavPanel con(ByVal sessi on As | pf cSessi on, _
ByRef nane As String, _
ByRef i con As Stri ng)
Try
sessi on. Navi gat or PaneBr owser | conSet (nane, i con)
Cat ch ex As Excepti on
MsgBox(ex. Message. ToString + Chr (13) +ex. StackTrace. ToStri ng)
End Try

End Sub

End Cl ass

Selection

This section describes how to use Interactive Selection in the VB API.
Topic

| nteractive Selection
Accessing Selection Data
Programmatic Selection
Selection Buffer

Interactive Selection

Methods and Properties Introduced:

. IpfcBaseSession.Select()

. CCpfcSelectionOptions.Create()

. IpfcSelectionOptions.MaxNumSels

. IpfcSelectionOptions.OptionKeywords
The method | pfcBaseSession.Select() activates the standard Pro/ENGINEER menu structure for
selecting objects and returns al pf cSel ect i ons sequence that contains the objects the user
selected. Using the Options argument, you can control the type of object that can be selected and

the maximum number of selections.

In addition, you can passin al pfcSel ect i onssequence to the method. The returned
| pfcSel ect i ons sequence will contain the input sequence and any new objects.

The method CCpfcSelectionOptions.Create() and the property | pfcSelectionOptions.
OptionK eywordstake a St ri ng argument made up of one or more of the identifierslisted in the
table below, separated by commas.

For example, to alow the selection of features and axes, the arguments would be "f eat ur e,
axi s".

Pro/ENGINEER Database Item | String I dentifier ModelltemType

Datum point point Epfcl TEM_POINT

Datum axis axis Epfcl TEM_AXIS

Datum plane datum Epfcl TEM_FEATURE
Coordinate system datum csys Epfcl TEM_COORD_SYS
Feature feature Epfcl TEM_FEATURE
Edge (solid or datum surface) edge Epfcl TEM_EDGE

Edge (solid only) sldedge Epfcl TEM_EDGE

Edge (datum surface only) gltedge Epfcl TEM_EDGE

Datum curve curve Epfcl TEM_CURVE
Composite curve comp_crv Epfcl TEM_CURVE
Surface (solid or quilt) surface Epfcl TEM_SURFACE
Surface (solid) ddface Epfcl TEM_SURFACE
Surface (datum surface) gltface Epfcl TEM_SURFACE
Quilt dtmalt Epfcl TEM_QUILT
Dimension dimension Epfcl TEM_DIMENSION
Reference dimension ref_dim Epfcl TEM_REF DIMENSION
Integer parameter ipar Epfc TEM_DIMENSION

Part part N/A

Part or subassembly prt_or_asm N/A

Assembly component model component N/A

Component or feature membfeat EpfcI TEM_FEATURE

Detail symbol dtl_symbol Epfcl TEM_DTL_SYM_INSTANCE
Note any_note Epfc TEM_NOTE,

ITEM_DTL_NOTE

Draft entity draft_ent Epfcl TEM_DTL_ENTITY
Table dwg_table Epfcl TEM_TABLE

Table cell table cell Epfcl TEM_TABLE
Drawing view dwg_view N/A

When you specify the maximum number of selections, the argument to | pfcSelectionOptions.
MaxNumSels must be an Integer.The default value assigned when creating a
| pf cSel ecti onOpti ons object is-1, which allows any number of selections by the user.

Accessing Selection Data
Properties Introduced:
. IpfcSelection.SelModel
. IpfcSelection.Selltem
. IpfcSelection.Path

. IpfcSelection.Params

. IpfcSelection.TParam

. IpfcSelection.Point

. IpfcSelection.Depth

. IpfcSelection.SelView2D

. IpfcSelection.SelTableCell

. IpfcSelection.SelTableSegment

These properties return objects and data that make up the selection object. Using the appropriate
properties, you can access the following data:

For a selected model or model item use pfcSelection.SelModel or pfcSelection.SelItem.

For an assembly component use pfcSel ection.Path.

For UV parameters of the selection point on a surface use pfcSel ection.Params.

For the T parameter of the selection point on an edge or curve usepfcSel ection. TParam.

For athree-dimensional point object that contains the selected point use pfcSelection.Point.

For selection depth, in screen coordinates use pfcSel ection.Depth.

For the selected drawing view, if the selection was from a drawing, use pfcSelection.SelView2D.
For the selected table cell, if the selection was from atable, use pfcSelection.Sel TableCell.

For the selected table segment, if the selection was from atable, use pfcSelection.

GetSel TableSegment.

[m} O [} O [} O O O O

Controlling Selection Display
Methods Introduced:

. IpfcSelection.Highlight()

. IpfcSelection.UnHighlight()

. IpfcSelection.Display()

These methods cause a specific selection to be highlighted or dimmed on the screen using the
color specified as an argument.

The method I pfcSelection.Highlight() highlights the selection in the current window. This
highlight is the same as the one used by Pro/ENGINEER when selecting an item--it just repaints
the wire-frame display in the new color. The highlight is removed if you use the View, Repaint
command or | pfcWindow.Repaint(); it is not removed if you use | pfcWindow.Refresh().

The methodl pfcSelection.UnHighlight() removes the highlight.

The method | pfcSelection.Display() causes a selected object to be displayed on the screen, even if
it is suppressed or hidden.

Note:
Thisis a one-time action and the next repaint will erase this display.

Exanpl e Code: Usinglnteractive Sel ection

The following example code demonstrates how to usethe VB APIto allow interactive selection.

| mports pfcls

Publ i c O ass pf cSel ecti onExanpl es
Publ i ¢ Functi on sel ect Feat ur es(ByVal sessi on As | pf cBaseSessi on,
_ByVal max As | nt eger) As Cpf cSel ecti ons
D msel ecti ons As Cpf cSel ecti ons
Di msel ecti onOpti ons As | pfcSel ecti onOpti ons

"nunber.

sel ectionOptions =(NewCCpfcSel ecti onOptions).Create("feature")
sel ecti onOpti ons. MaxNuntel s = max
sel ecti ons =session. Sel ect (sel ecti onOpti ons, Not hi ng)

sel ect Feat ures =sel ecti ons

Cat ch ex As Excepti on
MsgBox(ex. Message. ToStri ng + Chr (13) +ex. StackTrace. ToStri ng)
Ret ur n Not hi ng
End Try
End Functi on
End d ass

Programmatic Selection

The VB API provides methods whereby you can make your own Selection objects, without
prompting the user. These Selections are required as inputs to some methods and can also be used
to highlight certain objects on the screen.

Methods Introduced:

. CMpfcSelect.CreateModelltemSelection()

. CMpfcSelect.CreateComponentSelection()

The method CM pfcSelect.CreateM odell temSelection() creates a selection out of any model item
object. It takes a |pfcModelItem and optionally al pfcComponentPath object to identify which

component in an assembly the Selection Object belongs to.

The method CM pfcSelect.CreateComponent Selection() creates a selection out of any
component in an assembly. It takes a | pfcComponentPath object. For more information about

| pfcComponentPath objects, see the section Getting a Solid Object.

Some VB API methods require more information to be set in the selection object. The VB API
methods allow you to set the following:

The selected item using the method | pfcSelection.Selltem.

The selected component path using the method | pfcSelection.Path.

The selected UV parameters using the method | pfcSelection.Params.

The selected T parameter (for acurve or edge), using the method | pfcSelection. T Param.
The selected XY Z point using the method | pfcSelection.Point.

The selected table cell using the method | pfcSelection.Sel TableCell.

The selected drawing view using the method | pfcSelection.SelView2D.

Selection Buffer

Introduction to Selection Buffers

Selection is the process of choosing items on which you want to perform an operation. In Pro/
ENGINEER, before afeature tool isinvoked, the user can select itemsto be used in agiven tool's
collectors. Collectors are like storage bins of the references of selected items. The location where
preselected items are stored is called the selection buffer.

Depending on the situation, different selection buffers may be active at any one time. In Part and
Assembly mode, Pro/ENGINEER offers the default selection buffer, the Edit selection buffer, and
other more specialized buffers. Other Pro/ENGINEER modes offer different selection buffers.

In the default Part and Assembly buffer there are two levels at which selection is done:
o First Level Selection

Provides access to higher-level objects such as features or components. Y ou can make a second
level selection only after you select the higher-level object.

1 Second Level Selection
Provides access to geometric objects such as edges and faces.

Note:
First-level and second-level objects are usually incompatible in the selection buffer.

The VB API alows access to the contents of the currently active selection buffer. The available
functions allow your application to:

o Get the contents of the active selection buffer.
o Remove the contents of the active selection buffer.
o Add to the contents of the active selection buffer.

Reading the Contents of the Selection Buffer

Properties Introduced:
. IpfcSession.CurrentSelectionBuffer

. IpfcSelectionBuffer.Contents

The property | pfcSession.CurrentSelectionBuffer returns the selection buffer object for the
current active model in session. The selection buffer contains the items presel ected by the user to
be used by the selection tool and popup menus.

Use the property | pfcSelectionBuffer.Contents to access the contents of the current selection
buffer. The method returns independent copies of the selections in the selection buffer (if the
buffer is cleared, thisarray is till valid).

Removing the Items of the Selection Buffer
Methods Introduced:
. IpfcSelectionBuffer.RemoveSelection()
. IpfcSelectionBuffer.Clear()

Use the method | pfcSelectionBuffer .RemoveSelection() to remove a specific selection from the
selection buffer. The input argument is the IndexToRemove specifies the index where the item was
found in the call to the method | pfcSelectionBuffer .Contents.

Use the method | pfcSelectionBuffer.Clear () to clear the currently active selection buffer of all
contents. After the buffer is cleared, all contents are lost.

Adding Items to the Selection Buffer

Method Introduced:
. IpfcSelectionBuffer.AddSelection()

Use the method | pfcSelectionBuffer AddSelection() to add an item to the currently active
selection buffer.

Note:

The selected item must refer to an item that is in the current model such asits owner,
component path or drawing view.

This method may fail due to any of the following reasons:

Thereis no current selection buffer active.

The selection does not refer to the current model.

The item is not currently displayed and so cannot be added to the buffer.

The selection cannot be added to the buffer in combination with one or more objects that are

already in the buffer. For example: geometry and features cannot be selected in the default buffer
at the same time.

Menus, Commands, and Pop-up Menus

This section describes the methods provided by the VB API to create and modify menus, menu buttons, commands,
and pop-up menus in the Pro/ENGINEER user interface.

Topic

I ntroduction

Menu Bar Definitions

Creating New Menus and Buttons
Designating Commands

Pop-up Menus

Introduction

The VB APl menu bar classes enable you to modify existing Pro/ENGINEER menu bar menus and to create new
menu bar menus.

Menu Bar Definitions

o Menu bar--Thetop level horizontal bar in the Pro/ENGINEER Ul, containing the main menus, such as File, Edit,
and Applications.

o Menu bar menu--A menu, such as the File menu, or a sub-menu, such as the Export menu under the File menu.

o Menu bar button--A named item in amenu bar menu that is used to launch a set of instructions. An example isthe
Exit button in the File menu.

o Tool bar button--An item with a name or icon or both in atool bar that is used to launch a set of instructions. An
example is the New File command shown on the File toolbar.

o Pop-up menu--A menu invoked by selection of anitem in the Pro/ENGINEER graphics window.

o Command--A procedure in Pro/ENGINEER that may be activated from a menu bar, tool bar, or pop-up menu button.

Creating New Menus and Buttons
The following methods enable you to create new menu buttons in any location on the menu bar.
Methods Introduced:
. IpfcSession.UlCreateCommand()
. IpfcSession.UlCreateMaxPriorityCommandy()
. IpfcSession.UIAddButton()
. IpfcSession.UIAddMenu()
. IpfcUlCommandActionListener.OnCommand)

The method | pfcSession.UI CreateCommand() createsal pf cUl Command object that containsal pf cConmand.
Ul ConmandAct i onLi st ener . You should override the | pfcUl CommandActionListener.OnCommand() method

with the code that you want to execute when the user clicks a button.

The method | pfcSession.UI CreateM axPriorityCommand() creates a pf cCommand. Ul Conmand object having
maximum command priority. The priority of the action refers to the level of precedence the added action takes over
other Pro/ENGINEER actions. Maximum priority actions dismiss all other actions except asynchronous actions.

Maximum command priority should be used only in commands that open and activate a new model in awindow.
Create all other commands using the method | pfcSession.UI CreateCommand().

The method | pfcSession.UI AddButton() enables you to add your command to a menu on the menu bar. It also
enables you to specify a help message that is displayed when the user moves the pointer over the button.

The I pfcSession.UlI AddM enu() method enables you to create new, top-level menus that can contain your own
commands or to add submenus to existing menus.

Note:

The menu file required when adding a menu or a button must have the same format as the text message file
described above.

The listener method pfcCommand.UlCommandL istener.OnCommand is called when the command is activated
in Pro/ENGINEER by pressing a button.

Example 1: Adding a Menu Button

The following example code demonstrates the usage of Ul methods to add a new button to a Pro/ENGINEER
Windows Menu. Note that this operatesin a Full Asynchronous Mode

"Class : pfcSessionObject sExanpl es2
"Purpose : Thisclassisusedfor addi ngbuttontoProEW ndows
Menu. It usestimer obj ect tohandl e event cal | back

Publ i c d ass pf cSessi onCbj ect sExanpl es2
I mpl errent s | pf cAsyncAct i onLi st ener
I mpl emrent s | Cl Pl i ent Obj ect
I npl enent s | pf cActi onLi st ener

Di mW t hEvent s event Ti mer As Ti mers. Ti mer
Di mexi t Fl ag As Bool ean = Fal se
Di maCAs pfcl s. | pf cAsyncConnecti on

Publ i ¢ Sub New(ByRef asyncConnecti on As pfcl s. | pf cAsyncConnecti on)
aC=asyncConnecti on
End Sub

Public FunctionCGetdientlnterfaceName() As Stringl nplenents pfcls.|C PdientCbject.
GetdientlnterfaceNane
GetdientlnterfaceNane ="1pfcAsyncActi onLi st ener™
End Functi on

Publ i ¢ Sub OnTer m nat e(ByVal _Status As | nteger) I npl enents pfcls.
| pf cAsyncActi onLi st ener. OnTer mi nat e
aC. I nterrupt Event Processi ng()
exitFl ag =True

End Sub

" Add nenu but t on

"Function : addl nputButton

"Purpose : Thisfunctiondenonstratestheusageof U functionsto
add a newbut t ont o Pr oE W ndows Menu.

Not et hat thi soperatesinFull Asynchronous Mode

Publ i ¢ Sub addl nput But t on()

Di mi nput Conmrand As | pf cUl Contrand
Di mbut t onLi st ener As | pf cU CommandAct i onLi st ener

event Ti mer = NewTi nmer s. Ti mer (500)
event Ti mer . Enabl ed = Tr ue
AddHandl er event Ti ner . El apsed, AddressOF Me. ti nmeEl apsed

"Commandi s createdwhichwi |l beassociatedwiththebutton. Thecl ass
"inplenentingtheactionlistener nust begi venasinput.

but t onLi st ener = NewGat her | nput Li st ener ()
i nput Command = aC. Sessi on. Ul Cr eat eCommand(" | NPUT" ,
buttonLi st ener)

aC. Sessi on. Ul AddBut t on(i nput Cormand, "W ndows", Not hi ng,
_"USERAsync App", "USERAsync Hel p",
"pf cSessi on(hj ect sExanpl es. txt")

aC. AddAct i onLi st ener (M)

Cat ch ex As Excepti on
MsgBox(ex. Message. ToStri ng + Chr (13) +ex. StackTrace. ToStri ng)
End Try
End Sub

"Function : tinmeEl apsed
"Purpose : Thisfunctionhandl esthetineelapsedevent of tinmer
whichisfiredat regular intervals

Private SubtinmeEl apsed(ByVal sender As Cbj ect, ByVal e As System Ti ners.
El apsedEvent Ar gs)
| f exitFlag=Fal se Then
aC. Event Process()

El se
event Ti mer . Enabl ed = Fal se
End | f
End Sub
"Class : GatherlnputlListener

"Purpose : Thisclassmnust inplenent thelistnerinterfaceal ong

withthecorrect client interfacenane. The OnConmand
functioniscall edwhentheuser buttonis pressed.

Pri vat e ass Gat her | nput Li st ener
| mpl enent s pfcl s. | pf cUl ConrandAct i onLi st ener
I mpl enent s | Cl PA i ent Obj ect

Public FunctionGetdientlnterfaceNanme() As String
| mpl enents | CI PAl i enthj ect. Get A ientlnterfaceNane
GetdientlnterfaceNane ="1pfcU ComandActi onLi st ener”
End Functi on

Publ i ¢ Sub OnConmand() | npl enent s pfcl s. | pf cU CommandAct i onLi st ener . OnCommand
Me. User Functi on()
End Sub

Publ i ¢ Sub User Functi on()
MsgBox (" User Button Pressed")
End Sub
End Cl ass

The corresponding message file for this example code contains two text messages. The first is used as a button name,
the second as its help string.

#

#

USER#AsynNnc#App

Async Button

#

#

USER#Async#Hel p

But t on added vi a Async Appl i cation
#

#

Finding Pro/ENGINEER Commands

This method enables you to find existing Pro/ENGINEER commands in order to modify their behavior.

Method Introduced:
. IpfcSession.UIGetCommand)

The method | pfcSession.Ul GetCommand() returns al pf cUl Command object representing an existing Pro/
ENGINEER command. The method allows you to find the command ID for an existing command so that you can
add an access function or bracket function to the command. Y ou must know the name of the command in order to
finditsID.

Usethetrail fileto find the name of an action command (not a menu button). Click the corresponding icon on the
toolbar (not the button in the menu bar) and check the last entry in the trail file. For example, for the Save icon, the
trail file will have the corresponding entry:

~ Activate 'main_dlg _cur' 'ProCrdMVodel Save.fil e’

The action name for the Save icon is Pr oCndModel Save. This string can be used asinput to | pfcSession.
Ul GetCommand() to get the command ID.

Y ou can determine a command 1D string for an option without an icon by searching through the resource files
located in the <Pr o/ ENG NEER Loadpoi nt >/ t ext/ r esour ces directory. If you search for the menu button name,
the line will contain the corresponding action command for the button.

Access Listeners for Commands

These methods allow you to apply an access listener to a command. The access listener determines whether or not
the command is visible at the current time in the current session.

Methods Introduced:
. IpfcActionSource.AddActionListener()
. IpfcUlCommandAccessListener.OnCommandAccess()

Use the method | pfcActionSour ce AddActionListener () to register anew pfcCommand.
UlCommandAccessListener on any command (created either by an application or Pro/ENGINEER). This listener
will be called when buttons based on the command might be shown.

The listener method | pfcUl CommandA ccessListener.OnCommandAccess() allows you to impose an access
function on a particular command. The method determines if the action or command should be available,
unavailable, or hidden.

The potentia return values are listed in the enumerated type Epf cCommandAccess and are as follows:

o EpfcACCESS_REMOVE--The button is not visible and if all of the menu buttons in the containing menu possess an
access function returning ACCESS REMOVE, the containing menu will also be removed from the Pro/ENGINEER
user interface..

o EpfcACCESS _INVISIBLE--The button is not visible.

o EpfcACCESS_UNAVAILABLE--The button isvisible, but gray and cannot be selected.

o EpfcACCESS DISALLOW--The button shows as available, but the command will not be executed wheniit is
chosen.

o EpfcACCESS AVAILABLE--The button is not gray and can be selected by the user. Thisisthe default value.

Example 2: Command Access Listeners

This example code demonstrates the usage of the access listener method for a particular command. The
OnConmandAccess function returns "ACCESS UNAVAILABLE" that disables button associated with the
command, if the model is not present or if it is not of type PART. Else, the function returns

"ACCESS AVAILABLE" that enables button associated with the command.

"Class : CheckAccess
"Purpose : Thislistener classchecksif commandis accessibleto
' t he user.

Privat e Cl ass CheckAccess
| mpl enents | Cl P i ent Obj ect
I mpl enent s | pf cUl CommandAccessLi st ener

| mpl enent s | pf cActi onLi st ener
Di maCAs pfcl s. | pf cAsyncConnecti on

Publ i ¢ Sub New(ByRef asyncConnecti on As | pf cAsyncConnecti on)
aC=asyncConnecti on
End Sub

Public FunctionGetdientlnterfaceNanme() As String _
I mpl ements | Cl PCli ent Obj ect. Get Cl i entl nterfaceNane
CGetdientlnterfaceNane ="1 pfcU ConmandAccesslLi st ener”
End Functi on

Publ i ¢ Functi on OnConmandAccess(ByVal _Al | owkr r or Messages As
Bool ean) As I nteger | npl enent s
pfcls. | pf cUl CommandAccessLi st ener. OnCommandAccess

Di mnodel As | pf cModel
nodel =aC. Sessi on. Cur r ent Model
I f model |'s Not hi ng Or El se (Not nodel . Type =

Epf cModel Type. Epf cMDL_PART) Then

Ret ur n Epf cConmandAccess. Epf cACCESS UNAVAI LABLE

End | f
Ret ur n Epf cConmandAccess. Epf cACCESS_AVAI LABLE

End Functi on
End Cl ass

Bracket Listeners for Commands

These methods allow you to apply a bracket listener to a command. The bracket listener is called before and after the
command runs, which allows your application to provide custom logic to execute whenever the command is
selected.

Methods Introduced:
. IpfcActionSource.AddActionListener()
. IpfcUlCommandBracketListener.OnBeforeCommand)
. IpfcUICommandBracketListener.OnAfterCommand()

Use the method | pfcActionSour ce AddActionL istener () to register anew pfcCommand.
UlCommandBracketListener on any command (created either by an application or Pro/ENGINEER). This listener
will be called when the command is selected by the user.

The listener methods pfcCommand.Ul CommandBracketL istener.OnBeforeComm and and pfcCommand.
UlCommandBracketL istener.OnAfter Command allow the creation of functions that will be called immediately
before and after execution of a given command. These methods are used to add the business logic to the start or end
(or both) of an existing Pro/ENGINEER command.

The method pfcCommand.Ul CommandBr acketL istener.OnBeforeComm and could also be used to cancel an
upcoming command. To do this, throw a pfcExceptions.X CancelProEAction exception from the body of the
listener method using CCpfcX CancelProEAction.Throw().

Example 3: Bracket Listeners

The following example code demonstrates the usage of the bracket listener methods that are called before and after
when the user tries to rename the model. If the model contains a certain parameter, the rename attempt will be
aborted by thislistener.

Publ i c d ass pf cCommandExanpl esl
I mpl ement s | pf cAsyncAct i onLi st ener
I mpl emrent s | Cl Pl i ent Obj ect
I mpl ement s | pf cActi onLi st ener

D mWt hEvent s event Ti mer As Ti ners. Ti ner
Di mexi t Fl ag As Bool ean = Fal se
Di maCAs pfcl s. | pf cAsyncConnecti on

Publ i ¢ Sub New(ByRef asyncConnecti on As pfcl s. | pf cAsyncConnecti on)
aC=asyncConnecti on
End Sub

Publ i c FunctionGetCientlnterfaceName() As Stringl npl enents
pfcls.IClPCientObject.GetdCientlnterfaceNane
CetCientlnterfaceNane ="1pfcAsyncActi onLi stener”
End Functi on

Publ i ¢ Sub OnTer m nat e(ByVal _Status As Integer) | npl enent s
pfcls. | pfcAsyncActionLi stener. OnTerm nate
aC. I nterrupt Event Processi ng()
exi tFlag =True
End Sub

"Function : tineEl apsed
"Purpose : Thisfunctionhandl esthetineelapsedevent of timner
whichisfiredat regular intervals

Private SubtinmeEl apsed(ByVal sender As (bj ect, ByVal e As
System Ti mer s. El apsedEvent Ar gs)
| f exitFlag=Fal se Then
aC. Event Process()
El se
event Ti mer . Enabl ed = Fal se
End I f
End Sub

"Function : addRenameCheck
"Purpose : Thisfunctionchecksif thegivenparamnaneis present
' i nmodel and prevent renaneif it ispresent.

Publ i ¢ Sub addRenaneCheck(ByVal paranNanme As Stri ng)
Di mli st ener Obj As Bracket Li st ener
Di mcomrand As | pf cU Comand
Try

"Start thetinmer tocall Event Process at regul ar i nterval s

event Ti mer = NewTi ners. Ti mer (200)
event Ti mer . Enabl ed = Tr ue
AddHandl| er event Ti mer . El apsed, AddressOF Me. ti nmeEl apsed

command = aC. Sessi on. Ul Get Conmrand(" Pr oCndMbdel Renane")

| f Not command | s Not hi ng Then
i stener Obj = NewBr acket Li st ener (aC. Sessi on, par anNane)
command. AddAct i onLi st ener (| i st enerj)

El se
Thr owNewExcept i on(" Conmand does not exi st")

End | f

aC. AddAct i onLi st ener (M)

Cat ch ex As Excepti on
MsgBox(ex. Message. ToStri ng + Chr (13) +ex. StackTrace. ToStri ng)

End Try
End Sub
"Class : BracketlListener
"Purpose : Thisclassinplenmentsthel pfcU ComrandBracket Li st ener

Interfacealongwiththecorrect client interfacenane.
The i npl enent ed net hodwi | | be cal | edwhent he user
tri estorenamnmethe nodel.

Pri vat e O ass Bracket Li st ener
| mpl enent s | pf cUl CormandBr acket Li st ener
I mpl enents | Cl PA i ent Obj ect
| mpl enent s | pf cActi onLi st ener

Di ms As | pf cSessi on
Di mnane As String

Publ i ¢ Sub New(ByRef sessi on As | pf cSessi on, ByVal par amNane As
String)
S =sessi on
name = par anNane
End Sub

Public FunctionGetdientlnterfaceNane() As Stringl npl enments
pfcls.IClPCientObject.GetCientlnterfaceNane
GetdientlnterfaceNanme ="1pfcU CommandBr acket Li st ener”
End Functi on

Publ i ¢ Sub OnAft er Command() | npl enent s
pfcl s. I pf cUl CommandBr acket Li st ener. OnAf t er Command
End Sub

Publ i ¢ Sub OnBef or eConmand() | npl enent s
pfcls. | pf cUl CommandBr acket Li st ener . OnBef or eConmrand
Di mpar amAs | pf cPar anet er
Di mnodel As | pf cModel
Di mcancel Acti on As CCpf cXCancel Pr oEActi on

nmodel =s. Current Model

I f nodel 1's Not hi ng Then
Ret urn

End | f

par am= CType(nodel , | pf cPar anet er Oamner) . Get Par an(namne)
| f Not paraml s Not hi ng Then

cancel Acti on = NewCCpf cXCancel Pr oEActi on

cancel Action. Throw()
End | f

End Sub
End Cl ass

End Cl ass

Designating Commands

Using the VB API you can designate Pro/ENGINEER commands to be available to be added to any Pro/ENGINER
toolbar.

To add a command to the toolbar, you must:
1. Define or add the command to be initiated on clicking theicon in the VB application.
2. Optionaly designate an icon button to be used with the command.
3. Designate the command to appear in the Screen Customization dialog box of Pro/ENGINEER.

4. Finally, enter the Screen Customization dialog, and manually add the designated command to the window.
Save the configuration in Pro/ENGINEER so that changes to the toolbar appear when a new session of Pro/
ENGINEER is started.

Command Icons
Method Introduced:
. IpfcUlCommand.Setlcon()

The method | pfcUl Command.Setl con() allows you to designate an icon to be used with the command you created.
The method adds the icon to the Pro/ENGINEER command. Specify the name of the icon file, including the
extension as the input argument for this method. A valid format for theicon file is the PTC-proprietary format used
by Pro/ENGINEER.BIF or a standard .GIF. The Pro/ENGINEER toolbar button is replaced with the image of the
image.

Note:
While specifying the name of the icon file, do not specify the full path to the icon names.

The default search paths for finding the icons are:
o <ProENGINEER loadpoint>/text/resource

o <Application text dir>/resource
o <Apppplication text dir>/(language)/resource

The location of the application text directory is specified in the registry file.
Toolbar commands that do not have an icon assigned to them display the button label.

Y ou may also use this method to assign a small icon to a menu button on the menubar. The icon appearsto the left of
the button label.

Before using the method | pfcUl Command.Setl con(), you must place the command in a menu using the method
I pfcSession.Ul AddButton().

Designating the Command
Method Introduced:
. IpfcUICommand.Designate()

This method allows you designate the command as available in the Screen Customization dialog box of Pro/
ENGINEER. After aVB API application has used the method | pfcUl Command.Designate() on a command, you
can interactively drag the toolbar button that you associate with the command, on to the Pro/ENGINEER toolbar. If

this method is not called, the toolbar button will not be visible in the Screen Customization dialog box of Pro/
ENGINEER.

The arguments to this method are:

o Label--The message string that refers to the icon label. Thislabel (stored in the message file) identifies the text seen

when the button is displayed. If the command is not assigned an icon, the button label string appears on the toolbar
button by default.

o Help--The one-line Help for theicon. Thislabel (stored in the message file) identifies the help line seen when the
mouse moves over the icon.

o Description--The message appears in the Screen Customization dialog and also when "Description” is clicked in Pro/
ENGINEER.

o MessageFile--The message file name. All the labels including the one-line Help labels must be present in the
message file.

Note:
Thisfile must be in the directory <text_path>/text or <text_path>/text/<language>.

Before using the method | pfcUl Command.Designate(), you must place the command in a menu using the method
I pfcSession.Ul AddButton().

Placing the Toolbar Button

Once the toolbar button has been created using the functions discussed above, place the toolbar button on the Pro/
ENGINEER toolbar. Click Tools > Customize Screen. The designated buttons will be stored under the category
"Foreign Applications’. Drag the toolbar button on to the Pro/ENGINEER toolbar as shown in the following figure.
Save the window configuration settings in the config.win file so that the settings are loaded when a new session of

Pro/ENGINEER is launched. For more information, see the Pro/ENGINEER menus portion of the Pro/ENGINEER
help.

Figure 6-1: The Customize Screen With The Icons To be Designated

% Customize

| File |
Tookas Commands | Navigation Tabs | Browser | Options
— Cateoonies — Commands
Datum s
Restyle @ T

Fick and Place Features
Baze Features

Edit Features

prtzft

wrapft

fiuneft

foetft

Foreign applications [v

0 abarterl [iy et e hae st R e e e e e N T b R e e A R AR e e e

To add a maru item o buttan, drag it from the “"Carmmands'' bos
ta the menu bar or any toolbar. To remove a menu item or bution,
drag it off of the menu bar or itz toolbar,

[v] Augomatically save to DA Llserdata'xE!-a'nl:l|-=$"d32h-1a_l,l2¢1Dl u:ﬂrguu:.lglfﬁanue<1r-:|-r.'.|.f.i§"l;~;l.|.r.'; _V]

OF. Cancel Default |

Figure 6-2: The Pro/ENGINEER Toolbar With The Designated Icons

¥ Pro/ENGINEER Wildfire

File Edit “iew Inzett Analwziz Info Applica

T@m@

| [v
|.|"‘I :I:|z *‘? 5

== ;ﬁ%s];‘:ﬁ

Pop-up Menus

Pro/ENGINEER provides shortcut menus that contain frequently used commands appropriate to the currently
selected items. Y ou can access a shortcut menu by right-clicking a selected item. Shortcut menus are accessiblein:

o Graphics window

o Model Tree

o Some dialog boxes

o Any areawhere you can perform an object-action operation by selecting an item and choosing a command to
perform on the selected item.

The methods described in this section allow you to add menus to a graphics window pop-up menu.
Adding a Pop-up Menu to the Graphics Window

Y ou can activate different pop-up menus during a given session of Pro/ENGINEER. Every time the Pro/ENGINEER
context changes when you open a different model type, enter different tools or special modes such as Edit, a

different pop-up menu is created. When Pro/ENGINEER moves to the next context, the pop-up menu may be
destroyed.

Asaresult of this, the VB API applications must attach a button to the pop-up menu during initialization of the pop-

up menu. Thethe VB API application is notified each time a particular pop-up menu is created, which then allows
the user to add to the pop-up menu.

Use the following procedure to add items to pop-up menus in the graphics window:
1. Obtain the name of the existing pop-up menus to which you want to add a new menu using the trail file.
2. Create commands for the new pop-up menu items.
3. Implement access listeners to provide visibility information for the items.
4. Add an action listener to the session to listen for pop-up menu initialization.

5. Inthelistener method, if the pop-up menu is the correct menu to which you wish to add the button, then add
it.

The following sections describe each of these stepsin detail. Y ou can add push buttons and cascade menusto the
pop-up menus. Y ou can add pop-up menu items only in the active window. Y ou cannot use this procedure to remove
items from existing menus.

Using the Trail File to Determine Existing Pop-up Menu Names

Thetrail filein Pro/ENGINEER contains a comment that identifies the name of the pop-up menu if the configuration
option, auxapp_popup_nenu_i nf o isset toyes.

For example, the pop-up menu, Edit Properties, has the following comment in the trail file:

~Cl ose rnb_popup” "~ PopupMenu®
~Activate rnb_popup” "EditProperties’

! Command Pr oCndEdi t Properti esDt mwas pushed fromt he sof t war e.
I'ltem was sel ected from popup nmenu ' popup_mu_edit'

Listening for Pop-up Menu Initialization
Methods Introduced:
. IpfcActionSource.AddActionListener()
. IpfcPopupmenuListener.OnPopupmenuCreate()

Use the method | pfcActionSour ce. AddActionListener () to register a new pfcUl.PopupmenuListener to the session.
This listener will be called when pop-up menus are initialized.

The method | pfcPopupmenuL istener.OnPopupmenuCreate() is called after the pop-up menu is created internally
in Pro/ENGINEER and may be used to assign application-owned buttons to the pop-up menu.

Accessing the Pop-up Menus

The method described in this section provides the name of the pop-up menus used to access these menus while using

other methods.
Method Introduced:
. IpfcPopupmenu.Name

The property | pfcPopupmenu.Name returns the name of the pop-up menu.

Adding Content to the Pop-up Menus
Methods Introduced:
. IpfcPopupmenu.AddButton()
. IpfcPopupmenu.AddMenu()
Use | pfcPopupmenu.AddButton() to add a new item to a pop-up menu. The input arguments are:

o Command--Specifies the command associated with the pop-up menu.
o Options - A pfcUl.PopupmenuOptions object containing other options for the method. The options that may be
included are:

. Positionl ndex--Specifies the position in the pop-up menu at which to add the menu button. Pass null
to add the button to the bottom of the menu. Use the property | pfcPopupmenuOptions.Positionlndex
to set this option.

. Name--Specifies the name of the added button. The button nameis placed in the trail file when the
user selects the menu button. Use the property | pfcPopupmenuOptions.Name to set this option.

. SetlL abel--Specifies the button label. Thislabel identifies the text displayed when the button is
displayed. Use the property | pfcPopupmenuOptions.Label to set this option.

. Helptext--Specifies the help message associated with the button. Use the property
| pfcPopupmenuOptions.Hel ptext to set this option.

Use the method | pfcPopupmenu.AddM enu() to add a new cascade menu to an existing pop-up menu.

The argument for this method is a pfcUl .PopupmenuOptions object, whose members have the same purpose as
described for newly added buttons. This method returns a new pf cUl . Popupmenu object to which you may add
new buttons.

Example 4: Creating a Pop-up Menu

This example code demonstrates the usage of Ul functions to add a new model tree pop-up menu.

Publ i c d ass pf cPopupMenuExanpl es
I mpl erent s | pf cAsyncAct i onLi st ener
I mpl ement s |1 Cl PA i ent Obj ect
| npl ement s | pf cActi onLi st ener

Di mW t hEvent s event Ti ner As Ti mers. Ti mer
Di mexi t Fl ag As Bool ean = Fal se
Di maCAs pfcls. | pf cAsyncConnecti on

Publ i ¢ Sub New(ByRef asyncConnecti on As pfcl s. | pf cAsyncConnecti on)
aC=asyncConnecti on
End Sub

Public FunctionGetdientlnterfaceNane() As Stringl npl ements
pfcls.ICIPOientbject.GtdientlnterfaceNane
GetdientlnterfaceNane ="1pfcAsyncActi onLi st ener™
End Functi on

Publ i ¢ Sub OnTer mi nat e(ByVal _Status As I nteger) | npl enents
pfcls. | pfcAsyncActi onLi stener. OnTerm nate
aC. I nterrupt Event Processi ng()
exi tFl ag =True
End Sub

"Function : tineEl apsed
"Purpose : Thisfunctionhandlesthetineelapsedevent of timer
whichisfiredat regularintervals

Private SubtinmeEl apsed(ByVal sender As (bj ect, ByVal e As
System Ti mers. El apsedEvent Ar gs)
I f exitFl ag =Fal se Then
aC. Event Process()
El se
event Ti ner. Enabl ed = Fal se
End | f
End Sub

"Function : addMenus

"Purpose : Thisfunctiondenonstratestheusageof U functionsto
' add anewbuttonto ProEG aphi cs Wndowand nodel tree
' popup nenu.

Publ i ¢ Sub addMenus()
Di mi nput Conmrand As | pf cUl Conmrand
Di mbut t onLi st ener As | pf cU CommandAct i onLi st ener
Di mpoplLi st ener As | pf cPopupnenuli st ener
Di mli stener Qbj As | pf cU CommandAccessLi st ener

Try

event Ti mer = NewTi ners. Ti mer (200)
event Ti mer . Enabl ed = Tr ue
AddHandl er event Ti ner . El apsed, AddressOF Me. ti nmeEl apsed

"Commandiscreatedwhichw || beassociatedw ththebutton.
The cl assinpl ementingtheactionlistener nust be gi ven as
i nput .

but t onLi st ener = NewAssenbl yFuncti on(aC. Sessi on)
i nput Command = aC. Sessi on. Ul Cr eat eConmmand(" HI GHLI GHT" ,
but t onLi st ener)

"Add actionlistener torestrict access.

i stener Cbj = NewCheckAccess(al
i nput Command. AddAct i onLi st ener (i st ener Ooj)

nmenu.

aC. Sessi on. U AddBut t on(i nput Cormand, "Acti onMenu", Not hing, _
"USERH ghl i ght Constraint", "USERH ghl i ght
Constrai nt Hel p", " pfcPopupMenuExanpl es. txt")

popLi st ener = NewCr eat ePopupBut t on(aC. Sessi on)
aC. Sessi on. AddAct i onLi st ener (popLi st ener)

aC. AddAct i onLi st ener (M)

Cat ch ex As Excepti on
MsgBox(ex. Message. ToStri ng + Chr (13) +ex. StackTrace. ToStri ng)

End Try
End Sub
"Class : Assenbl yFunction
"Purpose : Listener classtoinplenent H ghlight conmand.

Privat e d ass Assenbl yFuncti on
I mpl emrent s pfcl s. | pf cUl ConmandAct i onLi st ener
I npl enents | Cl PA i ent Obj ect

Di msessi on As | pf cBaseSessi on

Public FunctionGetdientlnterfaceNanme() As String _
I mpl enents | CIl PA i enthj ect. Get A i entlnterfaceNane
GetdientlnterfaceNane ="1pfcU CommandActi onLi st ener”
End Functi on

Publ i ¢ Sub New(ByRef current Sessi on As | pf cBaseSessi on)
sessi on=current Sessi on
End Sub

Publ i ¢ Sub OnConmrand() | npl enent s
pfcls. | pf cU CommandAct i onLi st ener. OnConmand
hi ghl i ght Constrai nts()
End Sub

"Function : highlightConstraints

"Purpose : Thisfunctiondisplayseachconstraint of the
conmponent vi sual l y onthe screen, andi ncl udes a
t ext expl anati onfor eachconstraint.

Publ i ¢ Sub hi ghl i ght Constrai nts()

Di mopti ons As | pfcSel ecti onOpti ons
Di msel ections As | pfcSel ecti ons

Di mi temAs | pf cMbdel | tem

Di mf eat ure As | pf cFeat ure

Di masntComp As | pf cConponent Feat

Di mconpConstrai nt s As Cpf cConponent Constrai nts
Di mi As | nteger

Di mconpConstrai nt As | pf cConponent Const r ai nt
Di masnRef erence As | pf cSel ecti on

Di mconmpRef erence As | pf cSel ecti on

Di moffset As Stri ng

Di mconstrai nt Type As String

Di msel ecti onBuf fer As | pf cSel ecti onBuffer

Di mnodel Pat h As | pf cConponent Pat h

Di mpar ent Pat h As | pf cConmponent Pat h

Di mparent | ds As Ci nt seq

Di mnodel Parent As | pfcSol i d

Di mnodel 1 d As | nt eger

sel ecti onBuf f er =sessi on. Current Sel ecti onBuff er
sel ections =sel ecti onBuffer. Contents
| f sel ections|s NothingThen
opti ons = (New
CCpf cSel ecti onOptions). Creat e("nenbf eat")
options. MaxNuntSel s =1

sel ecti ons =sessi on. Sel ect (opti ons, Not hi ng)
I f sel ections|s NothingOElseselections. Count =0
Then
Thr owNewExcept i on(" Not hi ng Sel ect ed")
End I f
End | f

item=selections.ltenm(0). Sel ltem

| f itemls NothingThen
nodel Pat h =sel ections. Iten(0). Path

nodel I d =
nodel Pat h. Conponent | ds. | t em(nodel Pat h. Conponent | ds. Count - 1)

par ent | ds = nodel Pat h. Conponent | ds
parent | ds. Renove(parentlds. Count - 1, parent | ds. Count)

I f Not parentlds. Count =0 Then
par ent Pat h = (New
CMpf cAssenbl y) . Cr eat eConponent Pat h(nodel Pat h. Root, parent| ds)
nodel Par ent = par ent Pat h. Leaf
El se
nodel Par ent =nodel Pat h. Root
End I f

i tem= CType(nodel Parent,
| pf cModel |t enDaner) . Get |t enByl d(Epf cMbdel |t enilype. Epf cl TEM FEATURE,
nodel | d)
I fitemls NothingThen
Thr owNewExcepti on(" Coul d not get nodel item
handl e")
End I f

End | f

feature =CType(item | pfcFeature)
I f Not feature. Feat Type =
Epf cFeat ur eType. Epf cFEATTYPE_COVPONENT Then
Thr owNewExcept i on(" Assenbl y Conponent not Sel ect ed")
End I f

asnmConp = CType(item | pf cConponent Feat)
conmpConst rai nt s =asntConp. Get Constrai nts()
| f conpConstraints|s NothingO El seconpConstrai nts. Count
=0 Then
Thr owNewExcepti on("No Constrai ntstodisplay")
End | f

For i =0 ToconpConstraints. Count - 1

conpConstrai nt =conmpConstraints.lten(i)

asnRef erence =conpConst rai nt. Assenbl yRef er ence

I f Not asnmRef erence | s Not hi ng Then

asnRef er ence. Hi ghl i ght (Epf cSt dCol or . Epf cCOLOR_ERROR)
End I f

conmpRef er ence = conpConst rai nt. Conponent Ref er ence

I f Not asnmRef erence | s Not hi ng Then

compRef erence. Hi ghl i ght (Epf ¢St dCol or . Epf cCOLOR_WARNI NG
End I f

of fset =""
I f Not conpConstraint. Offset | s Not hi ng Then
of fset =", offset of " +
conpConstraint. O fset. ToString
End I f

constraint Type =
constrai nt TypeToStri ng(conpConstrai nt. Type)
MsgBox (" Showi ng constraint " +(i +1).ToString+" of
mn +
conpConstrai nts. Count. ToString+Chr(13). ToString+ _
constrai nt Type + of f set)

I f Not asmRef erence | s Not hi ng Then
asnmRef erence. UnHi ghl i ght ()
End | f

I f Not conmpRef erence |l s Not hi ng Then
compRef erence. UnHi ghl i ght ()
End | f
Next

Cat ch ex As Excepti on
MsgBox(ex. Message. ToStri ng + Chr (13) +
ex. St ackTrace. ToStri ng)
Exi t Sub
End Try

End Sub

"Function : constraintTypeToString
"Purpose : Thisfunctionconvertsconstraint typetostring.

Publ i c Functi onconstrai nt TypeToStri ng(ByVal type As | nt eger)
As String

Sel ect Case (type)
Case Epf cConponent Const r ai nt Type. Epf cASM_CONSTRAI NT_MATE
Return("(Mate)")
Case
Epf cConmponent Const r ai nt Type. Epf cASM_CONSTRAI NT_MATE_CFF
Return("(Mate O fset) ")
Case Epf cConponent Const r ai nt Type. Epf cASM _CONSTRAI NT_ALI GN
Return("(Align)")
Case
Epf cConmponent Const r ai nt Type. Epf cASM_CONSTRAI NT_ALI GN_OFF
Return("(AlignCOifset)")
Case Epf cConponent Const r ai nt Type. Epf cASM_CONSTRAI NT_| NSERT
Return("(lInsert)")
Case Epf cConmponent Const r ai nt Type. Epf cASM_CONSTRAI NT_ORI ENT
Return("(Orient)")
Case Epf cConponent Const rai nt Type. Epf cASM_CONSTRAI NT_CSYS
Return (" (Csys)")
Case Epf cConponent Const r ai nt Type. Epf cASM_CONSTRAI NT_TANGENT
Return (" (Tangent)")
Case
Epf cConponent Constrai nt Type. Epf cASM_CONSTRAI NT_PNT_ON_SRF
Return (" (Point onSurf)")
Case

Epf cConmponent Constrai nt Type. Epf cASM_CONSTRAI NT_EDGE_ON_SRF
Return (" (EdgeonsSurf)")
Case
Epf cConponent Const r ai nt Type. Epf cASM_CONSTRAI NT_DEF_PLACEMENT
Return (" (Default)")
Case
Epf cConponent Const rai nt Type. Epf cASM_CONSTRAI NT_SUBSTI TUTE
Return (" (Substitute)")
Case
Epf cConponent Constr ai nt Type. Epf cASM_CONSTRAI NT_PNT_ON_LI NE
Return (" (Point onLine)")
Case Epf cConmponent Const r ai nt Type. Epf cASM_CONSTRAI NT_FI X
Return (" (Fix)")
Case Epf cConponent Const rai nt Type. Epf cASM_CONSTRAI NT_AUTO
Return (" (Auto)")
End Sel ect
Ret urn (" Unrecogni zed Type")

End Functi on

End A ass
"Class : CreatePopupButton
"Purpose : Listener classtocreate Popupnenubuttonwhenthe

Menui s created.

Privat e d ass Creat ePopupButt on
| mpl enent s | pf cActi onLi st ener
I mpl enent s | Cl PA i ent Obj ect
I mpl enmrent s | pf cPopuprenulLi st ener

Di msessi on As | pf cSessi on

Publ i c FunctionGetQientlnterfaceNanme() AsString _
I mpl enents I CI PA i ent hj ect. Get A i entl nterfaceNane
GetdientlnterfaceNane ="1 pf cPopupnenulLi st ener™”
End Functi on

Publ i ¢ Sub New(ByRef current Sessi on As | pf cSessi on)
sessi on =current Sessi on
End Sub

Publ i ¢ Sub OnPopuprenuCr eat e(ByVal _Menu As pfcl s. | pf cPopupmnenu)
| mpl enent s pfcl s. | pf cPopuprenuli st ener. OnPopupnenuCr eat e

Di mconmand As | pf cUl Command

Di mopti ons As | pf cPopuprmenuOpt i ons
DimcndStringAs String

Di mhel pString As String

I f _Menu. Nanme =" Sel Cbj Menu" Then
command = sessi on. Ul Get Conmand(" Hl GHLI GHT")
| f Not command | s Not hi ng Then
opti ons = (New
CCpf cPopupnenuOpti ons) . Creat e(" H GHLI GHT_CONSTRAI NTS")
cndStri ng =sessi on. Get MessageCont ent s

(" pf cPopupMenuExanpl es. t xt",
"USERH ghl i ght Constraint", Not hi ng)
hel pString = sessi on. Get MessageCont ent s
(" pf cPopupMenuExanpl es. t xt", "USERH ghl i ght
Constrai nt Hel p", Not hi ng)

opti ons. Hel pt ext =hel pString
opti ons. Label =cndStri ng
_Menu. AddBut t on(conmrand, opti ons)

El se
Thr owNewExcepti on(" H GHLI GHT conmand does not exi st")
EndIf
End | f
End Sub

End A ass
"Class : CheckAccess
"Purpose : Thislistener classchecksif commandi s accessibleto
' t he user.

Privat e C ass CheckAccess
I npl enents | Cl PA i ent Obj ect
| mpl enent s | pf cUl CommandAccessLi st ener
| mpl enent s | pf cActi onLi st ener

Di maCAs pfcls. | pf cAsyncConnecti on

Publ i ¢ Sub New(ByRef asyncConnecti on As | pf cAsyncConnect i on)
aC=asyncConnecti on
End Sub

Publ i c FunctionGetCientlnterfaceNanme() AsString _
I mpl enents I CI PA i enthj ect. Get A i entlnterfaceNane
GetdientlnterfaceNane ="1 pfcU CommandAccessLi st ener”
End Functi on

Publ i ¢ Functi on OnCommandAccess(ByVal _Al | owEr r or Messages As
Bool ean) As | nteger | npl enrent s
pfcls. | pf cUl CommandAccessLi st ener. OnCommandAccess
Di mnodel As | pf cModel
Di msel ections As | pfcSel ecti ons
Di msel ecti onBuffer As | pfcSel ecti onBuffer

nodel =aC. Sessi on. Current Model
I f model |'s Not hi ng Or El se (Not nodel . Type =
Epf cModel Type. Epf cMDL_ASSEMBLY) Then
Ret ur n Epf cConmandAccess. Epf cACCESS UNAVAI LABLE
End | f

sel ecti onBuffer =1 pfcSessi on. Current Sel ecti onBuffer
sel ections =sel ectionBuffer. Contents
| f sel ections|s NothingOElsesel ections. Count >1 Then

Ret ur n Epf cConmandAccess. Epf cACCESS UNAVAI LABLE
End | f

Ret ur n Epf cConmandAccess. Epf cACCESS AVAI LABLE

End Functi on
End Cl ass

End Cl ass

The corresponding message file for the example program contains two text messages. Thefirst is used as the pop-
menu button name, the second as its help string.

USER#H ghl i ght #Const rai nt

Hi ghl i ght Constrai nt

#

#

USER#H ghl i ght #Const r ai nt #Hel p
H ghl i ght Assenbly Constraints
#

#

Models

This section describes how to program on the model level using the VB API.
Topic

Overview of Model Objects
Getting a Model Object
Model Descriptors
Retrieving Models

Model Information

Model Operations

Running Model CHECK

Overview of Model Objects

Models can be any Pro/ENGINEER file type, including parts, assemblies, drawings, sections, and layouts.
The classes in the module pfcModel provide generic access to models, regardless of their type. The
available methods enable you to do the following:

o Access information about a model.
o Open, copy, rename, and save a model.

Getting a Model Object

Methods and Properties Introduced:
. IpfcFamilyTableRow.Createlnstance()
. IpfcSelection.SelModel
. IpfcBaseSession.GetModel()
. IpfcBaseSession.CurrentModel
. IpfcBaseSession.GetActiveModel()
. IpfcBaseSession.ListModels()
. IpfcBaseSession.GetByRelationid()

. IpfcWindow.Model

These methods get amodel object that is already in session.
The property | pfcSelection.SelM odel returns the model that was interactively selected.

The methodl pfcBaseSession.GetM odel () returns a model based on its name and type, whereas
| pfcBaseSession.GetByRelationl d() returns amodel in an assembly that has the specified integer
identifier.

The property | pfcBaseSession.CurrentM odel returns the current Pro/ENGINEER model.
The method | pfcBaseSession.GetActiveM odel () returns the active Pro/ENGINEER model.
Use the method | pfcBaseSession.ListM odels() to return a sequence of all the modelsin session.

For more methods that return solid models, refer to the section Solid.

Model Descriptors

Methods and Properties Introduced:
. CCpfcModelDescriptor.Create()
. CCpfcModelDescriptor.CreateFromFileName()
. IpfcModelDescriptor.GenericName
. IpfcModelDescriptor.InstanceName
. IpfcModelDescriptor.Type
. IpfcModelDescriptor.Host
. IpfcModelDescriptor.Device
. IpfcModelDescriptor.Path
. IpfcModelDescriptor.FileVersion
. IpfcModelDescriptor.GetFullName()
. IpfcModel.FullName

Model descriptors are data objects used to describe amodel file and its location in the system. The
methods in the model descriptor enable you to set specific information that enables Pro/ENGINEER to
find the specific model you want.

The static utility method CCpfcM odel Descriptor.Create() allows you to specify as datato be entered a

model type, an instance name, and a generic name. The model descriptor constructs the full name of the
model as astring, asfollows:

String Ful | Nane =1 nst anceNane+" <" +Generi cNanme+">";
/'l Aslongasthe

/'l genericnaneis
/1l not anenpty
[l string("")

If you want to load a model that is not afamily table instance, pass an empty string as the generic name
argument so that the full name of the model is constructed correctly. If the model isafamily table
interface, you should specify both the instance and generic names.

Note:
Y ou are allowed to set other fields in the model descriptor object, but they may be ignored by
some methods.

The static utility method CCpfcM odel Descriptor .CreateFromFileName() allows you to create a new

model descriptor from agiven afile name. The file nameis astring in the form "<name>.
<ext ensi on>".

Retrieving Models
Methods Introduced:
. IpfcBaseSession.RetrieveModel()
. IpfcBaseSession.RetrieveModelWithOpts()
. IpfcBaseSession.OpenFile()
. IpfcSolid.HasRetrievalErrors()

These methods cause Pro/ENGINEER to retrieve the model that corresponds to the I pfcModel Descriptor
argument.

The method | pfcBaseSession.RetrieveM odel() retrieves the specified model into the Pro/ENGINEER
session given its model descriptor from a standard directory. But this function does not create a window
for it, nor doesit display the model anywhere.

The method | pfcBaseSession.RetrieveM odel WithOpts() retrieves the specified model into the Pro/
ENGINER session based on the path specified by the model descriptor. The path can be adisk path, a
workspace path, or a commonspace path. The Opts argument (given by the

| pf cRet ri eveMbdel Opt i ons object) provides the user with the option to specify ssimplified

representations.

The method | pfcBaseSession.OpenFile() brings the model into memory, opens a new window for it (or

uses the base window, if it is empty), and displays the model.

Note:
| pfcBaseSession.OpenFile() actually returns a handle to the window it has created.

To get ahandle to the model you need, use the property I pfcWindow.M odel.

The method | pfcSolid.HasRetrieval Errors() returns atrue value if the features in the solid model were
suppressed during the RetrieveM odel or OpenFile operations. This method must be called immediately

after the | pfcBaseSession.RetrieveM odel () method or an equivalent retrieval method.
Example Code: Retrieving a Model

The following example code demonstrates how to retrieve a model.

| nports pfcls

Publ i ¢ O ass pf cMbdel sExanpl es

'"Retrieve anodel

"Function : retrieveMdel FrontStdDir
"Purpose : Thisfunctiondenonstrateshowtoretrieveanodel.

Publ i c Functionretri eveModel FrontSt dDi r (ByVal sessi on As
| pf cBaseSessi on, _
ByVal type As Epf cModel Type, _
ByVal stdPath As String) As
| pf cModel

Di mdescMbdel As | pf cModel Descri pt or
D mopti ons As | pfcRetri eveModel Opti ons
D mnmodel As | pf cModel

"Mbdel isretrievedusinganodel descri ptor object.
" Thi s net hod | oads t he nodel i dentifi ed by nodel type and pat h
"fromastandarddirectory !l ocation.

options = (NewCCpf cRetri eveModel Opti ons). Create
opti ons. AskUser About Reps = Fal se

descModel = (NewCCpf cModel Descri ptor). Create(type, Not hi ng,
Not hi ng)
descModel . Pat h =st dPat h

nodel =session. Retri eveModel Wt hOpt s(descModel , opti ons)

retri eveMbdel FrontSt dDi r = nodel

Cat ch ex As Excepti on
MsgBox(ex. Message. ToString + Chr (13) +ex. StackTrace. ToStri ng)
Ret ur n Not hi ng

End Try

End Functi on

End d ass

Model Information
Methods and Properties Introduced:
. IpfcModel.FileName
. IpfcModel.CommonName
. IpfcModel.IsCommonNameModifiable()
. IpfcModel.FullName
. IpfcModel.GenericName
. IpfcModel.InstanceName
. IpfcModel.Origin
. IpfcModel.Relationld
. IpfcModel.Descr
. IpfcModel. Type
. IpfcModel.IsModified
. IpfcModel.Version
. IpfcModel.Revision
. IpfcModel.Branch

. IpfcModel.ReleaseLevel

. IpfcModel.VersionStamp

. IpfcModel.ListDependencies()

. IpfcModel.ListDeclaredModels()
. IpfcModel.ChecklsModifiable()

. IpfcModel.CheckisSaveAllowed()

The property 1pfcM odel.FileName retrieves the model file name in the "name"."type" format.

The property | pfcM odel.CommonName retrieves the common name for the model. Thisnameis
displayed for the model in Windchill PDMLink.

Use the method | pfcM odel.| sCommonNameM odifiable() to identify if the common name of the model
can be modified. Y ou can modify the name for models that are not yet owned by Windchill PDMLink, or
in certain situations if the configuration option | et _pr oe_r enane_pdm obj ect s is set to yes.

The property |1 pfcM odel.FullName retrieves the full name of the model in the instance <generic> format.

The property 1pfcM odel.GenericName retrieves the name of the generic model. If the model isnot an
instance, this name must be NULL or an empty string.

The property | pfcM odel.I nstanceName retrieves the name of the model. If the model is an instance, this
method retrieves the instance name.

The property IpfcM odel.Origin returns the complete path to the file from which the model was opened.
This path can be alocation on disk from a Windchill workspace, or from a downloaded URL.

The property IpfcM odel.Relationl d retrieves the relation identifier of the specified model. It can be
NULL.

The property IpfcM odel.Descr returns the descriptor for the specified model. Model descriptors can be
used to represent models not currently in session.

Note:
From Pro/ENGINEER Wildfire 4.0 onwards, the properties pfcModel .M odel.GetFullName,
pfcModel.Model.GetGenericName, and | pfcModel.Descr throw an exception
| pfcXtoolkitCantOpen if called on amodel instance whose immediate generic isnot in session.
Handle this exception and typecast the model as | pfcSolid, which in turn can be typecast as
| pfcFamilyMember, and use the method | pfcFamilyMember.Getl mmediateGenericlnfo() to get
the model descriptor of the immediate generic model. The model descriptor can be used to derive
the full name or generic name of the model. If you wish to switch off this behavior and continue
to run legacy applications in the pre-Wildfire 4.0 mode, set the configuration option
retrieve_instance_dependenciesto "instance_and_generic_deps'.

The property IpfcM odel. Type returns the type of model in the form of the I pfcM odel Type object. The
types of models are as follows:

EpfcMDL_ASSEMBLY --Specifies an assembly.
EpfcMDL_PART--Specifies a part.
EpfcMDL_DRAWING--Specifies adrawing.
EpfcMDL_2D_SECTION--Specifies a 2D section.
EpfcMDL_LAYOUT--Specifies alayout.
EpfcMDL_DWG_FORMAT--Specifies a drawing format.
EpfcMDL_MFG--Specifies a manufacturing model.
EpfcMDL_REPORT--Specifies areport.
EpfcMDL_MARKUP--Specifies a drawing markup.
EpfcMDL_DIAGRAM--Specifies a diagram

O]] [} [} O [}] [} [}

The property | pfcM odel.I sM odified identifies whether the model has been modified since it was last
saved.

The property 1pfcM odel.Version returns the version of the specified model from the PDM system. It can
be NULL, if not set.

The property | pfcM odel.Revision returns the revision number of the specified model from the PDM
system. It can be NULL, if not set.

The property 1pfcM odel.Branch returns the branch of the specified model from the PDM system. It can
be NULL, if not set.

The property | pfcM odel .Releasel evel returns the release level of the specified model from the PDM
system. It can be NULL, if not set.

The property |1 pfcM odel.VersionStamp returns the version stamp of the specified model. The version
stamp is a Pro/ENGINEER specific identifier that changes with each change made to the mode!.

The method | pfcM odel.ListDependencies() returns alist of the first-level dependencies for the specified
model in the Pro/ENGINEER workspace in the form of the | pfcDependencies object.

The method I pfcM odel.ListDeclaredM odels() returns alist of al the first-level objects declared for the
specified model.

The method | pfcM odel.CheckIsM odifiable() identifiesif a given model can be modified without
checking for any subordinate models. This method takes a boolean argument ShowUI that determines
whether the Pro/ENGINEER conflict resolution dialog box should be displayed to resolve conflicts, if
detected. If this argument is false, then the conflict resolution dialog box is not displayed, and the model
can be modified only if there are no conflicts that cannot be overridden, or are resolved by default
resolution actions. For a generic model, if ShowUI istrue, then al instances of the model are also
checked.

The method | pfcM odel.Check I sSaveAllowed() identifiesif a given model can be saved along with all of
its subordinate models. The subordinate models can be saved based on their modification status and the
value of the configuration option save_obj ect s. This method also checks the current user interface
context to identify if it is currently safe to save the model. Thus, calling this method at different times
might return different results. This method takes a boolean argument ShowUI. Refer to the previous
method for more information on this argument.

Model Operations

Methods and Property Introduced:
. IpfcModel.Backup()
. IpfcModel.Copy()
. IpfcModel.CopyAndRetrieve()
. IpfcModel.Rename()
. IpfcModel.Save()
. IpfcModel.Erase()
. IpfcModel.EraseWithDependencies()
. IpfcModel.Delete()
. IpfcModel.Display()
. IpfcModel.CommonName

These model operations duplicate most of the commands available in the Pro/ENGINEER File menu.

The method | pfcM odel .Backup() makes a backup of an object in memory to adisk in a specified
directory.

The method | pfcM odel.Copy() copies the specified model to another file.

The method | pfcM odel.CopyAndRetrieve() copies the model to another name, and retrieves that new
model into session.

The method | pfcM odel .Rename() renames a specified model.
The method | pfcM odel .Save() stores the specified model to adisk.

The method | pfcM odel .Erase() erases the specified model from the session. Models used by other
models cannot be erased until the models dependent upon them are erased.

The method | pfcM odel .EraseWithDependencies() erases the specified model from the session and all
the models on which the specified model depends from disk, if the dependencies are not needed by other
itemsin session.

The method | pfcM odel.Delete() removes the specified model from memory and disk.

The method | pfcM odel .Display() displays the specified model. Y ou must call this method if you create a
new window for amodel because the model will not be displayed in the window until you call |pfcM odel.

Display.

The property 1 pfcM odel.CommonName modifies the common name of the specified model. Y ou can
modify this name for models that are not yet owned by Windchill PDMLink, or in certain situations if the
configuration option | et _pr oe_r enanme_pdm obj ect s is set to yes.

Running ModelCHECK

Model CHECK is an integrated application that runs transparently within Pro/ENGINEER. Model CHECK
uses a configurable list of company design standards and best modeling practices. Y ou can configure
Model CHECK to run interactively or automatically when you regenerate or save a model.

Methods and Properties Introduced:
. IpfcBaseSession.ExecuteModelCheck()
. CCpfcModelCheckinstructions.Create()
. IpfcModelCheckinstructions.ConfigDir
. IpfcModelCheckinstructions.Mode
. IpfcModelCheckinstructions.OutputDir
. IpfcModelCheckinstructions.ShowInBrowser
. IpfcModelCheckResults.NumberOfErrors
. IpfcModelCheckResults.NumberOfWarnings
. IpfcModelCheckResults.WasModelSaved

Y ou can run Model CHECK from an external application using the method | pfcBaseSession.
ExecuteM odel Check(). This method takes the model Model on which you want to run Model CHECK
and instructionsin the form of the object | pfcM odel ChecklInstructions asits input parameters. This
object contains the following parameters:

o ConfigDir--Specifies the location of the configuration files. If this parameter is set to NULL, the default
Model CHECK configuration files are used.
1 Mode--Specifies the mode in which you want to run Model CHECK. The modes are:
- MODEL CHECK _GRAPHICS--Interactive mode
- MODELCHECK_NO_GRAPHICS--Batch mode
o OutputDir--Specifies the location for the reports. If you set this parameter to NULL, the default
Model CHECK directory, as per config_init.mc, will be used.
o ShowlnBrowser--Specifiesif the results report should be displayed in the Web browser.

The method CCpfcM odel ChecklI nstructions.Create() creates the | pfcM odel Checkl nstructions object
containing the Model CHECK instructions described above.

Use the methods and properties | pfcM odel CheckI nstructions.ConfigDir,
I pfcM odel ChecklInstructions.M ode, | pfcM odel Checkl nstructions.OutputDir, and
| pfcM odel Checkl nstructions.Showl nBrowser to modify the Model CHECK instructions.

The method | pfcBaseSession.ExecuteM odel Check() returns the results of the Model CHECK run in the
form of the | pfcM odel Check Results object. This object contains the following parameters:

o NumberOfErrors--Specifies the number of errors detected.
5 NumberOfWarnings--Specifies the number of warnings found.
o WasM odel Saved--Specifies whether the model is saved with updates.

Use the properties | pfcM odel Check Results.Number OfError s, pfcM odel Check.M odel Check Results.
GetNumber OfWarning, and | pfcM odel Check Results.WasM odel Saved to access the results obtained.

Custom Checks

This section describes how to define custom checksin Model CHECK that users can run using the
standard Model CHECK interface in Pro/ENGINEER.

To define and register a custom check:

1. Setthe CUSTMTK_CHECKS FILE configuration option in the start configuration file to atext
file that stores the check definition. For example:

CUSTMIK_CHECKS FI LE text/custntk checks.txt
2. Set the contents of the CUSTMIK _CHECKS _FI LE file to define the checks. Each check should list
the following items:

. DEF_<checkname>--Specifies the name of the check. The format must be
CHKTK_<checkname>_<mode>, where mode is PRT, ASM, or DRW.

. TAB_<checkname>--Specifies the tab category in the Model CHECK report under which the
check isclassified. Valid tab values are:

- INFO
- PARAMETER
-LAYER
- FEATURE
- RELATION
- DATUM
- MISC
- VDA
- VIEWS
. MSG_<checkname>--Specifies the description of the check that appears in the lower part of the
Model CHECK report when you select the name.

. DSC_<checkname>--Specifies the name of the check asit appears in the Model CHECK report
table.

. ERM_<checkname>--If set to INFO, the check is considered an INFO check and the report table

displays the text from the first item returned by the check, instead of a count of the items.
Otherwise, this value must be included, but isignored by Pro/ENGINEER.

See the Example 1: Text File for Custom Checks for a sample custom checkstext file.
3. Add the check and its values to the Model CHECK configuration file.

4. Register the Model CHECK check from the VB API application.

Note:
Other than the requirements listed above, the VB API custom checks do not have access to the
rest of the values in the Model CHECK configuration files. All the custom settings specific to the
check, such as start parameters, constants, and so on, must be supported by the user application
and not Model CHECK.

Registering Custom Checks
Methods and Properties Introduced:
. IpfcBaseSession.RegisterCustomModelCheck()
. CCpfcCustomCheckinstructions.Create()
. IpfcCustomCheckinstructions.CheckName
. IpfcCustomCheckinstructions.CheckLabel
. IpfcCustomCheckinstructions.Listener
. IpfcCustomCheckinstructions.ActionButtonLabel
. IpfcCustomCheckinstructions.UpdateButtonLabel

The method | pfcBaseSession.Register CustomM odel Check () registers a custom check that can be
included in any Model CHECK run. This method takes the instructions in the form of the

I pfcCustomCheckl nstructions object asits input argument. This object contains the following
parameters:

]

CheckName--Specifies the name of the custom check.

CheckL abel--Specifies the label of the custom check.

Listener--Specifies the listener object containing the custom check methods. Refer to the section Custom

Check Listeners for more information.

o ActionButtonL abel--Specifies the label for the action button. If you specify NULL for this parameter,
this button is not shown.

o UpdateButtonL abel--Specifies the label for the update button. If you specify NULL for this parameter,

this button is not shown.

[}

[}

The method CCpfcCustomCheckInstructions.Create() creates the | pfcCustomCheck| nstructions
object containing the custom check instructions described above.

Use the methodsproperties | pfcCustomCheckI nstructions.CheckName,

I pfcCustomCheckl nstructions.CheckL abel, | pfcCustomCheckInstructions.Listener,

I pfcCustomCheckl nstructions.ActionButtonL abel, and | pfcCustomCheck| nstructions.
UpdateButtonL abel to modify the instructions.

The following figure illustrates how the results of some custom checks might be displayed in the
Model CHECK report.

PTC ModelCHECK

All Info Param Layer Feat HRelat Datum Misc

B Model: ring.prt “& Status: O

V&1 [MOLOD M1 [O@0

Check ¥ Result ~
1 €3 CUSTOM : Datum - Check Model Parameter Mame. 1
2 i CUSTOM : Datum - Report Model accuracy type 1
W
% ¥

Custom Check Listeners
Methods and Properties Introduced:
. IpfcModelCheckCustomCheckListener.OnCustomCheck()
. CCpfcCustomCheckResults.Create()
. IpfcCustomCheckResults.ResultsCount
. IpfcCustomCheckResults.ResultsTable
. IpfcCustomCheckResults.ResultsUrl
. IpfcModelCheckCustomCheckListener.OnCustomCheckAction()

. IpfcModelCheckCustomCheckListener.OnCustomCheckUpdate()

The interface | pfcM odel Check CustomCheck L istener provides the method signatures to implement a
custom Model Check check.

Each listener method takes the following input arguments:

CheckName--The name of the custom check as defined in the original call to the method pfcSession.
BaseSessi on.Regi sterCustomM odel Check.
Mdl--The model being checked.

The application method that overrides | pfcM odel Check CustomCheckL istener .OnCustomCheck() is
used to evaluate a custom defined check. The user application runsthe check on the specified model
and returnstheresultsin theform of the | pfcCustomCheckResults object. This object containsthe
following parameters:

ResultsCount--Specifies an integer indicating the number of errors found by the check. Thisvalueis
displayed in the Model CHECK report generated.

ResultsTable--Specifies alist of text descriptions of the problem encountered for each error or warning.
ResultsUrl--Specifies the link to an application-owned page that provides information on the results of
the custom check.

The method CCpfcCustomCheckResults.Create() creates the | pfcCustomCheck Results object
containing the custom check results described above.

Use the properties | pfcCustomCheck Results.ResultsCount, | pfcCustomCheck Results.ResultsT able,
and | pfcCustomCheck Results.ResultsUr| listed above to modify the custom checks results obtai ned.

The method that overrides | pfcM odel Check CustomCheck L istener .OnCustomCheckAction() is called
when the custom check's Action button is pressed. The input supplied includes the text selected by the
user from the custom check results.

The function that overrides | pfcM odel Check CustomCheckListener .OnCustomCheckUpdate() is
called when the custom check's Update button is pressed. The input supplied includes the text selected by
the user from the custom check results.

Custom Model CHECK checks can have an Action button to highlight the problem, and possibly an
Update button to fix it automatically.

The following figure displays the Model CHECK report with an Action button that invokes the
I pfcM odel Check CustomCheckL istener .OnCustomCheckAction() listener method.

PTC MﬂdElCHECK '. | I drw models

Al H Infa ”F'aram”Layer”View H N:n.te. |

b Model: pist_draw.drw "% Status: ©

V&1 [MAHo Miio [F&@o

Check ® Result »
1 3 CUSTOM : Drawing Wiews using Generics 3
o
£ |
]
i
CHKTK_DWGVIEW GENERIC -

CLSTOM : Drawing views containing generic models: 3

VIEW 2 Highlight “iews
VIEW TEMPLATE 1
VIEW TEMPLATE 3

Example 1: Text File for Custom Checks

Thefollowing isthetext file cust mt k_checks. t xt for custom checks examples.

Cust omTKCheck Fi |l e
def - name of check asregi stered

VMDLPARAM NAME

DEF_MDLPARAM NANME CHKTK_NMDLPARAM NANVE PRT

TAB_NDLPARAM NAME DATUM

VSG_MDLPARAM NAME CUSTOM: Dat um- Model Par amNanme
ERM_MDLPARAM NANME CUSTOM: Dat um- | nval i d Par anet er val ue.
DSC_MDLPARAM NANME CUSTOM: Dat um- Check Model Par anet er Nane.

MODEL_ ACCURACY
DEF_MODEL_ ACCURACY CHKTK_MODEL_ACCURACY_PRT

TAB_MODEL _ ACCURACY DATUM

VM5G_MODEL _ACCURACY CUSTOM: Dat um- Report Model accuracytype
ERM _MODEL_ACCURACY CUSTOM: Dat um- Report Model accuracy type
DSC_MODEL_ACCURACY CUSTOM: Dat um- Report Model accuracytype

DWGVI EW GENERI C

DEF_DWGVI EW GENERI C CHKTK_DWGVI EW GENERI C_DRW

TAB_DWGVI EW GENERI CVI EWS

M5G_DWGVI EW GENERI CCUSTOM: Dr awi ng vi ews cont ai ni ng generi c nodel s:
ERM DWGVI EW GENERI CN A

DSC_DWGVI EW GENERI CCUSTOM: Dr awi ng Vi ews usi ng Generi cs

Example 2: Registering Custom ModelCHECK Checks

This example demonstrates how to register custom Model CHECK checks using the VB API. The
following custom checks are registered:

1 CHKTK_MDLPARAM_NAME--Determines if the model has a parameter whose name is equal to the
model name.

1 CHKTK_MODEL_ACCURACY --Checks the type of accuracy defined for the model.

n» CHKTK_DWGVIEW_GENERIC--Drawing mode check that identifies the drawing views that use
generic models.

D maCAs pfcl s. | pf cAsyncConnecti on

Publ i ¢ Sub New ByRef asyncConnecti on As pfcl s. | pf cAsyncConnecti on)
aC=asyncConnecti on
End Sub

"Function : addCheck
"Purpose : Thisfunctionisusedtoregister Model checks for part
and dr awi ng nodel s.

Publ i ¢ Sub addCheck(ByVal bPar amNane As Bool ean, ByVal bAccType As
Bool ean, _ByVal bDwgVi ewAs Bool ean)

Di mi nstructions As | pf cCust onCheckl nstructi ons
Di mpar anCheck As Model Par amNaneCheck

Di maccCheck As Mbdel AccTypeCheck

Di mdr wCheck As Model GenDr awVi ewCheck

Di mchecksAdded As | nt eger =0

| f bPar amNane Then
par amCheck = NewModel Par amNanmeCheck(aC. Sessi on)

i nstructions =(NewCCpf cCust onCheckl nstructi ons).

Cr eat e(" CHKTK_MDLPARAM NAME",
"Model withinvalidparaneter : Datunt, parantCheck)
i nstructions. Updat eBut t onLabel =" Updat e Mbdel Par anet er

Try

aC. Sessi on. Regi st er Cust omvbdel Check(i nstructi ons)

checksAdded = checksAdded + 1

Cat ch ex As Excepti on

I f Not ex. Message. ToStri ng =" pf cXTool ki t Found" Then
Thr owex
End | f

End Try

End | f

| f bAccType Then
accCheck = NewMdel AccTypeCheck

i nstructi ons = (NewCCpf cCust onCheckl nstructions). _
Creat e(" CHKTK_MODEL_ ACCURACY", _
"Check Mbdel Accuracy : Datunt, accCheck)

Try

aC. Sessi on. Regi st er Cust omvbdel Check(i nstructi ons)

checksAdded = checksAdded + 1

Cat ch ex As Excepti on

| f Not ex. Message. ToStri ng =" pf cXTool ki t Found" Then
Thr owex
End | f

End Try

| f bDwgVi ewThen

dr wCheck = NewModel GenDr awvi ewCheck(aC. Sessi on)

i nstructions =(NewCCpf cCust onCheckl nstructions). _
Creat e(" CHKTK_DWGVI EW GENERI C', _
"Drawi ng Vi ews Ceneric: View', drwCheck)

i nstructions. Acti onButtonLabel ="Hi ghlight Vi ew

"If thecheckis al dready regi stered, thendo not hing

Try
aC. Sessi on. Regi st er Cust omvbdel Check(i nstructi ons)
checksAdded = checksAdded + 1
Cat ch ex As Excepti on
I f Not ex. Message. ToStri ng =" pf cXTool ki t Found" Then
Thr owex
End | f
End Try

End | f

Example 3: Implementing a Model Name Parameter Check

The following example defines the custom Model CHECK check for the parameter name in amodel. This
check updates the parameter name to be equal to the model name, if the parameter exists with a different
name, or creates the parameter with the model name if it does not exist.

"Class : Model Par amNaneCheck

"Purpose : Thisclassisusedfor checkingif correct paranteris
present i n nodel bei ng checked and provi di ng correction
actionsif that i snot thecase

Privat e ass Mbdel Par anNanmeCheck
| npl enent s | Cl PA i ent Obj ect
| mpl ement s | pf cActi onLi st ener
| mpl emrent s | pf cMbdel CheckCust onCheckLi st ener

Const Par anNane As St ri ng =" MDL_NAME _PARAM'
Di msessi on As | pf cSessi on

Publ i ¢ Sub New(ByVal asyncSessi on As | pf cSessi on)
sessi on =asyncSessi on
End Sub

Public FunctionGetCientlnterfaceNane() As Stringl npl enents
pfcls.ICIPClientbject.CGetdientlnterfaceNane
GetCientlnterfaceNane ="1I pfcMdel CheckCust onCheckLi st ener™
End Functi on

"Function : OnCustontCheck
"Purpose : Checkfunctionfor theParaneter Model Check

Publ i ¢ Functi on OnCust onCheck(ByVal _CheckNane As String, Byval _MlI
As pfcls. | pfcMbdel) As pfcl s. | pf cCust onCheckResul ts
I mpl ement s pf cl s. | pf cModel CheckCust onCheckLi st ener . OnCust onCheck

D mresult As | pf cCust onCheckResul t s = Not hi ng
Di mresul t Count As | nt eger =0

D mresul t Tabl e As Cstri ngseq

Di mpar anConpResul t As | nt eger

Try
par anmConpResul t = Model Par amNaneConpar e(_Mll , Par anNane)
resul t Tabl e =NewCstri ngseq

| f par anConpResul t = CORRECT_PARAM VALUE Then
resul t Tabl e = Not hi ng

resul t Count =0

El se

resul t Count =resul t Count +1

Sel ect Case par antConpResul t

Case M SSI NG_PARAM
resul t Tabl e. Append(" Par anmet er " + Par amNane + _
" not foundinthenodel " +_Ml. Ful | Nane)

Case | NVALI D_PARAM TYPE
resul t Tabl e. Append(" Paraneter " + ParamNane +" in" + _
_Ml . Full Nanme +" i snot aStringparaneter")

Case | NCORRECT _PARAM VALUE
resul t Tabl e. Append(" Par anet er " + Par amNane + _
" val ue does not nat ch nodel nane " +
Ml . Ful | Nane)
End Sel ect
End | f

result =(NewCCpf cCust onCheckResul t s). Creat e(resul t Count)
result. Resul tsTabl e=resul t Tabl e
result.ResultsUrl ="http://ww.ptc.com"”

Returnresult

Cat ch ex As Excepti on
MsgBox(ex. Message. ToString + Chr (13) +ex. StackTrace. ToStri ng)
Ret ur n Not hi ng
End Try
End Functi on
Publ i ¢ Sub OnCust ontCheckAct i on(ByVal _CheckNane As Stri ng, ByVal
_Ml As pfcls.|pfcMdel, ByVal _Sel ectedltemAs (bj ect)
| mpl enent s pf cl s. | pf cMbdel CheckCust onCheckLi st ener . OnCust onCheckAct i on

End Sub

"Function : OnCustonCheckUpdat e
"Purpose : Updatefunctionfor the Paraneter Model Check

Publ i ¢ Sub OnCust onCheckUpdat e(ByVal _CheckName As Stri ng, ByVal
_Mll As pfcls.|pfcMdel, ByVal _Sel ect edl t emAs Qbj ect)
| mpl enent s pf cl s. | pf cMbdel CheckCust onCheckLi st ener . OnCust onCheckUpdat e

Di mpar anConpResul t As | nt eger

Di mpar amAs | pf cPar anet er

Di mpar anVal ue As | pf cPar anval ue
Di mnessage As Cstri ngseq

Try

par anConpResul t = Mbdel Par anNanmeConpar e(_Mll , Par anNane)
| f Not paranmConpResul t = CORRECT_PARAM VALUE Then

nessage = NewCst ri ngseq

nmessage. Set (0, Par anNane)

Sel ect Case par anConpResul t

Case M SSI NG_PARAM
par amvVal ue = (New
CVpf cModel 1t en) . Creat eStri ngPar anval ue(_Mll . Ful | Nane)
CType(_MI, | pf cPar anet er Oamner) . Cr eat ePar an{ Par anNane,
par amval ue)
sessi on. Ul Di spl ayMessage(" pf cMbdel CheckExanpl es. txt", "UG
Cust onCheck: MDL PARAMUPDATED', nessage)

Case | NCORRECT _PARAM VALUE
par anVal ue = (New
CMVpf cModel It em) . Creat eSt ri ngPar anval ue(_Mll . Ful | Narne)
par am=_Mll . Get Par am(Par amNane)
CType(param | pf cBasePar anet er). Val ue = par anval ue
sessi on. U D spl ayMessage(" pf cMbdel CheckExanpl es. txt™, "UG
Cust ontCheck: MDL PARAMUPDATED', nessage)

Case | NVALI D_PARAM TYPE
sessi on. U D spl ayMessage(" pf cMbdel CheckExanpl es. txt™", "UG
Cust onCheck: MDL PARAMUPDATE TYPE", nessage)

End Sel ect
End | f

Cat ch ex As Excepti on

MsgBox(ex. Message. ToString + Chr (13) +ex. StackTrace. ToStri ng)
End Try
End Sub

Const M SSI NG_PARAMAs | nt eger =999

Const | NVALI D_PARAM TYPE As | nt eger =9999
Const CORRECT_PARAM VALUEAs | nt eger =0
Const | NCORRECT_PARAM VALUEAs | nteger =1

"Function : Mdel ParanNaneConpar e
"Purpose : Uilityfunctiontocheckif givenparamis present
i nnmodel anditsval ueisequal tonodel nane

Privat e Funct i on Model Par amNaneConpar e(ByVal nodel As | pfcMdel,
ByVal paranmNanme As String) _
As | nt eger
Di mpar amAs | pf cPar anet er
Di mpar anVal ue As | pf cPar anval ue

par am= CType(nodel , | pf cPar anet er Omer) . Get Par an{ par amNane)
| f paraml s Not hi ng Then

Ret ur n M SSI NG_PARAM
End I f

par anVal ue = par am Val ue

| f Not paramval ue. di scr = Epf cPar anval ueType. Epf cPARAM _STRI NGThen
Ret urn I NVALI D_PARAM TYPE
End| f

| f paranVal ue. Stri ngVal ue = nodel . Ful | Nane Then
Ret ur n CORRECT_PARAM VAL UE

El se
Ret ur n | NCORRECT_PARAM VALUE

End I f

End Functi on

End C ass

Example 4: Implementing a Model Accuracy Type Check

The following example defines the custom Model CHECK check for the type of accuracy whether relative
or absolute that has been set for amodel. This check has a check listener method, but no action or update
listener method since it is an info-only check.

"Class : Model AccTypeCheck
"Purpose : Thisclassisusedfor checki ngwhichaccuracytypehas
beenset, rel ative or absol ute

Privat e ass Model AccTypeCheck
| npl enent s | Cl PA i ent Obj ect
| mpl ement s | pf cActi onLi st ener
| mpl erent s | pf cMbdel CheckCust onCheckLi st ener

Public FunctionCGetdientlnterfaceNane() As Stringl npl enents
pfcls.ICIPOientbject.CGetdientlnterfaceNane

GetCientlnterfaceNane ="1I pf cModel CheckCust onCheckLi st ener™
End Functi on

"Function : OnCustontCheck
"Purpose : Checkfunctionfor the Mdel Accuracy Type

Publ i c Functi on OnCust ontCheck(ByVal _CheckNane As String, ByVval _Mll
As pfcl s. | pfcvbdel) As pfcl s. | pf cCust onCheckResul ts
I mpl enent s pf cl s. | pf cMbdel CheckCust onCheckLi st ener. OnCust onCheck

D mresult As | pf cCust onCheckResul t s = Not hi ng
Di mresul t Count As | nteger =0

Di mresul t Tabl e As Cstri ngseq

Di maccur acy As bj ect

Try
resul t Count =resul t Count +1
resul t Tabl e =NewCstri ngseq

accur acy = CType(_Mll, I pfcSolid). Absol ut eAccur acy
| f accuracy | s Not hi ng Then
resul t Tabl e. Append(" Rel ati ve accuracy")
El se
resul t Tabl e. Append(" Absol ut e Accuracy")
End I f

result =(NewCCpf cCust onCheckResul ts). Creat e(resul t Count)
result. Resul tsTabl e =resul t Tabl e
Returnresult

Cat ch ex As Excepti on
MsgBox(ex. Message. ToString + Chr(13) +ex. StackTrace. ToStri ng)
Ret ur n Not hi ng
End Try
End Functi on

Publ i ¢ Sub OnCust onCheckAct i on(ByVal _CheckName As Stri ng, ByVal
Ml As pfcls.|pfchMdel, ByVal _Sel ect edl t emAs Obj ect)
| mpl enent s pf cl s. | pf cMbdel CheckCust onCheckLi st ener . OnCust onCheckAct i on
End Sub
Publ i ¢ Sub OnCust onCheckUpdat e(ByVal _CheckNane As Stri ng, ByVal
_MI As pfcls.|pfcMdel, ByVal _Sel ect edl t emAs Cbj ect)
| mpl ement s pf cl s. | pf cMbdel CheckCust onCheckLi st ener. OnCust onCheckUpdat e
End Sub

End C ass

Example 5: Implementing a Check for Drawing Views Using Generic Models

The following example defines the custom Model CHECK check for identifying drawing views using
generic models. This check has a check listener method and an action listener method to highlight the
views that use generic models.

"Class : Model GenDr awVi ewCheck
"Purpose : Thisclassisusedfor checkinggenericsindraw ng
views. Qutputsalist of theviewnanes.

Privat e d ass Mbdel GenDr awvi ewCheck
| npl ement s | Cl PCl i ent Obj ect
| mpl ement s | pf cActi onLi st ener
| mpl emrent s | pf cMbdel CheckCust onCheckLi st ener

Di msessi on As | pf cSessi on

Publ i ¢ Sub New(ByVal asyncSessi on As | pf cSessi on)
sessi on =asyncSessi on
End Sub

Public Function GetCientlnterfaceNane() As Stringl npl enents

pfcls.ICIPCOientbject.CGetdientlnterfaceNane
CGetCientlnterfaceNane ="1 pf cModel CheckCust onCheckLi st ener ™
End Functi on

"Function : OnCustontCheck
"Purpose : Checkfunctionfor thegenericViewsindraw ng

Publ i ¢ Functi on OnCust onCheck(ByVal _CheckNane As String, ByVval _MlI
As pfcl s. | pfcvbdel) As pfcl s. | pf cCust onCheckResul ts
| mpl enent s pfcl s. | pf cMbdel CheckCust onCheckLi st ener . OnCust ontCheck
Di mresul t As | pf cCust onCheckResul t s = Not hi ng
Di mresul t Count As | nteger =0
Di mresul t Tabl e As Cstri ngseq
Di mdr awi ng As | pf cDr awi ng
D mnodel As | pf cModel
Di msolidAs | pfcSolid
Di mvi ews As | pf cVi ew2Ds
D mvi ewAs | pf cVi ew2D
D mi As | nt eger

Try
resul t Tabl e =NewCstri ngseq

drawi ng = CType(_MI, | pf cDrawi ng)
Vi ews =dr aw ng. Li st 2DVi ews

For i =0 Tovi ews. Count - 1
view=views(i)

nodel =vi ew. Get Mbdel ()

sol i d =CType(nodel, | pfcSolid)

I f solid.Parent | s NothingThen

resul t Count =resul t Count +1

resul t Tabl e. Append(vi ew. Nane)
End | f
Next

resul t =(NewCCpf cCust onCheckResul ts). Creat e(resul t Count)
result. Resul tsTabl e=resul t Tabl e
Returnresult

Cat ch ex As Excepti on
MsgBox(ex. Message. ToString + Chr(13) +ex. StackTrace. ToStri ng)
Ret ur n Not hi ng

End Try

End Functi on

"Function : OnCustontCheck
"Purpose : Checkfunctionwhichhighlightstheselected
drawi ng vi ew

Publ i ¢ Sub OnCust ontCheckActi on(ByVal _CheckNanme As Stri ng,
ByVal _Mll As pfcls.|pfcMdel, ByVal _Sel ectedltemAs bj ect)
| mpl ement s pfcl s. | pf cModel CheckCust onCheckLi st ener . OnCust onCheckAct i on

Const DELTA X As Doubl e =10. 0 ' Screen coor di nat es

Const DELTA Y As Doubl e =10.0 ' Screen coordi nat es

Di mdr awi ng As | pf cDrawi ng

Di mvi ewAs | pf cVi ew2D

Di moutline As CpfcQutline3D

Di mpoi nt 0, poi nt1, point2, point3, point4As Cpf cPoi nt3D
Di mpoi nt s As Cpf cPoi nt 3Ds

D mlineStyleAs|nteger
D mgr aphi csCol our As | nt eger

Try

I f Not (_Sel ectedlteml s Not hing) Then

drawi ng = CType(_MlI , | pf cDrawi ng)

vi ew=dr awi ng. Get Vi ewByNane(_Sel ect edltem ToStri ng)
outline=view Qutline

poi nt s = New Cpf cPoi nt 3Ds

poi nt 0 = New Cpf cPoi nt 3D

poi nt0. Set (0, outline.ltenm0).ltem0) - DELTA X)
point0. Set (1, outline.lten(0).lten(1) - DELTA_Y)
poi nt 0. Set (2, 0.0)

poi nts. |l nsert (0, pointO0)

poi nt 1 = New Cpf cPoi nt 3D

pointl.Set (0, outline.ltem0).ltenm(0) - DELTA X)
pointl.Set(1, outline.lten(1l).lten(1) + DELTA_Y)
point1. Set(2, 0.0)

poi nts.Insert (1, pointl)

poi nt 2 = New Cpf cPoi nt 3D

point2.Set (0, outline.ltem1l).lten(0) + DELTA X)
point2.Set (1, outline.lten(1).ltem(1l) + DELTAY)
poi nt 2. Set (2, 0.0)

poi nts. |l nsert (2, point?2)

poi nt 3 = New Cpf cPoi nt 3D

point3.Set (0, outline.lten(1l).lten(0) + DELTA X)
point3.Set (1, outline.ltem0).lten(1) - DELTAY)
poi nt 3. Set (2, 0.0)

poi nts. I nsert (3, point3)

poi nt 4 = New Cpf cPoi nt 3D

point4.Set (0, outline.ltenm(0).ltem0) - DELTA X)
point4.Set(1, outline.lten(0).lten(1) - DELTA_Y)
poi nt 4. Set (2, 0.0)

poi nts.lnsert (4, point4)

gr aphi csCol our =sessi on. Current G aphi csCol or
sessi on. Current G aphi csCol or = Epf ¢St dCol or . Epf cCOLOR_HI GHLI GHT

lineStyle=
sessi on. Set Li neStyl e(Epf cSt dLi neSt yl e. Epf cLI NE_PHANTOW)

sessi on. DrawPol yl i ne(poi nt s)

| ineStyl e =session. SetLineStyl e(lineStyle)
sessi on. Current Graphi csCol or =graphi csCol our

End | f
Cat ch ex As Excepti on
MsgBox(ex. Message. ToString + Chr (13) +ex. StackTrace. ToStri ng)
End Try
End Sub
Publ i ¢ Sub OnCust onCheckUpdat e(ByVal _CheckNane As Stri ng,
ByVal _Mll As pfcls.|pfcMdel, ByVal _Sel ectedltemAs bj ect)
I npl emrent s pf cl s. | pf cModel CheckCust onCheckLi st ener. OnCust onCheckUpdat e

End Sub

End C ass

Example 6: Changes to the ModelCHECK Configuration Files to enable Custom Checks

—

i nes added t ot he Model Check configurationfile (default_checks. nth)
Checktheitem |If not succeed, report as anerror

Checktheitem 1f not succeed, report as awarni ng

Do not checktheitem

Checktheitem 1f not succeed, donot report err or warn

<Zsm

CHKTK_NMDLPARAM_NANE_PRT YNEW E E E E Y
CHKTK_MODEL _ ACCURACY_PRT YNEW Y Y Y Y Y
CHKTK_DWGVI EWGENERIC DRW YNEW E E E E Y

Li nes addedtot he Mbdel Check start fil e (sanple_start.nts)
CUSTMIK_CHECKS FI LE custmtk_checks. t xt

Drawings

This section describes how to program drawing functions using the VB API.
Topic

Overview of Drawingsinthe VB APl
Creating Drawings from Templates
Obtaining Drawing Models
Drawing Information

Drawing Operations

Drawing Sheets

Drawing Views

Drawing Dimensions

Drawing Tables

Detail ltems

Detail Entities

OLE Objects

Detail Notes

Detail Groups

Detail Symbols
Detail Attachments

Overview of Drawings in the VB API

This section describes the functions that deal with drawings. Y ou can create drawings of all Pro/ENGINEER models
using the functionsin the VB API. Y ou can annotate the drawing, manipul ate dimensions, and use layers to manage the
display of different items.

Unless otherwise specified, the VB API functions that operate on drawings use world units.

Creating Drawings from Templates

Drawing templates simplify the process of creating a drawing using the VB API. Pro/ENGINEER can create views, set
the view display, create snap lines, and show the model dimensions based on the template. Use templates to:

o Definelayout views
o Set view display

o Place notes

o Place symbols

o Definetables

o Show dimensions

Method Introduced:
. IpfcBaseSession.CreateDrawingFromTemplate()

Use the method | pfcBaseSession.CreateDrawingFromTemplate() to create a drawing from the drawing template and
to return the created drawing. The attributes are:

New drawing name
Name of an existing template
Name and type of the solid model to use while populating template views
Sequence of options to create the drawing. The options are as follows:
- EpfcDRAWINGCREATE_DISPLAY_DRAWING--display the new drawing.
- EpfcDRAWINGCREATE_SHOW_ERROR_DIALOG--display the error dialog box.
- EpfcDRAWINGCREATE_WRITE_ERROR_FILE--write the errorsto afile.
- EpfcDRAWINGCREATE_PROMPT_UNKNOWN_PARAMS--prompt the user on encountering unknown
parameters.

[m} [m] [m}]

Drawing Creation Errors

The exception XToolkitDrawingCreateErrorsisthrown if an error is encountered when creating a drawing from a
template. This exception contains alist of errors which occurred during drawing creation.

Note:

When this exception type is encountered, the drawing is actually created, but some of the contents failed to
generate correctly.

The exception message will list the details for each error including its type, sheet number, view name, and (if
applicable) item name, The types of errors are as follows:

- EpfcDWGCREATE_ERR_SAVED_VIEW_DOESNT_EXIST--Saved view does not exist.

- EpfcDWGCREATE_ERR_X_SEC_DOESNT_EXIST--Specified cross section does not exist.

- EpfcDWGCREATE_ERR_EXPLODE_DOESNT_EXIST--Exploded state did not exist.

- EpfcDWGCREATE_ERR_MODEL_NOT_EXPLODABLE--Mode

cannot be exploded.

- EpfcDWGCREATE_ERR_SEC _NOT_PERP--Cross section view not perpendicular to the given view.

- EpfcDWGCREATE_ERR_NO_RPT_REGIONS--Repeat regions not available.

- EpfcDWGCREATE_ERR_FIRST_REGION_USED--Repeat region was unable to use the region specified.

- EpfcDWGCREATE_ERR_NOT_PROCESS ASSEM-- Model is not a process assembly view.

- EpfcDWGCREATE_ERR_NO_STEP_NUM--The process step number does not exist.

- EpfcDWGCREATE_ERR_TEMPLATE_USED--The template does not exist.

- EpfcDWGCREATE_ERR_NO_PARENT_VIEW_FOR_PROJ-There is no possible parent view for this projected
view.

- EpfcDWGCREATE_ERR_CANT_GET_PROJ PARENT--Could not get the projected parent for a drawing view.
- EpfcDWGCREATE_ERR_SEC NOT_PARALLEL--The designated cross section was not parallel to the created
view.

- EpfcDWGCREATE_ERR_SIMP_REP_DOESNT_EXIST--The designated simplified representation does not exist.

Exanpl e: Drawi ng Creati onfroma Tenpl ate

The following code creates a new drawing using a predefined template.

I nports System | O
I mports pfcls

Publ i c O ass pf cDrawi ngExanpl es
Publ i ¢ Sub cr eat eDr awi ngFr onTenpl at e(ByRef sessi on As | pf cBaseSessi on,
ByVal draw ngNanme As Stri ng)
Di mpr edefi nedTenpl ate As String="c_draw ng"
Di mnodel As | pf chModel
Di mdr awi ngOpt i ons As New Cpf cDr awi ngCr eat eOpt i ons
Di mdr awi ng As | pf cDr awi ng

nmodel =sessi on. Current Model
I f nodel |'s Not hi ng Then
Thr owNewExcepti on(" Moddel not present™)
End | f
drawi ngOpti ons. I nsert (0, Epf cDrawi ngCr eat eOpti on.
Epf c DRAW NGCREATE_DI SPLAY_DRAW NG)
drawi ngOpti ons. I nsert (1, Epf cDraw ngCreat eOpti on.
Epf c DRAW NGCREATE_SHOW ERROR_DI ALOG)
dr awi ng = sessi on. Cr eat eDr awi ngFr onTenpl at e(dr awi ngNane, predefi nedTenpl at e,
_nodel . Descr, draw ngQOpti ons)
Cat ch ex As Excepti on
MsgBox(ex. Message. ToStri ng + Chr (13) +ex. StackTrace. ToStri ng)
End Try
End Sub

End d ass

Obtaining Drawing Models
This section describes how to obtain drawing models.
Methods Introduced:
. IpfcBaseSession.RetrieveModel()
. IpfcBaseSession.GetModel()
. IpfcBaseSession.GetModelFromDescr()
. IpfcBaseSession.ListModels()
. IpfcBaseSession.ListModelsByType()

The method | pfcBaseSession.RetrieveM odel() retrieves the drawing specified by the model descriptor. Model
descriptors are data objects used to describe a model file and its location in the system. The method returns the retrieved
drawing.

The method | pfcBaseSession.GetM odel () returns a drawing based on its name and type, whereas | pfcBaseSession.
GetM odelFromDescr () returns a drawing specified by the model descriptor. The model must be in session.

Use the method | pfcBaseSession.ListM odels() to return a sequence of all the drawingsin session.
Drawing Information

Methods and Property Introduced:

. IpfcModel2D.ListModels()

. IpfcModel2D.GetCurrentSolid()

. IpfcModel2D.ListSimplifiedReps()

. IpfcModel2D.TextHeight
The method | pfcM odel2D.ListM odels() returns alist of all the solid models used in the drawing.
The method | pfcM odel2D.GetCurrentSolid() returns the current solid model of the drawing.

The method I pfcM odel2D.ListSimplifiedReps() returns the simplified representations of a solid model that are
assigned to the drawing.

The property | pfcM odel2D.TextHeight returns the text height of the drawing.

Drawing Operations

Methods Introduced:
. IpfcModel2D.AddModel()
. IpfcModel2D.DeleteModel()
. IpfcModel2D.ReplaceModel()
. IpfcModel2D.SetCurrentSolid()
. IpfcModel2D.AddSimplifiedRep()
. IpfcModel2D.DeleteSimplifiedRep()
. IpfcModel2D.Regenerate()
. IpfcModel2D.CreateDrawingDimension()
. IpfcModel2D.CreateView()

The method | pfcM odel2D.AddM odel () adds a new solid model to the drawing.

The method | pfcM odel2D.DeleteM odel () removes a model from the drawing. The model to be deleted should not
appear in any of the drawing views.

The method | pfcM odel2D.ReplaceM odel () replaces amodel in the drawing with arelated model (the relationship
should be by family table or interchange assembly). It allows you to replace models that are shown in drawing views
and regenerates the view.

The method | pfcM odel2D.SetCurrentSolid() assigns the current solid model for the drawing. Before calling this
method, the solid model must be assigned to the drawing using the method | pfcM odel2D.AddM odel(). To seethe
changes to parameters and fields reflecting the change of the current solid model, regenerate the drawing using the
method | pfcSheetOwner .Regener ateSheet ().

The method | pfcM odel2D.AddSimplifiedRep() associates the drawing with the simplified representation of an
assembly .

The method | pfcM odel2D.DeleteSimplifiedRep() removes the association of the drawing with an assembly simplified
representation. The simplified representation to be deleted should not appear in any of the drawing views.

Use the method | pfcM odel 2D .Regener ate() to regenerate the drawing draft entities and appearance.

The method | pfcM odel2D.Cr eateDr awingDimension() creates a new drawing dimension based on the data object that
contains information about the location of the dimension. This method returns the created dimension. Refer to the
section Drawing Dimensions.

The method | pfcM odel2D.CreateView() creates a new drawing view based on the data object that contains information
about how to create the view. The method returns the created drawing view. Refer to the section Creating Drawing

Views.

Exanpl e: Repl ace Drawi ng Model Solidwithits Generic

The following code replaces all solid model instances in a drawing with its generic. Models are not replaced if the
generic model is aready present in the drawing.

| nports System | O
I mports pfcls

Publ i c O ass pf cDr awi ngExanpl es

Publ i ¢ Sub r epl aceModel s(ByRef sessi on As | pf cBaseSessi on)
Di mnodel As | pf chModel

Di mnodel s As | pf cModel s

Di mdr awi ng As | pf cDr awi ng

Di msolidAs|pfcSolid

Di mgeneric As | pfcSol i d

Di mi As | nt eger

nodel =session. Current Mbdel

I f nodel |'s Not hi ng Then
Thr owNewExcepti on(" Mddel not present™)

End | f

I f Not nodel . Type = Epf cModel Type. Epf cMDL_DRAW NG Then
Thr owNewExcepti on(" Mdel is not drawi ng")

EndIf

drawi ng = CType(nodel , | pf cDr awi ng)

For i =0 To nodel s. Count - 1
solid=CType(nodels.Itenm(i), | pfcSolid)
generic=solid. Parent

I f Not genericls NothingThen

dr awi ng. Repl aceMbdel (solid, generic, True)
End I f
Next

Cat ch ex As Excepti on
MsgBox(ex. Message. ToStri ng + Chr (13) +ex. StackTrace. ToStri ng)
End Try
End Sub

Drawing Sheets

A drawing sheet is represented by its number. Drawing sheetsin the VB API areidentified by the same sheet numbers
seen by a Pro/Engineer user.

Note:
These identifiers may change if the sheets are moved as a consequence of adding, removing or reordering sheets.

Drawing Sheet Information

Methods and Properties Introduced
. IpfcSheetOwner.GetSheetData()
. IpfcSheetOwner.GetSheetTransform()
. IpfcSheetOwner.GetSheetScale()
. IpfcSheetOwner.GetSheetFormat()
. IpfcSheetOwner.GetSheetFormatDescr()
. IpfcSheetOwner.GetSheetBackgroundView()
. IpfcSheetOwner.NumberOfSheets
. IpfcSheetOwner.CurrentSheetNumber
. IpfcSheetOwner.GetSheetUnits()

The method | pfcSheetOwner .GetSheetData() returns sheet data including the size, orientation, and units of the sheet
specified by the sheet number.

The method | pfcSheetOwner .GetSheet Transfor m() returns the transformation matrix for the sheet specified by the
sheet number. This transformation matrix includes the scaling needed to convert screen coordinates to drawing
coordinates (which use the designated drawing units).

The method | pfcSheetOwner .Get Sheet Scal€() returns the scale of the drawing on a particular sheet based on the
drawing model used to measure the scale. If no models are used in the drawing then the default scale value is 1.0.

The method | pfcSheetOwner .Get SheetFor mat() returns the drawing format used for the sheet specified by the sheet
number. It returns anull value if no format is assigned to the sheet.

The method | pfcSheetOwner .GetSheetFor matDescr () returns the model descriptor of the drawing format used for the
specified drawing sheet.

The method | pfcSheetOwner .Get SheetBackgr oundView() returns the view object representing the background view
of the sheet specified by the sheet number.

The property | pfcSheetOwner .Number Of Sheets returns the number of sheetsin the model.
The property | pfcSheetOwner.CurrentSheetNumber returns the current sheet number in the model.

Note:
The sheet numbers range from 1 to n, where n is the number of sheets.

The method | pfcSheetOwner .Get SheetUnits() returns the units used by the sheet specified by the sheet number.

Drawing Sheet Operations

Methods Introduced:
. IpfcSheetOwner.AddSheet()
. IpfcSheetOwner.DeleteSheet()
. IpfcSheetOwner.ReorderSheet()
. IpfcSheetOwner.RegenerateSheet()
. IpfcSheetOwner.SetSheetScale()
. IpfcSheetOwner.SetSheetFormat()

The method | pfcSheetOwner .AddSheet() adds a new sheet to the model and returns the number of the new sheet.

The method | pfcSheetOwner .DeleteSheet () removes the sheet specified by the sheet number from the model.

Use the method | pfcSheetOwner .Reor der Sheet() to reorder the sheet from a specified sheet number to a new sheet
number.

Note:
The sheet number of other affected sheets also changes due to reordering or deletion.

The method | pfcSheetOwner .Regener ateSheet () regenerates the sheet specified by the sheet number.

Note:
Y ou can regenerate a sheet only if it is displayed.

Use the method | pfcSheetOwner .Set Sheet Scal () to set the scale of amodel on the sheet based on the drawing model
to scale and the scale to be used. Pass the value of the DrawingModel parameter as null to select the current drawing
model.

Use the method | pfcSheetOwner .SetSheetFor mat() to apply the specified format to a drawing sheet based on the
drawing format, sheet number of the format, and the drawing model.

The sheet number of the format is specified by the FormatSheetNumber parameter. This number ranges from 1 to the

number of sheetsin the format. Pass the value of this parameter as null to use the first format sheet.

The drawing model is specified by the DrawingModel parameter. Pass the value of this parameter as null to select the
current drawing model.

Exanpl e: Li sting Drawi ng Sheets

The following example shows how to list the sheets in the current drawing. The information is placed in an external
browser window.

Public Sub | i st Sheet s(ByRef sessi on As | pf cBaseSessi on, ByVal fil eNane

As String)

DimfileAs Streamiter =Not hi ng

Di mf or mat Nane As Stri ng

Di mnodel As | pf cModel

Di mdr awi ng As | pf cDr awi ng

Di msheet s As | nt eger

Di mi As | nt eger

Di msheet Dat a As | pf cSheet Dat a

Di msheet For mat As | pf cDr awi ngFor nat

Di munit As String

file=NewStreanWiter (fil eNane)
file. WiteLine("<htm ><head></ head><body>")

nodel =session. Current Mbdel

I f nodel |'s Not hi ng Then
Thr owNewExcept i on(" Mddel not present™)

End | f

I f Not nodel . Type = Epf cModel Type. Epf cMDL_DRAW NG Then
Thr owNewExcepti on(" Mdel is not drawi ng")

End | f

dr awi ng = CType(nodel , | pf cDr awi ng)

sheet s =dr awi ng. Nunber O Sheet s

For i =1 Tosheets

sheet Dat a = dr awi ng. Get Sheet Dat a(i)
sheet For mat =dr awi ng. Get Sheet For mat (i)

uni t =" unknown"

Sel ect Case sheet Dat a. Units. Get Type
Case Epf cLengt hUni t Type. Epf cLENGTHUNI T_CM
unit ="cm
Case Epf cLengt hUni t Type. Epf cLENGTHUNI T_FOOT
unit ="feet"
Case Epf cLengt hUni t Type. Epf cLENGTHUNI T_I NCH

unit ="i nches"

Case Epf cLengt hUni t Type. Epf cLENGTHUNI T_M
unit ="nt

Case Epf cLengt hUni t Type. Epf cLENGTHUNI T_MCM
unit ="nmcnt

Case Epf cLengt hUni t Type. Epf cLENGTHUNI T_MM
unit =" mdt

End Sel ect

file.WiteLine("<h2>Sheet " +i.ToString+"</h2>")

file.WiteLine("<table>")

file.WiteLine(" <tr><td>Wdth</td><td>" +
sheetData. Wdth. ToString+" </td></tr>")

file.WitelLine(" <tr><td>Height </td><td>" +
sheet Data. Hei ght. ToString +" </td></tr>")

file.WiteLine(" <tr><td>Units</td><td>" +unit +

"<ftd></tr>")

| f (sheet Format | s Not hi ng) Then
f or mat Nane =" none"
El se
f or mat Nane = sheet For nat . Ful | Nanme
End I f
file.WiteLine(" <tr><td>Format </td><td>" +fornmat Nane
+"</td></tr>")
file.WiteLine("</table>")
file.WiteLine("
")
Next

file.WiteLine("</body></htnmn >")
file.d ose()
file=Nothing

sessi on. Current W ndow. Set URL(fi | eNamne)

Cat ch ex As Excepti on
MsgBox(ex. Message. ToStri ng + Chr (13) +ex. StackTrace. ToStri ng)
If Not filels NothingThen
file.d ose()
End | f
End Try

End Sub

Drawing Views

A drawing view isrepresented by the interface | pfcView2D. All model views in the drawing are associative, that is, if
you change adimensional value in one view, the system updates other drawing views accordingly. The model
automatically reflects any dimensional changes that you make to a drawing. In addition, corresponding drawings also
reflect any changes that you make to a model such as the addition or deletion of features and dimensional changes.

Creating Drawing Views

Method Introduced:

. IpfcModel2D.CreateView()

The method | pfcM odel2D.CreateView() creates a new view in the drawing. Before calling this method, the drawing
must be displayed in awindow.

Theinterface | pfcView2DCr eatel nstr uctions contains details on how to create the view. The types of drawing views
supported for creation are:

o EpfcDRAWVIEW GENERAL--General drawing views
o EpfcDRAWVIEW PROJECTION--Projected drawing views

General Drawing Views
Theinterface | pfcGeneralViewCr eatel nstructions contains details on how to create general drawing views.
Methods and Properties Introduced:
. CCpfcGeneralViewCreatelnstructions.Create()
. IpfcGeneralViewCreatelnstructions.ViewModel
. IpfcGeneralViewCreatelnstructions.Location
. IpfcGeneralViewCreatelnstructions.SheetNumber
. IpfcGeneralViewCreatelnstructions.Orientation
. IpfcGeneralViewCreatelnstructions.Exploded
. IpfcGeneralViewCreatelnstructions.Scale

The method CCpfcGeneralViewCreatel nstructions.Create() creates the | pfcGener al ViewCr eatel nstructions data
object used for creating general drawing views.

Use the property | pfcGeneralViewCreatel nstructions.ViewM odel to assign the solid model to display in the created
general drawing view.

Use the property | pfcGeneralViewCreatel nstructions.L ocation to assign the location in a drawing sheet to place the
created general drawing view.

Use the property | pfcGeneralViewCreatel nstructions.SheetNumber to set the number of the drawing sheet in which
the general drawing view is created.

The property | pfcGeneralViewCreatel nstructions.Orientation assigns the orientation of the model in the general
drawing view in the form of the | pfcTransform3D data object. The transformation matrix must only consist of the
rotation to be applied to the model. It must not consist of any displacement or scale components. If necessary, set the
displacement to {0, 0, 0} using the method I pfcTransform3D.SetOrigin(), and remove any scaling factor by
normalizing the matrix.

Use the property | pfcGeneralViewCreatel nstructions.Exploded to set the created general drawing view to be an
exploded view.

Use the property | pfcGener al ViewCr eatel nstructions.Scale to assign a scale to the created general drawing view.
Thisvalueisoptional, if not assigned, the default drawing scale is used.

Projected Drawing Views
The interface | pfcPr oj ectionViewCr eatel nstructions contains details on how to create general drawing views.
Methods and Properties Introduced:
. CCpfcProjectionViewCreatelnstructions.Create()
. IpfcProjectionViewCreatelnstructions.ParentView
. IpfcProjectionViewCreatelnstructions.Location
. IpfcProjectionViewCreatelnstructions.Exploded

The method CCpfcProjectionViewCreatel nstructions.Create() creates the | pfcProjectionViewCr eatel nstructions
data object used for creating projected drawing views.

Use the property | pfcProjectionViewCreatel nstructions.Par entView to assign the parent view for the projected
drawing view.

Use the property | pfcProjectionViewCreatel nstructions.L ocation to assign the location of the projected drawing
view. Thislocation determines how the drawing view will be oriented.

Use the property | pfcProjectionViewCr eatel nstructions.Exploded to set the created projected drawing view to be an
exploded view.

Exanpl e: Creating Drawi ng Vi ews

The following example code adds a new sheet to a drawing and creates three views of a selected model.

Publ i ¢ Sub cr eat eSheet AndVi ews(ByRef sessi on As | pf cBaseSessi on, ByVal
sol i dName As Stri ng)
Di mnodel As | pf chModel
Di msol i dvbdel As | pf cModel
Di mdr awi ng As | pf cDr awi ng
Di msheet No As | nt eger
Di mnodel Desc As | pf cMbdel Descri pt or
Dimmatri x As Cpf cMat ri x3D
Di mi, j As | nteger
Di mt ransF As | pf cTr ansf or nBD
Di mpoi nt Loc As | pf cPoi nt 3D
Di mgenVi ew nstructions As | pf cGener al Vi enCr eat el nstructi ons
Di mproVi ew nstructions As | pf cProj ecti onVi ewCr eat el nstructi ons
Di mvi ew2DAs | pf cVi ew2D
Di moutline As Cpf cQutline3D

nodel =sessi on. Current Mbdel
I f nodel |'s Not hi ng Then
Thr owNewExcepti on(" Model not present™)
End | f
I f Not nodel . Type = Epf cModel Type. Epf cMDL_DRAW NG Then

Thr owNewExcepti on("Model is not drawi ng")
End | f
dr awi ng = CType(nodel , | pf cDr awi ng)

sheet No = dr awi ng. AddSheet ()
dr awi ng. Curr ent Sheet Nunber =sheet No

nmodel Desc = (New CCpf cModel Descri ptor). Creat eFronFi | eNanme(sol i dNane)
sol i dMbdel =sessi on. Get Model FronDescr (nodel Desc)

I f solidMvbdel | s Nothi ng Then
sol i dMbdel =sessi on. Retri eveModel (nmodel Desc)
I f solidMvbdel | s Nothi ng Then
Thr owNewExcepti on("Unabl et ol oad Model " +sol i dNane)
End I f

Try
dr awi ng. AddModel (sol i dvbdel)
Cat ch ex As Excepti on
Thr owNewExcepti on("Unabl et o add Mbdel " +sol i dNane +"
t o draw ng")

'Createageneral viewfromthe Zaxi sdirectionat apredefined
' Locati on

mat ri x = NewCpf cMatri x3D

Fori =0To 3
For j =0To 3
Ifi =] Then
matrix. Set(i, j, 1.0)
El se
matrix. Set (i, j, 0.0)
End | f
Next
Next

transF = (NewCCpf cTransf orn8D). Create(mat ri x)

poi nt Loc = New Cpf cPoi nt 3D
poi nt Loc. Set (0, 200. 0)

poi nt Loc. Set (1, 600. 0)

poi ntLoc. Set (2, 0.0)

genVi ew nstructions = (NewCCpf cGener al Vi ewCreatel nstructions). _Create
(sol i dvbdel , sheet No,
poi nt Loc, transF)

vi ew2D=dr awi ng. Creat eVi em genVi ew nstructi ons)

outline=view2D. Qutline

poi ntLoc. Set (0, outline.ltem(1).ltem0) +(outline.ltem1).Item(0) - outline.ltem

(0).1tem(0)))
poi ntLoc. Set (1, (outline.ltem(0).ltem1) +outline.ltenm(1).ltem(1))/ 2)

proVi ew nstructi ons = (NewCCpf cProj ecti onVi enCreat el nstructi ons). _Create(vi ew2D,

poi nt Loc)
drawi ng. Creat eVi ew(proVi ewl nstructi ons)

poi nt Loc. Set (0, (outline.ltem0).ltem0) +outline.lten(l).ltem(0)) / 2)
poi ntLoc. Set (1, outline.lten(0).ltenm(1l) - (outline.ltenm(1l).ltem(1l) _- outline.ltem

(0).1tem(1)))
proVi ewl nstructi ons = (NewCCpf cProj ecti onVi enCreat el nstructions). _Create(vi ew2D,
poi nt Loc)
dr awi ng. Creat eVi ew(proVi ewl nstructi ons)
dr awi ng. Regener at e()
Cat ch ex As Excepti on

MsgBox(ex. Message. ToStri ng + Chr (13) +ex. StackTrace. ToStri ng)
End Try

End Sub

Obtaining Drawing Views

Methods and Property Introduced:
. IpfcSelection.SelView2D
. IpfcModel2D.List2DViews()
. IpfcModel2D.GetViewByName()
. IpfcModel2D.GetViewDisplaying()
. IpfcSheetOwner.GetSheetBackgroundView()

The property | pfcSelection.SelView2D returns the selected drawing view (if the user selected an item from adrawing
view). It returns a null valueif the selection does not contain a drawing view.

The method | pfcM odel2D.List2DViews() lists and returns the drawing views found. This method does not include the
drawing sheet background views returned by the method | pfcSheetOwner .Get SheetBackgroundView().

The method | pfcM odel2D.GetViewByName() returns the drawing view based on the name. This method returns a null
value if the specified view does not exist.

The method | pfcM odel2D.GetViewDisplaying() returns the drawing view that displays a dimension. This method
returns anull value if the dimension is not displayed in the drawing.

Note:

This method works for solid and drawing dimensions.

The method | pfcSheetOwner .GetSheetBackgroundView() returns the drawing sheet background views.
Drawing View Information
Methods and Properties Introduced:
. IpfcChild.DBParent
. IpfcView2D.GetSheetNumber()
. IpfcView2D.IsBackground
. IpfcView2D.GetModel()
. IpfcView2D.Scale
. IpfcView2D.GetlsScaleUserdefined()
. IpfcView2D.Outline
. IpfcView2D.GetLayerDisplayStatus()
. IpfcView2D.IsViewdisplayLayerDependent
. IpfcView2D.Display
. IpfcView2D.GetTransform()
. IpfcView2D.Name

The inherited property | pfcChild.DBParent, when called on a | pfcView2D object, provides the drawing model which
owns the specified drawing view. The return value of the method can be downcast to a | pfcM odel 2D object.

The method | pfcView2D.GetSheetNumber () returns the sheet number of the sheet that contains the drawing view.

The property | pfcView2D.lsBackground returns a value that indicates whether the view is a background view or a
model view.

The method | pfcView2D.GetM odel () returns the solid model displayed in the drawing view.

The property | pfcView2D.Scale returns the scale of the drawing view.

The method | pfcView2D.Getl sScaleUser defined() specifiesif the drawing has a user-defined scale.
The property | pfcView2D.Outline returns the position of the view in the sheet in world units.

The method | pfcView2D.GetL ayer DisplayStatus() returns the display status of the specified layer in the drawing
view.

The property | pfcView2D.Display returns an output structure that describes the display settings of the drawing view.
Thefields in the structure are as follows:

o Style--Whether to display as wireframe, hidden lines, no hidden lines, or shaded
o TangentStyle--Linestyle used for tangent edges

o CableStyle--Linestyle used to display cables

o RemoveQuiltHiddenLines--Whether or not to apply hidden-line-removal to quilts
o ShowConceptM odel--Whether or not to display the skeleton

o ShowWeldX Section--Whether or not to include welds in the cross-section

The method | pfcView2D.GetTransfor m() returns a matrix that describes the transform between 3D solid coordinates
and 2D world units for that drawing view. The transformation matrix is a combination of the following factors:

o Thelocation of the view origin with respect to the drawing origin.
o The scale of the view units with respect to the drawing units
o Therotation of the model with respect to the drawing coordinate system.

The property | pfcView2D.Name returns the name of the specified view in the drawing.
Exanpl e: Listingthe ViewsinaDraw ng

The following example creates an information window about all the viewsin a drawing. The information is placed in an
externa browser window

Public SublistVi ews(ByRef sessi on As | pf cBaseSessi on, ByVval fil eNane
As String)
DmfileAs StreamNiter =Not hi ng
Di mnodel As | pf cModel
Di mdr awi ng As | pf cDr awi ng
Di mvi ew2Ds As | pf cVi ew2Ds
D mi As | nt eger
Di mvi ew2DAs | pf cVi ew2D
D mvi ewmNane As String
Di msheet No As | nt eger
Di msol i d As | pf cModel
Di msol i dDesc As | pf cMbdel Descri pt or
Di moutline As Cpf cQutline3D
Di mscal e As Doubl e
Di mvi ewDi spl ay As | pf cVi ewDi spl ay
Di mdi spl ayStyl e As String

file=NewStreamWiter (fil eNane)
file. WiteLine("<htm ><head></ head><body>")

nodel =sessi on. Current Mbdel

I f nodel |'s Not hi ng Then
Thr owNewExcepti on(" Mddel not present")

End | f

I f Not nodel . Type = Epf cModel Type. Epf cMDL_DRAW NG Then
Thr owNewExcepti on(" Model is not draw ng")

End | f

dr awi ng = CType(nodel , | pf cDr awi ng)

vi ew2Ds =dr awi ng. Li st 2DVi ews
For i =0 Tovi ew2Ds. Count - 1

view2D=vi ew2Ds. I ten(i)

vi ewNane =vi ew2D. Nane
sheet No =vi ew2D. Get Sheet Nunber

sol i d=vi ew2D. Get Model
sol i dDesc =sol i d. Descr

outline=view2D. Qutline
scal e =vi ew2D. Scal e

vi ewDi spl ay =vi ew2D. Di spl ay
di spl ayStyl e =" unknown”

Sel ect Case vi ewDi spl ay. Styl e
Case Epf cDi spl ayStyl e. Epf cDI SPSTYLE_DEFAULT
di splayStyle="defaul t"
Case Epf cDi spl ayStyl e. Epf cDI SPSTYLE_HI DDEN_LI NE
di spl ayStyl e ="hi ddenl i ne"
Case Epf cDi spl aySt yl e. Epf cDI SPSTYLE_NO_HI DDEN
di spl ayStyl e =" no hi dden"
Case Epf cDi spl ayStyl e. Epf cDI SPSTYLE SHADED
di spl ayStyl e =" shaded"
Case Epf cDi spl ayStyl e. Epf cDI SPSTYLE W REFRANVE
di splayStyle="w refrane"
End Sel ect

file
file
file
file
file
file

Next

. Wi teLine("<h2>Vi ew" +vi ewNane + "</ h2>")

.WiteLine("<table>")

.WiteLine(" <tr><td>Sheet </td><td>" +sheetNo. ToString+" </td></tr>")
.WiteLine(" <tr><td>Mdel </td><td>" +solidDesc. GetFull Nane +" </td></tr>

.WiteLine(" <tr><td>Qutline</td><td>")
.WiteLine("<table><tr><td><i>Lower left:</i></td><td>")
.WiteLine(outline.ltem(0).ltem(0).ToString+", " +

_outline.ltem0).Iten(1).ToString+", " +
_outline.lten(0).ltem(2). ToString)

.WiteLine("</td></tr><tr><td><i>Upper right: </i></td><td>")
.WiteLine(outline.ltem(1l).lten{0).ToString+", " +

_outline.ltenm(1l).ltem(1). ToString+", " +
_outline.ltem(1l).1ten(2).ToString)

.WiteLine("</td></tr></table></td>")

.WiteLine(" <tr><td>Scale</td><td>" +scale. ToString+" </td></tr>")
.WiteLine(" <tr><td>Display Style</td><td>" +displayStyle+" </td></tr>")
.WiteLine("</tabl e>")

. WiteLine("
")

file.WiteLine("</body></htm >")
file.d ose()
file=Nothing

sessi on. Current W ndow. Set URL(fi | eNane)

Cat ch ex As Excepti on
MsgBox(ex. Message. ToStri ng + Chr (13) +ex. StackTrace. ToStri ng)

Finally
If Not filels NothingThen
file.d ose()
End | f

End Try

End Sub

Drawing Views Operations
Methods Introduced:
. IpfcView2D.Translate()
. IpfcView2D.Delete()
. IpfcView2D.Regenerate()
. IpfcView2D.SetLayerDisplayStatus()

The method I pfcView2D.Tranglate() moves the drawing view by the specified transformation vector.

The method I pfcView2D.Delete() deletes a specified drawing view. Set the DeleteChildren parameter to true to delete
the children of the view. Set this parameter to false or null to prevent deletion of the view if it has children.

The method | pfcView2D.Regener ate() erases the displayed view of the current object, regenerates the view from the
current drawing, and redisplays the view.

The method | pfcView2D.Setl ayer DisplayStatus() sets the display status for the layer in the drawing view.

Drawing Dimensions

This section describes the VB API methods that give access to the types of dimensions that can be created in the
drawing mode. They do not apply to dimensions created in the solid mode, either those created automatically as aresult
of feature creation, or reference dimension created in asolid. A drawing dimension or areference dimension shownin a
drawing is represented by the interface | pfcDimension2D.

Obtaining Drawing Dimensions

Methods and Property Introduced:
. IpfcModelltemOwner.Listitems()
. IpfcModelltemOwner.GetltemByld()
. IpfcSelection.Selltem

The method | pfcM odelltemOwner .Listltems() returns alist of drawing dimensions specified by the parameter Type or
returns null if no drawing dimensions of the specified type are found. This method lists only those dimensions created in

the drawing.
The values of the parameter Type for the drawing dimensions are:

o ITEM_DIMENSION--Dimension
o ITEM_REF DIMENSION--Reference dimension

Set the parameter Type to the type of drawing dimension to retrieve. If this parameter is set to null, then all the
dimensionsin the drawing are listed.

The method | pfcM odell temOwner .GetltemByl d() returns a drawing dimension based on the type and the integer
identifier. The method returns only those dimensions created in the drawing. It returns anull if a drawing dimension
with the specified attributes is not found.

The property | pfcSelection.Selltem returns the value of the selected drawing dimension.

Creating Drawing Dimensions

Methods Introduced:
. CCpfcDrawingDimCreatelnstructions.Create()
. IpfcModel2D.CreateDrawingDimension()
. CCpfcEmptyDimensionSense.Create()
. CCpfcPointDimensionSense.Create()
. CCpfcSplinePointDimensionSense.Create()
. CCpfcTangentindexDimensionSense.Create()
. CCpfcLinAOCTangentDimensionSense.Create()
. CCpfcAngleDimensionSense.Create()
. CCpfcPointToAngleDimensionSense.Create()

The method CCpfcDrawingDimCr eatel nstructions.Create() creates an instructions object that describes how to
create a drawing dimension using the method | pfcM odel2D.Cr eateDr awingDimension().

The parameters of the instruction object are:

o Attachments--The entities that the dimension is attached to. The selections should include the drawing model view.
o IsRefDimension--Trueif the dimension is areference dimension, otherwise null or false.
o OrientationHint--Describes the orientation of the dimensions in cases where this cannot be deduced from the
attachments themselves.
o Senses--Gives more information about how the dimension attaches to the entity, i.e., to what part of the entity and in
what direction the dimension runs. The types of dimension senses are as follows:
- EpfcDIMSENSE_NONE
- EpfcDIMSENSE_POINT
- EpfcDIMSENSE_SPLINE_PT
- EpfcDIMSENSE_TANGENT_INDEX
- EpfcDIMSENSE_LINEAR_TO_ARC_OR_CIRCLE TANGENT
- EpfcDIMSENSE_ANGLE

)])]

a a

o

)

]

- EpfcDIMSENSE_POINT_TO_ANGLE
TextL ocation--The location of the dimension text, in world units.

The method | pfcM odel2D.CreateDrawingDimension() creates a dimension in the drawing based on the instructions
data object that contains information needed to place the dimension. It takes asinput an array of pfcSelection objects
and an array of pfcDimensionSense structures that describe the required attachments. The method returns the created
drawing dimension.

The method CCpfcEmptyDimensionSense.Create() creates a new dimension sense associated with the type
DIMSENSE NONE. The "sense" field is set to Type. In this case no information such as location or direction is needed
to describe the attachment points. For example, if there is a single attachment which isa straight line, the dimension is
the length of the straight line. If the attachments are two parallel lines, the dimension is the distance between them.

The method CCpfcPointDimensionSense.Create() creates a new dimension sense associated with the type
DIMSENSE POINT which specifies the part of the entity to which the dimension is attached. The "sense” field is set to
the value of the parameter PointType.

The possible values of PointType are:

EpfcDIMPOINT_END1-- Thefirst end of the entity

EpfcDIMPOINT_END2--The second end of the entity

EpfcDIMPOINT_CENTER--The center of an arc or circle

EpfcDIMPOINT_NONE--No information such as location or direction of the attachment is specified. Thisis similar to
setting the PointType to DIMSENSE NONE.

EpfcDIMPOINT_MIDPOINT--The mid point of the entity

The method CCpfcSplinePointDimensionSense.Create() creates a dimension sense associated with the type
DIMSENSE_SPLINE_PT. This means that the attachment isto a point on a spline. The "sense” field is set to
SolinePointindex i.e., the index of the spline point.

The method CCpfcTangentI ndexDimensionSense.Create() creates a new dimension sense associated with the type
DIMSENSE_TANGENT _INDEX. The attachment is to atangent of the entity, which isan arc or acircle. The sense
field is set to Tangentindex, i.e., theindex of the tangent of the entity.

The method CCpfcLinAOCTangentDimensionSense.Create() creates a new dimension sense associated with the type
DIMSENSE_LINEAR_TO_ARC_OR_CIRCLE_TANGENT. The dimension is the perpendicular distance between the a
line and atangent to an arc or acircle that is parallel to the line. The sensefield is set to the value of the parameter
TangentType.

The possible values of TangentType are:

EpfcDIMLINAOCTANGENT_LEFTO--The tangent isto the left of the line, and is on the same side, of the center of
the arc or circle, astheline.

EpfcDIMLINAOCTANGENT_RIGHTO--The tangent isto the right of the line, and is on the same side, of the center of
the arc or circle, astheline.

EpfcDIMLINAOCTANGENT_LEFT1--The tangent is to the left of the line, and is on the opposite side of the line.
EpfcDIMLINAOCTANGENT_RIGHT1-- The tangent is to the right of the line, and is on the opposite side of the line.

The method CCpfcAngleDimensionSense.Create() creates a new dimension sense associated with the type
DIMSENSE_ANGLE. The dimension is the angle between two straight entities. The "sense” field is set to the value of
the parameter AngleOptions.

The possible values of AngleOptions are:
IsFirst--Is set to TRUE if the angle dimension starts from the specified entity in a counterclockwise direction. |s set to

FALSE if the dimension ends at the specified entity. The value is TRUE for one entity and FAL SE for the other entity
forming the angle.

o ShouldFlip--If the value of ShouldFlip is FALSE, and the direction of the specified entity is away from the vertex of
the angle, then the dimension attaches directly to the entity. If the direction of the entity is away from the vertex of the
angle, then the dimension is attached to the awitness line. The witness lineisin line with the entity but in the direction
opposite to the vertex of the angle. If the value of ShouldFlip is TRUE then the above cases are reversed.

The method CCpfcPointToAngleDimensionSense.Cr eate() creates a new dimension sense associated with the type
DIMSENSE _POINT _TO_ANGLE. The dimension is the angle between aline entity and the tangent to a curved entity.
The curve attachment is of the type DIMSENSE _POINT_TO_ANGLE and the line attachment is of the type DIMSENSE
POINT. In this case both the "angle" and the "angle_sense" fields must be set. The field "sense”" shows which end of the
curve the dimension is attached to and the field "angle_sense" shows the direction in which the dimension rotates and to
which side of the tangent it attaches.

Drawing Dimensions Information
Methods and Properties Introduced:
. IpfcDimension2D.IsAssociative
. IpfcDimension2D.GetlsReference()
. IpfcDimension2D.IsDisplayed
. IpfcDimension2D.GetAttachmentPoints()
. IpfcDimension2D.GetDimensionSenses()
. IpfcDimension2D.GetOrientationHint()
. IpfcDimension2D.GetBaselineDimension()
. IpfcDimension2D.Location
. IpfcDimension2D.GetView()
. IpfcDimension2D.GetTolerance()
. IpfcDimension2D.IsToleranceDisplayed

The property | pfcDimension2D.1 sAssociative returns whether the dimension or reference dimension in adrawing is
associative.

The method | pfcDimension2D.Getl sRefer ence() determines whether the drawing dimension is areference dimension.
The method | pfcDimension2D.1sDisplayed determines whether the dimension will be displayed in the drawing.

The method | pfcDimension2D.GetAttachmentPoints() returns a sequence of attachment points. The dimension senses
array returned by the method | pfcDimension2D.GetDimensionSenses() gives more information on how these

attachments are interpreted.

The method | pfcDimension2D.GetDimensionSenses() returns a sequence of dimension senses, describing how the
dimension is attached to each attachment returned by the method | pfcDimension2D.GetAttachmentPoints().

The method | pfcDimension2D.GetOrientationHint() returns the orientation hint for placing the drawing dimensions.
The orientation hint determines how Pro/ENGINEER will orient the dimension with respect to the attachment points.

Note:
This methods described above are applicable only for dimensions created in the drawing mode. It does not
support dimensions created at intersection points of entities.

The method | pfcDimension2D.GetBaselineDimension() returns an ordinate baseline drawing dimension. It returns a
null value if the dimension is not an ordinate dimension.

Note:
The method updates the display of the dimension only if it is currently displayed.

The property | pfcDimension2D.L ocation returns the placement location of the dimension.

The method | pfcDimension2D.GetView() returns the drawing view in which the dimension is displayed. This method
applies to dimensions stored in the solid or in the drawing.

The method | pfcDimension2D.Get T oler ance() retrieves the upper and lower tolerance limits of the drawing dimension
in the form of the | pfcDimT olerance object. A null value indicates a nominal tolerance.

Use the method | pfcDimension2D.I sT oler anceDisplayed determines whether or not the dimension'stoleranceis
displayed in the drawing.

Drawing Dimensions Operations

Methods Introduced:
. IpfcDimension2D.ConvertToLinear()
. IpfcDimension2D.ConvertToOrdinate()
. IpfcDimension2D.ConvertToBaseline()
. IpfcDimension2D.SwitchView()
. IpfcDimension2D.SetTolerance()
. IpfcDimension2D.EraseFromModel2D()
. IpfcModel2D.SetViewDisplaying()

The method | pfcDimension2D.ConvertToL inear () converts an ordinate drawing dimension to alinear drawing
dimension. The drawing containing the dimension must be displayed.

The method | pfcDimension2D.ConvertToOr dinate() converts alinear drawing dimension to an ordinate baseline
dimension.

The method | pfcDimension2D.ConvertToBaseling() converts alocation on alinear drawing dimension to an ordinate
baseline dimension. The method returns the newly created baseline dimension.

Note:
The method updates the display of the dimension only if it is currently displayed.

The method | pfcDimension2D.SwitchView() changes the view where a dimension created in the drawing is displayed.

The method | pfcDimension2D.Set T olerance() assigns the upper and lower tolerance limits of the drawing dimension.

The method | pfcDimension2D.EraseFromM odel2D() permanently erases the dimension from the drawing.

The method | pfcM odel2D.SetViewDisplaying() changes the view where a dimension created in a solid model is
displayed.

Exanpl e: Command Cr eat i on of Di mensi ons f romModel Dat umPoi nt s

The example below shows a command which creates vertical and horizontal ordinate dimensions from each datum point
in amodel in adrawing view to a selected coordinate system datum.

"Function : createPointD ns

"Purpose : Thisfunctioncreatesvertical andhorizontal ordi nate
di mensi ons fromeach dat umpoi nt i nanodel ina

drawi ng vi ewt o a sel ect ed coor di nat e syst emdat um

Publ i ¢ Sub cr eat ePoi nt Di ms(ByRef sessi on As | pf cBaseSessi on)

Di mhBaseLi ne As | pf cDi nensi on2D= Not hi ng

Di mvBaseLi ne As | pf cDi nensi on2D= Not hi ng

Di msel ectionOptions As | pf cSel ecti onOpti ons
Di msel ecti ons As Cpf cSel ecti ons

Di mcsysSel ection As | pf cSel ecti on

Di msel It emAs | pf cMbdel It em

Di msel Pat h As | pf cConponent Pat h

Di msel Vi ewAs | pf cVi ew2D

Di msel Posi ti on As Cpf cPoi nt 3D

Di mdr awi ng As | pf cMbdel 2D

Di mroot SolidAs | pfcSolid

Di masmlr ansf or mAs | pf cTr ansf or n8D

Di mpoi nts As | pf cModel | t ens

Di mcsysPosi ti on As Cpf cPoi nt 3D

Di mvi ewTr ansf or mAs | pf cTr ansf or nBD

Di mcsys3DPosi ti on As Cpf cVect or 2D

Di moutlineAs|pfcQutline3D

Di msenses As Cpf cDi nensi onSenses

Di matt achnment s As Cpf cSel ecti ons

Di mp As | nt eger

Di mpoi nt As | pf cPoi nt

Di mpoi nt Posi ti on As Cpf cPoi nt 3D

Di msensel As | pf cPoi nt Di rensi onSense

Di msense2 As | pf cPoi nt Di mensi onSense

Di mpoi nt Sel ecti on As | pfcSel ection

Di mdi nPosi ti on As Cpf cVect or 2D

Di mcreat el nstructi ons As | pf cDr awi ngDi nCr eat el nstructi ons
Di mshowl nstructi ons As | pf cDr aw ngDi mensi onShow nstructi ons
Di mdi nmensi on As | pf cDi mensi on2D

Try

' Sel ect acoordi nate system Thi s defi nesthenodel (thetopone
"inthat view), andthe common attachnments for the di mensi ons

sel ecti onOpti ons = (NewCCpf cSel ecti onOpti ons). Create("csys")
sel ecti onOpti ons. MaxNuntel s =1

sel ecti ons =sessi on. Sel ect (sel ecti onOpti ons, Not hi ng)

If (selectionsl|sNothing) O (sel ections. Count) =0 Then
Thr owNewExcept i on(" Not hi ng Sel ect ed")

End | f

csysSel ection=sel ections.|tenm0)
sel Item=csysSel ection. Sel [tem
sel Pat h=csysSel ecti on. Pat h

sel Vi ew=csysSel ecti on. Sel Vi ew2D
sel Posi ti on=csysSel ecti on. Poi nt

I f sel Vi ewls Not hi ng Then
Thr owNewExcepti on("Mist sel ect coordi nat e syst emfroma
drawi ngview. ")
EndIf

"CGet theroot solid, andthetransformfromtheroot tothe
' conmponent owni ngt he csys

asmlr ansf or m= Not hi ng
dr awi ng = sel Vi ew. DBPar ent
root Sol i d =sel I t em DBPar ent
I f Not sel Pat h1s Not hi ng Then
root Sol i d =sel Pat h. Root
asmir ansf or m=sel Pat h. Get Tr ansf or m(Tr ue)
End | f

poi nts =root Sol i d. Li stltens(EpfchMdel ItenType. Epf cl TEM PO NT)
I f (pointsls Nothing) O (points.Count =0) Then

Thr owNewExcepti on(" Not hi ng Sel ect ed")
End | f

csysPosition=sel Position
I f Not asmilransforml s Not hi ng Then
csysPosi tion =asnilr ansf orm Transf or nPoi nt (sel Positi on)
End | f
vi ewTr ansf or m=sel Vi ew. Get Transform
csysPosi ti on=vi ewTransform Transf or nPoi nt (csysPosi tion)

csys3DPosi ti on = NewCpf cVect or 2D
csys3DPosi tion. Set (0, csysPosition.Iten(0))
csys3DPosi tion. Set (1, csysPosition.Iten(1))

"All ocatetheattachnment arrays

senses = NewCpf cDi mensi onSenses
attachnent s = NewCpf cSel ecti ons

poi nt =points.ltem p)
poi nt Posi ti on =poi nt. Poi nt
poi nt Posi ti on =vi ewlransform Transf or nPoi nt (poi nt Posi ti on)

sensel = (NewCCpf cPoi nt Di mensi onSense). _

Cr eat e(Epf cDi nensi onPoi nt Type. Epf cDI MPO NT_CENTER)
senses. Set (0, sensel)
sense2 = (NewCCpf cPoi nt Di mensi onSense). _

Cr eat e(Epf cDi nensi onPoi nt Type. Epf cDI MPO NT_CENTER)
senses. Set (1, sense2)

poi nt Sel ecti on =(New
CMpf cSel ect) . Creat eMbdel | t enBel ecti on(poi nt, Not hi ng)
poi nt Sel ecti on. Sel Vi ew2D=sel Vi ew
attachnents. Set (0, poi nt Sel ecti on)
attachnments. Set (1, csysSel ecti on)

"Cal culatethedi mpositiontobejust tothel eft of the
"drawi ngvi ew, m dway bet weent he poi nt and csys

di mPosi ti on = NewCpf cVect or 2D
di mPosition. Set(0, outline.ltem(0).lten(0) - 20.0)
di mPosi tion. Set(1, (csysPosition.Item(1) +

poi ntPosition.lten(1)) / 2)

createlnstructions =(New
CCpf cDr awi nghi mCr eat el nstructions). Create _
(attachments, _
senses, _
di mPosi tion, _
EpfcOri entati onHi nt. Epf cORI ENTHI NT_VERTI CAL)

di mensi on =dr awi ng. Cr eat eDr awi ngDi mensi on(creat el nstructi ons)
showl nstructi ons = (NewCCpf cDr awi nghi nensi onShowl nstructions). Create _
(sel Vi ew, Not hi ng)

CType(di nensi on, | pf cBaseDi nensi on) . Showm show nst ructi ons)

"Ifthisisthefirst vertical dim createanordi nat e base
"linefromit, el sejust convert it toordinate

If (p=0) Then

vBaseLi ne =di nensi on. Convert ToBasel i ne(csys3DPosi ti on)
El se

di nensi on. Convert ToOr di nat e(vBaselLi ne)
End | f

createlnstructions. Orientati onH nt =EpfcOrientationHint.
Epf c ORI ENTHI NT_HORI ZONTAL

"Cal cul atethedi mpositiontobejust tothebottomof the
"drawi ngvi ew, m dway bet weent he poi nt and csys

di mPosi tion. Set (0, (csysPosition.lten(0) +pointPosition.lten(0)) / 2)
di mPosition. Set(1, outline.ltem(1).ltenm(1) - 20.0)
createlnstructions. Text Locati on=di mPosition

di mensi on =drawi ng. Cr eat eDr awi ngDi nensi on(creat el nstructi ons)
" di mensi on. Showm show nst ructi ons)
CType(di nensi on, | pf cBaseDi nensi on) . Show show nst ructi ons)

"Ifthisisthefirst horizontal dim create anordi nat e base
"linefromit, el sejust convert it toordinate

If (p=0) Then
hBaseLi ne =di mensi on. Convert ToBasel i ne(csys3DPosi ti on)
El se
di mensi on. Convert ToOr di nat e(hBaseLi ne)
End | f
Next

Cat ch ex As Excepti on

MsgBox(ex. Message. ToStri ng + Chr (13) +ex. StackTrace. ToStri ng)
End Try

End Sub

Drawing Tables

A drawing tablein the VB APl is represented by the interface I pfcTable. It isachild of the IpfcModelltem interface.

Some drawing table methods operate on specific rows or columns. The row and column numbersin the VB API begin
with 1 and range up to the total number of rows or columns in the table. Some drawing table methods operate on
specific table cells. The interface | pfcTableCell is used to represent a drawing table cell.

Creating Drawing Cells

Method Introduced:

. CCpfcTableCell.Create()

The method CCpfcTableCell.Create() creates the | pfcTableCell object representing acell in the drawing table.

Some drawing table methods operate on specific drawing segment. A multisegmented drawing table contains 2 or more
areas in the drawing. Inserting or deleting rows in one segment of the table can affect the contents of other segments.

Table segments are numbered beginning with 0. If the table has only a single segment, use 0 as the segment id in the
relevant methods.

Selecting Drawing Tables and Cells

Methods and Properties Introduced:

. IpfcBaseSession.Select()

. IpfcSelection.Selltem

. IpfcSelection.SelTableCell

. IpfcSelection.SelTableSegment

Tables may be selected using the method | pfcBaseSession.Select(). Pass the filter dwg_table to select an entire table
and thefilter table_cell to prompt the user to select a particular table cell.

The property | pfcSelection.Selltem returns the selected table handle. It isamodel item that can be cast to alpfcTable
object.

The property | pfcSelection.Sel TableCell returns the row and column indices of the selected table cell.

The property | pfcSelection.Sel TableSegment returns the table segment identifier for the selected table cell. If the table
consists of a single segment, this method returns the identifier O.

Creating Drawing Tables

Methods Introduced:

)

o

)

. CCpfcTableCreatelnstructions.Create()
. IpfcTableOwner.CreateTable()

The method CCpfcTableCreatel nstructions.Create() creates the | pfcT ableCr eatel nstructions data object that
describes how to construct a new table using the method | pfcTableOwner .Cr eateT able().

The parameters of the instructions data object are:

Origin--This parameter stores a three dimensional point specifying the location of the table origin. The origin isthe
position of the top left corner of the table.

RowHei ghts--Specifies the height of each row of the table.

ColumnData--Specifies the width of each column of the table and its justification.

SizeTypes--Indicates the scale used to measure the column width and row height of the table.

The method | pfcTableOwner.CreateT able() creates atable in the drawing specified by the
| pfcTableCr eatel nstructions data object.

Retrieving Drawing Tables

Methods Introduced
. CCpfcTableRetrievelnstructions.Create()
. IpfcTableOwner.RetrieveTable()

The method CCpfcTableRetrievel nstructions.Create() creates the | pfcT ableRetrievel nstructions data object that
describes how to retrieve a drawing table using the method | pfcT ableOwner .RetrieveT able(). The method returns the
created instructions data object.

The parameters of the instruction object are:

o FileName--Name of the file containing the drawing table.
o Position--The location of |eft top corner of the retrieved table.

The method | pfcTableOwner .RetrieveT able() retrieves atable specified by the | pfcTableRetrievel nstructions data
object from afile on the disk. It returns the retrieved table. The data object contains information on the table to retrieve
and is returned by the method CCpfcTableRetrievel nstructions.Create().

Drawing Tables Information

Methods Introduced:
. IpfcTableOwner.ListTables()
. IpfcTableOwner.GetTable()
. IpfcTable.GetRowCount()
. IpfcTable.GetColumnCount()
. IpfcTable.ChecklIflsFromFormat()
. IpfcTable.GetRowSize()
. IpfcTable.GetColumnSize()
. IpfcTable.GetText()
. IpfcTable.GetCellNote()

The method | pfcTableOwner.ListTables() returns a sequence of tables found in the model.

The method | pfcTableOwner.GetTable() returns atable specified by the table identifier in the model. It returns a null
valueif the table is not found.

The method | pfcTable.GetRowCount() returns the number of rowsin the table.

The method | pfcTable.GetColumnCount() returns the number of columnsin the table.

The method | pfcTable.ChecklIfl sFromFor mat() verifiesif the drawing table was created using the format of the
drawing sheet specified by the sheet number. The method returns atrue value if the table was created by applying the
drawing format.

The method | pfcT able.GetRowSize() returns the height of the drawing table row specified by the segment identifier
and the row number.

The method | pfcT able.GetColumnSize() returns the width of the drawing table column specified by the segment
identifier and the column number.

The method | pfcTable.GetText() returns the sequence of text in adrawing table cell. Set the value of the parameter
Mode to DWGTABLE_NORMAL to get the text as displayed on the screen. Set it to DWGTABLE_FULL to get
symbolic text, which includes the names of parameter referencesin the table text.

The method I pfcTable.GetCellNote() returns the detail note item contained in the table cell.
Drawing Tables Operations
Methods Introduced:
. IpfcTable.Erase()
. IpfcTable.Display()
. IpfcTable.RotateClockwise()
. IpfcTable.InsertRow()
. IpfcTable.InsertColumn()
. IpfcTable.MergeRegion()
. IpfcTable.SubdivideRegion()
. IpfcTable.DeleteRow()
. IpfcTable.DeleteColumn()
. IpfcTable.SetText()
. IpfcTableOwner.DeleteTable()

The method | pfcT able.Erase() erases the specified table temporarily from the display. It still existsin the drawing. The
erased table can be displayed again using the method | pfcTable.Display(). The table will also be redisplayed by a
window repaint or a regeneration of the drawing. Use these methods to hide a table from the display while you are
making multiple changes to the table.

The method | pfcTable.RotateClockwise() rotates a table clockwise by the specified amount of rotation.

The method | pfcTable.l nsertRow() inserts anew row in the drawing table. Set the value of the parameter RowHeight
to specify the height of the row. Set the value of the parameter InsertAfter Row to specify the row number after which
the new row has to be inserted. Specify 0 to insert anew first row.

The method | pfcTable.l nsertColumn() inserts anew column in the drawing table. Set the value of the parameter
ColumnWidth to specify the width of the column. Set the value of the parameter InsertAfter Column to specify the
column number after which the new column has to be inserted. Specify O to insert anew first column.

The method | pfcTable.M er geRegion() merges table cells within a specified range of rows and columnsto form a
single cell. Therange is arectangular region specified by the table cell on the upper l€eft of the region and the table cell
on the lower right of the region.

The method | pfcTable.SubdivideRegion() removes merges from aregion of table cells that were previously merged.
The region to remove merges is specified by the table cell on the upper left of the region and the table cell on the lower
right of the region.

The methods | pfcTable.DeleteRow() and | pfcTable.DeleteColumn() delete any specified row or column from the
table. The methods also remove the text from the affected cells.

The method | pfcTable.SetText() setstext in the table cell.

Use the method | pfcTableOwner .DeleteT able() to delete a specified drawing table from the model permanently. The
deleted table cannot be displayed again.

Note:
Many of the above methods provide a parameter Repaint. If thisis set to true the table will be repainted after the
change. If set to false or null Pro/ENGINEER will delay the repaint, allowing you to perform several operations
before showing changes on the screen.

Exanpl e: Creationof aTabl e Li sting DatumPoi nts

The following example creates a drawing table that lists the datum pointsin amodel shown in adrawing view.

Publ i ¢ Sub cr eat eTabl e Poi nt s(ByRef sessi on As | pf cBaseSessi on)
Di mwi dt hs(4) As Doubl e
Di msel ectionOptions As | pf cSel ecti onOpti ons
Di msel ecti ons As Cpf cSel ecti ons
Di mcsysSel ection As | pf cSel ecti on
Di msel It emAs | pf cMbdel It em
Di msel Pat h As | pf cConponent Pat h
Di msel Vi ewAs | pf cVi ew2D
Di mdr awi ng As | pf cMbdel 2D
Di mcsys As | pf cCoor dSyst em
Di mcsysTr ansf or mAs | pf cTr ansf or nBD
Di mcsysNane As Stri ng
Di mroot SolidAs | pfcSolid
Di masnmTr ansf or mAs | pf cTransf or n8D
Di mpoi nts As | pf cModel I t errs
Di ml ocat i on As Cpf cPoi nt 3D
Di mt abl el nstructions As | pf cTabl eCreat el nstructi ons
Di mcol uml nf o As Cpf cCol umCr eat eOpt i ons
Di mcol um As | pf cCol umCr eat eOpti on
Dimi As I nt eger
Di mrowl nf o As Creal seq
Di mdr awTabl e As | pf cTabl e
Di mt opLeft As | pf cTabl eCel |
Di mbot t onRi ght As | pf cTabl eCel |
Di mp As | nt eger
Di mgeonPoi nt As | pf cPoi nt

Di mt r f Poi nt As | pf cPoi nt 3D

Try
wi dt hs(0) =8.0
wi dths(1) =10.0
wi dths(2) =10.0
wi dt hs(3) =10.0

' Sel ect acoordi nate system Thi s defi nesthenodel (thetopone
"inthat view), andt he conmon attachnents for t he di nensi ons

sel ecti onOpti ons = (NewCCpf cSel ecti onOpti ons). Create("csys")
sel ecti onOptions. MaxNunBSel s =1
sel ecti ons =sessi on. Sel ect (sel ecti onOpti ons, Not hi ng)
If (selectionsl|sNothing) O (sel ections. Count) =0 Then
Thr owNewExcept i on(" Not hi ng Sel ect ed")
End | f

csysSel ection=sel ections.|ten0)
sel ltem=csysSel ection. Sel ltem
sel Pat h=csysSel ecti on. Pat h

sel Vi ew=csysSel ection. Sel Vi ew2D

I f sel Vi ewl s Not hi ng Then

Thr owNewExcepti on("Mist sel ect coordi nat e syst emf romadraw ngvi ew. ")
End | f

dr awi ng = sel Vi ew. DBPar ent

csys =CType(sel Item | pfcCoordSystem
csysTransf orm=csys. Coor dSys
csysTransform | nvert ()

csysNane =sel I t em Get Nane

Cet theroot solid, andthetransformfromtheroot tothe
conmponent owni ngthecsys

asmlr ansf or m= Not hi ng
root Sol i d =sel I t em DBPar ent
I f Not sel Pat h1s Not hi ng Then
root Sol i d =sel Pat h. Root
asmlr ansf or m=sel Pat h. Get Tr ansf or m(Fal se)
End | f

poi nts =root Sol i d. Li stltens(EpfcMdel |tenlype. Epf cl TEM PO NT)
I f (pointsls Nothing) O (points. Count =0) Then

Thr owNewExcepti on(" Not hi ng Sel ect ed")
End | f

| ocat i on = NewCpf cPoi nt 3D
| ocati on. Set (0, 500. 0)

| ocation. Set (1, 500.0)
| ocation. Set (2, 0.0)

tabl el nstructi ons =(NewCCpf cTabl eCreat el nstructions). Create(l ocati on)
tabl el nstructi ons. Si zeType = Epf cTabl eSi zeType. Epf cTABLESI ZE_BY_NUM _CHARS

col uml nf o = New Cpf cCol unmCr eat eOpt i ons

Fori =0 Towi dths. Length- 1
col umm = (New CCpf cCol ummCr eat eOpti on). Create _
(Epf cCol umJustification. Epf cCOL_JUSTI FY_LEFT, wi dths(i))
col umml nf o. I nsert (col uml nf 0. Count, col um)
Next

t abl el nstructi ons. Col umbDat a=col uml nfo

rowl nf o = NewCr eal seq
For i =0 To poi nts. Count +2

row nfo. I nsert(row nfo. Count, 1.0)
Next

tabl el nstructi ons. RowHei ghts =row nfo

‘Createthetable
"Merger thetoprowcel I stoformthe header

dr awTabl e =dr awi ng. Cr eat eTabl e(t abl el nst ructi ons)

topLeft =(NewCCpfcTabl eCell). Create(1, 1)
bot t omRi ght = (NewCCpf cTabl eCel). Create(1, 4)

dr awTabl e. Mer geRegi on(topLeft, bottonR ght, Not hi ng)

witeTextlnCell (drawTable, 1, 1, "DatumPoi nts for " +root Sol i d. Ful | Name + _
"w.r.ttocsys" +csysNamne)

witeTextInCell (drawTable, 2, 1, "Point")

witeTextlnCell (drawTable, 2, 2, "X")

writeText!lnCell (drawTable, 2, 3, "Y")

witeTextlnCell (drawTable, 2, 4

geonPoi nt =points. Item p)
writeTextInCell (drawTable, p+3, 1, geonPoi nt. Get Nane())

t rf Poi nt = geonPoi nt . Poi nt
I f Not asmilransforml s Not hi ng Then

trf Poi nt =asnilransf orm Transf or nPoi nt (trf Poi nt)
End | f

trfPoi nt =csysTransform Transf or mPoi nt (trf Poi nt)

Fori =0To2
witeTextInCell (drawTable, p+3, 2+i, Format(trfPoint.Iten(i), "#, ##0. 00"))
Next
Next

drawTabl e. Di spl ay()
Cat ch ex As Excepti on
MsgBox(ex. Message. ToStri ng + Chr (13) +ex. St ackTrace. ToStri ng)
End Try
End Sub
Private SubwiteTextlnCell (ByRef tabl e As | pfcTabl e, ByVal rowAs I nteger, _
ByVal col As | nteger, ByVal text As String)
Di mt abl eCel | As | pf cTabl eCel |
Di ml i nes As NewCstri ngseq

tabl eCel | =(NewCCpf cTabl eCel |). Create(row, col)
lines.Insert(0, text)

t abl e. Set Text (tabl eCel I, |i nes)
End Sub
Drawing Table Segments

Drawing tables can be constructed with one or more segments. Each segment can be independently placed. The
segments are specified by an integer identifier starting with O.

Methods and Property Introduced:
. IpfcSelection.SelTableSegment
. IpfcTable.GetSegmentCount()
. IpfcTable.GetSegmentSheet()
. IpfcTable.MoveSegment()
. IpfcTable.Getlnfo()

The property | pfcSelection.Sel TableSegment returns the value of the segment identifier of the selected table segment.
It returns a null value if the selection does not contain a segment identifier.

The method | pfcT able.GetSegmentCount() returns the number of segmentsin the table.

The method | pfcT able.Get SegmentSheet() determines the sheet number that contains a specified drawing table
segment.

The method | pfcT able.M oveSegment() moves a drawing table segment to a new location. Pass the co-ordinates of the
target position in the format X, y, z=0.

Note:

Set the value of the parameter Repaint to true to repaint the drawing with the changes. Set it to false or null to
delay the repaint.

To get information about a drawing table pass the value of the segment identifier as input to the method | pfcTable.
GetInfo(). The method returns the table information including the rotation, row and column information, and the 3D
outline.

Repeat Regions

Methods Introduced:
. IpfcTable.IsCommentCell()
. IpfcTable.GetCellComponentModel()
. IpfcTable.GetCellReferenceModel()
. IpfcTable.GetCellTopModel()
. IpfcTableOwner.UpdateTables()

The methods | pfcTable.l sCommentCell(), | pfcTable.GetCellComponentM odel(), | pfcTable.
GetCellReferenceM odel(), | pfcTable.GetCellTopM odel(), and | pfcTableOwner .UpdateT ables() apply to repeat
regions in drawing tables.

The method | pfcTable.lsCommentCell() tells you whether a cell in arepeat region contains a comment.

The method | pfcTable.GetCellComponentM odel () returns the path to the assembly component model that is being
referenced by acell in arepeat region of adrawing table. It does not return avalid path if the cell attributeis set to "NO
DUPLICATE" or "NO DUPLICATE/LEVEL".

The method | pfcTable.GetCellRefer enceM odel () returns the reference component that is being referred to by acell in
arepeat region of adrawing table, even if cell attribute is set to "NO DUPLICATE" or "NO DUPLICATE/LEVEL".

The method | pfcTable.GetCellTopM odel() returns the top model that is being referred to by acell in arepeat region of
adrawing table, even if cell attribute is set to "NO DUPLICATE" or "NO DUPLICATE/LEVEL".

Use the method | pfcTableOwner .UpdateT ables() to update the repeat regionsin all the tables to account for changes
to the model. It is equivalent to the command Table, Repeat Region, Update.

Detail Items

The methods described in this section operate on detail items.

Inthe VB API you can create, delete and modify detail items, control their display, and query what detail items are
present in the drawing. The types of detail items available are:

o Draft Entities-Contain graphical items created in Pro/Engineer. The items are as follows:
- Arc
- Ellipse
- Line
- Point
- Polygon
- Spline

o Notes--Textual annotations

o Symbol Definitions--Contained in the drawing's symbol gallery.

o Symbol Instances--Instances of a symbol placed in adrawing.

o Draft Groups--Groups of detail items that contain notes, symbol instances, and draft entities.

o OLE objects-Object Linking and Embedding (OLE) objects embedded in the Pro/ENGINEER drawing file.

Listing Detail Items

Methods Introduced:
. IpfcModelltemOwner.Listltems()
. IpfcDetailltemOwner.ListDetailltems()
. IpfcModelltemOwner.GetltemByld()

. IpfcDetailltemOwner.CreateDetailltem()

The method | pfcM odelltemOwner .Listltems() returns alist of detail items specified by the parameter Type or returns
null if no detail items of the specified type are found.

The values of the parameter Type for detail items are;
o Epfcl TEM_DTL_ENTITY--Detail Entity
o EpfclTEM_DTL_NOTE--Detail Note
o Epfcl TEM_DTL_GROUP--Draft Group
o EpfclTEM_DTL_SYM_DEFINITION--Detail Symbol Definition
o Epfc ITEM_DTL_SYM_INSTANCE--Detail Symbol Instance
o EpfclTEM_DTL_OLE_OBJECT--Drawing embedded OLE object
If this parameter is set to null, then al the model items in the drawing are listed.

The method | pfcDetailltemOwner .ListDetailltems() also lists the detail items in the model. Pass the type of the detail
item and the sheet number that contains the specified detail items.

Set the input parameter Type to the type of detail item to be listed. Set it to null to return al the detail items. The input
parameter SheetNumber determines the sheet that contains the specified detail item. Pass null to search all the sheets.
Thisargument isignored if the parameter Typeis set to EpfcDETAIL_SYM_DEFINITION.

The method returns a sequence of detail items and returns a null if no items matching the input values are found.

The method | pfcM odell temOwner .GetltemByl d() returns a detail item based on the type of the detail item and its
integer identifier. The method returns anull if adetail item with the specified attributesis not found.

Creating a Detail Item
Methods Introduced:
. IpfcDetailltemOwner.CreateDetailltem()
. pfcDetail.pfcDetailGroupinstructions_Create

The method | pfcDetailltemOwner .CreateDetaill tem() creates a new detail item based on the instruction data object
that describes the type and content of the new detail item. The instructions data object is returned by the method
pfcDetail .pfcDetail Groupl nstructions_Create. The method returns the newly created detail item.

Detail Entities

A detail entity in the VB API isrepresented by the interface | pfcDetail Entityltem. It isachild of the | pfcDetailltem .

The interface | pfcDetail Entityl nstructions contains specific information used to describe a detail entity item.

Instructions
Methods and Properties Introduced:
. CCpfcDetailEntityinstructions.Create()
. IpfcDetailEntityInstructions.Geometry
. IpfcDetailEntitylnstructions.IsConstruction
. IpfcDetailEntitylnstructions.Color
. IpfcDetailEntitylnstructions.FontName
. IpfcDetailEntitylnstructions.Width
. IpfcDetailEntitylnstructions.View

The method CCpfcDetail Entityl nstructions.Create() creates an instructions object that describes how to construct a
detail entity, for use in the methods | pfcDetaill temOwner.CreateDetailltem(), | pfcDetail Symbol Defl tem.
CreateDetailltem(), and | pfcDetail Entityltem.M odify().

The instructions object is created based on the curve geometry and the drawing view associated with the entity. The
curve geometry describes the trgjectory of the detail entity in world units. The drawing view can be a model view
returned by the method | pfcM odel2D.List2DViews() or a drawing sheet background view returned by the method

I pfcSheetOwner .GetSheetBackgroundView(). The background view indicates that the entity is not associated with a
particular model view.

The method returns the created instructions object.

Note:
Changesto the values of a | pfcDetail Entitylnstructions object do not take effect until that instructions object is
used to modify the entity using pfcDetail .Detail Entityltem.Modify.

The property | pfcDetail Entityl nstructions.Geometry returns the geometry of the detail entity item.

For more information refer to Curve Descriptors.

The property | pfcDetail Entityl nstructions.| sConstruction returns avalue that specifies whether the entity isa
construction entity.

The property | pfcDetail Entityl nstructions.Color returns the color of the detail entity item.

The property | pfcDetail Entityl nstructions.FontName returns the line style used to draw the entity. The method
returns anull value if the default line style is used.

The property | pfcDetail Entityl nstructions.Width returns the value of the width of the entity line. The method returns

anull valueif the default line width is used.

The property | pfcDetail Entityl nstructions.View returns the drawing view associated with the entity. The view can
either be amodel view or a drawing sheet background view.

Exanpl e: CreateaDraft Li new thPredefined Col or

The following example shows a utility that creates a draft line in one of the colors predefined in Pro/ENGINEER.

Publ i c Sub cr eat eLi ne(ByRef sessi on As | pf cSessi on)
Di mnodel As | pf cModel
Di mr gbCol our As | pf cCol or RGB
Di mdr awi ng As | pf cDr awi ng
Di mcurr Sheet As | nt eger
Di mvi ewAs | pf cVi ew2D
Di mnousel As | pf cMbusesSt at us
Di mnmouse?2 As | pf cMbuseSt at us
Di mstart As | pf cPoi nt 3D
Di mfi ni sh As | pf cPoi nt 3D
Di mgeomAs | pf cLi neDescri pt or
Di mlinelnstructions As | pfcDetail Entitylnstructions

nodel =sessi on. Current Mbdel

I f model |'s Not hi ng Then
Thr owNewExcepti on(" Model not present™)

End | f

I f Not nodel . Type = Epf cModel Type. Epf cMDL_DRAW NG Then
Thr owNewExcept i on(" Moddel i s not drawi ng")

End | f

drawi ng = CType(nodel , | pf cDr awi ng)

curr Sheet =draw ng. Current Sheet Nunber
vi ew=dr awi ng. Get Sheet Backgr oundVi ew(cur r Sheet)

mousel =sessi on. U Get Next MbusePi ck(Epf cMbuseBut t on. Epf cMOUSE_BTN_LEFT)
start =nousel. Position

nmouse2 = sessi on. Ul Get Next MousePi ck(Epf cMouseBut t on. Epf cMOUSE_BTN_LEFT)
fini sh=nouse2. Position

geom= (NewCCpf cLi neDescriptor). Create(start, finish)

r gbCol our =sessi on. Get RGBFr onSt dCol or (Epf ¢St dCol or . Epf cCOLOR_QUI LT)

l'inelnstructions =(NewCCpfcDetail Entitylnstructions).Create(geom view)
i nel nstructions. Col or =rgbCol our

drawi ng. CreateDetail ltem(linel nstructions)
sessi on. Current W ndow. Repai nt ()

Cat ch ex As Excepti on

MsgBox(ex. Message. ToStri ng + Chr (13) +ex. StackTrace. ToStri ng)
End Try

End Sub
Detail Entities Information
Methods and Property Introduced:
. IpfcDetailEntityltem.Getlnstructions()
. IpfcDetailEntityltem.SymbolDef

The method | pfcDetail Entityltem.Getl nstructions() returns the instructions data object that is used to construct the
detail entity item.

The property | pfcDetail Entityl tem.Symbol Def returns the symbol definition that contains the entity. This property
returns anull value if the entity is not a part of a symbol definition.

Detail Entities Operations

Methods Introduced:
. IpfcDetailEntityltem.Draw()
. IpfcDetailEntityltem.Erase()
. IpfcDetailEntityltem.Modify()

The method | pfcDetail Entityltem.Draw() temporarily draws a detail entity item, so that it is removed during the next
draft regeneration.

The method | pfcDetail Entityltem.Erase() undraws a detail entity item temporarily, so that it is redrawn during the
next draft regeneration.

The method | pfcDetail Entityltem.M odify() modifies the definition of an entity item using the specified instructions
data object.

OLE Objects

An object linking and embedding (OLE) object is an external file, such as a document, graphicsfile, or video file that is
created using an external application and which can be inserted into another application, such as Pro/ENGINEER. You
can create and insert supported OLE objects into atwo-dimensional Pro/ENGINEER file, such as a drawing, report,
format file, layout, or diagram. The functions described in this section enable you to identify and access OLE objects
embedded in drawings.

Methods and Properties Introduced:

. IpfcDetailOLEObject.ApplicationType
. IpfcDetailOLEObject.Outline

. IpfcDetailOLEObject.Path

. IpfcDetailOLEObject.Sheet

The method | pfcDetail OL EObject.ApplicationType returns the type of the OLE object as a string, for example,
"M crosoft Wrd Docunent”.

The property | pfcDetail OL EObj ect.Outline returns the extent of the OLE object embedded in the drawing.

The property | pfcDetail OL EObject.Path returns the path to the external file for each OLE object, if it islinked to an
externd file.

The property | pfcDetail OL EObj ect.Sheet returns the sheet number for the OLE object.

Detail Notes

A detail notein the VB API isrepresented by the interface | pfcDetailNoteltem. It isachild of the | pfcDetail [tem
interface.

The interface | pfcDetailNotel nstructions contains specific information that describes a detail note.

Instructions

Methods and Properties Introduced:
. CCpfcDetailNotelnstructions.Create()
. IpfcDetailNotelnstructions.TextLines
. IpfcDetailNotelnstructions.IsDisplayed
. IpfcDetailNotelnstructions.IsReadOnly
. IpfcDetailNotelnstructions.IsMirrored
. IpfcDetailNotelnstructions.Horizontal
. IpfcDetailNotelnstructions.Vertical
. IpfcDetailNotelnstructions.Color
. IpfcDetailNotelnstructions.Leader
. IpfcDetailNotelnstructions.TextAngle

The method CCpfcDetailNotel nstructions.Create() creates a data object that describes how a detail note item should
be constructed when passed to the methods | pfcDetaill temOwner .CreateDetaill tem(), | pfcDetail Symbol Defl tem.
CreateDetailltem(), or | pfcDetail Notel tem.M odify(). The parameter inTextLines specifies the sequence of text line

data objects that describe the contents of the note.

Note:
Changesto the values of a I pfcDetailNotel nstructions object do not take effect until that instructions object is
used to modify the note using | pfcDetail Notel tem.Modify

The property | pfcDetailNotel nstructions. TextL ines returns the description of text line contentsin the note.

The property | pfcDetailNotel nstructions.l sDisplayed returns a boolean indicating if the note is currently displayed.
The property | pfcDetailNotel nstructions.| sSReadOnly determines whether the note can be edited by the user.

The property | pfcDetailNotel nstructions.IsMirrored determines whether the note is mirrored.

The property | pfcDetailNotel nstructions.Horizontal returns the value of the horizontal justification of the note.
The property | pfcDetailNotel nstructions.Vertical returns the value of the vertical justification of the note.

The property | pfcDetailNotel nstructions.Color returns the color of the detail note item. The method returns a null
value to represent the default drawing color.

The property | pfcDetailNotel nstructions.L eader returns the locations of the detail note item and information about the
leaders.

The property | pfcDetailNotel nstructions. TextAngle returns the value of the angle of the text used in the note. The
method returns a null value if the angleis 0.0.

Exanpl e: Create Drawi ng Not e at Speci fi ed Locati onwi t h Leader t o Surface and Surface Nane

The following example creates a drawing note at a specified location, with aleader attached to a solid surface, and
displays the name of the surface.

Publ i ¢ Sub cr eat eSur f aceNot e(ByRef sessi on As | pf cBaseSessi on)
Di mnodel As | pf chModel
Di mdr awi ng As | pf cDr awi ng
Di msel ecti ons As Cpf cSel ecti ons
Di msel ectionOptions As | pf cSel ecti onOpti ons
Di msel ect Surface As | pf cSel ecti on
Di mi temAs | pfcMbdel I tem
Di mnane As String
Di mt ext As | pf cDet ai | Text
Di mt exts As Cpf cDet ai | Texts
Di mt ext Li ne As | pf cDet ai | Text Li ne
Di mt ext Li nes As Cpf cDet ai | Text Li nes
Di mdr awi ngVi ewAs | pf cVi ew2D
Di moutlineAs|pfcQutline3D
Di mt ext Posi tion As | pf cPoi nt 3D
Di mposi tion As | pf cFreeAttachment
Di ml eadertoSurface As | pf cParanetri cAttachnent
Di mal | Attachnent s As | pfcDet ai | Leader s
Di matt achnment s As Cpf cAt t achment s
Di mnot el nstructi ons As | pfcDetai | Not el nstructi ons
Di mnot e As | pfcDetai | Noteltem

Try

nodel =sessi on. Current Mbdel

I f nodel |'s Not hi ng Then
Thr owNewExcepti on(" Mddel not present")

End | f

I f Not nodel . Type = Epf cModel Type. Epf cMDL_DRAW NG Then
Thr owNewExcepti on(" Mdel is not drawi ng")

End | f

dr awi ng = CType(nodel , | pf cDr awi ng)

sel ecti onOpti ons = (NewCCpf cSel ecti onOpti ons). Creat e("surface")
sel ecti onOptions. MaxNunBSel s =1
sel ecti ons =sessi on. Sel ect (sel ecti onOpti ons, Not hi ng)

sel ect Surface =sel ections. |tenm0)
item=sel ect Surface. Sel I tem

If (Not i tem Get Name I s Not hi ng) AndAl so Not
(item Get Nanme. ToString="")

Then

nane =item Get Nane. ToStri ng
El se

name =("Surfaceld: " +itemld. ToString)
End | f

t ext = (NewCCpf cDet ai | Text). Creat e(nane)

texts = NewCpfcDetail Texts

texts.lnsert(0, text)

text Li ne = (NewCCpf cDet ai | TextLi ne). Creat e(texts)
t ext Li nes = NewCpf cDet ai | Text Li nes

textLi nes. I nsert (0, textLine)

" Set | ocationof notetext. Thenoteisset tobeslightlybeyondview
"outlineboundary

drawi ngVi ew=sel ect Surf ace. Sel Vi ew2D
outline=draw ngView Qutline
textPosition=outline.ltem 1)

text Position. Set (0, textPosition.ltem(0) +0.25*
_(textPosition.ltem(0) - outline.ltem(0).Item0)))

text Position.Set(1, textPosition.ltem(1l) +0.25*
_textPosition.Item(1l) - outline.ltem(0).ltenm(1)))

posi ti on=(NewCCpf cFreeAttachnent). Create(textPosition)
position. View=draw ngVi ew

al | Attachment s = (NewCCpf cDet ai | Leaders). Create()

al | Attachnents. |temAttachnent =position

attachnent s = NewCpf cAtt achnent s
attachnents. I nsert (0, | eadertoSurface)

al | Attachnents. Leaders =attachnents

not el nstructi ons = (NewCCpf cDet ai | Not el nstructi ons). Creat e(textLines)
not el nstructions. Leader =al | Attachnents

note =drawi ng. CreateDetail I tem(notel nstructions)
not e. Show()

Cat ch ex As Excepti on
MsgBox(ex. Message. ToStri ng + Chr (13) +ex. StackTrace. ToStri ng)
Exit Sub
End Try
End Sub

Detail Notes Information
Methods and Property Introduced:
. IpfcDetailNoteltem.Getlnstructions()
. IpfcDetailNoteltem.SymbolDef
. IpfcDetailNoteltem.GetLineEnvelope()
. IpfcDetailNoteltem.GetModelReference()

The method | pfcDetailNotel tem.Getl nstructions() returns an instructions data object that describes how to construct
the detail note item. This method takes a ProBoolean argument, GiveParameter sAsNames, which determines whether
symbolic representations of parameters and drawing properties in the note text should be displayed, or the actual text
seen by the user should be displayed.

Note:
Pro/ENGINEER does not resolve and replace symbolic callouts for notes which are not displayed. Therefore, if
the note is not displayed or is hidden in alayer, the text retrieved may contain symbolic callouts, even when
GiveParametersAsNamesis false.

The property | pfcDetailNotel tem.Symbol Def returns the symbol definition that contains the note. The method returns
anull valueif the note is not a part of a symbol definition.

The method | pfcDetailNotel tem.GetL ineEnvel ope() determines the screen coordinates of the envel ope around the
detail note. This envelope is defined by four points. The following figure illustrates how the point order is determined.

The ordering of the pointsis maintained even if the notes are mirrored or are at an angle.

The method | pfcDetailNotel tem.GetM odel Refer ence() returns the model referenced by the parameterized text in a
note. The model is referenced based on the line number and the text index where the parameterized text appears.

Details Notes Operations

Methods Introduced:
. IpfcDetailNoteltem.Draw()
. IpfcDetailNoteltem.Show()
. IpfcDetailNoteltem.Erase()
. IpfcDetailNoteltem.Remove()
. IpfcDetailNoteltem.Modify()

The method | pfcDetailNotel tem.Draw() temporarily draws a detail note item, so that it is removed during the next
draft regeneration.

The method | pfcDetailNotel tem.Show() displays the note item, such that it is repainted during the next draft
regeneration.

The method | pfcDetailNotel tem.Erase() undraws a detail note item temporarily, so that it is redrawn during the next
draft regeneration.

The method | pfcDetailNotel tem.Remove() undraws a detail note item permanently, so that it is not redrawn during the
next draft regeneration.

The method | pfcDetailNotel tem.M odify() modifies the definition of an existing detail note item based on the
instructions object that describes the new detail note item.

Detail Groups

A detail group in the VB API is represented by the interface | pfcDetail Groupltem. Itisachild of the | pfcDetaill tem
interface.

The interface | pfcDetail Groupl nstructions contains information used to describe a detail group item.
Instructions
Method and Properties Introduced:

. CCpfcDetailGrouplnstructions.Create()

. IpfcDetailGroupinstructions.Name
. IpfcDetailGrouplinstructions.Elements
. IpfcDetailGrouplnstructions.IsDisplayed

The method CCpfcDetail Groupl nstructions.Create() creates an instruction data object that describes how to construct
adetail group for usein I pfcDetailltemOwner .CreateDetaill tem() and | pfcDetail Groupl tem.M odify().

Note:
Changesto the values of a | pfcDetail Groupl nstructions object do not take effect until that instructions object is
used to modify the group using IpfcDetail Groupltem.Modify.

The property | pfcDetail Groupl nstructions.Name returns the name of the detail group.

The property | pfcDetail Groupl nstructions.Elements returns the sequence of the detail items(notes, groups and
entities) contained in the group.

The property | pfcDetail Groupl nstructions.l sDisplayed returns whether the detail group is displayed in the drawing.
Detail Groups Information
Method Introduced:
. IpfcDetailGroupltem.Getinstructions()

The method | pfcDetail Groupltem.Getlnstructions() gets a data object that describes how to construct a detail group
item. The method returns the data object describing the detail group item.

Detail Groups Operations

Methods Introduced:
. IpfcDetailGroupltem.Draw()
. IpfcDetailGroupltem.Erase()
. IpfcDetailGroupltem.Modify()

The method | pfcDetail Groupltem.Draw() temporarily draws a detail group item, so that it is removed during the next
draft generation.

The method | pfcDetail Groupltem.Erase() temporarily undraws a detail group item, so that it is redrawn during the
next draft generation.

The method | pfcDetail Groupltem.M odify() changes the definition of a detail group item based on the data object that
describes how to construct adetail group item.

Exanpl e: Create NewG oup of Itens

The following example creates a group from a set of selected detail items.

Publ i ¢ Sub cr eat eG oup(ByRef sessi on As | pf cBaseSessi on, ByVal
groupNarne As Stri ng)

Di msel ecti ons As Cpf cSel ecti ons

Di msel ectionOptions As | pfcSel ecti onOpti ons

Di mitens As CpfcDetail ltens

Di mi As | nt eger

Di mdr awi ng As | pf cDr awi ng

Di mgr oupl nstructions As | pfcDet ai | G oupl nstructi ons

sel ecti onOpti ons = (NewCCpf cSel ecti onOpti ons). Create("any_note, draft_ent,
dtl_synbol ")
sel ecti ons =sessi on. Sel ect (sel ecti onOpti ons, Not hi ng)

If sel ections|s NothingO selections. Count =0 Then
Thr owNewException("No Detail temsel ected")
End | f

itens =NewCpfcDetailltens

For i =0 To sel ections. Count - 1
items.Insert(itens. Count, selections.ltem(i).Sellten)
Next

groupl nstructi ons =(NewCCpf cDet ai | G oupl nstructions). Create(groupNane, itens)
drawi ng. CreateDetail I tem(groupl nstructions)
For i =0 To sel ections. Count - 1
sel ections. ltem(i). UnH ghlight()
Next
sessi on. Current W ndow. Repai nt ()

Cat ch ex As Excepti on
MsgBox(ex. Message. ToStri ng + Chr (13) +ex. StackTrace. ToStri ng)

End Try
End Sub

Detail Symbols

Detail Symbol Definitions

A detail symbol definition in the VB API is represented by the interface | pfcDetail Symbol Defltem. It isachild of the
I pfcDetailltem interface.

The interface | pfcDetail Symbol Defl nstructions contains information that describes a symbol definition. It can be used
when creating symbol definition entities or while accessing existing symbol definition entities.

Instructions
Methods and Properties Introduced:
. CCpfcDetailSymbolDefinstructions.Create()
. IpfcDetailSymbolDeflnstructions.SymbolHeight
. IpfcDetailSymbolDefinstructions.HasElbow
. IpfcDetailSymbolDeflnstructions.IsTextAngleFixed
. IpfcDetailSymbolDeflnstructions.ScaledHeight
. IpfcDetailSymbolDeflnstructions.Attachments
. IpfcDetailSymbolDeflnstructions.FullPath
. IpfcDetailSymbolDeflnstructions.Reference

The method CCpfcDetail Symbol Defl nstructions.Create() creates an instruction data object that describes how to
create a symbol definition based on the path and name of the symbol definition. The instructions object is passed to the
methods pfcDetailltemOwner .CreateDetaill tem and pfcDetail Symbol Defltem.M odify.

Note:
Changesto the values of a IpfcDetail Symbol DefInstructions object do not take effect until that instructions
object is used to modify the definition using the method pfcDetail.Detail Symbol Defltem.Modify.

The property | pfcDetail Symbol Defl nstructions.SymbolHeight returns the value of the height type for the symbol
definition. The symbol definition height options are as follows:

o EpfcSYMDEF_FIXED--Symbol height isfixed.
o EpfcSYMDEF_VARIABLE--Symbol height is variable.
o EpfcSYMDEF_RELATIVE_TO_TEXT--Symbol height is determined relative to the text height.

The property | pfcDetail Symbol Defl nstructions.HasElbow determines whether the symbol definition includes an
elbow.

The property | pfcDetail Symbol Defl nstructions.| sTextAngleFixed returns whether the text of the angleis fixed.
The property | pfcDetail Symbol Defl nstructions.ScaledHeight returns the height of the symbol definition in inches.

The property | pfcDetail Symbol Defl nstructions.Attachments returns the val ue of the sequence of the possible
instance attachment points for the symbol definition.

The property | pfcDetail Symbol Defl nstructions.FullPath returns the value of the complete path of the symbol
definition file.

The property | pfcDetail Symbol Defl nstructions.Refer ence returns the text reference information for the symbol
definition. It returns anull value if the text reference is not used. The text reference identifies the text item used for a
symbol definition which has a height type of SYMDEF_TEXT_RELATED.

Detail Symbol Definitions Information

Methods Introduced:
. IpfcDetailSymbolDefltem.ListDetailltems()
. IpfcDetailSymbolDefltem.GetInstructions()

The method | pfcDetail Symbol Defltem.ListDetaill tems() lists the detail itemsin the symbol definition based on the
type of the detail item.

The method | pfcDetail Symbol Defltem.Getl nstructions() returns an instruction data object that describes how to
construct the symbol definition.

Detail Symbol Definitions Operations

Methods Introduced:
. IpfcDetailSymbolDefltem.CreateDetailltem()
. IpfcDetailSymbolDefltem.Modify()

The method | pfcDetail Symbol Defltem.CreateDetailltem() creates a detail item in the symbol definition based on the
instructions data object. The method returns the detail item in the symbol definition.

The method | pfcDetail Symbol Defltem.M odify() modifies a symbol definition based on the instructions data object
that contains information about the modifications to be made to the symbol definition.

Retrieving Symbol Definitions
Methods Introduced:
. IpfcDetailltemOwner.RetrieveSymbolDefinition()
The method | pfcDetailltemOwner .RetrieveSymbol Definition() retrieves a symbol definition from the disk.
The input parameters of this method are:
o FileName--Name of the symbol definition file
o FilePath--Path to the symbol definition file. It is relative to the path specified by the option "pro_symbol_dir" in the
configuration file. A null value indicates that the function should search the current directory.
o Version--Numerica version of the symbol definition file. A null value retrieves the latest version.

o UpdateUnconditionally--True if Pro/ENGINEER should update existing instances of this symbol definition, or falseto
quit the operation if the definition exists in the model.

The method returns the retrieved symbol definition.
Exanpl e: Creat e Synbol Definition

The following example creates a symbol definition which contains four line entities forming a box, a note at the middle
of the box, and a free attachment.

Publ i ¢ Sub cr eat eBoxSynbol Def (ByRef sessi on As | pf cBaseSessi on, _
ByVal nanme As String, ByVal text As String)
Di mnodel As | pf cModel

Di mdr awi ng As | pf cDr awi ng

Di msynbol | nstructi ons As | pf cDet ai | Synbol Def I nstructi ons
Di mori gi n As Cpf cPoi nt 3D

Di matt achment As | pf cSynbol Def Att achment

Di mat t achnment s As Cpf cSynbol Def Att achnent s
Di msynbol Def As | pf cDet ai | Synbol Def It em

Di mt ext Hei ght As Doubl e

Di mmatri x As | pf cTr ansf or nBD

Di mdef Hei ght As Doubl e

Di mr gbCol our As | pf cCol or RGB

Di mendl As Cpf cPoi nt 3D

Di mend2 As Cpf cPoi nt 3D

nmodel =sessi on. Current Model

| f nodel |'s Not hi ng Then
Thr owNewExcepti on(" Moddel not present™)

End | f

I f Not nodel . Type = Epf cModel Type. Epf cMDL_DRAW NG Then
Thr owNewExcepti on(" Model is not draw ng")

End | f

dr awi ng = CType(nodel , | pf cDr awi ng)

synbol I nstructi ons = (NewCCpf cDet ai | Synbol Def | nstructi ons). Creat e(nane)
synbol I nstructi ons. Hei ght = Epf cSynbol Def Hei ght . Epf ¢ SYMDEF_FI XED

ori gi n = NewCpf cPoi nt 3D
origin.Set(0, 0.0)
origin.Set(1, 0.0)
origin.Set(2, 0.0)

att achnent = (NewCCpf cSynbol Def Att achnment). Creat e _(Epf cSynbol Def At t achnment Type.
Epf cSYMDEFATTACH_FREE, ori gi n)

at t achnment s = NewCpf cSynbol Def Att achnment s
attachnents. I nsert (0, attachnent)
synbol I nstructions. Attachments =attachnents

t ext Hei ght =dr awi ng. Text Hei ght
mat ri x =draw ng. Get Sheet Tr ansf or m(dr awi ng. Cur r ent Sheet Nunber)
def Hei ght =textHeight / matrix. Matrix.ltem(0, 0)

r gbCol our =sessi on. Get RGBFr onSt dCol or (Epf ¢St dCol or . Epf cCOLOR_QUI LT)

"Createfour linestoformabox, twi cethedefault text height,
"aroundtheorigin

endl = New Cpf cPoi nt 3D
end2 = New Cpf cPoi nt 3D
endl. Set (0, -def Hei ght)
endl. Set (1, -def Hei ght)
endl. Set (2, 0.0)

end2. Set (0, def Hei ght)
end2. Set (1, - def Hei ght)
end2. Set (2, 0.0)

addLi ne(synbol Def, endl, end2, rghCol our)

end2. Set (0, -def Hei ght)
end2. Set (1, def Hei ght)

addLi ne(synbol Def, endl1, end2, rgbCol our)

endl. Set (0, def Hei ght)
endl. Set (1, def Hei ght)

addLi ne(synbol Def, endl1, end2, rgbCol our)

end2. Set (0, def Hei ght)
end2. Set (1, - def Hei ght)

addLi ne(synbol Def, endl, end2, rghCol our)

addNot e(synbol Def, origin, text)

Cat ch ex As Excepti on
MsgBox(ex. Message. ToStri ng + Chr (13) +ex. StackTrace. ToStri ng)
Exi t Sub
End Try
End Sub

Pri vat e Sub addLi ne(ByRef synDef As | pf cDet ai | Synbol Def | t em
_ByVal start As | pfcPoi nt 3D,
ByVal finish As | pfcPoi nt 3D,
_ByVal col our As | pf cCol or RGB)

Di mgeomAs | pf cLi neDescri ptor
Di mlinelnstructions As | pfcDetail Entitylnstructions

I inelnstructions =(NewCCpfcDetail Entitylnstructions). Create(geom Not hi ng)
i nel nstructions. Col or =col our

symDef . CreateDetail Iten(linel nstructions)

End Sub

Pri vat e Sub addNot e(ByRef synDef As | pf cDet ai | Synbol Def | t em
_ByVal | ocation As | pf cPoi nt 3D,
_ByVal nessage As String)

Di mt ext As | pf cDet ai | Text

Di mt exts As Cpf cDet ai | Texts

Di mt ext Li ne As | pf cDet ai | Text Li ne

Di mt ext Li nes As Cpf cDet ai | Text Li nes

Di mposi tion As | pf cFreeAtt achment

Di mal | Attachnments As | pfcDet ai | Leader s

Di mnot el nstructi ons As | pfcDet ai | Not el nstructi ons

t ext = (NewCCpf cDet ai | Text). Creat e(nessage)

texts = NewCpfcDetail Texts

texts.lnsert(0, text)

t ext Li ne = (NewCCpf cDet ai | Text Li ne) . Creat e(texts)
t ext Li nes = NewCpf cDet ai | Text Li nes
textLines.Insert(0, textLine)

al | Attachnments = (NewCCpf cDet ai | Leaders). Creat e()
all Attachnments. |temAttachnent =position

not el nst ructi ons = (NewCCpf cDet ai | Not el nstructi ons). Creat e(textLines)

not el nstructions. Leader =al | Attachnents

not el nstructions. Hori zont al = EpfcHori zontal Justification. Epf cH JUSTI FY_CENTER
not el nstructions. Vertical =EpfcVertical Justification. EpfcV_JUSTI FY_M DDLE
symDef . Creat eDet ai |l I t en{not el nstructi ons)

End Sub

Detail Symbol Instances

A detail symbol instanceinthe VB API is represented by the interface | pfcDetail Symboll nstltem. It isachild of the
| pfcDetaill tem interface.

The interface | pfcDetail Symboll nstl nstructions contains information that describes a symbol instance. It can be used
when creating symbol instances and while accessing existing groups.

Instructions
Methods and Properties Introduced:

. CCpfcDetailSymbolinstinstructions.Create()

) [m} [m) [m} [m) [m}

. IpfcDetailSymbolinstinstructions.IsDisplayed

. IpfcDetailSymbolinstinstructions.Color

. IpfcDetailSymbolinstinstructions.SymbolDef

. IpfcDetailSymbolinstinstructions.AttachOnDefType
. IpfcDetailSymbolinstinstructions.DefAttachment

. IpfcDetailSymbolinstinstructions.InstAttachment
. IpfcDetailSymbolinstinstructions.Angle

. IpfcDetailSymbolinstinstructions.ScaledHeight

. IpfcDetailSymbolinstinstructions.TextValues

. IpfcDetailSymbolinstinstructions.CurrentTransform
. IpfcDetailSymbolinstinstructions.SetGroups()

The method CCpfcDetail Symboll nstlnstructions.Create() creates a data object that contains information about the
placement of a symbol instance.

Note:
Changesto the values of a I pfcDetail Symbollnstlnstructions object do not take effect until that instructions
object is used to modify the instance using | pfcDetail SymbolInstitem.Modify.

The property | pfcDetail Symboll nstlnstructions.| sDisplayed returns a value that specifies whether the instance of the
symbol is displayed.

The property | pfcDetail Symboll nstinstructions.Color returns the color of the detail symbol instance. A null value
indicates that the default drawing color is used.

The property | pfcDetail Symboll nstl nstructions.Symbol Def returns the symbol definition used for the instance.

The property | pfcDetail Symboll nstlnstructions. AttachOnDef Type returns the attachment type of the instance. The
method returns a null value if the attachment represents a free attachment. The attachment options are as follows:

EpfcSYMDEFATTACH_FREE--Attachment on afree point.

EpfcSYMDEFATTACH_LEFT_L EADER--Attachment via aleader on the |eft side of the symbol.
EpfcSYMDEFATTACH_RIGHT_LEADER-- Attachment via aleader on the right side of the symbol.
EpfcSYMDEFATTACH_RADIAL_LEADER--Attachment via aleader at aradial location.
EpfcSYMDEFATTACH_ON_ITEM--Attachment on an item in the symbol definition.
EpfcSYMDEFATTACH_NORMAL_TO_ITEM--Attachment normal to an item in the symbol definition.

The property | pfcDetail Symboll nstl nstructions.Def Attachment returns the value that represents the way in which the
instance is attached to the symbol definition.

The property | pfcDetail Symboll nstinstructions. nstAttachment returns the value of the attachment of the instance
that includes location and leader information.

The property | pfcDetail Symboll nstlnstructions.Angle returns the value of the angle at which the instance is placed.

The method returns anull value if the value of the angle is O degrees.

The property | pfcDetail Symboll nstinstructions.ScaledHeight returns the height of the symbol instance in the owner
drawing or model coordinates. Thisvalueis consistent with the height value shown for a symbol instance in the
Properties dialog box in the Pro/ENGINEER User Interface.

Note:
The scaled height obtained using the above property is partially based on the properties of the symbol definition
assigned using the property pfcDetail.Detail Symbol | nstlnstructions.GetSymbol Def. Changing the symbol
definition may change the calculated value for the scaled height.

The property | pfcDetail Symboll nstlnstructions. TextValues returns the sequence of variant text values used while
placing the symbol instance.

The property | pfcDetail Symboll nstlnstructions.CurrentTransform returns the coordinate transformation matrix to
place the symbol instance.

The method | pfcDetail Symboll nstl nstructions.SetGroups() sets the | pfcDetail Symbol GroupOption argument for
displaying symbol groupsin the symbol instance. This argument can have the following values:

o EpfcDETAIL_SYMBOL_GROUP_INTERACTIVE--Symbol groups are interactively selected for display. Thisisthe
default value in the GRAPHICS mode.

EpfcDETAIL_SYMBOL_GROUP_ALL--All non-exclusive symbol groups are included for display.
EpfcDETAIL_SYMBOL_GROUP_NONE--None of the non-exclusive symbol groups are included for display.
EpfcDETAIL_SYMBOL_GROUP_CUSTOM--Symbol groups specified by the application are displayed.

)

]

)

Refer to the section Detail Symbol Groups for more information on detail symbol groups.
Detail Symbol Instances Information
Method Introduced:
. IpfcDetailSymbolinstitem.GetInstructions()

The method | pfcDetail Symboll nstltem.Getl nstructions() returns an instructions data object that describes how to
construct a symbol instance. This method takes a ProBoolean argument, G vePar anet er sAsNanes, which determines

whether symbolic representations of parameters and drawing properties in the symbol instance should be displayed, or
the actual text seen by the user should be displayed.

Detail Symbol Instances Operations

Methods Introduced:
. IpfcDetailSymbolinstitem.Draw()
. IpfcDetailSymbolinstlitem.Erase()
. IpfcDetailSymbolinstitem.Show()
. IpfcDetailSymbolinstitem.Remove()
. IpfcDetailSymbolinstitem.Modify()

The method | pfcDetail Symboll nstltem.Draw() draws a symbol instance temporarily to be removed on the next draft
regeneration.

The method | pfcDetail Symboll nstltem.Erase() undraws a symbol instance temporarily from the display to be redrawn
on the next draft generation.

The method | pfcDetail Symboll nstltem.Show() displays a symbol instance to be repainted on the next draft
regeneration.

The method | pfcDetail Symboll nstltem.Remove() deletes a symbol instance permanently.

The method | pfcDetail Symboll nstltem.M odify() modifies a symbol instance based on the instructions data object that
contains information about the modifications to be made to the symbol instance.

Exanpl e: Create aFreel nstance of Synbol Definition

" Pl ace free synbol i nstance

"Function : placeSynbol | nstance

"Purpose : Thisfunctioncreatesafreeinstance of asynbol

' definition. Asynbol isplacedwithnol eaders at a
speci fiedl ocati on.

Publ i ¢ Sub pl aceSynbol I nst ance(ByRef sessi on As | pf cSessi on, _
ByVal synbol Nane As Stri ng)

D mnodel As | pf cModel

Di mdr awi ng As | pf cDr awi ng

Di msynbol DefinitionAs | pfcDetail Synmbol Defltem

Di mpoi nt As Cpf cPoi nt 3D

Di mnouse As | pf cMouseSt at us

Di msym nstructions As | pfcDet ai | Synbol | nst1nstructi ons
Di mposi tion As | pf cFreeAt t achnent

Di mal | Attachnent s As | pf cDet ai | Leader s

Di msym t emAs | pf cDet ai | Synbol I nstltem

nodel =sessi on. Current Mbdel

I f nodel I's Not hi ng Then
Thr owNewExcept i on(" Mddel not present™)

End | f

I f Not nodel . Type = Epf cMbdel Type. Epf cMDL_DRAW NG Then
Thr owNewExcepti on("Mdel is not drawi ng")

EndIf

dr awi ng = CType(nodel , | pf cDr awi ng)

synbol Definiti on=draw ng. Retri eveSynbol Definition
(synbol Nane, "./", _Nothing,
_Not hi ng)

poi nt = New Cpf cPoi nt 3D

nmouse = sessi on. Ul Get Next MousePi ck(Epf cMouseBut t on. Epf cMOUSE_BTN_LEFT)
poi nt =nouse. Posi tion

al | Attachment s = (NewCCpf cDet ai | Leaders). Creat e()
al | Attachnents. |temAttachnent =position

sym nstructions.InstAttachnment =al | Attachnment s

sym tem=draw ng. CreateDetail lten(sym nstructions)
sym t em Show()

Cat ch ex As Excepti on
MsgBox(ex. Message. ToStri ng + Chr (13) +ex. StackTrace. ToStri ng)
End Try
End Sub

Exanpl e: Create aFreelnstance of a Synbol Definiti onw thdraw ngunit heights, variabl etext and
groups

" Pl ace detail synbol i nstance

"Function : placeDetail Synbol

"Purpose : Thisfunctioncreatesafreeinstance of asynbol

' definitionw thdraw ngunit hei ghts, vari abl etext and
groups. Asynbol isplacedwithnol eaders at a

speci fiedl ocati on.

Publ i ¢ Sub pl aceDet ai | Synbol (ByRef sessi on As | pf cSessi on, ByVal
groupNane As String, _
Opti onal ByVal vari abl eText As String=
Not hi ng, _
Opti onal ByVal hei ght As Doubl e =0)

Di mnodel As | pf cModel

Di mdr awi ng As | pf cDr awi ng

Di msynbol DefinitionAs | pfcDetail Synbol Defltem

Di mpoi nt As Cpf cPoi nt 3D

Di mnouse As | pf cMbuseSt at us

Di msym nstructions As | pfcDet ai | Synbol | nstlnstructi ons
Di mposi tion As | pf cFreeAttachment

Dimal | Attachnments As | pfcDetai | Leaders

Di msym t emAs | pf cDet ai | Synbol I nstltem

Di mvar Text s As | pf cDet ai | Vari ant Text s
Di mvar Text As | pf cDet ai | Vari ant Text

Di mal | Groups As | pf cDet ai | Synbol Gr oups
Di mgr oups As | pf cDet ai | Synbol G oups
Di mgr oup As | pf cDet ai | Synbol Group

nodel =session. Current Mbdel

I f nodel |'s Not hi ng Then
Thr owNewExcepti on(" Moddel not present™)

End | f

I f Not nodel . Type = Epf cModel Type. Epf cMDL_DRAW NG Then
Thr owNewExcepti on(" Model is not drawi ng")

End|f

dr awi ng = CType(nodel , | pf cDr awi ng)

synbol Defi niti on=draw ng. Retri eveSynbol Definition
("detail _synbol _example", _
ll. /ll, _
Not hi ng, Not hi ng)

poi nt = NewCpf cPoi nt 3D

nouse =

sessi on. Ul Get Next MousePi ck(Epf cMbuseBut t on. Epf cMOUSE_BTN_LEFT)
poi nt = nouse. Posi tion

sym nstructions = (New
CCpf cDet ai | Synbol I nst 1 nstructions). Creat e(synbol Definition)

I f hei ght >0 Then
sym nstructions. Scal edHei ght =15. 5
End | f

I f Not vari abl eText | s Not hi ng Then
var Text = (NewCCpf cDet ai | Vari ant Text). Creat e(" VAR_TEXT",
vari abl eText)
var Text s = NewCpf cDet ai | Vari ant Text s
var Text s. Append(var Text)

sym nstructions. Text Val ues =var Text s
End | f

Sel ect Case gr oupNane
Case "ALL"
sym nstructions. Set G oups(Epf cDet ai | Synbol G oupOpti on. Epf cDETAI L_SYMBOL _

GROUP_ALL, Not hi ng)
Case " NONE"

sym nstructions. Set G oups(Epf cDet ai | Synbol GroupQOpti on. Epf cDETAI L_SYMBOL_
GROUP_NONE, Not hi ng)
Case El se

al | G oups =sym nstructions. Synbol Def. Li st Subgr oups

group =get G oup(al | G oups, groupNane)

I f Not group | s Not hi ng Then
gr oups = New Cpf cDet ai | Synbol G oups
groups. Append(gr oup)

sym nstructions. Set G oups(Epf cDet ai | Synmbol G oupOpt i on. Epf cDETAI L_SYMBOL _
GROUP_CUSTOM gr oups)
End I f
End Sel ect

al | Attachment s = (NewCCpf cDet ai | Leaders). Create()
all Attachnments. |temAttachnment =position

sym nstructions. | nstAttachnment =all Attachments

sym tem=draw ng. CreateDetail lten(sym nstructions)
sym t em Show()

Cat ch ex As Excepti on
MsgBox(ex. Message. ToStri ng + Chr (13) +ex. StackTrace. ToStri ng)
End Try

End Sub

Pri vat e Functi on get G oup(ByRef groups As Cpf cDet ai | Synbol Gr oups,
ByVal groupNanme As String) As | pfcDetai |l Synbol G oup
Di mgr oup As | pf cDet ai | Synbol G oup
Di mgr oupl nstrs As | pf cDet ai | Synbol G oupl nst ructi ons
Di mi As | nt eger

| f groups. Count =0 Then
Ret ur n Not hi ng
End | f

For i =0 To groups. Count - 1

group =groups. ltenm(i)
grouplnstrs =group. Getlnstructions()

I f groupl nstrs. Nanme = groupName Then
Ret ur n gr oup
End | f

Next
Ret ur n Not hi ng
End Functi on
Detail Symbol Groups

A detail symbol group inthe VB AP is represented by the interface | pfcDetail Symbol Group. It isachild of the
I pfcObject interface. A detail symbol group is accessible only as a part of the contents of a detail symbol definition or
instance.

The interface | pfcDetail Symbol Gr oupl nstr uctions contains information that describes a symbol group. It can be used
when creating new symbol groups, or while accessing or modifying existing groups.

Instructions

Methods and Properties Introduced:
. CCpfcDetailSymbolGrouplnstructions.Create()
. IpfcDetailSymbolGrouplnstructions.ltems
. IpfcDetailSymbolGrouplnstructions.Name

The method CCpfcDetail Symbol Groupl nstructions.Create() creates the | pfcDetail Symbol Groupl nstructions data
object that stores the name of the symbol group and the list of detail items to be included in the symbol group.

Note:
Changes to the values of the IpfcDetail Symbol Groupl nstructions data object do not take effect until this object
is used to modify the instance using the method | pfcDetail Symbol Group.Modify.

The property | pfcDetail Symbol Groupl nstructions.ltems returns the list of detail items included in the symbol group.
The property | pfcDetail Symbol Groupl nstructions.Name returns the name of the symbol group.
Detail Symbol Group Information
Methods Introduced!:
. IpfcDetailSymbolGroup.Getinstructions()
. IpfcDetailSymbolGroup.ParentGroup
. IpfcDetailSymbolGroup.ParentDefinition
. IpfcDetailSymbolGroup.ListChildren()
. IpfcDetailSymbolDefltem.ListSubgroups()
. IpfcDetailSymbolDefltem.IsSubgroupLevelExclusive()

. IpfcDetailSymbolinstitem.ListGroups()

The method | pfcDetail Symbol Group.Getlnstructions() returns the | pfcDetail Symbol Groupl nstructions data object
that describes how to construct a symbol group.

The method | pfcDetail Symbol Group.ParentGroup returns the parent symbol group to which a given symbol group
belongs.

The method | pfcDetail Symbol Group.Par entDefinition returns the symbol definition of a given symbol group.
The method | pfcDetail Symbol Group.ListChildren() lists the subgroups of a given symbol group.

The method | pfcDetail Symbol Defltem.ListSubgroups() lists the subgroups of a given symbol group stored in the
symbol definition at the indicated level.

The method | pfcDetail Symbol Defltem.| sSubgr oupL evel Exclusive() identifiesif the subgroups of a given symbol
group stored in the symbol definition at the indicated level are exclusive or independent. If groups are exclusive, only
one of the groups at this level can be active in the model at any time. If groups are independent, any humber of groups
can be active.
The method | pfcDetail Symboll nstltem.ListGroups() lists the symbol groups included in a symbol instance. The
| pfcSymbol GroupFilter argument determines the types of symbol groups that can be listed. It takes the following
values:

o EpfcDTLSYMINST_ALL_GROUPS--Retrieves all groupsin the definition of the symbol instance.

o EpfcDTLSYMINST _ACTIVE_GROUPS--Retrieves only those groups that are actively shown in the symbol instance.
o EpfcDTLSYMINST _INACTIVE _GROUPS--Retrieves only those groups that are not shown in the symbol instance.

Detail Symbol Group Operations
Methods Introduced:
. IpfcDetailSymbolGroup.Delete()
. IpfcDetailSymbolGroup.Modify()
. IpfcDetailSymbolDefltem.CreateSubgroup()
. IpfcDetailSymbolDefltem.SetSubgroupLevelExclusive()
. IpfcDetailSymbolDefltem.SetSubgroupLevellndependent()

The method | pfcDetail Symbol Group.Delete() del etes the specified symbol group from the symbol definition. This
method does not delete the entities contained in the group.

The method | pfcDetail Symbol Group.M odify() modifies the specified symbol group based on the
I pfcDetail Symbol Groupl nstructions data object that contains information about the modifications that can be made to
the symbol group.

The method | pfcDetail Symbol Defl tem.Cr eateSubgroup() creates a new subgroup in the symbol definition at the
indicated level below the parent group.

The method | pfcDetail Symbol Defltem.Set Subgr oupL evel Exclusive() makes the subgroups of a symbol group
exclusive at theindicated level in the symbol definition.

Note:
After you set the subgroups of a symbol group as exclusive, only one of the groups at the indicated level can be

active in the model at any time.

The method | pfcDetail Symbol Defltem.Set Subgr oupL evel | ndependent () makes the subgroups of a symbol group
independent at the indicated level in the symbol definition.

Note:

After you set the subgroups of a symbol group as independent, any number of groups at the indicated level can
be active in the model at any time.

Detail Attachments
A detail attachment in VB API is represented by the interface | pfcAttachment. It is used for the following tasks:

o Theway in which a drawing note or a symbol instanceis placed in adrawing.
o Theway in which aleader on a drawing note or symbol instance is attached.

Method Introduced:
. IpfcAttachment.GetType()

The method | pfcAttachment.Get Type() returns the | pfcAttachment Type object containing the types of detall
attachments. The detail attachment types are as follows:

o EpfcATTACH_FREE--The attachment is at afree point possibly with respect to a given drawing view.

o EpfcATTACH_PARAMETRIC--The attachment is to a point on a surface or an edge of a solid.

o EpfcATTACH_OFFSET--The attachment is offset to another drawing view, to amodel item, or to a 3D model
annotation.

o EpfcATTACH_TYPE_UNSUPPORTED--The attachment is to an item that cannot be represented in PFC at the current
time. However, you can still retrieve the location of the attachment.

Free Attachment

The EpfcATTACH_FREE detail attachment type is represented by the interface | pfcFreeAttachment. It isachild of
the | pfcAttachment interface.

Properties Introduced:
. IpfcFreeAttachment.AttachmentPoint

. IpfcFreeAttachment.View

The property | pfcFreeAttachment.AttachmentPoint returns the attachment point. Thislocation isin screen
coordinates for drawing items, symbol instances and surface finishes on flat-to-screen annotation planes, and in model
coordinates for symbols and surface finishes on 3D model annotation planes.

The method | pfcFreeAttachment.View returns the drawing view to which the attachment is related. The attachment
point is relative to the drawing view, that is the attachment point moves when the drawing view is moved. This method
returnsaNULL value, if the detail attachment is not related to a drawing view, but is placed at the specified location in
the drawing shest, or if the attachment is offset to amodel item or to a 3D model annotation.

Parametric Attachment

The EpfcATTACH_PARAMETRIC detail attachment type is represented by the interface | pfcParametricAttachment.
It isachild of the | pfcAttachment interface.

Property Introduced:
. IpfcParametricAttachment.AttachedGeometry

The property | pfcParametricAttachment.AttachedGeometry returns the | pfcSelection object representing the item to
which the detail attachment is attached. This includes the drawing view in which the attachment is made.

Offset Attachment

The EpfcATTACH_OFFSET detail attachment type is represented by the interface | pfcOffsetAttachment. It isachild
of the I pfcAttachment interface.

Properties Introduced:
. IpfcOffsetAttachment.AttachedGeometry
. IpfcOffsetAttachment.AttachmentPoint

The property | pfcOffsetAttachment.AttachedGeometry returns the | pfcSel ection object representing the item to
which the detail attachment is attached. This includes the drawing view where the attachment is made, if the offset
referenceisin amodel.

The property | pfcOffsetAttachment.AttachmentPoint returns the attachment point. Thislocation isin screen
coordinates for drawing items, symbol instances and surface finishes on flat-to-screen annotation planes, and in model
coordinates for symbols and surface finishes on 3D model annotation planes. The distance from the attachment point to
the location of the item to which the detail attachment is attached is saved as the offset distance.

Unsupported Attachment

The EpfcATTACH_TYPE_UNSUPPORTED detail attachment type is represented by the interface
I pfcUnsupportedAttachment. It isachild of the | pfcAttachment interface.

Property Introduced:
. IpfcUnsupportedAttachment.AttachmentPoint

The property | pfcUnsupportedAttachment.AttachmentPoint returns the attachment point. Thislocation isin screen
coordinates for drawing items, symbol instances and surface finishes on flat-to-screen annotation planes, and in model
coordinates for symbols and surface finishes on 3D model annotation planes.

Solid

Most of the objects and methods in the VB API are used with solid models (parts and assemblies). Because solid
objectsinherit from the interface | pf cMbdel , you can use any of the | pf cMbdel methodson any | pf cSol i d,
| pfcPart, or | pf cAssenbl y object.

Topic

Getting a Solid Object
Solid Information
Solid Operations
Solid Units

Mass Properties
Annotations

Cross Sections
Materials

Getting a Solid Object

Methods and Properties Introduced:
. IpfcBaseSession.CreatePart()
. IpfcBaseSession.CreateAssembly()
. IpfcComponentPath.Root
. IpfcComponentPath.Leaf
. IpfcMFG.GetSolid()

The methods | pfcBaseSession.CreatePart() and | pfcBaseSession.Cr eateAssembly() create new solid models
with the names you specify.

The properties | pfcComponentPath.Root and | pfcComponentPath.L eaf specify the solid objects that make up
the component path of an assembly component model. Y ou can get a component path object from any component
that has been interactively selected.

The method | pfcM FG.Get Solid() retrieves the storage solid in which the manufacturing model's features are
placed. In order to create a UDF group in the manufacturing model, call the method | pfcSolid.CreateUDFGroup
() on the storage solid.

Solid Information

Properties Introduced:

. IpfcSolid.RelativeAccuracy

. IpfcSolid.AbsoluteAccuracy

Y ou can set the relative and absol ute accuracy of any solid model using these methods. Relative accuracy is
relative to the size of the solid. For example, arelative accuracy of .01 specifies that the solid must be accurate to
within 1/100 of its size. Absolute accuracy is measured in absolute units (inches, centimeters, and so on).

Note:
For a change in accuracy to take effect, you must regenerate the model.

Solid Operations
Methods and Properties Introduced:
. IpfcSolid.Regenerate()
. CCpfcRegeninstructions.Create()
. IpfcRegenlnstructions.AllowFixUl
. IpfcRegenlnstructions.ForceRegen
. IpfcRegenlinstructions.FromFeat
. IpfcRegenlinstructions.RefreshModelTree
. IpfcRegenlnstructions.ResumeExcludedComponents
. IpfcRegenlnstructions.UpdateAssemblyOnly
. IpfcRegenlinstructions.Updatelnstances
. IpfcSolid.GeomOutline
. IpfcSolid.EvalOutline()
. IpfcSolid.IsSkeleton

The method | pfcSolid.Regener ate() causes the solid model to regenerate according to the instructions provided in
the form of the | pfcRegenl nstructions object. Passing anull value for the instructions argument causes an
automatic regeneration.

Pro/ENGINEER Wildfire 5.0 introduces the No-Resolve mode, wherein if amodel and feature regeneration fails,
failed features and children of failed features are created and regeneration of other features continues. However,
VB API does not support regeneration in this mode. The method | pfcSolid.Regener ate() throws an exception

| pf cXt ool ki t BadCont ext , if Pro/ENGINEER is running in the No-Resolve mode. To continue with the Pro/
ENGINEER Wildfire 4.0 behavior in the Resolve mode, set the configuration option
regen_failure_handlingtoresol ve_node inthe Pro/ENGINEER session.

Note:
Setting the configuration option to switch to Resolve mode ensures the old behavior as long as you do not

retrieve the models saved under the No-Resolve mode. To consistently preserve the old behavior, use
Resolve mode from the beginning and throughout your Pro/ENGINEER session.

The | pfcRegenl nstructions object contains the following input parameters:
o AllowFixUI--Determines whether or not to activate the Fix Model user interface, if there is an error.

Use the property | pfcRegenl nstructions. AllowFixUl to modify this parameter.
o ForceRegen--Forces the solid model to fully regenerate. All the featuresin the model are regenerated. If this
parameter is false, Pro/ENGINEER determines which features to regenerate. By default, it isfalse.

Use the property | pfcRegenl nstructions.For ceRegen to modify this parameter.
o FromFeat--Not currently used. This parameter is reserved for future use.

Use the property | pfcRegenl nstructions.FromFeat to modify this parameter.
o RefreshModel Tree--Refreshes the Pro/ENGINEER Model Tree after regeneration. The model must be active to
use this attribute. If this attribute isfalse, the Model Treeis not refreshed. By default, it isfalse.

Use the property | pfcRegenl nstructions.RefreshM odel Tree to modify this parameter.

1 ResumeExcludedComponents--Enables Pro/ENGINEER to resume the available excluded components of the
simplified representation during regeneration. This results in a more accurate update of the simplified
representation.

Use the property | pfcRegenl nstructions.ResumeExcludedComponents to modify this parameter.

o UpdateAssemblyOnly--Updates the placements of an assembly and all its sub-assemblies, and regenerates the
assembly features and intersected parts. If the affected assembly is retrieved as a simplified representation, then
the locations of the components are updated. If this attribute is false, the component locations are not updated,
even if the simplified representation is retrieved. By default, it isfalse.

Use the property | pfcRegenl nstructions.UpdateA ssemblyOnly to modify this parameter.
1 Updatel nstances--Updates the instances of the solid model in memory. This may slow down the regeneration
process. By default, this attribute is false.

Use the property | pfcRegenl nstructions.Updatel nstances to modify this parameter.

The property | pfcSolid.GeomOutline returns the three-dimensional bounding box for the specified solid. The
method | pfcSolid.EvalOutline() aso returns athree-dimensional bounding box, but you can specify the
coordinate system used to compute the extents of the solid object.

The property | pfcSolid.l sSkeleton determines whether the part model is a skeleton or a concept model. It returns
atrue valueif the model is a skeleton, elseit returns afalse.

Solid Units

Each model has abasic system of unitsto ensure all material properties of that model are consistently measured
and defined. All models are defined on the basis of the system of units. A part can have only one system of unit.

The following types of quantities govern the definition of units of measurement:

o Basic Quantities--The basic units and dimensions of the system of units. For example, consider the Centimeter
Gram Second (CGS) system of unit. The basic quantities for this system of units are:
- Length--cm
- Mass--g
- Force--dyne

- Time--sec
- Temperature--K
o Derived Quantities--The derived units are those that are derived from the basic quantities. For example, consider
the Centimeter Gram Second (CGS) system of unit. The derived quantities for this system of unit are as follows:
- Area--cm"2
- Volume--cm”3
- Velocity--cm/sec

Inthe VB AP, individual unitsin the model are represented by the interface pfcUnits.Unit.

Types of Unit Systems
The types of systems of units are as follows:

1 Pre-defined system of units--This system of unit is provided by default.

o Custom-defined system of units--This system of unit is defined by the user only if the model does not contain
standard metric or nonmetric units, or if the material file contains units that cannot be derived from the predefined
system of units or both.

In Pro/ENGINEER, the system of units are categorized as follows:

1 Mass Length Time (MLT)--The following systems of units belong to this category:
- CGS --Centimeter Gram Second
- MKS--Meter Kilogram Second
- mmKS--millimeter Kilogram Second
1 Force Length Time (FLT)--The following systems of units belong to this category:
- Pro/ENGINEER Default--Inch Ibm Second. Thisis the default system followed by Pro/ENGINEER.
- FPS--Foot Pound Second
- IPS--Inch Pound Second
- mmNS--Millimeter Newton Second

Inthe VB API, the system of units followed by the model is represented by the interface pfcUnits.UnitSystem.
Accessing Individual Units
Methods and Properties Introduced:
. IpfcSolid.ListUnits()
. IpfcSolid.GetUnit()
. IpfcUnit.Name
. IpfcUnit.Expression
. IpfcUnit.Type
. IpfcUnit.IsStandard
. IpfcUnit.ReferenceUnit

. IpfcUnit.ConversionFactor

. IpfcUnitConversionFactor.Offset
. IpfcUnitConversionFactor.Scale

The method I pfcSolid.ListUnits() returnsthe list of units available to the specified model.

The method | pfcSolid.GetUnit() retrieves the unit, based on its name or expression for the specified model in the
form of the I pfcUnit object.

The property | pfcUnit.Name returns the name of the unit.

The property | pfcUnit.Expression returns a user-friendly unit description in the form of the name (for example,
ksi) for ordinary units and the expression (for example, N/m"3) for system-generated units.

The property | pfcUnit. Type returns the type of quantity represented by the unit in terms of the | pfcUnitType
object. The types of units are asfollows:

EpfcUNIT_LENGTH--Specifies length measurement units.
EpfcUNIT_MASS--Specifies mass measurement units.
EpfcUNIT_FORCE--Specifies force measurement units.
EpfcUNIT_TIME--Specifies time measurement units.
EpfcUNIT_TEMPERATURE--Specifies temperature measurement units.
EpfcUNIT_ANGL E--Specifies angle measurement units.

] [} [} [m} O [

The property | pfcUnit.l sStandar d identifies whether the unit is system-defined (if the property IsStandard is set
to true) or user-defined (if the property IsStandard is set to false).

The property | pfcUnit.ReferenceUnit returns areference unit (one of the available system units) in terms of the
I pfcUnit object.

The property | pfcUnit.ConversionFactor identifies the relation of the unit to its reference unit in terms of the
I pfcUnitConver sionFactor object. The unit conversion factors are as follows:

Offset--Specifies the offset value applied to the values in the reference unit.
Scale--Specifies the scale applied to the valuesin the reference unit to get the value in the actual unit.

a

[}

Exanpl e - Consi der theformul atoconvert tenperaturefromCenti gradet o Fahrenheit
F=a+(C*Db)

wher e

FisthetenperatureinFahrenheit

CisthetenperatureinCentigrade

a=32(constant signifyingtheoffset val ue)

b=9/5(ratiosignifyingthescal eof theunit)

Note:
Pro/ENGINEER scales the length dimensions of the model using the factors listed above. If the scaleis
modified, the model is regenerated. When you scale the model, the model units are not changed. Imported
geometry cannot be scaled.

Use the properties | pfcUnitConver sionFactor .Offset and | pfcUnitConver sionFactor .Scale to retrieve the unit
conversion factors listed above.

Modifying Individual Units

Methods and Properties Introduced:
. IpfcUnit.Modify()
. IpfcUnit.Delete()

The method I pfcUnit.M odify() modifies the definition of a unit by applying a new conversion factor specified by
the I pfcUnitConversionFactor object and areference unit.

The method I pfcUnit.Delete() deletes the unit.

Note:
Y ou can delete only custom units and not standard units.

Creating a New Unit
Methods Introduced:
. IpfcSolid.CreateCustomuUnit()
. CCpfcUnitConversionFactor.Create()

The method | pfcSolid.CreateCustomUnit() creates a custom unit based on the specified name, the conversion
factor given by the I pfcUnitConver sionFactor object, and areference unit.

The method CCpfcUnitConver sionFactor .Create() creates the | pfcUnitConver sionFactor object containing
the unit conversion factors.

Accessing Systems of Units

Methods and Properties Introduced:
. IpfcSolid.ListUnitSystems()
. IpfcSolid.GetPrincipalUnits()
. IpfcUnitSystem.GetUnit()
. IpfcUnitSystem.Name
. IpfcUnitSystem.Type
. IpfcUnitSystem.IsStandard

The method I pfcSolid.ListUnitSystems() returns the list of unit systems available to the specified model.

The method | pfcSolid.GetPrincipalUnits() returns the system of units assigned to the specified model in the
form of the I pfcUnitSystem object.

The method | pfcUnitSystem.GetUnit() retrieves the unit of a particular type used by the unit system.

The property | pfcUnitSystem.Name returns the name of the unit system.

The property | pfcUnitSystem.Type returns the type of the unit system in the form of the I pfcUnitSystemType
object. The types of unit systems are as follows:

o EpfcUNIT_SYSTEM_MASS LENGTH_TIME--Specifies the Mass Length Time (MLT) unit system.
o EpfcUNIT_SYSTEM_FORCE_LENGTH_TIME--Specifies the Force Length Time (FLT) unit system.

For more information on these unit systems listed above, refer to the section Types of Unit Systems.

The property | pfcUnitSystem.lsStandar d identifies whether the unit system is system-defined (if the property
IsSandard is set to true) or user-defined (if the property Istandard is set to false).

Modifying Systems of Units
Method Introduced:
. IpfcUnitSystem.Delete()

The method | pfcUnitSystem.Delete() deletes a custom-defined system of units.

Note:
Y ou can delete only a custom-defined system of units and not a standard system of units.

Creating a New System of Units
Method Introduced:
. IpfcSolid.CreateUnitSystem()

The method | pfcSolid.CreateUnitSystem() creates a new system of units in the model based on the specified
name, the type of unit system given by the | pfcUnitSystemType object, and the types of units specified by the
I pfcUnits sequence to use for each of the base measurement types (length, force or mass, and temperature).

Conversion to a New Unit System
Methods and Properties Introduced:
. IpfcSolid.SetPrincipalUnits()
. CCpfcUnitConversionOptions.Create()
. IpfcUnitConversionOptions.DimensionOption
. IpfcUnitConversionOptions.lgnoreParamunits

The method | pfcSolid.SetPrincipalUnits() changes the principal system of units assigned to the solid model
based on the the unit conversion options specified by the | pfcUnitConver sionOptions object. The method
CCpfcUnitConversionOptions.Create() creates the | pfcUnitConver sionOptions object containing the unit
conversion options listed below.

The types of unit conversion options are as follows:
o DimensionOption--Use the option while converting the dimensions of the model.
Use the property | pfcUnitConver sionOptions.DimensionOption to modify this option.

This option can be of the following types.
- EpfcUNITCONVERT_SAME_DIMS--Specifies that unit conversion occurs by interpreting the unit
valuein the new unit system. For example, 1 inch will equal to 1 millimeter.
- EpfcUNITCONVERT_SAME_SIZE--Specifies that unit conversion will occur by converting the unit
value in the new unit system. For example, 1 inch will equal to 25.4 millimeters.
o lgnoreParamUnits--This boolean attribute determines whether or not ignore the parameter units. If it isnull or

true, parameter values and units do not change when the unit system is changed. If it isfalse, parameter units are
converted according to the rule.

Use the property | pfcUnitConver sionOptions.| gnorePar amUnits to modify this attribute.

Mass Properties
Method Introduced:
. IpfcSolid.GetMassProperty()

The function | pfcSolid.GetM assPr operty() provides information about the distribution of massin the part or
assembly. It can provide the information relative to a coordinate system datum, which you name, or the default
oneif you provide null as the name. It returns an object containing the following fields:

The volume.

The surface area.

The density. The density valueis 1.0, unless amaterial has been assigned.
The mass.

The center of gravity (COG).

Theinertia matrix.

Theinertiatensor.

The inertia about the COG.

The principal moments of inertia (the eigen values of the COG inertia).
The principal axes (the eigenvectors of the COG inertia).

[}) [} [[m} [} [[} a O

Example Code: Retrieving a Mass Property Object

This method retrieves a MassProperty object from a specified solid model. The solid's mass, volume, and center
of gravity point are then printed.

| mports pfcls

Publ i ¢ O ass pf cSol i dExanpl es
Publ i ¢ Sub pri nt MassProperti es(ByRef sessi on As | pf cBaseSessi on)

Di mnodel As | pf cModel

Di msolidAs | pfcSolid

Di msol i dProperties As | pf cMassProperty
Di mgravi t yCent re As New Cpf cPoi nt 3D

nodel =sessi on. Current Model
I f nodel I's Not hi ng Then
Thr owNewExcepti on(" Model not present")
End I f
I f (Not nodel . Type = Epf cMbdel Type. Epf cMDL_PART) And
_(Not nodel . Type = Epf cMbdel Type. Epf cMDL_ASSEMBLY) Then
Thr owNewExcepti on(" Mdel i snot asolid")
End I f
sol i d =CType(nodel , | pfcSoli d)
"Cet thesolidproperties. Opti onal argunent i nthismethodisthenane
"of thecoordinatesystemtouse. | f null, uses defaul t
sol i dProperties =solid. Get MassPropert y(Not hi ng)
gravityCentre =sol i dProperties. GavityCenter

MsgBox("Thesolidmassis: " +solidProperties. Mass. ToString +
Chr(13).ToString+ "Thesolidvoluneis: " +
sol i dProperties. Vol ume. ToString +
Chr(13).ToString+ _"TheCentreof Gavityisat: " +
Chr(13).ToString+_"X: " +
gravityCentre.lten(0). ToString+Chr(13). ToString+
_"Y: " +gravityCentre.ltem(1l).ToString+
Chr(13).ToString+
_"Z: " +gravityCentre.ltenm(2).ToString+
Chr (13). ToStri ng)

Cat ch ex As Excepti on
MsgBox(ex. Message. ToStri ng + Chr (13) +ex. StackTrace. ToStri ng)
Exi t Sub
End Try
End Sub

End Cl ass

Annotations

Methods and Properties Introduced:
. IpfcNote.Lines
. IpfcNote.URL

IpfcNote.Display()

. IpfcNote.Delete()

. IpfcNote.GetOwner()

3D model notes are instance of Modelltem objects. They can be located and accessed using methods that |ocate
model itemsin solid models, and downcast to the Note interface to use the methods in this section.

The property | pfcNote.Lines returns the text contained in the 3D model note.
The property | pfcNote.URL returns the URL stored in the 3D model note.
The method | pfcNote.Display() forces the display of the model note.

The method | pfcNote.Delete() deletes a model note.

The method | pfcNote.GetOwner () returns the solid model owner of the note.

Cross Sections

Methods Introduced:
. IpfcSolid.ListCrossSections()
. IpfcSolid.GetCrossSection()
. IpfcXSection.GetName()
. IpfcXSection.SetName()
. IpfcXSection.GetXSecType()
. IpfcXSection.Delete()
. IpfcXSection.Display()
. IpfcXSection.Regenerate()

The method | pfcSolid.ListCrossSections() returns a sequence of cross section objects represented by the
Xsection interface. The method I pfcSolid.GetCrossSection() searches for a cross section given its name.

The method | pfcX Section.GetName() returns the name of the cross section in Pro/ENGINEER. The method
I pfcX Section.SetName() modifies the cross section name.

The method | pfcX Section.Get X SecType() returns the type of cross section, that is planar or offset, and the type
of item intersected by the cross section.

The method | pfcX Section.Delete() deletes a cross section.
The method | pfcX Section.Display() forces a display of the cross section in the window.

The method | pfcX Section.Regener ate() regenerates a cross section.

Materials

The VB API enables you to programmatically access the material types and properties of parts. Using the methods

and properties described in the following sections, you can perform the following actions:

o Create or delete materials
o Set the current material
o Access and modify the material types and properties

Methods and Properties Introduced:
. IpfcMaterial.Save()
. IpfcMaterial.Delete()
. IpfcPart.CurrentMaterial
. IpfcPart.ListMaterials()
. IpfcPart.CreateMaterial()

. IpfcPart.RetrieveMaterial()
The method | pfcM aterial.Save() writes to a material file that can be imported into any Pro/ENGINEER part.
The method | pfcM aterial.Delete() removes materia from the part.
The property I pfcPart.CurrentMaterial returns and sets the material assigned to the part.
Note:

- By default, while assigning a material to a sheetmetal part, the property IpfcPart.CurrentMaterial modifies the
values of the sheetmetal properties such as'Y factor and bend table according to the material file definition. This
modification triggers a regeneration and a modification of the developed length calculations of the sheetmetal
part. However, you can avoid this behavior by setting the value of the configuration option
material_update_smt_bend_table to never_replace.

- The property IpfcPart.CurrentMaterial may change the model display, if the new material has a default
appearance assigned to it.

- The property may also change the family table, if the parameter PTC_MATERIAL_NAME isapart of the
family table.

The method I pfcPart.ListMaterials() returns alist of the materials available in the part.
The method I pfcPart.CreateM aterial () creates a new empty material in the specified part.

The method | pfcPart.RetrieveMaterial () imports a materia file into the part. The name of the file read can be as
either:

<name>.mtl--Specifies the new material file format.
<name>.mat--Specifies the material file format prior to Pro/ENGINEER Wildfire 3.0.

[m}

[

If the material isnot aready in the part database, | pfcPart.RetrieveM aterial() adds the material to the database
after reading the material file. If the material is aready in the database, the function replaces the material
properties in the database with those contained in the material file.

Accessing Material Types

and Properties Introduced:
. IpfcMaterial.StructuralMaterialType
. IpfcMaterial. ThermalMaterialType
. IpfcMaterial.SubType
. IpfcMaterial.PermittedSubTypes

The property I pfcM aterial.StructuralM aterial Type sets the material type for the structural properties of the
material. The material types are asfollows:

[}

EpfcMTL_ISOTROPIC--Specifies aamateria with an infinite number of planes of material symmetry, making
the properties equal in al directions.

EpfcMTL_ORTHOTROPIC--Specifies a material with symmetry relative to three mutually perpendicular planes.
EpfcMTL_TRANSVERSELY _ISOTROPIC--Specifies amaterial with rotational symmetry about an axis. The
properties are equal for al directionsin the plane of isotropy.

]

[}

The property IpfcM aterial. ThermalM aterial Type sets the materia type for the thermal properties of the
material. The material types are asfollows:

[}

EpfcMTL_ISOTROPI C--Specifies a material with an infinite number of planes of material symmetry, making the
properties equal in al directions.

o EpfcMTL_ORTHOTROPIC--Specifies a material with symmetry relative to three mutually perpendicular planes.
o EpfcMTL_TRANSVERSELY _ISOTROPIC--Specifies a material with rotational symmetry about an axis. The
properties are equal for all directionsin the plane of isotropy.

The property | pfcM aterial.SubType returnssets the subtype for the EpfcM TL_ISOTROPIC material type.

Use the property | pfcM aterial.Per mittedSubTypesto retrieve alist of the permitted string values for the
material subtype.

Accessing Material Properties

The methods and properties listed in this section enable you to access material properties.

Methods and Properties Introduced:
. CCpfcMaterialProperty.Create()

IpfcMaterial.GetPropertyValue()

. IpfcMaterial.SetPropertyValue()
. IpfcMaterial.SetPropertyUnits()
. IpfcMaterial. RemoveProperty()

. IpfcMaterial.Description

. IpfcMaterial.FatigueType

. IpfcMaterial.PermittedFatigueTypes

. IpfcMaterial.FatigueMaterialType

. IpfcMaterial.PermittedFatigueMaterial Types
. IpfcMaterial.FatigueMaterialFinish

. IpfcMaterial. PermittedFatigueMaterialFinishes
. IpfcMaterial.FailureCriterion

. IpfcMaterial.PermittedFailureCriteria

. IpfcMaterial. Hardness

. IpfcMaterial.HardnessType

. IpfcMaterial.Condition

. IpfcMaterial.BendTable

. IpfcMaterial.CrossHatchFile

. IpfcMaterial. MaterialModel

. IpfcMaterial.PermittedMaterialModels

. IpfcMaterial. ModelDefByTests

The method CCpfcM aterial Property.Create() creates a new instance of a material property object.

All numerical material properties are accessed using the same set of APIs. Y ou must provide a property typeto
indicate the property you want to read or modify.

The method | pfcM aterial.GetPropertyValue() returns the value and the units of the material property.

Use the method I pfcM aterial.SetPropertyValug() to set the value and units of the material property. If the
property type does not exist for the material, then this method createsiit.

Use the method | pfcM aterial.SetPropertyUnits() to set the units of the material property.
Use the method | pfcM aterial.RemoveProperty() to remove the material property.
Material properties that are non-numeric can be accessed using the following properties.
The property | pfcM aterial.Description sets the description string for the material.

The property | pfcM aterial.FatigueType and sets the valid fatigue type for the material.

Use the property | pfcM aterial.Per mittedFatigueTypesto get alist of the permitted string values for the fatigue
type.

The property | pfcM aterial.FatigueM aterial Typesets the class of material when determining the effect of the
fatigue.

Use the property | pfcM aterial.Per mittedFatigueM aterial Typesto retrieve alist of the permitted string values
for the fatigue material type.

The property | pfcM aterial.FatigueM ater ial Finishsets the type of surface finish for the fatigue material.

Use the property | pfcM aterial.Per mittedFatigueM aterialFinishesto retrieve alist of permitted string values for
the fatigue material finish.

The property | pfcM aterial.FailureCriterion sets the reduction factor for the failure strength of the material. This
factor is used to reduce the endurance limit of the material to account for unmodeled stress concentrations, such as
those found in welds. Use the property | pfcM aterial.PermittedFailureCriteriato retrieve alist of permitted
string values for the material failure criterion.

The property | pfcM aterial.Har dness sets the hardness for the specified material.

The property | pfcM aterial.Har dnessT ype sets the hardness type for the specified material.
The property | pfcM aterial.Condition sets the condition for the specified material.

The property | pfcM aterial.BendTable sets the bend table for the specified material.

The property I pfcM aterial.CrossHatchFile sets the file containing the crosshatch pattern for the specified
material.

The property I pfcM aterial.M aterialM odel sets the type of hyperelastic isotropic material model.

Use the property | pfcM aterial.Per mittedM aterialM odels to retrieve alist of the permitted string values for the
material model.

The property | pfcM aterial.M odel DefBy T ests determines whether the hyperelastic isotropic material model has
been defined using experimental data for stress and strain.

Accessing User-defined Material Properties

Materials permit assignment of user-defined parameters. These parameters alow you to place non-standard
properties on a given material. Therefore | pf cMat eri al isachild of | pf cPar amet er Oaner , which provides

access to user-defined parameters and properties of materials through the methods in that interface.

Windows and Views

The VB API provides access to Pro/ENGINEER windows and saved views. This section describes the methods that
provide this access.

Topic

Windows

Embedded Browser

Views

Coordinate Systems and Transformations

Windows
This section describes the VB APl methods that access W ndow objects. The topics are as follows:

o Getting a Window Object
o Window Operations

Getting a Window Object
Methods and Property Introduced:
. IpfcBaseSession.CurrentWindow
. IpfcBaseSession.CreateModelWindow()
. IpfcModel.Display()
. IpfcBaseSession.ListWindows()
. IpfcBaseSession.GetWindow()
. IpfcBaseSession.OpenFile()
. IpfcBaseSession.GetModelWindow()

The property | pfcBaseSession.CurrentWindow provides access to the current active window in Pro/ENGINEER.

The method | pfcBaseSession.CreateM odel Window() creates a new window that contains the model that was passed
as an argument.

Note:
Y ou must call the method IpfcModel.Display() for the model geometry to be displayed in the window.

Use the method | pfcBaseSession.ListWindows() to get alist of al the current windows in session.

The method | pfcBaseSession.GetWindow() gets the handle to awindow given itsinteger identifier.

The method | pfcBaseSession.OpenFile() returns the handle to a newly created window that contains the opened model.

Note:
If amodel is aready open in awindow the method returns a handle to the window.

The method | pfcBaseSession.GetM odel Window() returns the handle to the window that contains the opened model, if
it isdisplayed.

Window Operations
Methods and Properties Introduced:
. IpfcWindow.Height
. IpfcWindow.Width
. IpfcWindow.XPos
. IpfcWindow.YPos
. IpfcWindow.GraphicsAreaHeight
. IpfcWindow.GraphicsAreaWidth
. IpfcWindow.Clear()
. IpfcWindow.Repaint()
. IpfcWindow.Refresh()
. IpfcWindow.Close()
. IpfcWindow.Activate()
. IpfcWindow.Getld()

The properties | pfcWindow.Height, | pfcWindow.Width, I pfcWindow.XPos, and | pfcWindow.Y Pos retrieve the
height, width, x-position, and y-position of the window respectively. The values of these parameters are normalized
fromOto 1.

The properties | pfcWindow.GraphicsAreaHeight and | pfcWindow.GraphicsAreaWidth retrieve the height and
width of the Pro/ENGINEER graphics area window without the border respectively. The values of these parameters are
normalized from 0 to 1. For both the window and graphics area sizes, if the object occupies the whole screen, the
window size returned is 1. For example, if the screen is 1024 pixels wide and the graphics areais 512 pixels, then the
width of the graphics areawindow is returned as 0.5.

The method | pfcWindow.Clear () removes geometry from the window.

Both I pfcWindow.Repaint() and | pfcWindow.Refresh() repaint solid geometry. However, the Refresh method does
not remove highlights from the screen and is used primarily to remove temporary geometry entities from the screen.

Use the method | pfcWindow.Close() to close the window. If the current window is the original window created when
Pro/ENGINEER started, this method clears the window. Otherwise, it removes the window from the screen.

The method | pfcWindow.Activate() activates awindow. This function is available only in the asynchronous mode.

The method I pfcWindow.Getl d() retrieves the ID of the Pro/ENGINEER window.

Embedded Browser
Methods Introduced!:
. IpfcWindow.GetURL()
. IpfcWindow.SetURL()
. IpfcWindow.GetBrowserSize()
. IpfcWindow.SetBrowserSize()

The methods | pfcWindow.GetURL () and | pfcWindow.SetURL () enables you to find and change the URL displayed
in the embedded browser in the Pro/ENGINEER window.

The methods | pfcWindow.GetBrowser Size() and | pfcWindow.SetBrowser Size() enables you to find and change the
size of the embedded browser in the Pro/ENGINEER window.

Views

This section describes the the VB API methods that access | pf cVi ew objects. The topics are as follows:

o Getting aView Object
o View Operations

Getting a View Object
Methods Introduced:
. IpfcViewOwner.RetrieveView()
. IpfcViewOwner.GetView()
. IpfcViewOwner.ListViews()
. IpfcViewOwner.GetCurrentView()

Any solid model inherits from the interface IpfcViewOwner. Thiswill enable you to use these methods on any solid
object.

The method | pfcViewOwner .RetrieveView() setsthe current view to the orientation previously saved with a specified
name.

Use the method | pfcViewOwner .GetView() to get a handle to a named view without making any modifications.
The method | pfcViewOwner.ListViews() returns alist of al the views previously saved in the model.

The method | pfcViewOwner .GetCurrentView() returns aview handle that represents the current orientation.
Although this view does not have a name, you can use this view to find or modify the current orientation.

View Operations
Methods and Properties Introduced:
. IpfcView.Name
. IpfcView.IsCurrent
. IpfcView.Reset()
. IpfcViewOwner.SaveView()
To get the name of aview given itsidentifier, use the property | pfcView.Name.
The property | pfcView.lsCurrent determines if the View object represents the current view.
The I pfcView.Reset() method restores the current view to the default view.

To store the current view under the specified name, call the method | pfcViewOwner .SaveView().

Coordinate Systems and Transformations

This section describes the various coordinate systems used by Pro/ENGINEER and accessible from the VB API and
how to transform from one coordinate system to another.

Coordinate Systems

Pro/ENGINEER and the VB API use the following coordinate systems:

Solid Coordinate System

Screen Coordinate System
Window Coordinate System
Drawing Coordinate System
Drawing View Coordinate System
Assembly Coordinate System
Datum Coordinate System
Section Coordinate System

[m) [m} [m) [m} [m] [m}] [m}

The following sections describe each of these coordinate systems.
Solid Coordinate System

The solid coordinate system is the three-dimensional, Cartesian coordinate system used to describe the geometry of a
Pro/ENGINEER solid model. In a part, the solid coordinate system describes the geometry of the surfaces and edges. In
an assembly, the solid coordinate system also describes the locations and orientations of the assembly members.

Y ou can visualize the solid coordinate system in Pro/ENGINEER by creating a coordinate system datum with the
option Default. Distances measured in solid coordinates correspond to the values of dimensions as seen by the Pro/
ENGINEER user.

Solid coordinates are used by the VB API for al the methods that look at geometry and most of the methods that draw
three-dimensional graphics.

Screen Coordinate System

The screen coordinate system is two-dimensional coordinate system that describes locationsin a Pro/ENGINEER
window. When the user zooms or pans the view, the screen coordinate system follows the display of the solid so a
particular point on the solid always maps to the same screen coordinate. The mapping changes only when the view
orientation is changed.

Screen coordinates are nominal pixel counts. The bottom, left corner of the default window is at (0, 0) and the top, right
corner is at (1000, 864).

Screen coordinates are used by some of the graphics methods, the mouse input methods, and all methods that draw
graphics or manipulate items on a drawing.

Window Coordinate System

The window coordinate system is similar to the screen coordinate system, except it is not affected by zoom and pan.
When an object isfirst displayed in awindow, or the option View, Pan/Zoom, Reset is used, the screen and window
coordinates are the same.

Window coordinates are needed only if you take account of zoom and pan. For example, you can find out whether a
point on the solid is visible in the window or you can draw two-dimensional text in a particular window location,
regardless of pan and zoom.

Drawing Coordinate System

The drawing coordinate system is atwo-dimensional system that describes the location on a drawing relative to the
bottom, left corner, and measured in drawing units. For example, on aU.S. letter-sized, landscape-format drawing sheet
that uses inches, the top, right-corner is (11, 8.5) in drawing coordinates.

The VB API methods and properties that manipulate drawings generally use screen coordinates.
Drawing View Coordinate System

The drawing view coordinate system is used to describe the locations of entitiesin a drawing view.
Assembly Coordinate System

An assembly has its own coordinate system that describes the positions and orientations of the member parts,
subassemblies, and the geometry of datum features created in the assembly.

When an assembly isretrieved into memory each member is also loaded and continues to use its own solid coordinate
system to describe its geometry.

Thisisimportant when you are analyzing the geometry of a subassembly and want to extract or display the results
relative to the coordinate system of the parent assembly.

Datum Coordinate System

A coordinate system datum can be created anywhere in any part or assembly, and represents a user-defined coordinate
system. It is often arequirement in athe VB API application to describe geometry relative to such a datum.

Section Coordinate System

Every sketch has a coordinate system used to locate entities in that sketch. Sketches used in features will use a
coordinate system different from that of the solid model.

Transformations
Methods and Properties Introduced:
. IpfcTransform3D.Invert()
. IpfcTransform3D.TransformPoint()
. IpfcTransform3D.TransformVector()
. IpfcTransform3D.Matrix
. IpfcTransform3D.GetOrigin()
. IpfcTransform3D.GetXAxis()
. IpfcTransform3D.GetYAXis()

. IpfcTransform3D.GetZAxis()

All coordinate systems are treated in the VB API asif they were three-dimensional. Therefore, a point in any of the
coordinate systems is always represented by the | pf cPoi nt 3D class:

Vectors store the same data but are represented for clarity by the | pf cVect or 3D class.

Screen coordinates contain a z-value whose positive direction is outwards from the screen. The value of z is not
generally important when specifying a screen location as an input to a method, but it is useful in other situations. For
example, if you select a datum plane, you can find the direction of the plane by calculating the normal to the plane,
transforming to screen coordinates, then looking at the sign of the z-coordinate.

A transformation between two coordinate systems is represented by the | pf ¢ Tr ansf or n8D class. This class contains a
4x4 matrix that combines the conventional 3x3 matrix that describes the relative orientation of the two systems, and the
vector that describes the shift between them.

The 4x4 matrix used for transformations is as follows:

.0
xyvzi=xyz| "'g
Xs¥s Zs]

The utility method I pfcTransform3D.Invert() inverts atransformation matrix so that it can be used to transform points
in the opposite direction.

The VB API providestwo utilities for performing coordinate transformations. The method | pfcTransform3D.
TransformPoint() transforms a three-dimensional point and | pfcTransform3D.TransformVector () transforms athree-
dimensional vector.

The following diagram summarizes the coordinate transformations needed when using the VB APl and specifies the the
VB API methods that provide the transformation matrix.

lpfeCoordSystem. CoordSys

MODEL

IpfcComponentPath. GetTransform

IpfeView. Transform

SCREEN

IpfeComponentPath. GetT ransform

Camoow

Transforming to Screen Coordinates
Methods and Properties Introduced:
. IpfcView.Transform
. IpfcView.Rotate()

The view matrix describes the transformation from solid to screen coordinates. The property | pfcView.Transform
provides the view matrix for the specified view.

The method | pfcView.Rotate() rotates aview, relative to the X, Y, or Z axis, in the amount that you specifiy.

To transform from screen to solid coordinates, invert the transformation matrix using the method | pfcTransform3D.
Invert().

Transforming to Coordinate System Datum Coordinates
Property Introduced:
. IpfcCoordSystem.CoordSys

The property | pfcCoor dSystem.Coor dSys provides the location and orientation of the coordinate system datum in the
coordinate system of the solid that containsit. The location isin terms of the directions of the three axes and the
position of the origin.

Transforming Window Coordinates
Properties Introduced

. IpfcWindow.ScreenTransform

. IpfcScreenTransform.PanX
. IpfcScreenTransform.PanY

. IpfcScreenTransform.Zoom

Y ou can alter the pan and zoom of awindow by using a Screen Transform abject. This object contains three attributes.
PanX and PanY represent the horizontal and vertical movement. Every increment of 1.0 moves the view point one
screen width or height. Zoom represents a scaling factor for the view. This number must be greater than zero.

Transforming Coordinates of an Assembly Member
Method Introduced:
. IpfcComponentPath.GetTransform()

The method | pfcComponentPath.Get Transform() provides the matrix for transforming from the solid coordinate
system of the assembly member to the solid coordinates of the parent assembly, or the reverse.

Exanpl e Code - Nor nal i zi ng a Coor di nat e Transfornmati on Matri x

The f ol | owi ng exanpl e code usestwo net hodstotransfer theviewtransformationfromonevi ew
toanother. I nportspfcls

Publ i ¢ O ass pf cVi ewExanpl es

Publ i ¢ Functi on vi ewTr ansf er (ByVal vi ewl As | pf cVi ew,
_ByVal view2 As | pfcVi ew) As | pf cVi ew

Di mt ransf or mAs | pf cTr ansf or n8D
Dimmatrix As | pfcMatri x3D

Try
transform=vi ewl. Transform
matri x =transform Matri x
matri x =matri xNormal i ze(rmatri x)
transform Matrix=matri x
vi ew2. Transform=transform
vi ewlr ansfer =vi ew2

Cat ch ex As Excepti on
MsgBox(ex. Message. ToStri ng + Chr (13) +ex. StackTrace. ToStri ng)
Ret ur n Not hi ng

End Try

End Functi on

"Function : matrixNormalize
"Purpose : ThisfunctionnornmalizesaMatrix3Dobject
Private FunctionmatrixNormalize(ByVal matri x As | pfcMatri x3D) As | pfcMatri x3D
Di mscal e As Doubl e
D mrow, col As | nteger

matri x. Set (3, 0, 0.0)

matri x. Set (3, 1, 0.0)
matri x. Set (3, 2, 0.0)

scale=Math. Sgrt(matrix.Iten(0, 0) * matrix.ltem 0, 0) +
matrix.ltem(0, 1) * _matrix.ltem0, 1) +
matrix.lten(0, 2) * matrix.lten(0, 2))

For row=0To 2
For col =0To 2
matri x. Set (row, col, matri x.Iten(row, col) / scal e)
Next
Next

matri xNornmalize=matri x

End Functi on
End C ass

Modelltem

This section describes the the VB APl methods that enable you to access and
manipulate Model | t ens.

Topic

Solid Geometry Traversal

Getting Model Iltem Objects

M odelltem Information

Layer Objects

Solid Geometry Traversal

O O O O O O O O O O O

Solid models are made up of 11 distinct types of | pfcModel |t em asfollows:

| pfcFeature

I pfcSurface

IpfcEdge

I pfcCurve (datum curve)
IpfcAxis (datum axis)

| pfcPoint (datum point)
IpfcQuilt (datum quilt)
IpfcLayer

IpfcNote
IpfcDimension
IpfcRefDimension

Each model item is assigned a unique identification number that will never change.
In addition, each model item can be assigned a string name. Layers, points, axes,
dimensions, and reference dimensions are automatically assigned a name that can
be changed.

Getting Modelltem Objects

Methods and Properties Introduced:

. IpfcModelltemOwner.Listltems()

. IpfcFeature.ListSubltems()

. IpfcLayer.Listltems()

. IpfcModelltemOwner.GetltemByld()

. IpfcModelltemOwner.GetltemByName()
. IpfcFamColModelltem.Refltem

. IpfcSelection.Selltem

All modelsinherit from the interface | pf cModel | t enOaner . The method

| pfcM odelltemOwner .Listltems() returns a sequence of | pf cModel |t ens
contained in the model. Y ou can specify which type of | pf cMbdel | t emto collect
by passing in one of the enumerated EpfcMbdel | t enilype values, or you can
collect all I pf cMbdel I t ens by passing null as the model item type.

The methods | pfcFeature.ListSubltems() and | pfcL ayer.ListItems() produce
similar results for specific features and layers. These methods return alist of
subitems in the feature or itemsin the layer.

To access specific model items, call the method | pfcM odelltemOwner .
GetltemByld(). This methods enables you to access the model item by identifier.

To access specific model items, call the method | pfcM odelltemOwner .
GetltemByName(). This methods enables you to access the model item by name.

The property | pfcFamColM odell tem.Refl tem returns the dimension or feature
used as a header for afamily table.

The property | pfcSelection.Selltem returns the item selected interactively by the
user.

Modelltem Information

Methods and Properties Introduced:

IpfcModelltem.GetName()

. IpfcModelltem.SetName()
. IpfcModelltem.Id

. IpfcModelltem.Type

Certain | pf cMbdel |t ens also have a string name that can be changed at any time.
The methods GetName and SetName access this name.

The property Id returns the unique integer identifier for the | pf cMbdel It em

The Type property returns an enumeration object that indicates the model item type
of the specified | pf cMbdel |t em Seethe sectio n"Solid Geometry Traversal for

the list of possible model item types.

Layer Objects

Inthe VB API, layers are instances of | pf cModel | t em The following sections
describe how to get layer objects and the operations you can perform on them.

Getting Layer Objects
Method Introduced:
. IpfcModel.CreateLayer()

The method | pfcM odel.Createl ayer () returns a new layer with the name you
specify.

See the section " Getting M odelltem Objects' for other methods that can return
layer objects.

Layer Operations

Methods and Properties Introduced:

IpfcLayer.Status

. IpfcLayer.Listltems()

. IpfcLayer.Additem()

. IpfcLayer.Removeltem()
. IpfcLayer.Delete()

The property | pfcL ayer .Status enables you to access the display status of alayer.
The corresponding enumeration classis Epf cDi spl aySt at us and the possible

values are Nor nal , Di spl ayed, Bl ank, or Hi dden.

Use the methods I pfcL ayer .ListItems(), | pfcL ayer AddItem(), and | pfcL ayer.
Removel tem() to control the contents of alayer.

The method | pfcL ayer .Delete() removes the layer (but not the itemsit contains)
from the model.

Features

All Pro/ENGINEER solid models are made up of features. This section describes how to program on the feature level
using the VB API.

Topic

Access to Features

Feature Information

Feature Operations

Feature Groups and Patterns
User Defined Features
Creating Features from UDFs

Access to Features

Methods and Properties Introduced:
. IpfcFeature.ListChildren()
. IpfcFeature.ListParents()
. IpfcFeatureGroup.GroupLeader
. IpfcFeaturePattern.PatternLeader
. IpfcFeaturePattern.ListMembers()
. IpfcSolid.ListFailedFeatures()
. IpfcSolid.ListFeaturesByType()
. IpfcSolid.GetFeatureByld()

The methods | pfcFeature.ListChildren() and | pfcFeature.ListParents() return a sequence of features that contain all
the children or parents of the specified feature.

To get the first feature in the specified group access the property | pfcFeatur eGroup.GrouplL eader.
The property | pfcFeaturePatter n.Patter nL eader and the method | pfcFeatur ePattern.ListM ember s() return

features that make up the specified feature pattern. See Feature Groups and Patterns for more information on feature
patterns.

The method | pfcSolid.ListFailedFeatures() returns a sequence that contains all the features that failed regeneration.

The method | pfcSolid.ListFeaturesByType() returns a sequence of features contained in the model. Y ou can specify
which type of feature to collect by passing in one of the Epf cFeat ur eType enumeration objects, or you can collect all
features by passing void null asthetype. If you list all features, the resulting sequence will include invisible features
that Pro/ENGINEER creates internally. Use the method's VisibleOnly argument to exclude them.

The method | pfcSolid.GetFeatur eByl d() returns the feature object with the corresponding integer identifier.

Feature Information

Properties Introduced:
. IpfcFeature.FeatType
. IpfcFeature.Status
. IpfcFeature.IsVisible
. IpfcFeature.IsReadonly
. IpfcFeature.IsEmbedded
. IpfcFeature.Number
. IpfcFeature.FeatTypeName
. IpfcFeature.FeatSubType

. IpfcRoundFeat.IsAutoRoundMember

The enumeration classes Epf cFeat ur eType and Epf cFeat ur eSt at us provide information for a specified feature.
The following properties specify this information:

o |pfcFeature.FeatType--Returns the type of afeature.
o |pfcFeature.Status--Returns whether the feature is suppressed, active, or failed regeneration.

The other properties that gather feature information include the following:

o |pfcFeature.lsVisible--ldentifies whether the specified feature will be visible on the screen.

o |pfcFeature.l sReadonly--ldentifies whether the specified feature can be modified.

o |pfcFeature.Getl sEmbedded--Specifies whether the specified feature is an embedded datum.

o IpfcFeature.Number--Returns the feature regeneration number. This method returns void null if the featureis
suppressed.
The property | pfcFeatur e.Feat TypeName returns a string representation of the feature type.

The property | pfcFeatur e.FeatSubType returns a string representation of the feature subtype, for example, "Extrude’
for a protrusion feature.

The property | pfcRoundFeat.l SAutoRoundM ember determines whether the specified round feature is a member of
an Auto Round feature.

Feature Operations

Methods and Properties Introduced:

. IpfcSolid.ExecuteFeatureOps()

. IpfcFeature.CreateSuppressOp()

. IpfcSuppressOperation.Clip

. IpfcSuppressOperation.AllowGroupMembers
. IpfcSuppressOperation.AllowChildGroupMembers
. IpfcFeature.CreateDeleteOp()

. IpfcDeleteOperation.Clip

. IpfcDeleteOperation.AllowGroupMembers

. IpfcDeleteOperation.AllowChildGroupMembers
. IpfcDeleteOperation.KeepEmbeddedDatums

. IpfcFeature.CreateResumeOp()

. IpfcResumeOperation.WithParents

. IpfcFeature.CreateReorderBeforeOp()

. IpfcReorderBeforeOperation.BeforeFeat

. IpfcFeature.CreateReorderAfterOp()

. IpfcReorderAfterOperation.AfterFeat

The method | pfcSolid.ExecuteFeatur eOps() causes a sequence of feature operations to run in order. Feature
operations include suppressing, resuming, reordering, and deleting features. The optional | pfcRegenlnstructions
argument specifies whether the user will be alowed to fix the model if a regeneration failure occurs.

Note:
The method | pfcSolid.ExecuteFeatureOps() is not supported in the No-Resolve mode, introduced in Pro/
ENGINEER Wildfire 5.0. It throws an exception | pfcXtoolkitBadContext. To continue with the Pro/
ENGINEER Wildfire 4.0 behavior in the Resolve mode, set the configuration option regen_failure_handling to
resolve_mode in the Pro/ENGINEER session. Refer to the " Solid Operations” section in the " Solid" section for
more information on the No-Resolve mode.

Y ou can create an operation that will delete, suppress, reorder, or resume certain features using the methods in the
class | pfcFeature. Each created operation must be passed as a member of the | pfcFeatur eOper ations object to the
method | pfcSolid.ExecuteFeatur eOps().

Some of the operations have specific options that you can modify to control the behavior of the operation:

Clip--Specifies whether to delete or suppress al features after the selected feature. By default, this option is false.

Use the properties I pfcDel eteOperation.Clip and 1 pfcSuppressOperation.Clip to modify this option.
AllowGroupMembers--1f this option is set to true and if the feature to be deleted or suppressed is a member of a
group, then the feature will be deleted or suppressed out of the group. If this option is set to false, then the entire group
containing the feature is deleted or suppressed. By default, this option isfalse. It can be set to true only if the option
Clipissettotrue.

Use the properties | pfcSuppressOperation.AllowGroupMembers and | pfcDel eteOperation.AllowGroupMembers to

modify this option.

o AllowChildGroupMembers--If this option is set to true and if the children of the feature to be deleted or suppressed
are members of a group, then the children of the feature will be individually deleted or suppressed out of the group. If
thisoption is set to false, then the entire group containing the feature and its children is deleted or suppressed. By
default, thisoption isfalse. It can be set to true only if the options Clip and AllowGroupMembers are set to true.
Use the properties | pfcSuppressOperation.AllowChildGroupMembers and | pfcDel eteOperation.
AllowChildGroupMembers to modify this option.

o KeepEmbeddedDatums--Specifies whether to retain the embedded datums stored in a feature while deleting the
feature. By default, this option isfalse.

Use the property |pfcDel eteOperation.K eepEmbeddedDatums to modify this option.

o WithParents--Specifies whether to resume the parents of the selected feature.

Use the property | pfcResumeOperation.WithParents to modify this option.

v BeforeFeat--Specifies the feature before which you want to reorder the features.
Use the property |pfcReorderBeforeOperation.BeforeFeat to modify this option.

o AfterFeat--Specifies the feature after which you want to reorder the features.

Use the property |pfcReorderAfterOperation.AfterFeat to modify this option.

Feature Groups and Patterns

Patterns are treated as features in Pro/ENGINEER Wildfire. A feature type, FEATTYPE_PATTERN_HEAD, is used
for the pattern header feature.

Note:
The pattern header feature is not treated as aleader or a member of the pattern by the methods described in the
following section.

Methods and Properties Introduced:
. IpfcFeature.Group
. IpfcFeature.Pattern
. IpfcSolid.CreateLocalGroup()
. IpfcFeatureGroup.Pattern
. IpfcFeatureGroup.GroupLeader
. IpfcFeaturePattern.PatternLeader
. IpfcFeaturePattern.ListMembers()
. IpfcFeaturePattern.Delete()
The property | pfcFeature.Group returns a handle to the local group that contains the specified feature.
To get the first feature in the specified group call the property | pfcFeatur eGroup.GrouplL eader.

The property | pfcFeatur ePatter n.Patter nL eader and the method | pfcFeatur ePatter n.ListM ember s() return
features that make up the specified feature pattern.

The properties | pfcFeatur e.Pattern and | pfcFeatur eGroup.Patter n return the Feat ur ePat t er n object that contains
the corresponding Feat ur e or Feat ur eG oup. Use the method | pfcSolid.Createl ocalGroup() to take a sequence of
features and create alocal group with the specified name. To delete a Feat ur ePat t er n object, call the method

| pfcFeatur ePatter n.Delete().

Notes On Feature Groups

Feature groups have a group header feature, which shows up in the model information and feature list for the model.
Thisfeature will be inserted in the regeneration list to a position just before the first feature in the group.

The results of the header feature are as follows:

o Modelsthat contain groups will get one extra feature in the regeneration list, of type EFeatureType.
FEATTYPE_GROUP_HEAD. This affects the feature numbers of all subsequent features, including thosein the
group.

o Each group automatically contains the header featurein the list of features returned from pfcFeature.FeatureGroup.
ListMembers.

o Each group automatically gets the group head feature as the leader. Thisis returned from pfcFeature.FeatureGroup.

GetGroupL eader.
o Each group pattern contains a series of groups, and each group in the pattern will be similarly constructed.

User Defined Features

Groupsin Pro/ENGINEER represent sets of contiguous features that act as a single feature for specific operations.
Individual features are affected by most operations while some operations apply to an entire group:

o Suppress
o Delete

o Layers

o Patterning

User defined Features (UDFs) are groups of features that are stored in afile. When a UDF is placed in anew model the
created features are automatically assigned to agroup. A local group is a set of features that have been specifically
assigned to a group to make modifications and patterning easier.

Note:
All methods in this section can be used for UDFs and local groups.

Read Access to Groups and User Defined Features
Methods and Properties Introduced:

. IpfcFeatureGroup.UDFName

. IpfcFeatureGroup.UDFInstanceName

. IpfcFeatureGroup.ListUDFDimensions()

. IpfcUDFDimension.UDFDimensionName

User defined features (UDF's) are groups of features that can be stored in afile and added to a new model. A local
group issimilar to aUDF except it is available only in the model in which iswas created.

The property | pfcFeatur eGroup.UDFName provides the name of the group for the specified group instance. A
particular group definition can be used more than once in a particular model.

If the group is afamily table instance, the property | pfcFeatur eGroup.UDFInstanceName suppliesthe instance name.

The method | pfcFeatureGroup.ListUDFDimensions() traverses the dimensions that belong to the UDF. These
dimensions correspond to the dimensions specified as variables when the UDF was created. Dimensions of the origina
features that were not variables in the UDF are not included unless the UDF was placed using the Independent option.

The property | pfcUDFDimension.UDFDimensionName provides access to the dimension name specified when the
UDF was created, and not the name of the dimension in the current model. This name is required to place the UDF
programmatically using the method | pfcSolid.CreateUDFGroup().

Creating Features from UDFs

Method Introduced:

[}

[m}

. IpfcSolid.CreateUDFGroup()

The method | pfcSolid.CreateUDFGroup() is used to create new features by retrieving and applying the contents of an
existing UDFfile. It is equivalent to the Pro/ENGINEER command Feature, Create, User Defined.

To understand the following explanation of this method, you must have a good knowledge and understanding of the
use of UDF'sin Pro/ENGINEER. PTC recommends that you read about UDF's in the Pro/ENGINEER on-line help,
and practice defining and using UDF'sin Pro/ENGINEER before you attempt to use this method.

When you create a UDF interactively, Pro/ENGINEER prompts you for the information it needs to fix the properties
of the resulting features. When you create a UDF from the VB API, you can provide some or all of thisinformation
programmatically by filling several compact data classes that are inputs to the method | pfcSolid.CreateUDFGroup().

During the call to | pfcSolid.CreateUDFGroup(), Pro/ENGINEER prompts you for the following:

Information required by the UDF that was not provided in the input data structures.
Correct information to replace erroneous information

Such prompts are a useful way of diagnosing errors when you develop your application. This also means that, in
addition to creating UDF's programmatically to provide automatic synthesis of model geometry, you can also use

I pfcSolid.CreateUDFGroup() to create UDF's semi-interactively. This can simplify the interactions needed to place a
complex UDF making it easier for the user and less prone to error.

Creating UDFs

) o [} [m}

Creating a UDF requires the following information:

Name--The name of the UDF you are creating and the instance name if applicable.

Dependency--Specify if the UDF is independent of the UDF definition or is modified by the changers made to it.
Scale--How to scale the UDF relative to the placement model.

Variable Dimension--The new values of the variables dimensions and pattern parameters, those whose values can be
modified each time the UDF is created.

Dimension Display--Whether to show or blank non-variable dimensions created within the UDF group.
References--The geometrical elements that the UDF needs in order to relate the features it contains to the existing
model s features. The elements correspond to the picks that Pro/ENGINEER prompts you for when you create a UDF
interactively using the prompts defined when the UDF was created. Y ou cannot select an embedded datum as the UDF
reference.

Parts Intersection--When a UDF that is being created in an assembly contains features that modify the existing
geometry you must define which parts are affected or intersected. Y ou also need to know at what level in an assembly
each intersection is going to be visible.

Orientations--When a UDF contains afeature with adirection that is defined in respect to a datum plane Pro/
ENGINEER must know what direction the new feature will point to. When you create such a UDF interactively Pro/

ENGINEER prompt you for thisinformation with aflip arrow.

o Quadrants--When a UDF contains alinearly placed feature that references two datum planes to define it'slocation in
the new model Pro/ENGINEER prompts you to pick the location of the new feature. Thisis determined by which side
of each datum plane the feature must lie. This selection is referred to as the quadrant because the are four possible
combinations for each linearly place feature.

To pass al the above valuesto Pro/ENGINEER, the VB API uses a special class that prepares and sets all the options
and passes them to Pro/ENGINEER.

Creating Interactively Defined UDFs

Method Introduced:
. CCpfcUDFPromptCreatelnstructions.Create()

This static method is used to create an instructions object that can be used to prompt a user for the required values that
will create a UDF interactively.

Creating a Custom UDF

Method Introduced:
 CCpfcUDFCustomCreatelnstructions.Create()

This method creates a UDFCustomCreatel nstructions object with a specified name. To set the UDF creation
parameters programmatically you must modify this object as described below. The members of this class relate closely
to the prompts Pro/ENGINEER gives you when you create a UDF interactively. PTC recommends that you experiment
with creating the UDF interactively using Pro/ENGINEER before you write the the VB API code to fill the structure.

Setting the Family Table Instance Name
Property Introduced:
. IpfcUDFCustomCreatelnstructions.InstanceName

If the UDF contains afamily table, thisfield can be used to select the instance in the table. If the UDF does not contain
afamily table, or if the generic instance isto be selected, the do not set the string.

Setting Dependency Type
Property Introduced:
. IpfcUDFCustomCreatelnstructions.DependencyType

The Epf cUDFDependency Type object represents the dependency type of the UDF. The choices correspond to the
choices available when you create a UDF interactively. This enumerated type takes the following values:

o EpfcUDFDEP_INDEPENDENT
o EpfcUDFDEP_DRIVEN

Note:
EpfcUDFDEP_INDEPENDENT is the default value, if thisoption is not set.

Setting Scale and Scale Type

Properties Introduced:

. IpfcUDFCustomCreatelnstructions.ScaleType

. IpfcUDFCustomCreatelnstructions.Scale

The property ScaleType specifies the length units of the UDF in the form of the EpfcUDFScaleType object. This
enumerated type takes the following values:

EpfcUDFSCALE_SAME_SIZE
EpfcUDFSCALE_SAME_DIMS
EpfcUDFSCALE_CUSTOM
EpfcUDFSCALE_nil

))))

Note:
The default valueis UDFSCALE_SAME_SIZE if this option is not set.

The property Scale specifies the scale factor. If the ScaleTypeis set to EpfCUDFSCALE_CUSTOM the property Scale
assigns the user defined scale factor. Otherwise, this attribute is ignored.

Setting the Appearance of the Non UDF Dimensions

Properties Introduced:
. IpfcUDFCustomCreatelnstructions.DimDisplayType

The Epf cUDFDi mensi onDi spl ayType object sets the options in Pro/ENGINEER for determining the appearance in

the model of UDF dimensions and pattern parameters that were not variable in the UDF, and therefore cannot be
modified in the model. This enumerated type takes the following values:

o EpfcUDFDISPLAY_NORMAL
o EpfcUDFDISPLAY_READ_ONLY
o EpfcUDFDISPLAY_BLANK

Note:
The default value is EpfcUDFDISPLAY _NORMAL if this option is not set.

Setting the Variable Dimensions and Parameters
Methods and Properties Introduced:
. IpfcUDFCustomCreatelnstructions.VariantValues
. CCpfcUDFVariantDimension.Create()
. CCpfcUDFVariantPatternParam.Create()
IpfcUDFVariantValues class represents an array of variable dimensions and pattern parameters.

CCpfcUDFVariantDimension.Create() is a static method creating al pf cUDFVar i ant Di mensi on. It acceptsthe
following parameters:

o Name--The symbol that the dimension had when the UDF was originally defined not the prompt that the UDF uses

when it is created interactively. To make this name easy to remember, before you define the UDF that you plan to
create with the VB API, you should maodify the symbols of al the dimensions that you want to select to be variable. If
you get the name wrong, |pfcSolid.CreatelUDFGroup will not recognize the dimension and prompts the user for the
valuein the usual way does not modify the value.

o DimensionValue--The new value.

If you do not remember the name, you can find it by creating the UDF interactively in atest model, then using the
| pfcFeatur eGroup.ListUDFDimensions() and | pfcUDFDimension.UDFDimensionName to find out the name.

CCpfcUDFVariantPatternParam.Create() is a static method which createsal pf cUDFVar i ant Pat t er nPar am It
accepts the following parameters:

o name--The string name that the pattern parameter had when the UDF was originally defined
o patternparam--The new value.

After the | pfcUDFVar i ant Val ues object has been compiled, use | pfcUDFCustomCreatel nstructions.
VariantValues to add the variable dimensions and parameters to the instructions.

Setting the User Defined References

Methods and Properties Introduced:

. CCpfcUDFReference.Create()
. IpfcUDFReference.IsExternal
. IpfcUDFReference.Referenceltem

. IpfcUDFCustomCreatelnstructions.References

The method CCpfcUDFRefer ence.Create() is a static method creating a UDFRef er ence object. It acceptsthe
following parameters:

o PromptForReference--The prompt defined for this reference when the UDF was originally set up. It indicates which
reference this structure is providing. If you get the prompt wrong, |pfcSolid.CreateUDFGroup() will not recognize it

and prompts the user for the reference in the usual way.
o Referenceltem--Specifies the | pfcSelection object representing the referenced element. Y ou can set Selection
programmatically or prompt the user for a selection separately. Y ou cannot set an embedded datum as the UDF

refereence.

There are two types of reference:
- Internal--The referenced element belongs directly to the model that will contain the UDF. For an assembly,

this means that the element belongsto the top level.
- External--The referenced element belongs to an assembly member other than the placement member.

To set the reference type, use the property | pfcUDFRefer ence.l sExternal.
To set the item to be used for reference, use the property | pfcUDFRefer ence.Refer encel tem.

After the UDFReferences object has been set, use | pfcUDFCustomCr eatel nstructions.Refer ences to add the
program-defined references.

Setting the Assembly Intersections

Methods and Properties Introduced:

. CCpfcUDFAssemblyIntersection.Create()
. IpfcUDFAssemblyintersection.InstanceNames
. IpfcUDFCustomCreatelnstructions.Intersections

CCpfcUDFAssemblylntersection.Create() is a static method creating al pf c UDFRef er ence object. It accepts the
following parameters:

o ComponentPath--1s an intseq type object representing the component path of the part to be intersected.

o Vighility level--The number that correspondsto the visibility level of the intersected part in the assembly. If the
number is equal to the length of the component path the feature is visible in the part that it intersects. If Visibility level
is0, thefeatureisvisible at the level of the assembly containing the UDF.

I pfcUDFAssemblyl nter section.l nstanceNames sets an array of hames for the new instances of parts created to
represent the intersection geometry. This property accepts the following parameters:

o instance names--is a com.ptc.cipjava.stringseq type object representing the array of new instance names.

After the | pf cUDFAssenbl yI nt er sect i ons object has been set, use | pfcUDFCustomCr eatel nstructions.
I nter sections to add the assembly intersections.

Setting Orientations
Properties Introduced:
. IpfcUDFCustomCreatelnstructions.Orientations

| pf cUDFQOr i ent at i ons class represents an array of orientations that provide the answers to Pro/ENGINEER prompts
that use aflip arrow. Each term isa Epf cUDFQOr i ent at i on object that takes the following values:

o EpfcUDFORIENT_INTERACTIVE--Prompt for the orientation using aflip arrow.
o EpfcUDFORIENT_NO_FLIP--Accept the default flip orientation.
o EpfcUDFORIENT_FLIP--Invert the orientation from the default orientation.

The order of orientations should correspond to the order in which Pro/ENGINEER prompts for them when the UDF is
created interactively. If you do not provide an orientation that Pro/ENGINEER needs, it uses the default value
NO_FLIP.

After the | pf cUDFOri ent ati ons object has been set use | pfcUDFCustomCr eatel nstructions.Orientationsto add
the orientations.

Setting Quadrants
Property Introduced:
. IpfcUDFCustomCreatelnstructions.Quadrants

The property | pfcUDFCustomCr eatel nstructions.Quadr ants sets an array of points, which providethe X, Y, and Z
coordinates that correspond to the picks answering the Pro/ENGINEER prompts for the feature positions. The order of
quadrants should correspond to the order in which Pro/ENGINEER prompts for them when the UDF is created

interactively.

Setting the External References
Property Introduced:
. IpfcUDFCustomCreatelnstructions.ExtReferences

The property | pfcUDFCustomCr eatel nstructions.ExtRefer ences sets an external reference assembly to be used
when placing the UDF. Thiswill be required when placing the UDF in the component using references outside of that
component. References could be to the top level assembly of another component.

Exanpl e Code

The example code places copies of anode UDF at a particular coordinate system location in a part. The node UDF isa
spherical cut centered at the coordinate system whose diameter is driven by the ‘diam’ argument to the method. The
method returns the FeatureGroup object created, or null if an error occurred.

Publ i ¢ Functi on cr eat eNodeUDFI nPart (ByVal pl acenent Model As | pfcSolid, _
ByVal csysNane As String, _
ByVval di aneter As Doubl e) _
As | pf cFeat ureG oup

Di mcsys As | pf cCoor dSyst em= Not hi ng

Di mcSyst ens As | pf cModel |t ens

Di mi As | nt eger

Di mudf I nstructions As | pf cUDFCust onCr eat el nstructi ons
Di mcsysSel ection As | pf cSel ecti on

Di mcsysRef erence As | pf cUDFRef er ence

Di mr ef er ences As Cpf cUDFRef er ences

Di mvari ant Di s As | pf cUDFVar i ant Di mensi on

Di mvari ant Val s As | pf cUDFVar i ant Val ues

Di mgr oup As | pf cFeat ur eG oup

Try

cSystens =
pl acerment Model . Li st 1t enms(Epf cModel |t enTType. Epf cl TEM COORD_SYS)

For i =0 TocSystens. Count - 1
If (cSystens.lten(i). Get Nanme. ToStri ng =csysNane) Then
csys =cSystens. I ten(i)
Exi t For
End | f
Next

I f csys | s Not hing Then
Thr owNewExcept i on(" Coor di nat e Syst emnot foundi n
current Solid")

udf I nstructi ons =
(New CCpf cUDFCust onCr eat el nstructi ons). Creat e("node")

' Make non vari ant di nensi ons bl ank t o di sabl et hei r di spl ay

udf I nstructi ons. Di nDi spl ayType =
Epf cUDFDi nensi onDi spl ayType. Epf cUDFDI SPLAY_BLANK

"Initializethe UDFreferenceandassignit totheinstructions.
"Thestringargunment i sthereferencepronpt for theparticul ar
"reference.

csysSel ection=
(New CMpf cSel ect) . Creat eMbdel |t enSel ecti on(csys, Not hi ng)

csysRef er ence = (NewCCpf cUDFRef er ence) . Cr eat e(" REF_CSYS",
csysSel ecti on)

r ef er ences = NewCpf cUDFRef er ences
ref erences. Set (0, csysRef erence)

udf I nstructi ons. Ref erences =r ef erences

"Initializethevariant di mensi onandassignit totheinstructions.
"The stringargument i sthedimensionsynbol for thevariant di nension.

vari ant Di ns = (NewCCpf cUDFVar i ant Di mensi on). Create("d11",
di anet er)

vari ant Val s = NewCpf cUDFVari ant Val ues

vari ant Val s. Set (0, vari ant Di ms)

udf I nstructi ons. Vari ant Val ues =vari ant Val s

"We needt he pl acenent nodel for the UDFfor thecall to
"Creat eUDFG oup(). I f youwere pl aci ngthe UDFi nanodel other than
"t he owner of t he coordi nate system the pl acenent woul d need t o be

group = pl acenent Mbdel . Cr eat eUDFGr oup(udf I nstructi ons)
Ret ur n gr oup

Cat ch ex As Excepti on
MsgBox(ex. Message. ToString + Chr (13) +ex. StackTrace. ToStri ng)
Ret ur n Not hi ng

End Try

End Functi on

Exanpl e Code

This function places copies of ahole UDF at a particular location in an assembly. The holeis embedded in a surface of
one of the assembly's components, and placed a particular location away from two normal datum planes (the default
value for the dimension is used for this example). The UDF creation requires a quadrant determining the location for
the UDF (since it could be one of four areas) and intersection instructions for the assembly members (this example

makes the hole visible down to the part level). The method returns the FeatureGroup object created.

Publ i ¢ Functi on cr eat eHol eUDFI nAssenbly _
(ByVal sideRef Surfacelds() As I nteger, _
ByVal ref erencePat h As | pf cConponent Pat h, _
ByVal pl acenent Surfacel dAs | nteger, _
ByVal scal e As Doubl e, _
ByVal quadrant As | pf cPoi nt 3D) As | pf cFeat ureG oup

Di mudf I nstructions As | pf cUDFCust onCr eat el nstructi ons
Di mr ef erenceModel As | pfcSolid

Di mpl acenent Sur face As | pf chModel [t em

Di msurfaceSel ectionAs | pfcSel ection

Di mdat unSel ection(2) As | pfcSel ection

Di mr ef er ences As Cpf cUDFRef er ences

Di mr ef erencel As | pf cUDFRef er ence

Di mr ef erence2 As | pf cUDFRef er ence

Di mr ef erence3 As | pf cUDFRef er ence

Di massenbly As | pfcSolid

Di mi As | nt eger

Di msi deRef erence As | pf cMbdel It em

Di mquadr ant s As Cpf cPoi nt 3Ds

Di mi nt ersecti ons As Cpf cUDFAssenbl yl nt er secti ons
Di ml eaf s As | pf cConponent Pat h()

Di mi ds As G nt seq

Di mi ntersecti on As | pf cUDFAssenbl yl nt er secti on
Di mgr oup As | pf cFeat ur eG oup = Not hi ng

Try

| f Not (sideRef Surfacelds. Length=2) Then
Thr owNewException("| nproper array si ze. Bothsidereferences nust begiven.")
End | f

udf I nst ructi ons = (NewCCpf cUDFCust onCr eat el nstructi ons). Create("hol e_quadrant™)

I f scal e=0Then
udf I nst ructi ons. Scal eType = Epf cUDFScal eType. Epf cUDFSCALE_SAME_SI ZE
El se
udf I nstructi ons. Scal eType = Epf cUDFScal eType. Epf cUDFSCALE_CUSTOM
udf I nstructions. Scal e =scal e
End | f

"Thefirst UDFreferenceisasurfacefromaconponent nodel inthe
"assenbly. Thisrequiresusingthe ConponentPathtoinitializethe
"Sel ection, andsettingthelsExternal flagtotrue.

ref erenceMbdel =ref erencePat h. Leaf

pl acenent Surface =r ef erenceMdel . Getl temByl d _
(Epf cMbdel | t emType. Epf cl TEM SURFACE, pl acenent Sur f acel d)

I f Not (TypeOf pl acerment Surfacels | pfcSurface) Then
ThrowNewException("I nput Surfaceld" +pl acement Surfaceld. ToString_+" is not
surface")
End | f

surfaceSel ecti on=(NewCMf cSel ect). Creat eMbdel It entel ecti on_ (pl acenent Surf ace,
r ef er encePat h)

r ef er ences = New Cpf cUDFRef er ences()
ref erencel = (NewCCpf cUDFRef er ence) . Create _

(" enbeddi ng surface?", surfaceSel ection)
referencel. | sexternal =True

ref erences. Set (0, referencel)

' The next two UDF r ef erences ar e expectedt o be Dat umPl ane featuresin
"the assenbly. Thereferenceis constructedusingthe Surface obj ect
" cont ai nedinthe Datumpl ane f eat ure.

assenbl y =r ef erencePat h. Root

Fori =0To 1l
si deRef erence =assenbl y. GetltenByl d _
(Epf cMbdel | t enType. Epf cl TEM SURFACE, si deRef Surfacelds(i))

dat untel ection(i) =(NewCMf cSel ect). Creat eModel | t enSel ecti on _
(si deRef erence, Not hi ng)
Next

ref erence2 = (NewCCpf cUDFRef er ence) . Create _
("right surface", datuntel ection(0))
references. Set (1, reference2)

ref erence3 = (NewCCpf cUDFRef er ence) . Create _
("front surface", datuntel ection(1))
ref erences. Set (2, reference3l)

udf I nstructi ons. Ref erences =r ef erences

"If the UDFandt he pl acement bot h use t wo nor mal dat umpl anes as
" di mensi oned references, Pro/ ENG NEERpronptstheuser for apickto
"definethequadrant wherethe UDFw I | be pl aced.

guadr ant s = New Cpf cPoi nt 3Ds
guadr ants. Set (0, quadrant)

udf I nstructi ons. Quadrant s = quadrant s

" Thi s hol e UDF shoul d be vi si bl edowntothe conmponent part | evel. To
"direct this, the UDFAssenbl yl ntersecti onshoul dbecreatedwiththe
' conponent ids, andthevisibilitylevel argunment equal tothe nunber
" of component |l evels. Alternatively, thevisibilitylevel couldbeO

i nt ersecti ons = NewCpf cUDFAssenbl yl nt er secti ons
| eaf s = Assenbl yUtilities.|istEachLeaf Conponent (assenbly)

Fori =0Toleafs.Length- 1
I f Not | eaf s(i) I s Nothing Then
ids=1eafs(i).Conponentlds
i ntersection=(NewCCpf cUDFAssenbl yl ntersection). Create(ids, ids. Count)

i ntersections. Set(i, i ntersection)
End | f
Next

udf I nstructions. | ntersections=intersections

group =assenbl y. Cr eat eUDFGr oup(udf | nst ructi ons)
Ret ur n gr oup

Cat ch ex As Excepti on
MsgBox(ex. Message. ToStri ng + Chr(13) +ex. StackTrace. ToStri ng)
Ret ur n Not hi ng
End Try
End Functi on

"Class : AssenblyUtilities
"Purpose : ThisCassprovidesutilityfunctionsfor assenbly.

Private Cl ass Assenbl yUtilities
Pri vat e Shared asmAs | pf cAssenbl y
Pri vat e Shar ed pat hArray As ArraylLi st

"Function : |istEachLeaf Component
"Purpose : Thisfunctionreturnsanarrayof all ConponentPath's
toall conponent parts('leafs') inanassenbly.

Publ i ¢ Shared Functionli st EachLeaf Conponent (ByVal assenbl y As | pf cAssenbl y) _
As | pf cConponent Pat h()
Di mstart Level As NewCi nt seq
Di mi As | nt eger

asm=assenbl y
pat hArray = NewArrayli st

i st SubAssenbl yConponent (start Level)
Di mconpPat hs(pat hArray. Count) As | pf cConponent Pat h

For i =0 To pat hArray. Count - 1
conmpPat hs(i) =pathArray.lten(i)
Next

Ret ur n (conpPat hs)

End Functi on

"Function : |istEachLeaf Conponent
"Purpose : ThisfunctionThisnmethodisusedtorecursivelyvisit
all I evel s of theassenblystructure.

Privat e Shared Sub | i st SubAssenbl yConponent (ByVal current Level As Ci ntseq)

Di mcur rent Conponent As | pfcSolid

Di mcur rent Pat h As | pf cConponent Pat h = Not hi ng
Di ml evel As | nteger

Di msubConponent s As | pf cFeat ur es

Di mi, idAsInteger
Di mconmponent Feat As | pf cFeat ure

| evel =currentLevel . Count

If (I evel >0) Then
current Pat h = (NewCMf cAssenbl y) . Cr eat eConponent Pat h(asm current Level)
current Conponent =current Pat h. Leaf

El se
current Conponent =asm

End | f

I f (current Conponent. Type = Epf cMbdel Type. Epf cMDL_PART) And (| evel >0) Then
pat hArray. Add(curr ent Pat h)
El se

"Findall conponent featuresinthecurrent conponent obj ect.
"Visit each (adjustingtheconponent idpathsaccordingly).

subConponent s = current Conponent . Li st Feat ur esByType _
(True, EpfcFeat ureType. Epf cFEATTYPE_COVPONENT)

For i =0 To subConponents. Count - 1
conmponent Feat =subConponents. Iten(i)
i d=conponent Feat. Id

current Level . Set (I evel, id)

i st SubAssenbl yConmponent (current Level)
Next
End | f

I f Not | evel =0 Then
current Level . Renove(l evel - 1, | evel)
End I f
Ret urn
End Sub
End Cl ass

End Cl ass

Datum Features

This section describes the VB APl methods and properties that provide read access
to the properties of datum features.

Topic

Datum Plane Features

Datum AXis Features

Genera Datum Point Features
Datum Coordinate System Features

Datum Plane Features

The properties of the Datum Plane feature are defined in the
| pf cDat unPl aneFeat data object.

Methods and Properties Introduced:
. IpfcDatumPlaneFeat.Flip
. IpfcDatumPlaneFeat.Constraints
. IpfcDatumPlaneConstraint.ConstraintType
. CCpfcDatumPlaneThroughConstraint.Create()
. IpfcDatumPlaneThroughConstraint. ThroughRef
. CCpfcDatumPlaneNormalConstraint.Create()
. IpfcDatumPlaneNormalConstraint.NormalRef

. CCpfcDatumPlaneParallelConstraint.Create()

. IpfcDatumPlaneParallelConstraint.ParallelRef

. CCpfcDatumPlaneTangentConstraint.Create()

. IpfcDatumPlaneTangentConstraint. TangentRef

. CCpfcDatumPlaneOffsetConstraint.Create()

. IpfcDatumPlaneOffsetConstraint.OffsetRef

. IpfcDatumPlaneOffsetConstraint.OffsetValue

. CCpfcDatumPlaneOffsetCoordSysConstraint.Create()
. IpfcDatumPlaneOffsetCoordSysConstraint.CsysAxis
« CCpfcDatumPlaneAngleConstraint.Create()

. IpfcDatumPlaneAngleConstraint.AngleRef

. IpfcDatumPlaneAngleConstraint.AngleValue

. CCpfcDatumPlaneSectionConstraint.Create()

. IpfcDatumPlaneSectionConstraint.SectionRef

. IpfcDatumPlaneSectionConstraint.Sectionlndex

. CCpfcDatumPlaneDefaultXConstraint.Create()

. CCpfcDatumPlaneDefaultYConstraint.Create()

. CCpfcDatumPlaneDefaultZConstraint.Create()
The properties of the | pf cDat unPl aneFeat object are described as follows:

o Flip--Specifies whether the datum plane was flipped during creation. Use the
property |pfcDatumPlanefFeat.Flip to determine if the datum plane was flipped

during creation.

o Constraints--Specifies a collection of constraints (given by the
| pfcDatumPlaneConstraint object). The property | pfcDatumPlaneFeat. Constraints
obtains the collection of constraints defined for the datum plane.

Use the property | pfcDatumPlaneConstraint.ConstraintType to obtain the type
of constraint. The type of constraint is given by the
Epf cDat unPl aneConst r ai nt Type enumerated type. The available types are as

follows:

o EpfcDTMPLN_THRU--Specifies the Through constraint. The
| pfcDatumPlaneThroughConstraint object specifies this constraint. Use the method
CCpfcDatumPlaneThroughConstraint.Create() to create a new object. Use the
property |pfcDatumPlaneThroughConstraint. ThroughRef to get the reference
selection handle for the Through constraint.

o EpfcDTMPLN_NORM--Specifies the Normal constraint. The
| pfcDatumPlaneNormal Constraint object specifies this constraint. Use the method
CCpfcDatumPlaneNormal Constraint.Create() to create a new object. Use the
property |pfcDatumPlaneNormal Constraint.Normal Ref to get the reference
selection handle for the Normal constraint.

o EpfcDTMPLN_PRL--Specifies the Parallel constraint. The
| pfcDatumPlaneParallel Constraint object specifies this constraint. Use the method
CCpfcDatumPlaneParallel Constraint.Create() to create a new object. Use the
property |pfcDatumPlaneParallel Constraint.Parallel Ref to get the reference
selection handle for the Parallel constraint.

o EpfcDTMPLN_TANG--Specifies the Tangent constraint. The
| pfcDatumPlaneT angentConstraint specifies this constraint. Use the method
CCpfcDatumPlaneTangentConstraint.Create() to create a new object. Use the
property |pfcDatumPlaneTangentConstraint. TangentRef to get the reference
selection handle for the Tangent constraint.

o EpfcDTMPLN_OFFS--Specifies the Offset constraint. The
| pfcDatumPlaneOffsetConstraint object specifies this constraint. Use the method
CCpfcDatumPlaneOffsetConstraint.Create() to create a new object. Use the
property |pfcDatumPlaneOffsetConstraint. OffsetRef to get the reference selection
handle for the Offset constraint. Use the property |pfcDatumPlaneOffsetConstraint.
OffsetVaueto get the offset value.
An Offset constraint where the offset reference is a coordinate system is given by
the I pfcDatumPlaneOffsetCoordSysConstraint object. Use the method
CCpfcDatumPlaneOffsetCoordSysConstraint.Create() to create a new object. Use
the property |pfcDatumPlaneOffsetCoordSysConstraint. CsysAxisto get the
reference coordinate axis.

o EpfcDTMPLN_ANG--Specifies the Angle constraint. The
| pfcDatumPlaneA ngleConstraint object specifies this constraint. Use the method

CCpfcDatumPlaneAngleConstraint.Create() to create a new object. Use the
property |pfcDatumPlaneAngleConstraint. AngleRef to get the reference selection
handle for the Angle constraint. Use the property |pfcDatumPlaneAngleConstraint.
AngleValueto get the angle value.

o EpfcDTMPLN_SEC--Specifies the Section constraint. The
| pfcDatumPlaneSectionConstraint object specifies this constraint. Use the method
CCpfcDatumPlaneSectionConstraint.Create() to create a new object. Use the
property | pfcDatumPlaneSectionConstraint.SectionRef to get the reference
selection for the Section constraint. Use the property
| pfcDatumPlaneSectionConstraint.Sectionlndex to get the section index.

o EpfcDTMPLN_DEF X--Specifiesthe default RIGHT constraint for the datum
plane. The |pfcDatumPlaneDefaultX Constraint object specifies this constraint. Use
the method CCpfcDatumPlaneDefaultX Constraint.Create() to create a new object.

o EpfcDTMPLN_DEF Y --Specifies the default TOP constraint for the datum plane.
The IpfcDatumPlaneDefaultY Constraint object specifies this constraint. Use the
method CCpfcDatumPlaneDefaultY Constraint.Create() to create a new object.

o EpfcDTMPLN_DEF Z--Specifies the default FRONT constraint for the datum
plane. The |pfcDatumPlaneDefaultZConstraint object specifies this constraint. Use
the method CCpfcDatumPlaneDefaultZConstraint.Create() to create a new object.

Datum Axis Features

The properties of the Datum Axis feature are defined in the | pf cDat umAxi sFeat
data object.

Methods and Properties Introduced:
. IpfcDatumAxisFeat.Constraints
. CCpfcDatumAxisConstraint.Create()
. IpfcDatumAxisConstraint.ConstraintType
. IpfcDatumAxisConstraint.ConstraintRef
. IpfcDatumAxisFeat.DimConstraints
. CCpfcDatumAxisDimensionConstraint.Create()

. IpfcDatumAxisDimensionConstraint.DimOffset

. IpfcDatumAxisDimensionConstraint.DimRef
The properties of the | pf cDat umAxi sFeat object are described as follows:

o Constraints--Specifies a collection of constraints (given by the
| pfcDatumAXxisConstraint object). The property |pfcDatumAXxisFeat. Constraints
obtains the collection of constraints applied to the Datum Axis feature.

Use the method CCpfcDatumAXxisConstraint.Create() to create a new
| pf cDat umAxi sConst r ai nt object. This object contains the following attributes:
- ConstraintType--Specifies the type of constraint in terms of the
EpfcDatumAxisConstraintType enumerated type. The constraint type
determines the type of datum axis. The constraint types are:
- EpfcDTMAXIS NORMAL--Specifies the Normal datum
constraint.
- EpfcDTMAXIS THRU--Specifies the Through datum constraint.
- EpfcDTMAXIS TANGENT--Specifies the Tangent datum
constraint.
- EpfcDTMAXIS _CENTER--Specifies the Center datum constraint.
Use the property | pfcDatumAXxisConstraint.ConstraintType to get the
constraint type.

- ConstraintRef--Specifies the reference selection for the constraint. Use the
property IpfcDatumAXxisConstraint.ConstraintRef to get the reference
selection handle.
o DimConstraints--Specifies a collection of dimension constraints (given by the
I pfcDatumAXxisDimensionConstraint object). The property | pfcDatumAXiskeat.
DimConstraints obtains the collection of dimension constraints applied to the
Datum Axis feature.

Use the method CCpfcDatumAxisDimensionConstraint.Create() to create a new
| pf cDat umAxi sDi mensi onConst r ai nt object. This object contains the
following attributes:
- DimOffset--Specifies the offset value for the dimension constraint. Use
the property IpfcDatumAXxisDimensionConstraint. DimOffset to get the
offset value.
- DimRef--Specifies the reference selection for the dimension constraint.
Use the property |pfcDatumAXxisDimensionConstraint.DimRef to get the
reference selection handle.

General Datum Point Features

The properties of the General Datum Point feature are defined in the
| pf cDat unPoi nt Feat data object.

Methods and Properties Introduced:
. IpfcDatumPointFeat.FeatName
. IpfcDatumPointFeat.GetPoints()
. IpfcGeneralDatumPoint.Name
. CCpfcDatumPointPlacementConstraint.Create()
. IpfcGeneralDatumPoint.PlaceConstraints
. CCpfcDatumPointDimensionConstraint.Create()
. IpfcGeneralDatumPoint.DimConstraints
. IpfcDatumPointConstraint.ConstraintRef
. IpfcDatumPointConstraint.ConstraintType
. IpfcDatumPointConstraint.Value
The properties of the | pf cDat unPoi nt Feat object are described as follows:

o FeatName--Specifies the name of the General Datum Point feature. Use the
property |pfcDatumPointFeat. FeatName to get the name.
o General DatumPoints--Specifies a collection of general datum points (given by the
| pfcGeneral DatumPoint object). Use the method | pfcDatumPointFeat. GetPoints()
to obtain the collection of general datum points. The IpfcGeneral DatumPoint
object consists of the following attributes:
- Name--Specifies the name of the general datum point. Use the property
| pfcGeneral DatumPoint.Name to get the name.
- PlaceConstraints--Specifies a collection of placement constraints (given by
the I pfcDatumPointPlacementConstraint object). Use the method

CCpfcDatumPointPlacementConstraint.Create() to create a new object. Use
the property | pfcGeneral DatumPoint.PlaceConstraints to obtain the
collection of placement constraints.

- DimConstraints--Specifies a collection of dimension constraints (given by
the I pfcDatumPoi ntDimensionConstraint object). Use the method
CCpfcDatumPointDimensionConstraint.Create() to create a new object. Use
the property | pfcGeneral DatumPoint.DimConstraints to obtain the
collection of dimension constraints.

The constraints for a datum point are given by the | pf cDat unPoi nt Const r ai nt
object. This object contains the following attributes:

o ConstraintRef--Specifies the reference selection for the datum point constraint. Use
the property |pfcDatumPointConstraint. ConstraintRef to get the reference selection
handle.

o ConstraintType--Specifies the type of datum point constraint. in terms of the
EpfcDatumPointConstraintType enumerated type. Use the property
| pfcDatumPointConstraint.ConstraintType to get the constraint type.

o Vaue--Specifies the constraint reference value with respect to the datum point.

Use the property | pfcDatumPointConstraint.Va ue to get the value of the constraint
reference with respect to the datum point.

The pf cDat unPoi nt Pl acenment Const r ai nt and

| pf cDat unPoi nt Di mensi onConst r ai nt objectsinherit from the
| pf cDat unPoi nt Const r ai nt object. Use the methods of the

| pf cDat unPoi nt Const r ai nt object for the inherited objects.

Datum Coordinate System Features

The properties of the Datum Coordinate System feature are defined in the
| pf cCoor dSysFeat object.

Methods and Properties Introduced:
. IpfcCoordSysFeat.OriginConstraints
« CCpfcDatumCsysOriginConstraint.Create()

. IpfcDatumCsysOriginConstraint.OriginRef

. IpfcCoordSysFeat.DimensionConstraints

. CCpfcDatumCsysDimensionConstraint.Create()

. IpfcDatumCsysDimensionConstraint.DimRef

. IpfcDatumCsysDimensionConstraint.DimValue

. IpfcDatumCsysDimensionConstraint.DimConstraintType
. IpfcCoordSysFeat.OrientationConstraints

« CCpfcDatumCsysOrientMoveConstraint.Create()

. IpfcDatumCsysOrientMoveConstraint.OrientMoveConstraintType
. IpfcDatumCsysOrientMoveConstraint.OrientMoveValue
. IpfcCoordSysFeat.IsNormalToScreen

. IpfcCoordSysFeat.OffsetType

. IpfcCoordSysFeat.OnSurfaceType

. IpfcCoordSysFeat.OrientByMethod
The properties of the | pf cCoor dSysFeat object are described as follows:

o OriginConstraints--Specifies a collection of origin constraints (given by the
| pfcCDatumCsysOriginConstraint object). Use the property |pfcCoordSysFeat.
OriginConstraints to obtain the collection of origin constraints for the coordinate
system. Use the method CCpfcDatumCsysOriginConstraint.Create() to create a
new | pfcCDatumCsysOriginConstraint object. This object contains the following
attribute:
- OriginRef--Specifies the selection reference for the origin. Use the
property |pfcDatumCsysOriginConstraint.OriginRef to get the selection
reference handle.
o DimensionConstraints-- Specifies a collection of dimension constraints (given by
the IpfcDatumCsysDimensionConstraint object). Use the property

| pfcCoordSysFeat.DimensionConstraints to obtain the collection of dimension
constraints for the coordinate system. Use the method
CCpfcDatumCsysDimensionConstraint.Create() to create a new
| pfcDatumCsysDimensionConstraint object. This object contains the following
attributes:
- DimRef--Specifies the reference selection for the dimension constraint.
Use the property I pfcDatumCsysDimensionConstraint.DimRef to get the
reference selection handle.
- DimVaue--Specifies the value of the reference. Use the property
| pfcDatumCsysDimensionConstraint.DimValue to get the value.
- DimConstraintType--Specifies the type of dimension constraint in terms
of the EpfcDatumCsysDimConstraintType enumerated type. Use the
property |pfcDatumCsysDimensionConstraint.DimConstraintType to get
the constraint type. The constraint types are:

- EpfcDTMCSY S DIM_OFFSET--Specifies the offset type

constraint.

- EpfcDTMCSY S DIM_ALIGN--Specifies the align type constraint.
OrientationConstraints--Specifies a collection of orientation constraints (given by
the IpfcDatumCsysOrientM oveConstraint object) Use the property
| pfcCoordSysFeat. OrientationConstraints to obtain the collection of orientation
constraints for the coordinate system. Use the method
CCpfcDatumCsysOrientM oveConstraint.Create() to create a new
| pfcDatumCsysOrientM oveConstraints object. This object contains the following
attributes:

- OrientM oveConstraintType--Specifies the type of orientation for the
constraint. The orientation typeis given by the
EpfcDatumCsysOrientM oveConstraintType enumerated type. Use the
property IpfcDatumCsysOrientMoveConstraint.OrientM oveConstraintType
to get the orientation type.
- OrientMoveV alue--Specifies the reference value for the constraint. Use
the property |pfcDatumCsysOrientM oveConstraint. OrientMoveV alue to get
the reference value.
IsNormal ToScreen--Specifies if the coordinate system is normal to screen. Use the
property |pfcCoordSysFeat.|sNormal ToScreen to determine if the coordinate
system is normal to screen.
OffsetType--Specifies the offset type of the coordinate system in terms of the
EpfcDatumCsysOffsetType enumerated type. Use the property |pfcCoordSyskeat.
OffsetType to get the offset type. The offset types are:
- EpfcDTMCSY S OFFSET_CARTESIAN--Specifies a cartesian
coordinate system that has been defined by setting the values for the
EpfcDTMCSYS MOVE_TRAN_X, EpfcDTMCSYS MOVE_TRAN Y,
and EpfcDTMCSYS MOVE TRAN Zor
EpfcDTMCSYS MOVE_ROT_X, EpfcDTMCSYS MOVE_ROT_Y, and

EpfcDTMCSYS MOVE_ROT _Z orientation constants.
- EpfcDTMCSYS OFFSET_CYLINDRICAL--Specifiesacylindrical
coordinate system that has been defined by setting the values for the
EpfcDTMCSYS MOVE_RAD, EpfcDTMCSYS MOVE_THETA, and
EpfcDTMCSYS MOVE_TRAN_ZI orientation constants.
- EpfcDTMCSY S _OFFSET _SPHERICAL--Specifies a spherical
coordinate system that has been defined by setting the values for the
EpfcDTMCSYS MOVE_RAD, EpfcDTMCSYS MOVE_THETA, and
EpfcDTMCSYS MOVE_TRAN_PHI orientation constants.
o OnSurfaceType--Specifies the on surface type for the coordinate system in terms of
the EpfcDatumCsysOffsetType enumerated type. Use the property
| pfcCoordSysFeat.OnSurfaceType to get the on surface type property of the
coordinate system. The on surface types are:
- EpfcDTMCSY S ONSURF_LINEAR--Specifies a coordinate system
placed on the selected surface by using two linear dimensions.
- EpfcDTMCSY S ONSURF_RADIAL--Specifies a coordinate system
placed on the selected surface by using alinear dimension and an angular
dimension. The radius value is used to specify the linear dimension.
- EpfcDTMCSYS ONSURF_DIAMETER--Thistypeis similar to the
EpfcDTMCSYS ONSURF _RADIAL type, except that the diameter value
Is used to specify the linear dimension. It is available only when planar
surfaces are used as the reference.
o OrientByM ethod--Specifies the orientation method in terms of the
EpfcDatumCsysOrientByM ethod enumerated type. Use the property
| pfcCoordSysFeat.OrientByMethod to get the orientation method. The available
orientation types are:
- EpfcDTMCSYS ORIENT _BY_SEL REFS--Specifies the orientation by
selected references.
- EpfcDTMCSYS ORIENT _BY_SEL_CSYS AXES--Specifiesthe
orientation by corordinate system axes.

Geometry Evaluation

This section describes geometry representation and discusses how to evaluate geometry using the VB API.
Topic

Geometry Traversal

Curves and Edges

Contours

Surfaces

Axes, Coordinate Systems, and Points
Interference

Geometry Traversal

Note:

o A simple rectangular face has one contour and four edges.

o A contour will traverse a boundary so that the part face is always on the right-hand side (RHS). For an external
contour the direction of traversal is clockwise. For an internal contour the direction of traversal is counterclockwise.

o If apart isextruded from a sketch that has a U-shaped cross section there will be separate surfaces at each leg of the
U-channel.

o If apartisextruded from a sketch that has a square-shaped cross section, and a slot feature is then cut into the part
to make it look like a U-channel, there will be one surface across the legs of the U-channel. The original surface of
the part is represented as one surface with a cut through it.

Geometry Terms

Following are definitions for some geometric terms.

o Surface--Anideal geometric representation, that is, an infinite plane.

o Face--A trimmed surface. A face has one or more contours.

o Contour--A closed loop on aface. A contour consists of multiple edges. A contour can belong to one face only.
o Edge--The boundary of atrimmed surface.

An edge of asolid isthe intersection of two surfaces. The edge belongs to those two surfaces and to two contours.
An edge of adatum surface can be either the intersection of two datum surfaces or the external boundary of the
surface.

If the edgeisthe intersection of two datum surfaces it will belong to those two surfaces and to two contours. If the
edge is the external boundary of the datum surface it will belong to that surface alone and to a single contour.

Traversing the Geometry of a Solid Block
Methods Introduced:
. IpfcModelltemOwner.Listltems()

. IpfcSurface.ListContours()

. IpfcContour.ListElements()
To traverse the geometry, follow these steps:

1. Starting at the top-level model, use | pfcM odel ltemOwner.Listitems() with an argument of ModelltemType.
ITEM_SURFACE.

2. UselpfcSurface.ListContour () to list the contours contained in a specified surface.

3. UselpfcContour.ListElements() to list the edges contained in the contour.

Curves and Edges

Datum curves, surface edges, and solid edges are represented in the same way in the VB API. Y ou can get edges
through geometry traversal or get alist of edges using the methods presented insection "Maodel Item".

The t Parameter

The geometry of each edge or curveis represented as a set of three parametric equations that represent the values of
X, ¥, and z as functions of an independent parameter, t. The t parameter varies from 0.0 at the start of the curveto 1.0
at theend of it.

The following figure illustrates curve and edge parameterization.

d2Cidhi®
A
\ /
\ @
L=
t=00 Clx, y, 21 = (1)

Curve and Edge Types
Solid edges and datum curves can be any of the following types:

LINE--A straight line represented by the classinterface IpfcLine.

ARC--A circular curve represented by the classinterface IpfcArc.

SPLINE--A nonuniform cubic spline, represented by the classinterface | pfcSpline.

B-SPLINE--A nonuniform rational B-spline curve or edge, represented by the classinterface IpfcBSpline.
COMPOSITE CURVE--A combination of two or more curves, represented by the classinterface

] [} [}) a

]

0
0
0
n}

IpfcCompositeCurve. Thisis used for datum curves only.

See the section, Geometry Representations,for the parameterization of each curve type. To determine what type of
curveal pf cEdge or | pf cCur ve object represents, use the instanceof operator.

Because each curve classinherits from | pf cGeontCur ve, you can use al the evaluation methods in
| pf cGeontCur ve on any edge or curve.

The following curve types are not used in solid geometry and are reserved for future expansion:

CIRCLE (Circle)
ELLIPSE (Ellipse)
POLY GON (Polygon)
ARROW (Arrow)
TEXT (Text)

Evaluation of Curves and Edges

Methods Introduced:

. IpfcGeomCurve.Eval3DData()
. IpfcGeomCurve.EvalFromLength()
. IpfcGeomCurve.EvalParameter()
. IpfcGeomCurve.EvalLength()
. IpfcGeomCurve.EvalLengthBetween()
The methodsin | pf cGeontCur ve provide information about any curve or edge.

The method | pfcGeomCurve.Eval3DData() returns al pf cCur veXYzZDat a object with information on the point

represented by the input parameter t. The method | pfcGeomCurve.EvalFromL ength() returns a similar object with
information on the point that is a specified distance from the starting point.

The method | pfcGeomCurve.EvalPar ameter () returns the t parameter that represents the input | pf cPoi nt 3D
object.

Both IpfcGeomCurve.EvalL ength() and | pfcGeomCurve.EvalL engthBetween() return numerical valuesfor the
length of the curve or edge.

Solid Edge Geometry

Methods and Properties Introduced:

. IpfcEdge.Surfacel
. IpfcEdge.Surface2

. IpfcEdge.Edgel

. IpfcEdge.Edge2
. IpfcEdge.EvaluV()
. IpfcEdge.GetDirection()

Note:
The methods in the interface | pfcEdge provide information only for solid or surface edges.

The properties | pfcEdge.Surfacel and | pfcEdge.Surface? return the surfaces bounded by this edge. The properties
IpfcEdge.Edgel and | pfcEdge.Edge2 return the next edges in the two contours that contain this edge.

The method | pfcEdge.EvalUV () eval uates geometry information based on the UV parameters of one of the
bounding surfaces.

The method | pfcEdge.GetDirection() returns a positive 1 if the edge is parameterized in the same direction as the
containing contour, and -1 if the edge is parameterized opposite to the containing contour.

Curve Descriptors

A curve descriptor is a data object that describes the geometry of acurve or edge. A curve descriptor describes the
geometry of a curve without being a part of a specific model.

Methods Introduced:
. IpfcGeomCurve.GetCurveDescriptor()
. IpfcGeomCurve.GetNURBSRepresentation()

Note:
To get geometric information for an edge, access the IpfcCurveDescriptor object for one edge using
| pfcGetCurveDescriptor.

The method | pfcGeomCurve.GetCurveDescriptor () returns a curve's geometry as a data object.

The method | pfcGeomCurve.GetNURBSRepresentation() returns a Non-Uniform Rational B-Spline
Representation of acurve.

Contours
Methods and Properties Introduced:
. IpfcSurface.ListContours()
. IpfcContour.InternalTraversal
. IpfcContour.FindContainingContour ()
. IpfcContour.EvalArea()

. IpfcContour.EvalOutline()

. IpfcContour.VerifyUV()
Contours are a series of edges that completely bound a surface. A contour isnot al pf cModel 1t em Y ou cannot get
contours using the methods that get different types of Model | t em Use the method | pfcSurface.ListContours() to

get contours from their containing surfaces.

The property IpfcContour.Internal Traversal returns aEpf cCont our Tr aver sal enumerated type that identifies
whether a given contour is on the outside or inside of a containing surface.

Use the method | pfcContour .FindContainingContour () to find the contour that entirely encloses the specified
contour.

The method | pfcContour .Eval Area() provides the area enclosed by the contour.
The method | pfcContour .EvalOutling() returns the points that make up the bounding rectangle of the contour.

Use the method | pfcContour.VerifyUV () to determine whether the given | pf cUvPar anms argument liesinside the
contour, on the boundary, or outside the contour.

Surfaces

Using the VB API you access datum and solid surfaces in the same way.

UV Parameterization

A surfacein Pro/ENGINEER is described as a series of parametric equations where two parameters, u and v,
determine the X, y, and z coordinates. Unlike the edge parameter, t, these parameters need not start at 0.0, nor are
they limited to 1.0.

The figure on the following page illustrates surface parameterization.

normal

e2 (second derivative)

u direction S T M T
P L P Eal e .

el [first derivative)

Surface Types

)] a o [}

Surfaces within Pro/ENGINEER can be any of the following types:

PLANE--A planar surface represented by the classinterface | pfcPlane.

CYLINDER--A cylindrical surface represented by the classinterface I pfcCylinder.

CONE--A conic surface region represented by the classinterface |pfcCone.

TORUS--A toroidal surface region represented by the classinterface IpfcTorus.

REVOLVED SURFACE--Generated by revolving a curve about an axis. Thisis represented by the classinterface
IpfcRevSurface.

RULED SURFACE--Generated by interpolating linearly between two curve entities. Thisis represented by the
classinterface I pfcRuledSurface.

TABULATED CYLINDER--Generated by extruding acurve linearly. Thisis represented by the classinterface
I pfcTabulatedCylinder.

QUILT--A combination of two or more surfaces. Thisis represented by the classinterface | pfcQuilt.

Note:
Thisisused only for datum surfaces.

COONS PATCH--A coons patch is used to blend surfaces together. It is represented by the classinterface

I pfcCoonsPatch

FILLET SURFACE--A filleted surface is found where around or fillet is placed on a curved edge or an edge with a
non-consistant arc radii. On a straight edge a cylinder is used to represent afillet. Thisis represented by the
classinterface | pfcFilletedSurface.

SPLINE SURFACE-- A nonuniform bicubic spline surface that passes through a grid with tangent vectors given at
each point. Thisis represented by the classinterface I pfcSplineSurface.

NURBS SURFACE--A NURBS surface is defined by basic functions (in u and v), expandable arrays of knots,
weights, and control points. Thisis represented by the classinterface |pfcNURBSSurface.

CYLINDRICAL SPLINE SURFACE-- A cylindrical spline surface is a nonuniform bicubic spline surface that

passes through a grid with tangent vectors given at each point. Thisis represented by the class
I pfcCylindrical SplineSurface.

To determine which type of surface al pf cSur f ace object represents, access the surface type using
| pfcGetSurfaceType.

Surface Information

Methods Introduced:
. IpfcSurface.GetSurfaceType()
. IpfcSurface.GetXYZExtents()
. IpfcSurface.GetUVExtents()

. IpfcSurface.GetOrientation()

Evaluation of Surfaces

Surface methods allow you to use multiple surface information to calculate, evaluate, determine, and examine
surface functions and problems.

Methods and Properties Introduced:
. IpfcSurface.OwnerQuilt
. IpfcSurface.EvalClosestPoint()
. IpfcSurface.EvalClosestPointOnSurface()
. IpfcSurface.Eval3DData()
. IpfcSurface.EvalParameters()
. IpfcSurface.EvalArea()
. IpfcSurface.EvalDiameter()
. IpfcSurface.EvalPrincipalCurv()
. IpfcSurface.VerifyUV()
. IpfcSurface.EvalMaximum()
. IpfcSurface.EvalMinimum()
. IpfcSurface.ListSameSurfaces()

The property | pfcSurface.Owner Quilt returnsthe Qui | t object that contains the datum surface.

The method | pfcSurface.Eval ClosestPoint() projects athree-dimensiona point onto the surface. Use the method

| pfcSur face.Eval ClosestPointOnSur face() to determine whether the specified three-dimensional point ison the
surface, within the accuracy of the part. If it is, the method returns the point that is exactly on the surface. Otherwise
the method returns null.

The method | pfcSurface.Eval3DData() returnsal pf cSur f XYZDat a object that contains information about the
surface at the specified u and v parameters. The method | pfcSurface.EvalParameter () returnsthe u and v
parameters that correspond to the specified three-dimensional point.

The method | pfcSur face.Eval Area() returns the area of the surface, whereas | pfcSur face.Eval Diameter () returns
the diameter of the surface. If the diameter variesthe optional | pf cUVParams argument identifies where the

diameter should be evaluated.

The method | pfcSurface.EvalPrincipalCurv() returnsal pf cCur vat ur eDat a object with information regarding
the curvature of the surface at the specified u and v parameters.

Use the method | pfcSurface.VerifyUV() to determine whether the | pf cUVParams are actualy within the
boundary of the surface.

The methods | pfcSur face.EvalM aximum() and | pfcSurface.EvalM inimum() return the three-dimensional point
on the surface that is the furthest in the direction of (or away from) the specified vector.

The method | pfcSurface.ListSameSurfaces() identifies other surfaces that are tangent and connect to the given
surface.

Surface Descriptors

A surface descriptor is a data object that describes the shape and geometry of a specified surface. A surface
descriptor allows you to describe a surface in 3D without an owner ID.

Methods Introduced:
. IpfcSurface.GetSurfaceDescriptor()
. IpfcSurface.GetNURBSRepresentation()
The method | pfcSurface.GetSurfaceDescriptor () returns a surfaces geometry as a data object.

The method | pfcSur face.GetNURBSRepr esentation() returns a Non-Uniform Rational B-Spline Representation of
asurface.

Axes, Coordinate Systems, and Points

Coordinate axes, datum points, and coordinate systems are all model items. Use the methods that return
| pf cModel | t ens to get one of these geometry objects. Refer tosection "M odelltem” foradditional information

Evaluation of Modelltems
Properties Introduced:

. IpfcAxis.Surf

. IpfcCoordSystem.CoordSys
. IpfcPoint.Point
The I pfcAxis.Surf returns the revolved surface that uses the axis.

The property | pfcCoor dSystem.Coor dSys returns the Tr ansf or n8D object (which includes the origin and x-, y-,
and z- axes) that defines the coordinate system.

The property | pfcPoint.Point returns the xyz coordinates of the datum point.

Interference

Pro/ENGINEER assemblies can contain interferences between components when constraint by certain rules defined
by the user. The pfclnterference module allows the user to detect and analyze any interferences within the assembly.
The analysis of this functionality should be looked at from two standpoints: global and selection based analysis.

Methods and Properties Introduced:
. CMpfcinterference.CreateGlobalEvaluator()
. IpfcGlobalEvaluator.ComputeGloballnterference()
. IpfcGlobalEvaluator.Assem
. IpfcGlobalEvaluator.Assem
. IpfcGlobalinterference.Volume
. IpfcGlobalinterference.SelParts

To compute al the interferences within an Assembly one hasto call CM pfcl nter ference.CreateGlobal Evaluator ()
with al pfcAssembly object as an argument. This call returnsal pf c Global Evaluator object.

The property | pfcGlobal Evaluator .Assem accesses the assembly to be evaluated.

The method | pfcGlobal Evaluator.ComputeGloballnterference() determines the set of al the interferences within
the assembly.

This method will return a sequence of | pfcGloballnterference abjects or null if there are no interfering parts. Each
object contains a pair of intersecting parts and an object representing the interference volume, which can be
extracted by using I pfcGloball nter ference.SelParts and | pfcGloball nter fer ence.VVolume respectively.

Analyzing Interference Information
Methods and Properties Introduced:
. CCpfcSelectionPair.Create()

. CMpfcinterference.CreateSelectionEvaluator ()

. IpfcSelectionEvaluator.Selections

. IpfcSelectionEvaluator.Computelnterference()

. IpfcSelectionEvaluator.ComputeClearance()

. IpfcSelectionEvaluator.ComputeNearestCriticalDistance()

The method CCpfcSelectionPair.Create() creates al pfcSelectionPair object using two | pfcSelection objects as
arguments.

A return from this method will serve as an argument to CM pfclnter fer ence.CreateSelectionEvaluator (), which
will provide away to determine the interference data between the two selections.

| pfcSelectionEvaluator .Selections will extract and set the object to be evaluated respectively.

| pfcSelectionEvaluator .Computel nter ference() determines the interfering information about the provided
selections. This method will return the | pfclnterferenceV olume object or null if the selections do no interfere.

| pfcSelectionEvaluator .ComputeClear ance() computes the clearance data for the two selection. This method
returns a | pfcClearanceData object, which can be used to obtain and set clearance distance, nearest points between
selections, and a boolean IsInterferening variable.

| pfcSelectionEvaluator.ComputeNear estCriticalDistance() finds a critical point of the distance function between
two selections.

This method returnsal pf cCri ti cal Di st anceDat a object, which is used to determine and set critical points,
surface parameters, and critical distance between points.

Analyzing Interference Volume

Methods and Properties Introduced:
. IpfcinterferenceVolume.ComputeVolume()
. IpfcinterferenceVolume.Highlight()
. IpfcinterferenceVolume.Boundaries

The method | pfcl nter ferenceVolume.ComputeVolume() will calculate avalue for interfering volume.

The method | pfcl nter ferenceVolume.Highlight() will highlight the interfering volume with the color provided in
the argument to the function.

The property I pfclnterferenceVolume.Boundarieswill return a set of boundary surface descriptors for the
interference volume.

Exanpl e Code

This application finds the interference in an assembly, highlights the interfering surfaces, and highlights calcul ates
the interference volume.

I mports pfcls
Publ i c d ass pf cGeonet r yExanpl es
Publ i c Sub show nt er f erences(ByRef sessi on As | pf cBaseSessi on)

Di mnodel As | pf cModel

Di massenbl y As | pf cAssenbl y

D mgl obal Eval As | pfcd obal Eval uat or

Di mgl obal I nterferences As | pf cd obal I nterferences
Di mgl obal I nterference As | pfcd obal I nterference
Di msel ecti onPai r As | pf cSel ecti onPai r

D msel ectionl, sel ection2As | pfcSel ection

Di mi nt er Vol une As | pf cl nterf erenceVol une

Di mt ot al Vol une As Doubl e

Di mnol nt er f erences As | nt eger

Di mi As | nt eger

nodel =session. Current Model

I f nmodel |s Not hing Then
Thr owNewExcepti on(" Mddel not present")

End | f

I f (Not nodel . Type = Epf cModel Type. Epf cMDL_ASSEMBLY) Then
Thr owNewExcepti on(" Mddel i s not an assenbl y")

End I f

assenbl y = CType(nodel , | pf cAssenbl y)

gl obal Eval = (NewCMof cl nterference). Creat ed obal Eval uat or (assenbl y)
"Select thelist of interferencesintheassenbly
"Settingparaneter totruew || sel ect onlysolidgeonetry
"Settingittofalsew |l throughanexception

gl obal I nt erf erences =gl obal Eval . Conput ed obal I nt erf erence(Tr ue)

I f gl obal I nterferences | s NothingThen
ThrowNewException("Nointerferencedetectedinassenbly: " +assenbly. Ful | Nane)
Exit Sub
End | f
"For eachinterferencedisplayinterferingsurfaces andcal cul atethe
"interferingvol une
nol nt erf erences =gl obal | nt er f erences. Count
Fori =0Tonolnterferences- 1
gl obal I nterference =gl obal I nterferences.|ten(i)

sel ecti onPair =gl obal I nterference. Sel Parts

sel ectionl=sel ectionPair. Sel 1

sel ection2=sel ectionPair. Sel 2

sel ecti onl. Hi ghl i ght (Epf ¢St dCol or . Epf cCOLOR_HI GHLI GHT)
sel ecti on2. Hi ghl i ght (Epf ¢St dCol or. Epf cCOLOR_HI GHLI GHT)

i nt er Vol une =gl obal I nterference. Vol une

t ot al Vol une =i nt er Vol une. Conput eVol une()

MsgBox("Interference" +i.ToString+" Volune: " +total Vol une. ToStri ng)
i nt er Vol une. Hi ghl i ght (Epf ¢St dCol or. Epf cCOLOR_ERROR)

Next

Cat ch ex As Excepti on
MsgBox(ex. Message. ToString + Chr (13) +ex. StackTrace. ToStri ng)
Exit Sub
End Try
End Sub

End d ass

Dimensions and Parameters

This section describes the VB APl methods and classes that affect dimensions and parameters.
Topic

Overview

The ParamVaue Object
Parameter Objects
Dimension Objects

Overview

Dimensions and parameters in Pro/ENGINEER have similar characteristics but also have significant
differences. In the VB API, the similarities between dimensions and parameters are contained in the

| pf cBasePar anet er interface. Thisinterface allows access to the parameter or dimension value and to
information regarding a parameter's designation and modification. The differences between parameters and
dimensions are recognizable because | pf cDi nensi on inherits from the interface | pf cMobdel |t em and can
be assigned tolerances, whereas parameters are not | pf cModel | t ens and cannot have tol erances.

The ParamValue Object

Both parameters and dimension objects contain an object of type | pf cPar anval ue. This object contains the

integer, real, string, or Boolean value of the parameter or dimension. Because of the different possible value
types that can be associated with al pf cPar anVal ue object there are different methods used to access each

value type and some methods will not be applicable for some | pf cPar anval ue objects. If you try to use an
incorrect method an exception will be thrown.

Accessing a ParamValue Object

Methods and Property Introduced:
. CMpfcModelltem.CreatelntParamValue()
. CMpfcModelltem.CreateDoubleParamValue()
. CMpfcModelltem.CreateStringParamValue()
. CMpfcModelltem.CreateBoolParamValue()
. CMpfcModelltem.CreateNoteParamValue()
. IpfcBaseParameter.Value

The CVvpf cModel | t emutility class contains methods for creating each type of | pf cPar anval ue object.

Once you have established the value type in the object, you can change it. The property | pfcBasePar ameter .
Valuereturnsthe | pf cPar anval ue associated with a particular parameter or dimension.

A Notel pf cParamValue is an integer value that refers to the ID of a specified note. To create a parameter of
thistype the identified note must already exist in the model.

Accessing the ParamValue Value
Properties Introduced:
. IpfcParamValue.discr
. IpfcParamValue.IntValue
. IpfcParamValue.DoubleValue
. IpfcParamValue.StringValue
. IpfcParamValue.BoolValue
. IpfcParamValue.Noteld

The property | pfcParamValue.discr returns a enumeration object that identifies the type of value contained
inthe| pf cPar anval ue object. Use this information with the specified properties to access the value. If you
use an incorrect property an exception of type pf c XBadGet Par anval ue will be thrown.

Parameter Objects

The following sections describe the VB APl methods that access parameters. The topics are as follows:

Creating and Accessing Parameters
Parameter Selection Options
Parameter Information

Parameter Restrictions

[m) a O [}

Creating and Accessing Parameters
Methods and Property Introduced:
. IpfcParameterOwner.CreateParam()
. IpfcParameterOwner.CreateParamWithUnits()
. IpfcParameterOwner.GetParam()
. IpfcParameterOwner.ListParams)

. IpfcParameterOwner.SelectParam()

. IpfcParameterOwner.SelectParameters()
. IpfcFamColParam.RefParam

Inthe VB API, models, features, surfaces, and edges inherit from the | pfcParameter Owner interface,
because each of the objects can be assigned parametersin Pro/ENGINEER.

The method | pfcParameter Owner .GetParam() gets a parameter given its name.
The method | pfcParameter Owner .ListParams() returns a sequence of al parameters assigned to the object.

To create a new parameter with aname and a specific value, call the method | pfcParameter Owner .
CreateParam().

To create a new parameter with aname, a specific value, and units, call the method | pfcParameter Owner .
CreateParamWithUnits().

The method | pfcPar ameter Owner .SelectPar am() allows you to select a parameter from the Pro/ENGINEER
user interface. The top model from which the parameters are selected must be displayed in the current
window.

The method | pfcPar ameter Owner .SelectPar ameter s() allows you to interactively select parameters from the
Pro/ENGINEER Parameter dialog box based on the parameter selection options specified by the

| pfcPar ameter SelectionOptions object. The top model from which the parameters are selected must be
displayed in the current window. Refer to the section Parameter Selection Options for more information.

The property | pfcFamColPar am.RefPar am returns the reference parameter from the parameter columnin a
family table.

Parameter Selection Options
Parameter selection optionsin the VB API are represented by the | pfcPar ameter SelectionOptions interface.
Methods and Properties Introduced:
. CCpfcParameterSelectionOptions.Create()
. IpfcParameterSelectionOptions.AllowContextSelection
. IpfcParameterSelectionOptions.Contexts
. IpfcParameterSelectionOptions.AllowMultipleSelections
. IpfcParameterSelectionOptions.SelectButtonLabel

The method CCpfcPar ameter SelectionOptions.Create() creates a new instance of the
| pfcPar ameter SelectionOptions object that is used by the method | pfcPar ameter Owner .SelectPar ameter s

0.

The parameter selection options are as follows:

o AllowContextSel ection--This boolean attribute indicates whether to allow parameter selection from multiple
contexts, or from the invoking parameter owner. By default, it is false and allows selection only from the
invoking parameter owner. If it istrue and if specific selection contexts are not yet assigned, then you can
select the parameters from any context.

Use the property pfcM odel Item.ParameteSel ectionOptions. SetAllowContextSel ection to modify the value of
this attribute.

n Contexts--The permitted parameter selection contexts in the form of the | pfcParameter Sel ectionContexts
object. Use the property | pfcParameter Sel ectionOptions.Contexts to assign the parameter selection context.
By default, you can select parameters from any context.

The types of parameter selection contexts are as follows:
- EpfcPARAMSELECT_MODEL --Specifies that the top level model parameters can be selected.
- EpfcPARAMSELECT _PART--Specifies that any part's parameters (at any level of the top model)
can be selected.
- EpfcPARAMSELECT_ASM--Specifies that any assembly's parameters (at any level of the top
model) can be selected.
- EpfcPARAMSELECT_FEATURE--Specifies that any feature's parameters can be selected.
- EpfcPARAMSELECT _EDGE--Specifies that any edge's parameters can be selected.
- EpfcPARAMSELECT SURFACE--Specifies that any surface's parameters can be selected.
- EpfcPARAMSELECT_QUILT--Specifies that any quilt's parameters can be selected.
- EpfcPARAMSELECT_CURVE--Specifies that any curve's parameters can be selected.
- EpfcPARAMSELECT_COMPOSITE_CURVE--Specifies that any composite curve's parameters can
be selected.
- EpfcPARAMSELECT _INHERITED--Specifies that any inheritance feature's parameters can be
selected.
- EpfcPARAMSELECT_SKELETON--Specifies that any skeleton's parameters can be sel ected.
- EpfcPARAMSELECT_COMPONENT--Specifies that any component's parameters can be selected.

o AllowMultipleSel ections--This boolean attribute indicates whether or not to allow multiple parametersto be
selected from the dialog box, or only asingle parameter. By default, it istrue and allows selection of multiple
parameters.

Use the property | pfcParameter Sel ectionOptions.AllowM ultipleSel ections to modify this attribute.

o SelectButtonL abel--The visible label for the select button in the dialog box.

Use the property | pfcParameter Sel ectionOptions.Sel ectButtonL abel to set the label. If not set, the default
label in the language of the active Pro/ENGINEER session is displayed.

Parameter Information

Methods and Properties Introduced:
. IpfcBaseParameter.Value
. IpfcParameter.GetScaledValue()
. IpfcParameter.SetScaledValue()
. IpfcParameter.Units
. IpfcBaseParameter.IsDesignated
. IpfcBaseParameter.IsModified

. IpfcBaseParameter.ResetFromBackup()

[m)] O

. IpfcParameter.Description

. IpfcParameter.GetRestriction()
. IpfcParameter.GetDriverType()
. IpfcParameter.Reorder()

. IpfcParameter.Delete()

. IpfcNamedModelltem.Name

Parameters inherit methods from the | pfcBasePar ameter, | pfcParameter, and | pfcNamedM odel I tem
interfaces.

The property | pfcBasePar ameter .V alue returns the value of the parameter or dimension.

The method | pfcPar ameter .GetScaledValue() returns the parameter value in the units of the parameter,
instead of the units of the owner model as returned by | pfcBasePar ameter.Value.

The method | pfcPar ameter .SetScaledValue() assigns the parameter value in the units provided, instead of
using the units of the owner model as assumed by | pfcBasePar ameter.Value.

The method | pfcPar ameter .Units returns the units assigned to the parameter.
Y ou can access the designation status of the parameter using the property | pfcBasePar ameter .| sDesignated.

The property | pfcBasePar ameter .| sM odified and the method | pfcBasePar ameter .ResetFromBackup()
enable you to identify a modified parameter or dimension, and reset it to the last stored value. A parameter is
said to be "modified" when the value has been changed but the parameter's owner has not yet been
regenerated.

The property | pfcParameter .Description returns the parameter description, or null, if no descriptionis
assigned.

The property | pfcParameter.Description assigns the parameter description.

The property | pfcParameter .GetRestriction() identifiesif the parameter's value isrestricted to a certain
range or enumeration. It returns the | pfcParameter Restriction object. Refer to the section Parameter

Restrictions for more information.

The property | pfcParameter .GetDriver Type() returns the driver type for amaterial parameter. The driver
types are as follows:

EpfcPARAMDRIVER_PARAM--Specifies that the parameter value is driven by another parameter.
EpfcPARAMDRIVER_FUNCTION--Specifies that the parameter value is driven by afunction.
EpfcPARAMDRIVER_RELATION--Specifies that the parameter valueis driven by arelation. Thisis
equivalent to the value obtained using | pfcBaseParameter.IsRelationDriven for a parameter object type.

The method | pfcPar ameter .Reor der () reorders the given parameter to come immediately after the indicated
parameter in the Parameter dialog box and information files generated by Pro/ENGINEER.

The method | pfcPar ameter .Delete() permanently removes a specified parameter.

The property | pfcNamedM odel | tem.Name accesses the name of the specified parameter.

Parameter Restrictions

Pro/ENGINEER allows users to assign specified limitations to the value allowed for a given parameter
(wherever the parameter appears in the model). Y ou can only read the details of the permitted restrictions
from the VB API, but not modify the permitted values or range of values. Parameter restrictionsin the VB
APl are represented by the interface | pfcPar ameter Restriction.

Method Introduced:
. IpfcParameterRestriction.Type

The method | pfcParameter Restriction.Type returns the | pfcRestrictionType object containing the types of
parameter restrictions. The parameter restrictions are of the following types:

» EpfcPARAMSELECT_ENUMERATION--Specifies that the parameter isrestricted to alist of permitted
values.

o EpfcPARAMSELECT RANGE--Specifies that the parameter islimited to a specified range of numeric
values.

]

Enumeration Restriction

The EpfcPARAMSELECT_ENUMERATION type of parameter restriction is represented by the interface
| pfcParameter Enumeration. It isachild of the | pfcParameter Restriction interface.

Property Introduced:
. IpfcParameterEnumeration.PermittedValues

The property | pfcParameter Enumer ation.Per mittedValues returns alist of permitted parameter values
allowed by thisrestriction in the form of a sequence of the | pfcParamValue objects.

Range Restriction

The EpfcPARAMSELECT_RANGE type of parameter restriction is represented by the interface
I pfcParameter Range. It isachild of the | pfcParameter Restriction interface.

Properties Introduced:
. IpfcParameterRange.Maximum
. IpfcParameterRange.Minimum
. IpfcParameterLimit.Type

. IpfcParameterLimit.Value

The property | pfcParameter Range.M aximum returns the maximum value limit for the parameter in the form
of the | pfcParameter Limit object.

The property | pfcParameter Range.M inimum returns the minimum value limit for the parameter in the form
of the | pfcParameter Limit object.

The property | pfcParameter Limit.Type returns the | pfcPar ameter LimitType containing the types of
parameter limits. The parameter limits are of the following types:

EpfcPARAMLIMIT_LESS THAN--Specifies that the parameter must be less than the indicated value.

EpfcPARAMLIMIT_LESS THAN_OR_EQUAL--Specifies that the parameter must be less than or equal to

the indicated value.

o EpfcPARAMLIMIT_GREATER_THAN--Specifies that the parameter must be greater than the indicated
value.

o EpfcPARAMLIMIT_GREATER_THAN_OR_EQUAL--Specifies that the parameter must be greater than or

egual to the indicated value.

[m)]

The property | pfcParameter Limit.Value retruns the boundary value of the parameter limit in the form of the
| pfcParamValue object.

Exanpl e Code: Updati ng Model Paraneters

The following example code contains a method that reads a "properties” file and creates or updates model
parameters for each property which existsin the file. Since each property value isreturned as a String, a utility
method parses the String into int, double, or boolean valuesif possible

| nports pfcls

Publ i ¢ C ass pf cDi nensi onAndPar anet er Exanpl es
Publ i c Sub cr eat ePar anet er sFronProperti es(ByRef pOaner As | pf cPar anet er Owner, _
ByVal propertiesFileAs String)
DimfileAs | QO StreanReader = Not hi ng
Dims As String
Dimsplit() AsString
D mpv As | pf cPar anval ue
Di mp As | pf cPar anet er

'Read and parselineintokey- val uepairs. These are separ at ed by

TN

", Anylinestartingwith#isignoredasconments

Whil e Not file. EndOF St ream
s=file. ReadLi ne()
I f Not (s.Substring(0, 1) ="#") Then
split=s.Split(":")

"I nvalidkey- val uepairsareignored

If split.Length=2Then

pv =cr eat ePar anVal ueFronstri ng(split(1).ToString)
p =pOmer. Get Paran(split(0). ToString)
I f pls NothingThen
pOaner . Creat eParam(split(0). ToString, pv)
El se
CType(p, | pf cBaseParaneter). Val ue = pv
End | f
End | f
End | f

End Whi | e

Cat ch ex As Excepti on
MsgBox(ex. Message. ToStri ng + Chr (13) +ex. StackTrace. ToStri ng)

Finally
If Not filels NothingThen
file.d ose()
End | f
End Try
End Sub

"Create Paranetersfromstring

"Function : createParanval ueFronttring
"Purpose : ThisnmethodparsesastringintoaParanval ue obj ect.
' Usef ul for readi ng ParanVal ues fromfileor fromUl text.
' Thi s met hod checks i f t heval uei s aproper integer,
' doubl e, or bool ean, andif so, returns aval ue of t hat
type. |If theval ueisnot anunber or bool ean, the
nmet hod returns a Stri ng Par anval ue.

Pri vat e Functi on cr eat ePar anval ueFronttri ng(ByVal s As String) _
As | pf cPar anval ue
Try
If (s.Equal s("Y", StringConparison. Ordinal |l gnoreCase)) Or
_(s. Equal s("true", StringConpari son. O dinal | gnoreCase))
Then
Ret ur n ((NewCMpf cModel |t en) . Cr eat eBool Par anval ue(Tr ue))

El sel f (s. Equal s("N", Stri ngConpari son. Ordi nal | gnoreCase)) Or
_s. Equal s("fal se", StringConpari son. Ordinal | gnoreCase))
Then
Ret ur n ((NewCMof cModel | t en) . Cr eat eBool Par anval ue(Fal se))

El sel f 1 sDoubl e(s) Then
Ret ur n ((NewCMof cModel It en) . Cr eat eDoubl ePar anval ue
(CType(s, Doubl e)))
El self I sNuneric(s) Then
Ret ur n ((NewCMof cModel I t en) . Cr eat el nt Par anVal ue(CType(s,
I nteger)))

El se

Ret ur n ((NewCMof cModel It en) . Creat eSt ri ngPar anval ue(s))
End | f

Cat ch ex As Excepti on

MsgBox(ex. Message. ToString + Chr (13) +ex. StackTrace. ToStri ng)
Ret ur n Not hi ng
End Try

End Functi on

"Function : | sDoubl e
"Purpose : Hel per functiontocheckif stringisdecinal

Privat e Functi onl sDoubl e(ByVal s As Stri ng) As Bool ean
D mi As | nt eger

I f 1sNumeric(s) Then
Fori =0Tos.Length- 2
Ifs.Substring(i, 1) ="." Then
Ret urn True
End | f
Next
End | f
Ret urn Fal se
End Funct i on

End d ass

Dimension Objects

Dimension objects include standard Pro/ENGINEER dimensions as well as reference dimensions. Dimension
objects enable you to access dimension tolerances and enable you to set the value for the dimension.
Reference dimensions allow neither of these actions.

Getting Dimensions

Dimensions and reference dimensions are Pro/ENGINEER model items. Seefor methods that can return
| pf cDi nensi on and | pf cRef Di mensi on objects.

Dimension Information
Methods and Properties Introduced:
. IpfcBaseParameter.Value
. IpfcBaseDimension.DimValue

. IpfcBaseParameter.IsDesignated

. IpfcBaseParameter.IsModified

. IpfcBaseParameter.ResetFromBackup()
. IpfcBaseParameter.IsRelationDriven

. IpfcBaseDimension.DimType

. IpfcBaseDimension.Symbol

. IpfcBaseDimension.Texts

All the | pf cBasePar anet er methods are accessible to Di mensi ons aswell as Par anet er s. See
"Parameter Objects" for brief descriptions.

Note:
Y ou cannot set the value or designation status of reference dimension objects.

The property | pfcBaseDimension.DimV alue accesses the dimension value as a double. This property
provides a shortcut for accessing the dimensions' values without using a ParamV alue object.

The | pfcBasePar ameter .l sRelationDriven property identifies whether the part or assembly relations control
adimension.

The property | pfcBaseDimension.DimType returns an enumeration object that identifies whether a
dimension islinear, radial, angular, or diametrical.

The property | pfcBaseDimension.Symbol returns the dimension or reference dimension symbol (that is, "d#"
or "rd#").

The property | pfcBaseDimension. T exts alows access to the text strings that precede or follow the dimension
value.

Dimension Tolerances
Methods and Properties Introduced:
. IpfcDimension.Tolerance
. CCpfcDimTolPlusMinus.Create()
« CCpfcDimTolSymmetric.Create()
. CCpfcDimTolLimits.Create()
. CCpfcDimTolSymSuperscript.Create()

. CCpfcDimTolISODIN.Create()

Only true dimension objects can have geometric tolerances.

The property | pfcDimension. T oler ance enables you to access the dimension tolerance. The object types for
the dimension tolerance are:

o IpfcDimTolLimits--Displays dimension tolerances as upper and lower limits.

Note:
Thisformat is not available when only the tolerance value for adimension is displayed.

o IpfcDimTolPlusMinus--Displays dimensions as nominal with plus-minus tolerances. The positive and

negative values are independent.
o IpfeDimTol Symmetric--Displays dimensions as nominal with asingle value for both the positive and the

negative tolerance.

o IpfcDimTol SymSuperscript--Displays dimensions as nominal with asingle value for positive and negative
tolerance. The text of the tolerance is displayed in a superscript format with respect to the dimension text.

o |IpfcDimToll SODIN--Displays the tolerance table type, table column, and table name, if the dimension
toleranceis set to a hole or shaft table (DIN/ISO standard).

A null valueis similar to the nominal option in Pro/ENGINEER.

Y ou can determine whether a given tolerance is plus/minus, symmetric, limits, or superscript using the
following example code.

If TypeOf (tolerance) Is IpfcDinfolLinmts

Exanpl e Code: Setting Tol erencestoa Specifi ed Range

The following example code shows a utility method that sets angular tolerances to a specified range. First, the
program determines whether the dimension passed to it isangular. If it is, the method gets the dimension value
and adds or subtracts the range to it to get the upper and lower limits.

Publ i ¢ Functi on set Angul ar Tol er anceToLi m t s(ByVal di nensi on As
| pf cDi nensi on, _
ByVal range As Doubl e) _
As | pf cDi mensi on

Di mpar anVal ue As | pf cPar anval ue
DmlimtsAsIpfcD mlolLinmts
Di mdi nVval ue As Doubl e

Di mupper, | ower As Doubl e

Try
I f (di mensi on. Di nType = Epf cDi mensi onType. Epf cDI M_ANGULAR) Then
par amval ue = di mensi on. Val ue
di nval ue = par anval ue. Doubl eVal ue()

upper =di nval ue + (range/ 2)
| ower =di nval ue - (range/ 2)

limts=(NewCCpfcD mlol Linmts). Create(upper, | ower)
di nensi on. Tol erance=limts
End | f
set Angul ar Tol er anceToLi m ts =di mensi on

Cat ch ex As Excepti on
MsgBox(ex. Message. ToString + Chr (13) +ex. StackTrace. ToStri ng)
Ret ur n Not hi ng
End Try
End Funct i on

Relations

This section describes how to access relations on all models and model itemsin Pro/ENGINEER
using the methods provided in theVB API.

Topic

Accessing Relations
Adding a Customized Function to the Relations Dialog Box in Pro/ENGINEER

Accessing Relations

Inthe VB AP, the set of relations on any model or model item is represented by the
I pfcRelationOwner interface. Models, features, surfaces, and edges inherit from thisinterface,
because each object can be assigned relations in Pro/ENGINEER.
Methods and Properties Introduced:
. IpfcRelationOwner.RegenerateRelations()
. IpfcRelationOwner.DeleteRelations()
. IpfcRelationOwner.Relations

. IpfcRelationOwner.EvaluateExpression()

The method | pfcRelationOwner .Regener ateRelations() regenerates the relations assigned to the
owner item. It also determines whether the specified relation set isvalid.

The method | pfcRelationOwner .DeleteRelations() deletes all the relations assigned to the owner
item.

The property | pfcRelationOwner .Relations returns the list of actual relations assigned to the owner
item as a sequence of strings.

The method | pfcRelationOwner .EvaluateExpr ession() evaluates the given relations-based
expression, and returns the resulting value in the form of the | pfcParamValue object. Refer to the
section, The ParamV alue Object in the chapter, Dimensions and Parameters for more information on

this object.

Example 1: Adding Relations between Parameters in a Solid Model

Function : createParanD nRel ati on

Purpose : Thisfunctioncreates paranmetersfor all dinmensionsin
al | features of apart nodel and adds rel ati on bet ween
t hem

Publ i ¢ Sub cr eat ePar anDi nRel ati on(ByRef f eat ures As | pf cFeat ur es)

D mi tens As | pf cVbdel It ens
D mi temAs | pf cModel Item
Di mf eature As | pf cFeat ure
Dimi, j As | nteger

Di mpar amNane As Stri ng

Di mdi mNane As Stri ng

Di mdi nvVal ue As Doubl e

Di mrel ati ons As Cstringseq
D mpar amval ue As | pf cPar anVal ue
Di mpar amAs | pf cPar anet er
Di mpar amAdded As Bool ean

Try

For i =0 Tofeatures. Count - 1
feature=features.lten(i)

itenms =feature. Li st Subl t ens(Epf cMbdel | t eniType. Epf cl TEM DI MENSI ON)
Ifitenms|ls NothingOElseitens. Count =0 Then

Cont i nue For

End | f

rel ati ons =NewCstringseq

For j =0Toitemns. Count - 1

item=itens.lten(j)

di mNanme =i tem Get Nane()

par amNane =" PARAM " + di mNane

di mval ue = CType(item | pfcBaseD nensi on). D nval ue

par am=f eat ur e. Get Par an{ par anNane)
par amAdded = Fal se
I f paraml s Not hi ng Then
par amval ue = (New
CMVpf cMbdel It em) . Cr eat eDoubl ePar anVal ue(di nval ue)
f eat ur e. Cr eat ePar an{ par anNane, par anval ue)

par amAdded = Tr ue
El se

| f param Val ue. di scr = Epf cPar anval ueType. Epf cPARAM DOUBLE
Then

par amval ue = (New

CWVpf cModel It em . Cr eat eDoubl ePar anval ue(di nval ue)

CType(param | pf cBasePar anet er) . Val ue = par anval ue

par amAdded = Tr ue

End | f
End | f

| f paramAdded = True Then

rel ati ons. Append(di mNanme +" =" + par anNane)
End | f
par am= Not hi ng
Next
CType(feature, | pfcRel ati onOwer). Rel ations =rel ati ons
Next

Cat ch ex As Excepti on
MsgBox(ex. Message. ToString + Chr (13) +ex. StackTrace. ToStri ng)
End Try
End Sub
End d ass

Adding a Customized Function to the Relations Dialog Box in Pro/
ENGINEER

Methods Introduced:
. IpfcBaseSession.RegisterRelationFunction()

The method | pfcBaseSession.Register RelationFunction() registers a custom function that is
included in the function list of the Relations dialog box in Pro/ENGINEER. Y ou can add the custom
function to relations that are added to models, features, or other relation owners. The registration
method takes the following input arguments:

o Name--The name of the custom function.

o IpfcRelationFunctionOptions--This object contains the options that determine the behavior of the
custom relation function. Refer to the section "Relation Function Options' for more information.

o |pfcRelationFunctionListener--This object contains the action listener methods for the
implementation of the custom function. Refer to the section "Relation Function Listeners for more
information.

Note:
the VB API relation functions are valid only when the custom function has been registered by
the application. If the application is not running or not present, models that contain user-
defined relations cannot evaluate these relations. In this situation, the relations are marked as
errors. However, these errors can be commented until needed at alater time when the
relations functions are reactivated in a Pro/ENGINEEER session.

Relation Function Options
Methods and Properties Introduced:

. CCpfcRelationFunctionOptions.Create()

IpfcRelationFunctionOptions.ArgumentTypes

. CCpfcRelationFunctionArgument.Create()

IpfcRelationFunctionArgument. Type

. IpfcRelationFunctionArgument.IsOptional

IpfcRelationFunctionOptions.EnableTypeChecking

. IpfcRelationFunctionOptions.EnableArgumentCheckMethod

IpfcRelationFunctionOptions.EnableExpressionEvaluationMethod
. IpfcRelationFunctionOptions.EnableValueAssignmentMethod

Use the method CCpfcRelationFunctionOptions.Create() to create the

| pfcRelationFunctionOptions object containing the options to enable or disable various relation
function related features. Use the methods listed above to access and modify the options. These
options are as follows:

o ArgumentTypes--The types of arguments in the form of the | pfcRelationFunctionArgument object.
By default, this parameter is null, indicating that no arguments are permitted.

Use the method CCpfcRelationFunctionArgument.Create() to create the
I pfcRelationFunctionArgument object containing the attributes of the arguments passed to the
custom relation function.

These attributes are as follows:
- Type--The type of argument value such as double, integer, and so on in the form of the
I pfcParamV alueType object.
- |sOptional--This boolean attribute specifies whether the argument is optional, indicating that
it can be skipped when acall to the custom relation function is made. The optional arguments
must fall at the end of the argument list. By default, this attribute is false.

o EnableTypeChecking--This boolean attribute determines whether or not to check the argument types
internally. By default, it isfalse. If this attribute is set to false, Pro/ENGINEER does not need to
know the contents of the arguments array. The custom function must handle all user errorsin such a
situation.

o EnableArgumentCheckM ethod--This bool ean attribute determines whether or not to enable the
arguments check listener function. By default, it isfalse.

o EnableExpressionEvaluationM ethod--This boolean attribute determines whether or not to enable the
evaluate listener function. By default, it istrue.

o EnableVaueAssignmentM ethod--This boolean attribute determines whether or not to enable the
value assignment listener function. By default, it isfalse.

Relation Function Listeners

The interface | pfcRelationFunctionL istener provides the method signatures to implement a custom
relation function.

Methods Introduced:
. IpfcRelationFunctionListener.CheckArguments)
. IpfcRelationFunctionListener.AssignValue()
. IpfcRelationFunctionListener.EvaluateFunction()

The method | pfcRelationFunctionListener .Check Arguments() checks the validity of the
arguments passed to the custom function. This listener method takes the following input arguments:

o The owner of the relation being evaluated
o The custom function name
o A seguence of arguments passed to the custom function

If the implementation of this method determines that the arguments are not valid for the custom
function, then the listener method returns false. Otherwise, it returns true.

The method | pfcRelationFunctionListener .EvaluateFunction() evaluates a custom relation
function invoked on the right hand side of arelation. This listener method takes the following input
arguments:

o The owner of the relation being evaluated
o The custom function name
o A sequence of arguments passed to the custom function

Y ou must return the computed result of the custom relation function.

The method | pfcRelationFunctionListener AssignValue() evaluates a custom relation function
invoked on the left hand side of arelation. It alowsyou to initialize properties to be stored and used
by your application. This listener method takes the following input arguments:

The owner of the relation being evaluated

The custom function name

A sequence of arguments passed to the custom function

The value obtained by Pro/ENGINEER from evaluating the right hand side of the relation

O O [m] [m]

Example 2: Adding and Implementing a New Custom Relation Function

The addRel at i on function in this example code, which defines the options for a new custom
relation function and registersit in the current session. The Rel at i onLi st ener class contains the
CheckArguments, AssignValue and EvaluateFunction listener methods that are called when the
custom relation function is used.

Publ i c C ass pf cRel ati onsExanpl es1
| mpl ement s | pf cAsyncAct i onLi st ener
| mpl ement s |1 Cl PAl i ent Obj ect
| npl ement s | pf cActi onLi st ener

D mWt hEvent s event Ti mer As Ti nmers. Ti mer
D mexi t Fl ag As Bool ean = Fal se
Di maCAs pfcls. | pfcAsyncConnecti on

Publ i ¢ Sub New(ByRef asyncConnecti on As pfcl s. | pf cAsyncConnecti on)
aC=asyncConnecti on
End Sub

Public FunctionGetdientlnterfaceNanme() As Stringl npl enents
pfcls.ICPCientObject.GetdientlnterfaceNane
GetdientlnterfaceNane ="1pfcAsyncActi onLi stener™
End Functi on

Publ i ¢ Sub OnTer m nat e(ByVal _Status As I nteger) | npl enents
pfcls. | pfcAsyncActionLi stener. OnTerm nate
aC. I nterrupt Event Processi ng()
exi t Fl ag =True
End Sub

"Function : tineEl apsed
"Purpose : Thisfunctionhandelsthetineelapsedevent of tiner
' whichisfiredat regularintervals

Private Subti neEl apsed(ByVal sender As Obj ect, ByVal e As
System Ti ners. El apsedEvent Ar gs)
I f exitFlag=Fal se Then
aC. Event Process()
El se
event Ti mer . Enabl ed = Fal se
End | f
End Sub

"Function : addRel ation
"Purpose : Thisfunctionadds newcustomrel ationfunctions.

Publ i ¢ Sub addRel ati on()

D ml i stener Qj As Rel ati onLi st ener

Di mset Opti ons As | pf cRel ati onFuncti onQpti ons
Di mget Opti ons As | pf cRel ati onFuncti onQpti ons
Di mget Args As | pf cRel ati onFuncti onArgunent s
D mget Arg As | pf cRel ati onFuncti onAr gunent

Try
i stener Cbj = NewRel ati onLi st ener ()

event Ti mer = NewTi nmers. Ti nmer (50)
event Ti mer . Enabl ed = Tr ue
AddHandl er event Ti ner . El apsed, AddressOF Me. ti neEl apsed

set Opti ons = (NewCCpf cRel ati onFuncti onOpti ons). Create()
set Opti ons. Enabl eAr gunent CheckMet hod = Fal se

set Opt i ons. Enabl eExpr essi onEval uati onMet hod = Fal se

set Opt i ons. Enabl eTypeChecki ng = Fal se

set Opt i ons. Enabl eVal ueAssi gnnent Met hod = Tr ue

aC. Sessi on. Regi sterRel ati onFunction("SET_A", |istener Qbj,
set Opti ons)

aC. Sessi on. Regi st er Rel ati onFunction("SET_B", |istener Qj,
set Opti ons)

get Args = NewCpf cRel ati onFuncti onArgunent s
get Arg = (New

CCpf cRel ati onFuncti onArgunent) . Cr eat e(Epf cPar anVal ueType. Epf cPARAM DOUBL)
get Arg. I sOpti onal =Fal se

get Args. Append(get Ar Q)

get Opt i ons = (NewCCpf cRel ati onFuncti onOpti ons). Create()
get Opt i ons. Enabl eTypeChecki ng = Fal se
get Opt i ons. Argunent Types = get Args

aC. Sessi on. Regi st er Rel ati onFunction("EVAL_AX B", |istener Qbj,
get Opti ons)

aC. AddAct i onLi st ener (Me)

Cat ch ex As Excepti on
MsgBox(ex. Message. ToString + Chr(13) +ex. StackTrace. ToStri ng)
End Try
End Sub

' Cl ass . Rel ati onLi st ener

"Purpose : ThisclassinplenentsthelpfcRel ati onFuncti onLi st ener
' Interfacealongwiththecorrect client interface nane.

' The i npl ement ed met hodwi | | be cal | ed whent he cust om

' relationfunctionis used.

Private O ass Rel ati onLi st ener
| npl ement s | pf cRel ati onFunct i onLi st ener
| mpl ement s |1 Cl PA i ent Obj ect
| npl ement s | pf cActi onLi st ener

Di maVal ue As Doubl e =1
Di mbVal ue As Doubl e =0

Public FunctionGetdientlnterfaceNane() As Stringl npl enments
pfcls.ICIPOientObject.GtdientlnterfaceNane
GetCientlnterfaceNane ="1pfcRel ati onFuncti onLi stener”
End Functi on

"Function : AssignVal ue
"Purpose : Functioncall edwhenval ueis assignedtocustom
' rel ati onfunction.

Publ i ¢ Sub Assi gnVal ue(ByVal _Owner As pfcls. | pfcRel ati onOaner,
ByVal FunctionNanme As String, ByVal _Argunents As pfcl s. Cpf cPar anVval ues,
ByVal _Assi gnnent As pfcls. | pfcParanval ue) | npl enent s
pfcls. | pfcRel ati onFuncti onLi stener. Assi gnVal ue

I f Not _Assi gnment . di scr = Epf cPar anVal ueType. Epf cPARAM DOUBLE

Then

Thr owNewException("l ncorrect type")

End | f

| f _FunctionNanme =" SET_A" Then
aVal ue = _Assi gnnent . Doubl eVal ue

End | f

| f FunctionNanme =" SET_B" Then
bVal ue = _Assi gnnent . Doubl eVal ue

End | f

"Function : CheckArgunents
"Purpose : Functioncall edtocheckargunents supplied
tocustomrel ati onfunction.

Publ i c Functi on CheckAr gunent s(ByVal _Oaner As
pfcls.|pfcRelati onOwmer, ByVal FunctionName As String, ByVal _Argunents
As pf cl s. Cpf cPar anval ues) As Bool ean | npl enent s
pfcls. | pfcRel ati onFuncti onLi st ener. CheckAr gunent s

End Functi on

"Function : Eval uat eFunction
"Purpose : Functioncall edwhenvalueistobereturnedfrom

' customrel ati onfuncti on.

Publ i ¢ Functi on Eval uat eFuncti on(ByVal _Oaner As
pfcls.|pfcRelati onOwmer, ByVal FunctionName As String, ByvVal _Argunents
As pf cl s. Cpf cPar anval ues) As pfcl s. | pf cPar anval ue | npl enent s
pfcls. | pfcRel ati onFuncti onLi st ener. Eval uat eFuncti on

Di mpar amval ue As | pf cPar anval ue
Di mret As Doubl e

| f _FunctionNanme =" EVAL_AX B" Then
ret =(aval ue* (_Argunents.|ten(0). Doubl eval ue)) +bVal ue
par amval ue = (New
CWVpf cModel It em) . Cr eat eDoubl ePar anVal ue(ret)
Ret ur n par anval ue
El se
Ret ur n Not hi ng
End | f

End Functi on
End Cl ass

End Cl ass

Assemblies and Components

This section describes the the VB API functions that access the functions of a Pro/ENGINEER assembly. You
must be familiar with the following before you read this section:

o The Selection Object
v Coordinate Systems
o The Geometry section

Topic

Structure of Assemblies and Assembly Objects
Assembling Components

Redefining and Rerouting Assembly Components
Exploded Assemblies

Skeleton Models

Structure of Assemblies and Assembly Objects

The object | pf cAssenbl y isaninstance of | pf cSol i d. The | pf cAssenbl y object can therefore be used as
input to any of the | pf cSol i d and Ipf cMbdel methods applicable to assemblies. However assemblies do not
contain solid geometry items. The only geometry in the assembly is datums (points, planes, axes, coordinate

systems, curves, and surfaces). Therefore solid assembly features such as holes and slots will not contain active
surfaces or edges in the assembly model.

The solid geometry of an assembly is contained in its components. A component is afeature of type
| pf cConmponent Feat, which isareference to apart or another assembly, and a set of parametric constraints for
determining its geometrical |ocation within the parent assembly.

Assembly features that are solid, such as holes and slots, and therefore affect the solid geometry of partsin the
assembly hierarchy, do not themselves contain the geometry items that describe those modifications. These items
are always contained in the parts whose geometry is modified, within local features created for that purpose.

The important functions for assemblies are those that operate on the components of an assembly. The object
| pf cComponent Feat , which isan instance of | pf cFeat ur e isdefined for that purpose. Each assembly

component istreated as a variety of feature, and the integer identifier of the component is also the feature
identifier.

An assembly can contain a hierarchy of assemblies and parts at many levels, in which some assemblies and parts
may appear more than once. To identify the role of any database item in the context of the root assembly, itis
not sufficient to have the integer identifier of the item and the handle to its owning part or assembly, aswould be
provided by its| pf cFeat ur e description.

It is also necessary to give the full path of the assembly-component references down from the root assembly to
the part or assembly that owns the database item. Thisis the purpose of the object | Conponent Pat h, whichis
used as the input to the VB API assembly functions.

The following figure shows an assembly hierarchy with two examples of the contents of al pf cConponent Pat h

object.

component identifiers

A
e
2 77 3
Level 1 T HHH c
eve /Q O O o N
4 ',III 2 E p /III:__." I|II E‘HHIHHH E
I|II o Rl | Ill . o,
Level 2 fﬁ :) .
0] o oo O
2 ,."; I". 3 5 \x\ 2 2 ' IlI ‘-..' 4q T) Y \\ 2
P ", AL I | I"-,12 S
Level 3 / I_'_n_l Mkl‘j Q/f I-_il \ .'I \ =
D 2 P e f’i;:? i Q D Qlﬁﬂ
_{.f"" .'I \ 3 ! i a2 q | I'u 3 2 -"I I"- 3
-~ 5 i I ! ! | Y ! !
Leveta AB 7 % \6 Fo
@ 0 O) O O O O O
I.'- I'. ! I'l, (1
2 /s 2 /e A B
Level5 | | Sl
Al Op O] 1
O =assembly or subassembly
L1 =part

In the assembly shown in the figure, subassembly C is component identifier 11 within assembly A, Part B is
component identifier 3 within assembly AB, and so on. The subassembly AB occurs twice. To refer to the two

occurrences of part B, use the following:

(?) Conmponent B Component B"
Component I ds. Item(0) =2 Conponent | ds
Componentlds. Item(1l) =2 Conponent| ds
Componentlds.Item2) =5 Conponent| ds
Component I ds. Item(3) =2 Conponent| ds
Conmponentlds.ltem(4) =3

dtem(1) =11
ltem(2) =6
dtem(3) =12
dtem(4) =3

The object | pf cConponent Pat h is one of the main portions of the | pf cSel ect i on object.

Assembly Components

Methods and Properties Introduced:
. IpfcComponentFeat.IsBulkitem
. IpfcComponentFeat.IsSubstitute

. IpfcComponentFeat.CompType

. IpfcComponentFeat.ModelDescr

. IpfcComponentFeat.IsPlaced

. IpfcComponentFeat.IsPackaged

. IpfcComponentFeat.IsUnderconstrained

. IpfcComponentFeat.IsFrozen

. IpfcComponentFeat.Position

. IpfcComponentFeat.CopyTemplateContents()
. IpfcComponentFeat.CreateReplaceOp()

The property | pfcComponentFeat.l sBulkitem identifies whether an assembly component is a bulk item. A bulk
item is anon-geometric assembly feature that should appear in an assembly bill of materials.

The property | pfcComponentFeat.l sSubstitute returns a true value if the component is substituted, else it
returns afalse. When you substitute a component in asimplified representation, you temporarily exclude the
substituted component and superimpose the substituting component in its place.

The property | pfcComponentFeat.CompType enables you to set the type of the assembly component. The
component type identifies the purpose of the component in a manufacturing assembly.

The property | pfcComponentFeat.M odel Descr returns the model descriptor of the component part or
subassembly.

Note:
From Pro/ENGINEER Wildfire 4.0 onwards, the property | pfcComponentFeat.M odel Descr throws an
exception IpfcXtoolkitCantOpen if called on an assembly component whose immediate genericisnot in
session. Handle this exception and typecast the assembly component as |pfcSolid, which in turn can be
typecast as | pfcFamilyMember, and use the method | pfcFamilyM ember.GetlmmediateGenericinfo() to
get the model descriptor of the immediate generic model. If you wish to switch off this behavior and
continue to run legacy applications in the pre-Wildfire 4.0 mode, set the configuration option
retrieve_instance dependenciesto "instance and generic_deps".

The property | pfcComponentFeat.l sPlaced forces the component to be considered placed. The value of this
parameter isimportant in assembly Bill of Materials.

Note:
Once a component is constrained or packaged, it cannot be made unplaced again.

A component of an assembly that is either partially constrained or unconstrained is known as a packaged
component. Use the property | pfcComponentFeat.l sPackaged to determine if the specified component is
packaged.

The property | pfcComponentFeat.l sUnder constrained determines if the specified component is
underconstrained, that is, it possesses some constraints but is not fully constrained.

The property | pfcComponentFeat.l sFrozen determinesif the specified component is frozen. The frozen

component behaves similar to the packaged component and does not follow the constraints that you specify.

The property | pfcComponentFeat.Position retrieves the component's initial position before constraints and
movements have been applied. If the component is packaged this position is the same as the constraint's actual
position. This property modifies the assembly component data but does not regenerate the assembly component.
To regenerate the component, use the method | pfcComponentFeat.Regener ate().

The method | pfcComponentFeat.CopyTemplateContents() copies the template model into the model of the
specified component.

The method | pfcComponentFeat.CreateReplaceOp() creates a replacement operation used to swap a
component automatically with arelated component. The replacement operation can be used as an argument to
I pfcSolid.ExecuteFeatur eOps().

Exanpl e Code: Repl aci ng | nst ances

The following example code contains a single static utility method. This method takes an assembly for an
argument. It searches through the assembly for all components that are instances of the model "bolt". It then
replaces all such occurrences with a different instance of bolt.

I nportspfcls
Publ i ¢ O ass pf cAssenbl i esExanpl es

Publ i c Sub repl acel nst ance(ByRef sessi on As | pf cBaseSessi on, _
ByVal nodel Nanme As String, _
ByVal ol dl nstance As String, _
ByVal newl nstance As Stri ng)

Di mnodel As | pf cModel

Di massenbl y As | pf cAssenbl y

i mol dModel As | pfcSolid

mnew nst anceFam | yRowAs | pf cFami | yTabl eRow
mnewivbdel As | pfcSolid

mconponent s As | pf cFeat ur es

mconponent As | pf cConponent Feat

mnodel Desc As | pf cMbdel Descri pt or

mr epl ace As | pf cConpModel Repl ace

Di mr epl aceQper at i ons As Cpf cFeat ur eQper ati ons
Di mi As | nt eger

vl vivEvRwNw)

nodel =sessi on. Current Model

I f model |'s Not hi ng Then
Thr owNewExcepti on(" Mddel not present™)

End| f

I f (Not nodel . Type = Epf cModel Type. Epf cMDL_ASSEMBLY) Then
Thr owNewExcepti on(" Mddel i s not anassenbl y")

End| f

assenbl y = CType(nodel , | pf cAssenbl y)

ol dvbdel =sessi on. Get Mbdel (nodel Nane,
Epf cModel Type. Epf cMDL_PART)

newl nst anceFam | yRow= ol dMbdel . Get Rowm hewl nst ance)
newibdel =new nst anceFarmi | yRow. Cr eat el nst ance()

repl aceOper ati ons = NewCpf cFeat ur eOper ati ons

Loopthroughall the conponents andcreaterepl ace operations for any
i nst ance of t he nodel found

conmponent s = assenbl y. Li st Feat ur esByType(Fal se, Epf cFeat ureType.
Epf c FEATTYPE_COMPONENT)
For i =0 To conponents. Count - 1
component =conponents. ltenm(i)
nodel Desc = conponent . Model Descr
I f nodel Desc. | nst anceNane = ol dl nst ance Then
repl ace = conponent . Cr eat eRepl aceCp(newhbdel)
repl aceQperations. Insert (0, repl ace)
End I f

assenbl y. Execut eFeat ur eOps(repl aceQper ati ons, Not hi ng)

Cat ch ex As Exception
MsgBox(ex. Message. ToStri ng + Chr (13) +ex. StackTrace. ToStri ng)
Exit Sub
End Try
End Sub
End C ass

Regenerating an Assembly Component
Method Introduced:
. IpfcComponentFeat.Regenerate()

The method | pfcComponentFeat.Regener ate() regenerates an assembly component. The method regenerates
the assembly component just asin an interactive Pro/ENGINEER session.

Creating a Component Path

Methods Introduced

. CMpfcAssembly.CreateComponentPath()

The method CM pfcAssembly.CreateComponentPath() returns a component path object, given the Assembly
model and the integer id path to the desired component.

Component Path Information

Methods and Properties Introduced:
. IpfcComponentPath.Root
. IpfcComponentPath.Componentlds
. IpfcComponentPath.Leaf
. IpfcComponentPath.GetTransform()
. IpfcComponentPath.SetTransform()
. IpfcComponentPath.GetlsVisible()

The property | pfcComponentPath.Root returns the assembly at the head of the component path object.

The property | pfcComponentPath.Componentl ds returns the sequence of ids which is the path to the particular
component.

The property | pfcComponentPath.L eaf returns the solid model at the end of the component path.

The method | pfcComponentPath.Get Transfor m() returns the coordinate system transformation between the
assembly and the particular component. It has an option to provide the transformation from bottom to top, or
from top to bottom. This method describes the current position and the orientation of the assembly component in
the root assembly.

The method | pfcComponentPath.Set Transfor m() applies atemporary transformation to the assembly
component, similar to the transformation that takes place in an exploded state. The transformation will only be
applied if the assembly is using DynamicPositioning.

The method | pfcComponentPath.GetlsVisible() identifies if a particular component is visible in any simplified
representation.

Assembling Components

Methods Introduced:
. IpfcAssembly.AssembleComponent()
. IpfcAssembly.AssembleByCopy()
. IpfcComponentFeat.GetConstraints()

. IpfcComponentFeat.SetConstraints()

The method | pfcAssembly.AssembleComponent() adds a specified component model to the assembly at the
specified initial position. The position is specified in the format defined by the interface | pfcTransform3D.
Specify the orientation of the three axes and the position of the origin of the component coordinate system, with
respect to the target assembly coordinate system.

The method | pfcAssembly.AssembleByCopy() creates a new component in the specified assembly by copying

from the specified component. If no model is specified, then the new component is created empty. The input
parameters for this method are:

o LeaveUnplaced--If true the component is unplaced. If false the component is placed at a default location in the
assembly. Unplaced components belong to an assembly without being assembled or packaged. These
components appear in the model tree, but not in the graphic window. Unplaced components can be constrained
or packaged by selecting them from the model tree for redefinition. When its parent assembly is retrieved into
memory, an unplaced component is also retrieved.

o Model ToCopy--Specify the model to be copied into the assembly
o NewModelName--Specify a name for the copied model

The method | pfcComponentFeat.GetConstraints() retrieves the constraints for a given assembly component.

The method | pfcComponentFeat.SetConstraints() allows you to set the constraints for a specified assembly
component. The input parameters for this method are:

o Constraints--Constraints for the assembly component. These constraints are explained in detail in the later
sections.

o ReferenceAssembly--The path to the owner assembly, if the constraints have external references to other

members of the top level assembly. If the constraints are applied only to the assembly component then the value
of this parameter should be null.

This method modifies the component feature data but does not regenerate the assembly component. To
regenerate the assembly use the method | pfcSolid.Regener ate().

Constraint Attributes

Methods and Properties Introduced:
. CCpfcConstraintAttributes.Create()
. IpfcConstraintAttributes.Force
. IpfcConstraintAttributes.Ignore

The method CCpfcConstraintAttributes.Create() returns the constraint attributes object based on the values of
the following input parameters:

o lgnore--Constraint is ignored during regeneration. Use this capability to store extra constraints on the
component, which alows you to quickly toggle between different constraints.

o Force--Constraint hasto be forced for line and point alignment.

o None--No constraint attributes. Thisis the default value.

Assembling a Component Parametrically

Y ou can position a component relative to its neighbors (components or assembly features) so that its position is

updated as its neighbors move or change. Thisis called parametric assembly. Pro/ENGINEER allows you to
specify constraints to determine how and where the component relates to the assembly. Y ou can add as many
constraints as you need to make sure that the assembly meets the design intent.

Methods and Properties Introduced:
. CCpfcComponentConstraint.Create()
. IpfcComponentConstraint. Type
. IpfcComponentConstraint. AssemblyReference
. IpfcComponentConstraint. AssemblyDatumSide
. IpfcComponentConstraint. ComponentReference
. IpfcComponentConstraint.ComponentDatumSide
. IpfcComponentConstraint.Offset
. IpfcComponentConstraint.Attributes
. IpfcComponentConstraint.UserDefinedData

The method CCpfcComponentConstraint.Create() returns the component constraint object having the
following parameters:

o ComponentConstraintType--Using the TY PE options, you can specify the placement constraint types. They are
asfollows:

- EpfcASM_CONSTRAINT_MATE--Use this option to make two surfaces touch one another, that is
coincident and facing each other.
- EpfcASM_CONSTRAINT_MATE_ OFF--Use this option to make two planar surfaces parallel and
facing each other.
- EpfcASM_CONSTRAINT_ALIGN--Use this option to make two planes coplanar, two axes coaxial
and two points coincident. You can also aign revolved surfaces or edges.
- EpfcASM_CONSTRAINT_ALIGN_OFF--Use this option to align two planar surfaces at an offset.
- EpfcASM_CONSTRAINT _INSERT--Use this option to insert a ™ "mal€e" revolved surface into a
“female" revolved surface, making their respective axes coaxial.
- EpfcASM_CONSTRAINT_ORIENT--Use this option to make two planar surfacesto be parallel in the
same direction.
- EpfcASM_CONSTRAINT_CSY S--Use this option to place a component in an assembly by aligning
the coordinate system of the component with the coordinate system of the assembly.
- EpfcASM_CONSTRAINT_TANGENT----Use this option to control the contact of two surfaces at their
tangents.
- EpfcASM_CONSTRAINT_PNT_ON_SRF--Use this option to control the contact of a surface with a
point.
- EpfcASM_CONSTRAINT_EDGE _ON_SRF--Use this option to control the contact of a surface with a
straight edge.
- EpfcASM_CONSTRAINT_DEF_PLACEMENT--Use this option to align the default coordinate
system of the component to the default coordinate system of the assembly.
- EpfcASM_CONSTRAINT_SUBSTITUTE--Use this option in simplified representations when a
component has been substituted with some other model
- EpfcASM_CONSTRAINT _PNT_ON_LINE--Use this option to control the contact of aline with a

point.
- EpfcASM_CONSTRAINT_FIX--Use this option to force the component to remain in its current
packaged position.
- EpfcASM_CONSTRAINT_AUTO--Use this option in the user interface to allow an automatic choice
of constraint type based upon the references.
o AssemblyReference--A reference in the assembly.
o AssemblyDatumSide--Orientation of the assembly. This can have the following values:
- Yéellow--The primary side of the datum plane which is the default direction of the arrow.
- Red--The secondary side of the datum plane which is the direction opposite to that of the arrow.
o ComponentReference--A reference on the placed component.
o ComponentDatumSide--Orientation of the assembly component. This can have the following values:
- Yellow--The primary side of the datum plane which is the default direction of the arrow.
- Red--The secondary side of the datum plane which is the direction opposite to that of the arrow.
o Offset--The mate or align offset value from the reference.
o Attributes--Constraint attributes for a given constraint
o UserDefinedData--A string that specifies user data for the given constraint.

Use the properties listed above to access the parameters of the component constraint object.

Redefining and Rerouting Assembly Components

These functions enabl e you to reroute previously assembled components, just as in an interactive Pro/
ENGINEER session.

Methods Introduced:
. IpfcComponentFeat.RedefineThroughUl()
. IpfcComponentFeat.MoveThroughUl()

The method | pfcComponentFeat.RedefineT hroughUI () must be used in interactive VB applications. This
method displays the Pro/ENGINEER Constraint dialog box. This enables the end user to redefine the constraints
interactively. The control returnsto the VB API application when the user selects OK or Cancel and the dialog
box is closed.

The method | pfcComponentFeat.M oveT hroughUI () invokes a dialog box that prompts the user to interactively
reposition the components. This interface enables the user to specify the translation and rotation values. The
control returns to the VB API application when the user selects OK or Cancel and the dialog box is closed.

Exanpl e: Conponent Constraints

This function displays each constraint of the component visually on the screen, and includes a text explanation
for each constraint.

Publ i ¢ Sub hi ghl i ght Constrai nt s(ByRef sessi on As | pf cBaseSessi on)

Di mnodel As | pf cModel

Di massenbl y As | pf cAssenbl y

Di moptions As | pf cSel ecti onOpti ons
Di msel ecti ons As | pfcSel ecti ons

Di mi temAs | pf cMbdel Item

mf eat ure As | pf cFeat ure

masnConp As | pf cConponent Feat

mconpConst rai nt s As Cpf cConponent Constrai nts
mi As | nt eger

mconpConst rai nt As | pf cConponent Const r ai nt
masnRef erence As | pf cSel ecti on

mconpRef erence As | pf cSel ecti on

mof f set As String

mconstrai nt Type As Stri ng

vvlvivavavlvivR v}

nodel =sessi on. Current Model

I f nodel | s Not hi ng Then
Thr owNewExcepti on(" Mddel not present™)

End| f

I f (Not nodel . Type = Epf cModel Type. Epf cMDL_ASSEMBLY) Then
Thr owNewExcepti on(" Mddel i s not anassenbl y")

End| f

assenbl y = CType(nodel , | pf cAssenbl y)

opti ons = (NewCCpf cSel ecti onOpti ons) . Creat e(" menbf eat")
opti ons. MaxNuntel s =1

sel ecti ons =sessi on. Sel ect (opti ons, Not hi ng)

If sel ections|s NothingOElsesel ections. Count =0 Then
Thr owNewExcepti on(" Not hi ng Sel ect ed")

End I f

item=selections.lten(0).Selltem
feature=CType(item | pfcFeature)

I f Not feature. Feat Type = Epf cFeat ur eType. Epf cFEATTYPE_COVPONENT Then
Thr owNewExcepti on(" Conponent not Sel ect ed")
End I f

asmConp = CType(item | pf cConponent Feat)

conpConstrai nts =asnConp. Get Constrai nts()

I f conmpConstraints|s NothingOElseconpConstraints. Count =0 Then
Thr owNewExcepti on("No Constraintstodisplay")

End | f

For i =0 To conpConstraints. Count - 1

conmpConstrai nt =conpConstraints.lten(i)

asnRef er ence = conpConst rai nt . Assenbl yRef erence
I f Not asnRef erence | s Not hi ng Then

asnRef er ence. Hi ghl i ght (Epf ¢St dCol or . Epf cCOLOR_ERROR)
End I f

conpRef erence = conpConstr ai nt. Conponent Ref er ence
I f Not asnRef erencel s Not hi ng Then

conpRef erence. Hi ghl i ght (Epf ¢St dCol or . Epf cCOLOR_WARNI NG
End I f

of fset =
I f Not conpConstraint. O fset | s NothingThen
of fset =", of fset of " + conpConstraint. O fset. ToString

End| f

constrai nt Type =constrai nt TypeToStri ng(conpConstrai nt. Type)

MsgBox (" Showi ngconstraint " +(i +1).ToString+" of " + _
compConstraints. Count. ToString+Chr(13). ToString+ _
constraint Type + of f set)

I f Not asnRef erencel s Not hi ng Then
asnRef erence. UnHi ghl i ght ()
End| f

I f Not asnRef erence | s Not hi ng Then
conmpRef erence. UnHi ghl i ght ()
End | f
Next

Cat ch ex As Excepti on
MsgBox(ex. Message. ToString + Chr (13) +ex. StackTrace. ToStri ng)
Exi t Sub

End Try

End Sub

"Function : constraintTypeToString
"Purpose : Thisfunctionconvertsconstraint typetostring.

Private Functionconstrai nt TypeToStri ng(ByVal type Aslnteger) As String

Sel ect Case (type)

Case Epf cConponent Const r ai nt Type. Epf cASM_CONSTRAI NT_MATE
Return("(Mate)")

Case Epf cConponent Const r ai nt Type. Epf cASM_CONSTRAI NT_MATE_COFF
Return("(Mate O fset)")

Case Epf cConponent Const rai nt Type. Epf cASM _CONSTRAI NT_ALI GN
Return("(Align)")

Case Epf cConponent Constrai nt Type. Epf cASM_CONSTRAI NT_ALI GN_OFF
Return("(AlignOfset)")

Case Epf cConponent Const r ai nt Type. Epf cASM_CONSTRAI NT_| NSERT
Return("(Insert)")

Case Epf cConponent Constrai nt Type. Epf cASM_CONSTRAI NT_ORI ENT

Return("(Orient)")

Case Epf cConmponent Constr ai nt Type.
Return("(Csys)")

Case Epf cConponent Const r ai nt Type.
Return (" (Tangent)")

Case Epf cConponent Constrai nt Type.
Return (" (Point onSurf)")

Case Epf cConmponent Constr ai nt Type.
Return("(EdgeonSurf)")

Case Epf cConponent Const r ai nt Type.
Return("(Default)")

Case Epf cConponent Const rai nt Type.
Return (" (Substitute)")

Case Epf cConmponent Constr ai nt Type.
Return (" (Point onLine)")

Case Epf cConponent Const r ai nt Type.
Return("(Fix)")

Case Epf cConponent Const rai nt Type.
Return("(Auto)")

End Sel ect
Ret urn (" Unrecogni zed Type")
End Functi on

Exanpl e: Assenbl i ng Conponent s

Epf cASM_CONSTRAI NT_CSYS

Epf cASM_CONSTRAI NT_TANGENT

Epf cASM CONSTRAI NT_PNT_ON_SRF
Epf cASM_CONSTRAI NT_EDGE_ON_SRF
Epf cASM_CONSTRAI NT_DEF_PLACEVENT
Epf cASM CONSTRAI NT_SUBSTI TUTE
Epf cASM_CONSTRAI NT_PNT_ON_LI NE
Epf cASM_CONSTRAI NT_FI X

Epf cASM_CONSTRAI NT_AUTO

The following example demonstrates how to assemble a component into an assembly, and how to constrain the
component by aligning datum planes. If the complete set of datum planesis not found, the function will show the
component constraint dialog to the user to allow them to adjust the placement.

Publ i ¢ Sub assenbl eByDat uns(ByRef sessi on As | pf cBaseSessi on, _
ByVal conponent Fil eNanme As String, _
ByVal assenbl yDatuns() As String, _
ByVal conponent Dat uns() As Stri ng)

mnodel As | pf cModel

massenbl y As | pf cAssenbl y

mnodel Desc As | pf cMbdel Descri pt or
mconponent Model As | pfcSolid

masnctonp As | pf cConponent Feat
mconstrai nts As | pf cConponent Constrai nts
mi As | nt eger

masnl t emAs | pf cModel |t em

mconpl t emAs | pf cModel It em

mi ds As Ci nt seq

mpat h As | pf cConponent Pat h

masnBel ect As | pf cSel ecti on

mconpSel ect As | pf cSel ecti on

D mconstrai nt As | pf cConponent Const r ai nt
Di merror Count As | nt eger

vvlvivvivivlvavlvivaulw)

nodel =sessi on. Current Model

I f model |'s Not hi ng Then
Thr owNewExcepti on(" Mddel not present™)

End I f

I f (Not nodel . Type = Epf cModel Type. Epf cMDL_ASSEMBLY) Then
Thr owNewExcepti on(" Mddel i s not anassenbl y")

End I f

assenbl y = CType(nodel , | pf cAssenbl y)

nodel Desc = (NewCCpf cMbdel Descri ptor). Creat eFronFi | eNane(conmponent Fi | eNane)
conmponent Model =sessi on. Get Mbdel FronDescr (nodel Desc)
| f conmponent Model |'s Not hi ng Then
conmponent Mbdel =sessi on. Retri eveMbdel (nodel Desc)
Endl| f

asnconp = assenbl y. Assenbl eConponent (conponent Model ,
not hi ng)

error Count =0
constrai nt s = NewCpf cConponent Constraints
Fori =0To 2

"Findthe assenbl y dat um
asm tem=assenbl y. Get | t enByName(Epf cModel | t eniType. Epf cl TEM SURFACE,
_assenbl yDat uns(i))
I f asm t eml s Not hi ng Then
error Count =errorCount +1
Cont i nue For
End | f

conpl t em=conponent Model . Get | t enByNane(Epf cModel | t eniType.
Epf cl TEM_SURFACE,
_conponent Dat uns(i))

I f conpltemls Not hi ng Then
error Count =errorCount +1
Cont i nue For
End| f
"For the assenblyreference, initializeaconponent path.
"Thisisnecessaryevenif thereferencegeonetryisintheassenbly
i ds =NewCi nt seq
pat h = (NewCMof cAssenbl y) . Cr eat eConponent Pat h(assenbl vy,
i ds)

asntel ect = (NewCMf cSel ect) . Creat evbdel | t enfSel ecti on(asnl t em pat h)
conpSel ect = (NewCMof cSel ect). Creat eModel It enSel ecti on(conpltem Not hi ng)

constrai nt = (NewCCpf cConponent Constraint). Create _

(Epf cConponent Const r ai nt Type. Epf cASM _CONSTRAI NT_ALI GN)
constraint. Assenbl yRef er ence = asntel ect
constrai nt. Conponent Ref er ence = conpSel ect
constraints.lnsert(constrai nts. Count, constraint)

' Set t he assenbl y conponent constrai nts andregeneratetheassenblyif
"at| east one constrai nt has been defi ned properly

I f errorCount <2 Then
asnconp. Set Constrai nt s(constrai nts, Not hi ng)
assenbl y. Regener at e(Not hi ng)
sessi on. Get Model W ndow(assenbl y) . Repai nt ()
End I f

"I f any of t he expect dat uns was not f ound, pronpt theuser toconstrain
't he newconponent

I f errorCount >0 Then
MsgBox(" Unabl etol ocateal | requireddatumreferences." +

B Newconponent i s packaged")
asnconp. Redefi neThr oughUl ()
End I f
Cat ch ex As Excepti on
MsgBox(ex. Message. ToStri ng + Chr (13) +ex. StackTrace. ToStri ng)
Exit Sub

End Try
End Sub

Exploded Assemblies

These methods enable you to determine and change the explode status of the assembly object.
Methods and Properties Introduced:
. IpfcAssembly.IsExploded
. IpfcAssembly.Explode()

. IpfcAssembly.UnExplode()

. IpfcAssembly.GetActiveExplodedState()
. IpfcAssembly.GetDefaultExplodedState()
. IpfcExplodedState.Activate()

The methods | pfcAssembly.Explode() and | pfcAssembly.UnExplode() enable you to determine and change the
explode status of the assembly object.

The property | pfcAssembly.l sExploded reports whether the specified assembly is currently exploded.
The method | pfcAssembly.GetActiveExplodedState() returns the current active explode state.
The method | pfcAssembly.GetDefaultExplodedState() returns the default explode state.

The method | pfcExplodedState. Activate() activates the specified explode state representation.

Skeleton Models

Skeleton models are a 3-dimensional layout of the assembly. These models are holders or distributors of critical
design information, and can represent space requirements, important mounting locations, and motion.

Methods and Properties Introduced:
. IpfcAssembly.AssembleSkeleton()
. IpfcAssembly.AssembleSkeletonByCopy()
. IpfcAssembly.GetSkeleton()
. IpfcAssembly.DeleteSkeleton()
. IpfcSolid.IsSkeleton
The method | pfcAssembly.AssembleSkeleton() adds an existing skeleton model to the specified assembly.
The method | pfcAssembly.GetSkeleton() returns the skeleton model of the specified assembly.
The method | pfcAssembly.DeleteSkeleton() deletes a skeleton model component from the specified assembly.

The method | pfcAssembly.AssembleSkeletonByCopy() adds a specified skeleton model to the assembly. The
input parameters for this method are:

o SkeletonToCopy--Specify the skeleton model to be copied into the assembly
o NewSkeletonName--Specify a name for the copied skeleton model

The property | pfcSolid.l sSkeleton determines if the specified part model is a skeleton model or a concept
model. It returns atrue if the model is a skeleton else it returns afalse.

Family Tables

This section describes how to use the VB API classes and methods to access and manipulate family table
information.

Topic
Working with Family Tables

Creating Family Table |nstances
Creating Family Table Columns

Working with Family Tables

The VB API provides several methods for accessing family table information. Because every model
inherits from the interface | pf cFani | yMenber , every model can have afamily table associated with it.

Accessing Instances
Methods and Properties Introduced:
. IpfcFamilyMember.Parent
. IpfcFamilyMember.GetimmediateGenericlnfo()
. IpfcFamilyMember.GetTopGenericinfo()
. IpfcFamilyTableRow.Createlnstance()
. IpfcFamilyMember.ListRows()
. IpfcFamilyMember.GetRow()
. IpfcFamilyMember.RemoveRow()
. IpfcFamilyTableRow.InstanceName

IpfcFamilyTableRow.IsLocked

To get the generic model for an instance, call the property | pfcFamilyM ember .Parent.

From Pro/ENGINEER Wildfire 4.0 onwards, the behavior of the property | pfcFamilyM ember .Par ent
has changed as aresult of performance improvement in family table retrieval mechanism. When you now
call the property pfcFamily.FamilyM ember.GetPar ent, it throws an exception

| pf cXTool ki t Cant Open, if the immediate generic of amodel instance in anested family tableis
currently not in session. Handle this exception and use the method | pfcFamilyM ember .
GetlmmediateGenericlnfo() to get the model descriptor of the immediate generic model. This
information can be used to retrieve the immediate generic model.

If you wish to switch off the above behavior and continue to run legacy applicationsin the pre-Wildfire
4.0 mode, set the configuration optionr et ri eve_i nst ance_dependenci es to

"i nst ance_and_generi c_deps".

To get the model descriptor of the top generic model, call the method | pfcFamilyM ember .
GetTopGenericlnfo().

Similarly, the method | pfcFamilyTableRow.Cr eatel nstance() returns an instance model created from
the information stored in the | pf cFami | yTabl eRow object.

The method I pfcFamilyM ember .ListRows() returns a sequence of all rows in the family table, whereas
| pfcFamilyM ember .GetRow() gets the row object with the name you specify.

Use the method | pfcFamilyM ember .RemoveRow() to permanently delete the row from the family table.

The property | pfcFamilyTableRow.| nstanceName returns the name that corresponds to the invoking
row object.

To control whether the instance can be changed or removed, call the property | pfcFamilyTableRow.
I'sL ocked.

Accessing Columns

Methods and Properties Introduced:
. IpfcFamilyMember.ListColumns()
. IpfcFamilyMember.GetColumn()
. IpfcFamilyMember.RemoveColumn()
. IpfcFamilyTableColumn.Symbol
. IpfcFamilyTableColumn.Type
. IpfcFamColModelltem.Refltem
. IpfcFamColParam.RefParam

The method | pfcFamilyM ember .ListColumns() returns a sequence of all columns in the family table.

The method | pfcFamilyM ember .GetColumn() returns a family table column, given its symbolic name.

To permanently delete the column from the family table and all changed valuesin all instances, call the

method | pfcFamilyM ember .RemoveColumn().

The property | pfcFamilyTableColumn.Symbol returns the string symbol at the top of the column, such
asD4 or F5.

The property | pfcFamilyTableColumn.Type returns an enumerated val ue indicating the type of
parameter governed by the column in the family table.

The property | pfcFamColM odelltem.Refltem returnsthe | Model | t em(Feature or Di mensi on)

controlled by the column, whereas | pfcFamCol Par am.RefPar am returns the Par anet er controlled by
the column.

Accessing Cell Information
Methods and Properties Introduced:
. IpfcFamilyMember.GetCell()
. IpfcFamilyMember.GetCelllsDefault()
. IpfcFamilyMember.SetCell()
. IpfcParamValue.StringValue
. IpfcParamValue.IntValue
. IpfcParamValue.DoubleValue
. IpfcParamValue.BoolValue

The method I pfcFamilyM ember .GetCell() returnsastring | Par anval ue that correspondsto the cell at
the intersection of the row and column arguments. Use the method | pfcFamilyM ember .GetCelll sDefault
() to check if the value of the specified cell isthe default value, which is the value of the specified cell in
the generic model.

The method | pfcFamilyM ember .SetCell() assigns a value to a column in a particular family table
instance.

The I pfcParamValue.StringValue, | pfcParamValue.lntValue, | pfcParamValue.DoubleValue, and
| pfcParamValue.BoolValue properties are used to get the different types of parameter values.

Creating Family Table Instances
Methods Introduced:

. IpfcFamilyMember.AddRow()

. CMpfcModelltem.CreateStringParamValue()
. CMpfcModelltem.CreatelntParamValue()

. CMpfcModelltem.CreateDoubleParamValue()
. CMpfcModelltem.CreateBoolParamValue()

Use the method | pfcFamilyM ember . AddRow() to create a new instance with the specified name, and,
optionally, the specified values for each column. If you do not passin a set of values, the value "*" will be
assigned to each column. This value indicates that the instance uses the generic value.

Creating Family Table Columns

Methods Introduced:
. IpfcFamilyMember.CreateDimensionColumny()
. IpfcFamilyMember.CreateParamColumn()
. IpfcFamilyMember.CreateFeatureColumn()
. IpfcFamilyMember.CreateComponentColumny()
. IpfcFamilyMember.CreateCompModelColumn()
. IpfcFamilyMember.CreateGroupColumn()
. IpfcFamilyMember.CreateMergePartColumn()
. IpfcFamilyMember.CreateColumn()
. IpfcFamilyMember.AddColumn()
. CMpfcModelltem.CreateStringParamValue()

The above methods initialize a column based on the input argument. These methods assign the proper
symbol to the column header.

The method | pfcFamilyM ember .CreateColumn() creates a new column given a properly defined
symbol and column type. The results of this call should be passed to the method | pfcFamilyM ember .
AddColumn() to add the column to the model's family table.

The method | pfcFamilyM ember .AddColumn() adds the column to the family table. Y ou can specify the
values; if you pass nothing for the values, the method assigns the value "*" to each instance to accept the
column’s default value.

Exanpl e Code: Addi ng Di nrensionstoaFanily Tabl e

This function adds all the dimensionsto afamily table. The program lists the dependencies of the
assembly and loops through each dependency, assigning the model to a new FamCol Dimension column
object. All the dimensions, parameters, features, and components could be added to the family table using
asimilar method.

| mports pfcls
Publ i ¢ C ass pf cFam | yTabl esExanpl es

Publ i ¢ Sub addHol eDi anet er Col ums(ByRef sessi on As | pf cBaseSessi on)

D mnodel As | pf cModel

Di msolidAs | pfcSolid

Di mhol eFeat ures As | pf cFeat ur es

Di mhol eFeat ure As | pf cFeat ure

Di mdi mensi ons As | pf cMbdel |t ens

Di mdi nmensi on As | pf cDi nensi on

Di mdi nensi onCol umm As | pf cFantCol Di nensi on
Dimi, j As | nteger

nodel =sessi on. Current Model

I f nodel I's Not hi ng Then
Thr owNewExcept i on(" Mddel not present")

End I f

I f (Not nodel . Type = Epf cMbdel Type. Epf cMDL_PART) And _
(Not nodel . Type = Epf cMbdel Type. Epf cMDL_ASSEMBLY) Then
Thr owNewExcepti on(" Mdel i snot asolid")

End I f

sol i d =CType(nodel, | pfcSolid)

hol eFeat ures =sol i d. Li st Feat uresByType _
(True, EpfcFeat ureType. Epf cFEATTYPE_HOLE)

For i =0 To hol eFeatures. Count - 1
hol eFeat ure =hol eFeatures. I ten{i)

di mensi ons = hol eFeat ure. Li st Subltens _
(Epf cModel | t enType. Epf cl TEM DI MENSI ON)

For j =0 Todi nensi ons. Count - 1

di mensi on=di nensions. lten(j)

"Addthecolumtothe Solid.
"I nsteadof null, any array of ParanVal ues can be passed
"for theinitial col umval ues

sol i d. AddCol um(di mensi onCol umm, Not hi ng)
End I f

Next
Next

Cat ch ex As Excepti on
MsgBox(ex. Message. ToStri ng + Chr (13) +ex. StackTrace. ToStri ng)
Exi t Sub
End Try
End Sub

End C ass

Action Listeners

This section describes the VB API methods that enable you to use action listeners.
Topic

TheVB API Action Listeners

Action Sources

Types of Action Listeners

Cancelling an ActionL istener Operation

The VB API Action Listeners

AnAct i onLi st ener isaclassthat is assigned to respond to certain events. In the

VB AP, you can assign action listeners to respond to events involving the
following tasks:

Changing windows

Changing working directories

Model operations

Regenerating

Creating, deleting, and redefining features
Checking for regeneration failures

O O O O O O

All action listenersin the VB API are defined by these classes:

o Interface--Named <Object>ActionListener. This interface defines the methods that
can respond to various events.

n Default class--Named Default<Object>ActionListener. This class has every
available method overridden by an empty implementation. Y ou create your own
action listeners by extending the default class and overriding the methods for
events that interest you.

Action Sources

Methods introduced:

. IpfcActionSource.AddActionListener()

. IpfcActionSource.RemoveActionListener()

Many VB API classesinherit the | pf cAct i onSour ce interface, but only the

following classes currently make calls to the methods of registered
| pf cActi onLi st eners:

1 IpfcSession
- Session Action Listener
- Moddl Action Listener
- Solid Action Listener
- Moddl Event Action Listener
- Feature Action Listener
I pfcUlCommand
- Ul Action Listener
IpfcModel (and it's subclasses)
- Moddl Action Listener
- Parameter Action Listener
IpfcSolid (and it's subclasses)
- Solid Action Listener
- Feature Action Listener
| pfcFeature (and it's subclasses)
- Feature Action Listener

O

O

O

O

Note:
Assigning an action listener to a source not related to it will not cause an
error but the listener method will never be called.

Types of Action Listeners

The following sections describe the different kinds of action listeners: session, Ul
command, solid, and feature.

Session Level Action Listeners

Methods introduced:

. IpfcSessionActionListener.OnAfterDirectoryChange()

. IpfcSessionActionListener.OnAfterWindowChange()
. IpfcSessionActionListener.OnAfterModelDisplay()
. IpfcSessionActionListener.OnBeforeModelErase()
. IpfcSessionActionListener.OnBeforeModelDelete()
. IpfcSessionActionListener.OnBeforeModelRename()
. IpfcSessionActionListener.OnBeforeModelSave()

. IpfcSessionActionListener.OnBeforeModelPurge()
. IpfcSessionActionListener.OnBeforeModelCopy()

. IpfcSessionActionListener.OnAfterModelPurge()

The I pfcSessionActionL istener .OnAfter DirectoryChange() method activates
after the user changes the working directory. This method takes the new directory
path as an argument.

The I pfcSessionActionListener .OnAfter WindowChange() method activates
when the user activates a window other than the current one. Pass the new window
to the method as an argument.

The I pfcSessionActionL istener .OnAfter M odelDisplay() method activates every
time amodel is displayed in awindow.

Note:
Model display events happen when windows are moved, opened and closed,
repainted, or the model is regenerated. The event can occur more than once
In succession.

The methods pfcSession.SessionActionL istener .OnBeforeM odelErase,
pfcSession.SessionActionL istener .OnBeforeM odel Rename, pfcSession.
SessionActionListener .OnBeforeM odel Save, and | pfcSessionActionL istener .
OnBeforeM odel Copy() take special arguments. They are designed to allow you to
fill in the arguments and pass this data back to Pro/ENGINEER. The model names

placed in the descriptors will be used by Pro/ENGINEER as the default names in
the user interface.

Ul Command Action Listeners
Methods introduced:
. IpfcSession.UICreateCommand)

. IpfcUlCommandActionListener.OnCommand()

The I pfcSession.Ul CreateCommand() method takes a
| pf cUl CommandAct i onLi st ener argument and returnsal pf cUl Conmand

action source with that action listener already registered. This Ul Conmand object is

subsequently passed as an argument to the Session.AddUI Button method that adds
a command button to a Pro/ENGINEER menu. The

| pfcUl CommandActionListener .OnCommand() method of the registered

| pf cUl ConmandAct i onLi st ener iscalled whenever the command button is

clicked.

Model Level Action listeners

Methods introduced:
. IpfcModelActionListener.OnAfterModelSave()
. IpfcModelEventActionListener.OnAfterModelCopy()
. IpfcModelEventActionListener.OnAfterModelRename()
. IpfcModelEventActionListener.OnAfterModelErase()
. IpfcModelEventActionListener.OnAfterModelDelete()
. IpfcModelActionListener.OnAfterModelRetrieve()
. IpfcModelActionListener.OnBeforeModelDisplay()

. IpfcModelActionListener.OnAfterModelCreate()

. IpfcModelActionListener.OnAfterModelSaveAll()

. IpfcModelEventActionListener.OnAfterModelCopyAll()
. IpfcModelActionListener.OnAfterModelEraseAll()

. IpfcModelActionListener.OnAfterModelDeleteAll()

. IpfcModelActionListener.OnAfterModelRetrieveAll()

Methods ending in All are called after any event of the specified type. Thecall is
made even if the user did not explicitly request that the action take place. Methods
that do not end in All are only called when the user specifically requests that the
event occurs.

The method | pfcM odelActionL istener .OnAfter M odel Save() is called after
successfully saving amode!.

The method | pfcM odel EventActionL istener .OnAfter M odelCopy() is called after
successfully copying a model.

The method | pfcM odelEventActionL istener .OnAfter M odelRename() is called
after successfully renaming a model.

The method | pfcM odelEventActionL istener .OnAfterModelErase() is called
after successfully erasing amodel.

The method | pfcM odel EventActionL istener .OnAfterModelDelete() is called
after successfully deleting a model.

The method | pfcM odelActionL istener .OnAfter M odelRetrieve() is called after
successfully retrieving a model.

The method | pfcM odelActionL istener .OnBefor eM odel Display() is called before
displaying amode!.

The method | pfcM odelActionListener .OnAfterModelCreate() is called after the
successful creation of a model.

Solid Level Action Listeners

Methods introduced:
. IpfcSolidActionListener.OnBeforeRegen()
. IpfcSolidActionListener.OnAfterRegen()
. IpfcSolidActionListener.OnBeforeUnitConvert()
. IpfcSolidActionListener.OnAfterUnitConvert()
. IpfcSolidActionListener.OnBeforeFeatureCreate()
. IpfcSolidActionListener.OnAfterFeatureCreate()
. IpfcSolidActionListener.OnAfterFeatureDelete()

The I pfcSolidActionL istener .OnBefor eRegen() and | pfcSolidActionListener.
OnAfter Regen() methods occur when the user regenerates a solid object within the
| pf cAct i onSour ce to which the listener is assigned. These methods take the first
feature to be regenerated and a handle to the | pf cSol i d object as arguments. In
addition, the method pfcSolid.SolidActionL istener .OnAfter Regener ate includes
a Boolean argument that indicates whether regeneration was successful.

Note:

- It is not recommended to modify geometry or dimensions using the pfcSolid.
SolidActionListener.OnBeforeRegenerate method call.

- A regeneration that did not take place because nothing was modified isidentified
as aregeneration failure.

The I pfcSolidActionL istener .OnBefor eUnitConvert() and

| pfcSolidActionListener .OnAfter UnitConvert() methods activate when a user
modifies the unit scheme (by selecting the Pro/ENGINEER command Set Up,
Units). The methods receive the Sol i d object to be converted and a Boolean flag

that identifies whether the conversion changed the dimension values to keep the
object the same size.

Note:

| pfcSolidActionListeners can be registered with the session object so that its
methods are called when these events occur for any solid model that isin
Session.

The I pfcSolidActionL istener .OnBefor eFeatur eCr eate() method activates when
the user starts to create afeature that requires the Feature Creation dialog box.
Because this event occurs only after the dialog box is displayed, it will not occur at
al for datums and other features that do not use this dialog box. This method takes
two arguments: the solid model that will contain the feature and the

| pf cModel |t emidentifier.

The I pfcSolidActionL istener .OnAfter Featur eCreate() method activates after any
feature, including datums, has been created. This method takes the new
| pf cFeat ur e object as an argument.

The I pfcSolidActionL istener .OnAfter FeatureDelete() method activates after any
feature has been deleted. The method receives the solid that contained the feature
and the (now defunct) | pf cModel | t emidentifier.

Feature Level Action Listeners
Methods introduced:
. IpfcFeatureActionListener.OnBeforeDelete()
. IpfcFeatureActionListener.OnBeforeSuppress|()
. IpfcFeatureActionListener.OnAfterSuppress()
. IpfcFeatureActionListener.OnBeforeRegen()
. IpfcFeatureActionListener.OnAfterRegen()
. IpfcFeatureActionListener.OnRegenFailure()
. IpfcFeatureActionListener.OnBeforeRedefine()

. IpfcFeatureActionListener.OnAfterCopy()

. IpfcFeatureActionListener.OnBeforeParameterDelete()

Each method in | pf cFeat ur eAct i onLi st ener takes as an argument the feature
that triggered the event.

| pf cFeat ur eAct i onLi st ener s can be registered with the Session object so that

the action listener's methods are called whenever these events occur for any feature
that isin session or with a solid model to react to changes only in that model.

The method | pfcFeatureActionListener.OnBeforeDelete() is called before a
feature is deleted.

The method | pfcFeatur eActionListener .OnBeforeSuppress() is called before a
feature is suppressed.

The method | pfcFeatur eActionListener .OnAfter Suppress() is called after a
successful feature suppression.

The method | pfcFeatureActionListener.OnBeforeRegen() is called before a
feature is regenerated.

The method | pfcFeatur eActionListener .OnAfter Regen() is called after a
successful feature regeneration.

The method | pfcFeatur eActionListener.OnRegenFailure() is caled when a
feature fails regeneration.

The method | pfcFeatureActionListener .OnBeforeRedefing() is called before a
feature is redefined.

The method | pfcFeatur eActionListener .OnAfter Copy() is called after afeature
has been successfully copied.

The method | pfcFeatur eActionL istener .OnBefor eParameter Delete() is called
before a feature parameter is deleted.

Cancelling an ActionListener Operation

The VB API alows you to cancel certain notification events, registered by the
action listeners.

Methods Introduced:

O O O O O O O O O O O O O O

« CCpfcXCancelProEAction.Throw()

The static method CCpfcX Cancel ProEAction.Throw() must be called from the
body of an action listener to cancel the impending Pro/ENGINEER operation.This
method will throw aThe VB API exception signalling to Pro/ENGINEER to cancel
the listener event.

Note: Y our application should not catch the The VB API exception, or should
rethrow it if caught, so that Pro/ENGINEER isforced to handleit.

The following events can be cancelled using this technique:

| pfcSessionActionListener.OnBeforeM odel Erase()

| pfcSessionA ctionListener.OnBeforeM odel Del ete()

| pfcSessionA ctionListener.OnBeforeM odel Rename()

| pfcSessionActionListener.OnBeforeM odel Save()

| pfcSessionA ctionListener.OnBeforeM odel Purge()

| pfcSessionActionListener.OnBeforeM odel Copy()

I pfcM odel ActionListener.OnBeforeParameterCreate()

I pfcM odel ActionListener.OnBeforeParameterDel ete()

| pfcM odel ActionListener.OnBeforeParameterM odify()
| pfcFeatureActionListener.OnBeforeDel ete()

| pfcFeatureActionListener.OnBeforeSuppress()

| pfcFeatureActionListener.OnBeforeParameterDel ete()
| pfcFeatureActionListener.OnBeforeParameterCreate()
| pfcFeatureActionListener.OnBeforeRedefing()

Interface

This section describes various methods of importing and exporting filesin the VB API.
Topic

Exporting Files and 2D Models
Exporting to PDF and U3D
Exporting 3D Geometry
Shrinkwrap Export

Importing Files

Importing 3D Geometry
Plotting Files

Printing Files

Solid Operations

Window Operations

Exporting Files and 2D Models
Method Introduced:
. IpfcModel.Export()

The method | pfcM odel .Export() exports model datato afile. The exported files are placed in the current Pro/
ENGINEER working directory. The input parameters are:

o filename--Output file name including extensions
o exportdata--The pfcModel .ExportInstructions object that controls the export operation. The type of datathat is
exported is given by the pfcModel.ExportType object.

There are four general categories of files to which you can export models:
o Filetypes whose instructions inherit from | pfcGeomExportinstructions.

These instructions export files that contain precise geometric information used by other CAD systems.
o Filetypes whaose instructions inherit from IpfcCoordSysExportl nstructions.

These instructions export files that contain coordinate information describing faceted, solid models (without datums
and surfaces).
o Filetypes whose instructions inherit from I pfcFeatl dExportl nstructions.

These instructions export information about a specific feature.
o General file types that inherit only from I pfcExportlnstructions.

These instructions provide conversions to file types such as BOM (bill of materials).

For information on exporting to a specific format, seethe VB APl APIWizard and online help for the Pro/
ENGINEER interface.

Export Instructions

Methods Introduced:
. CCpfcRelationExportinstructions.Create()
. CCpfcModellnfoExportinstructions.Create()
. CCpfcProgramExportinstructions.Create()
. CCpfclGESFileExportinstructions.Create()
. CCpfcDXFExportinstructions.Create()
. CCpfcRenderExportinstructions.Create()
. CCpfcSTLASCIIExportinstructions.Create()
. CCpfcSTLBinaryExportinstructions.Create()
. CCpfcBOMEXxportinstructions.Create()
. CCpfcDWGSetupExportinstructions.Create()
. CCpfcFeatinfoExportinstructions.Create()
. CCpfcMFGFeatCLExportinstructions.Create()
. CCpfcMFGOperCLExportinstructions.Create()
. CCpfcMaterialExportinstructions.Create()
. CCpfcCGMFILEExportinstructions.Create()
. CCpfclnventorExportinstructions.Create()
. CCpfcFIATExportinstructions.Create()
. CCpfcConnectorParamExportinstructions.Create()
. CCpfcCableParamsFilelnstructions.Create()
. CCpfcCATIAFacetsExportinstructions.Create()
. CCpfcVRMLModelExportinstructions.Create()
. CCpfcSTEP2DEXxportinstructions.Create()

. CCpfcMedusaExportinstructions.Create()

. CCpfcCADDSEXxportinstructions.Create()

. CCpfcNEUTRALFileExportinstructions.Create()

. CCpfcProductViewExportinstructions.Create()

. IpfcBaseSession.ExportDirectVRML()

Export Instructions Table

Interface

Used to Export

| pfcRelationExportInstructions

A list of the relations and parametersin a part or assembly

I pfcM odel I nfoExportl nstructions

Information about a model, including units information, features, and children

| pfcProgramExportlnstructions

A program file for a part or assembly that can be edited to change the model

| pfcl GESExportlnstructions

A drawing in IGES format

I pfcDXFEXxportlnstructions

A drawing in DXF format

| pfcRenderExportl nstructions

A part or assembly in RENDER format

I pfcSTLASCIIExportlnstructions

A part or assembly to an ASCII STL file

| pfcSTL BinaryExportl nstructions

A part or assembly in abinary STL file

I pfcBOM ExportInstructions

A BOM for an assembly

| pfcDWGSetupExportl nstructions

A drawing setup file

| pfcFeatl nfoExportInstructions

Information about one feature in a part or assembly

I pfcMfgFeatCL Exportlnstructions

A cutter location (CL) file for one NC sequence in a manufacturing assembly

I pfcMfgOperClExportlnstructions

A cutter location (CL) file for all the NC sequences in a manufacturing
assembly

| pfcM aterial Exportlnstructions

A materia from a part

| pfcCGMFI L EExportl nstructions A drawing in CGM format

| pfclnventorExportl nstructions A part or assembly in Inventor format

| pfcFI ATEXxportlnstructions A part or assembly in FIAT format

I pfcConnectorParamExportinstructions | The parameters of a connector to atext file

| pfcCableParamsFilel nstructions Cable parameters from an assembly

| pfcCATIAFacetsExportlnstructions A part or assembly in CATIA format (as afaceted model)

I pfcV RMLM odel Exportlnstructions A part or assembly in VRML format

| pfcSTEP2DEXportInstructions A two-dimensional STEP format file
| pfcM edusaExportl nstructions A drawing in MEDUSA file
| pfcCADD SExportlnstructions A CADDSS5 solid model

IpfcNEUTRALFileExportinstructions | A Pro/ENGINEER part to neutral format

I pfcProductViewExportInstructions A part, assembly, or drawing in ProductView format

Note:
The New Instruction Classes replace the following Deprecated Classes:

Deprecated Classes New Instruction Classes

I pfcl GES3DExportInstructions | |pfcl GES3DNewExportlnstructions

| pfcSTEPEXportInstructions I pfcSTEP3DEXxportInstructions

| pfcV DAExportinstructions I pfcV DA3DEXxportInstructions

| pfcSETExportlnstructions I pfcSET3DEXportInstructions

IpfcCATIAExportinstructions | IpfcCATIA3DEXxportInstructions

Exporting Drawing Sheets
The options required to export multiple sheets of adrawing are given by the | pf cExport 2DOpt i on object.
Methods and Properties Introduced:
. CCpfcExport2DOption.Create()
. IpfcExport2DOption.ExportSheetOption
. IpfcExport2DOption.ModelSpaceSheet
. IpfcExport2DOption.Sheets

The method pfcM odel.pfcM odel .Export2DOptions_Create creates a new instance of the | pf cExpor t 2DOpt i on
object. This object contains the following options:

o ExportSheetOption--Specifies the option for exporting multiple drawing sheets. Use the property
I pfcExport2D Option.ExportSheetOption to set the option for exporting multiple drawing sheets. The options are
given by the EpfcExport2D SheetOption class and can be of the following types:

- EpfcEXPORT_CURRENT_TO _MODEL _SPACE--Exports only the drawing's current sheet as model
spaceto asinglefile. Thisisthe default type.

- EpfcEXPORT_CURRENT_TO_PAPER_SPACE--Exports only the drawing's current sheet as paper space
toasinglefile. Thistypeisthe same as EpfcEXPORT_CURRENT_TO_MODEL_SPACE for formats that
do not support the concept of model space and paper space.

- EpfcEXPORT_ALL--Exports all the sheetsin a drawing to asingle file as paper space, if applicable for the
format type.

- EpfcEXPORT_SEL ECTED--Exports selected sheets in a drawing as paper space and one sheet as model
space.

o Model SpaceSheet--Specifies the sheet number that needs be exported as model space. This option is applicable only
if the export formats support the concept of model space and paper space and if ExportSheetOption is set to
EpfcEXPORT_SELECTED. Use the property | pfcExport2DOption.M odel SpaceSheet to set this option.

o Sheets--Specifies the sheet numbers that need to be exported as paper space. This option is applicable only if
ExportSheetOption is set to EpfcEXPORT_SELECTED. Use the property |pfcExport2DOption.Sheets to set this
option.

Exporting to PDF and U3D

The methods and properties described in this section support the export of Pro/ENGINEER drawings and solid
models to Portable Document Format (PDF) and U3D format. Y ou can export adrawing or a 2D model asa 2D
raster image embedded in a PDF file. Y ou can export Pro/ENGINEER solid modelsin the following ways:

o AsaU3D model embedded in a one-page PDF file
o As 2D raster images embedded in the pages of a PDF file representing saved views
o Asastandalone U3D file

While exporting multiple sheets of a Pro/ENGINEER drawing to a PDF file, you can choose to export all sheets, the
current sheet, or selected sheets.

These methods also alow you to insert a variety of non-geometric information to improve document content,
navigation, and search.

Methods and Properties Introduced:

. CCpfcPDFExportinstructions.Create()
. IpfcPDFExportinstructions.FilePath
. IpfcPDFExportinstructions.Options
. CCpfcPDFOption.Create()

. IpfcPDFOption.OptionType

. IpfcPDFOption.OptionValue

The method CCpfcPDFEXxportInstructions.Create() creates a new instance of the
| pf cPDFExport | nst ructi ons data object that describes how to export Pro/ENGINEER drawings or solid models
to the PDF and U3D formats. The optionsin this object are described as follows:

FilePath--Specifies the name of the output file. Use the property | pfcPDFEXxportlnstructions.FilePath to set the name
of the output file.
Options--Specifies a collection of PDF export options of the type | pfcPDFOption. Create a new instance of this
object using the method pfcExport.pfcExport.PDFOption_Create. This object contains the following attributes:
- OptionType--Specifies the type of option in terms of the EpfcPDFOptionType enumerated class. Set this
option using the property pfcExport. PDFOption.SetOptionType.
- OptionV alue--Specifies the value of the option in terms of the IpfcArgValue object. Set this option using
the property pfcExport.PDFOption.SetOptionValue.

Use the property | pfcPDFEXportInstructions.Options to set the collection of PDF export options.

The types of options (given by the Epf cPDFOpt i onType enumerated class) available for export to PDF and U3D
formats are described as follows:

EpfcPDFOPT_FONT_STROKE--Allows you to switch between using TrueType fonts or "stroking” text in the
resulting document. This option is given by the EpfcPDFFontStrokeM ode enumerated class and takes the following
values:

- EpfcPDF_USE_ TRUE _TYPE _FONTS--Specifies TrueType fonts. Thisisthe default type.

- EpfcPDF_STROKE_ALL_FONTS--Specifies the option to stroke al fonts.
EpfcPDFOPT_COLOR_DEPTH--Allows you to choose between color, grayscale, or monochrome output. This
option is given by the EpfcPDFColorDepth enumerated class and takes the following values:

- EpfcPDF_CD_COL OR--Specifies color output. Thisis the default value.

- EpfcPDF_CD_GRAY --Specifies grayscal e output.

- EpfcPDF_CD_MONO--Specifies monochrome output.

EpfcPDFOPT_HIDDENLINE_MODE--Enables you to set the style for hidden linesin the resulting PDF document.
This option is given by the EpfcPDFHiddenLineM ode enumerated class and takes the following values:

- EpfcPDF_HLM_SOLID--Specifies solid hidden lines.

- EpfcPDF_HLM_DASHED--Specifies dashed hidden lines. Thisis the default type.
EpfcPDFOPT_SEARCHABLE TEXT--If true, stroked text is searchable. The default value istrue.
EpfcPDFOPT_RASTER_DPI--Allows you to set the resolution for the output of any shaded viewsin DPI. It can
take a value between 100 and 600. The default value is 300.

EpfcPDFOPT_LAUNCH_VIEWER--If true, launches the Adobe Acrobat Reader. The default value istrue.
EpfcPDFOPT_LAYER_MODE--Enables you to set the availability of layersin the document. It is given by the
EpfcPDFLayerMode enumerated class and takes the following values:

- EpfcPDF_LAYERS ALL--Exportsthe visible layers and entities. Thisisthe default.

- EpfcPDF_LAYERS VISIBLE--Exportsonly visible layersin adrawing.

- EpfcPDF_LAYERS_NONE--Exports only the visible entities in the drawing, but not the layers on which

they are placed.

EpfcPDFOPT_PARAM_MODE--Enables you to set the availability of model parameters as searchable metadatain

] [}) a [}

the PDF document. It is given by the EpfcPDFParameterM ode enumerated class and takes the following values:

- EpfcPDF_PARAMS_ALL--Exports the drawing and the model parameters to PDF. Thisis the default.

- EpfcPDF_PARAMS_DESIGNATED--Exports only the specified model parametersin the PDF metadata.

- EpfcPDF_PARAMS_NONE--Exports the drawing to PDF without the model parameters.
EpfcPDFOPT_HY PERLINK S--Sets hyperlinks to be exported as label text only or sets the underlying hyperlink
URLs as active. The default value is true, specifying that the hyperlinks are active.
EpfcPDFOPT_BOOKMARK _ZONES--If true, adds bookmarks to the PDF showing zoomed in regions or zonesin
the drawing sheet. The zone on an A4-size drawing sheet isignored.

EpfcPDFOPT_BOOKMARK _VIEWS--If true, adds bookmarks to the PDF document showing zoomed in views on
the drawing.

EpfcPDFOPT_BOOKMARK_SHEETS--If true, adds bookmarks to the PDF document showing each of the
drawing shests.

EpfcPDFOPT_BOOKMARK_FLAG_NOTES-If true, adds bookmarks to the PDF document showing the text of
the flag note.

EpfcPDFOPT_TITLE--Specifies atitle for the PDF document.

EpfcPDFOPT_AUTHOR--Specifies the name of the person generating the PDF document.
EpfcPDFOPT_SUBJECT--Specifies the subject of the PDF document.

EpfcPDFOPT_KEYWORDS--Specifies relevant keywords in the PDF document.
EpfcPDFOPT_PASSWORD_TO_OPEN--Sets a password to open the PDF document. By default, this option is
NULL, which means anyone can open the PDF document without a password.
EpfcPDFOPT_MASTER_PASSWORD--Sets a password to restrict or limit the operations that the viewer can
perform on the opened PDF document. By default, this option is NULL, which means you can make any changes to
the PDF document regardless of the settings of the modification flags EpfcPDFOPT_ALLOW _*.
EpfcPDFOPT_RESTRICT_OPERATIONS--If true, enables you to restrict or limit operations on the PDF
document. By default, isisfalse.

EpfcPDFOPT_ALLOW_MODE--Enables you to set the security settings for the PDF document. This option must
be set if EpfcPDFOPT_RESTRICT_OPERATIONS is set to true. It is given by the

EpfcPDFRestrictOperationsM ode enumerated class and takes the following values:

- EpfcPDF_RESTRICT_NONE--Specifies that the user can perform any of the permitted viewer operations

on the PDF document. Thisis the default value.

- EpfcPDF_RESTRICT_FORMS_SIGNING--Restricts the user from adding digital signatures to the PDF

document.

- EpfcPDF_RESTRICT_INSERT_DELETE_ROTATE--Restricts the user from inserting, deleting, or

rotating the pages in the PDF document.

- EpfcPDF_RESTRICT_COMMENT_FORM_SIGNING--Restricts the user from adding or editing

comments in the PDF document.

- EpfcPDF_RESTRICT_EXTRACTING--Restricts the user from extracting pages from the PDF document.
EpfcPDFOPT_ALLOW_PRINTING--If true, allows you to print the PDF document. By default, it istrue.
EpfcPDFOPT_ALLOW_PRINTING_MODE--Enables you to set the print resolution. It is given by the
EpfcPDFPrintingM ode enumerated class and takes the following values:

- EpfcPDF_PRINTING_LOW_RES--Specifies low resolution for printing.

- EpfcPDF_PRINTING_HIGH_RES--Specifies high resolution for printing. Thisis the default value.
EpfcPDFOPT_ALLOW_COPY ING--If true, allows you to copy content from the PDF document. By default, it is
true.

EpfcPDFOPT_ALLOW_ACCESSIBILITY --If true, enables visually-impaired screen reader devices to extract data
independent of the value given by the EpfcPDFRestrictOperationsM ode enumerated class. The default value istrue.
EpfcPDFOPT_PENTABLE--If true, uses the standard Pro/ENGINEER pentable to control the line weight, line
style, and line color of the exported geometry. The default valueis false.

EpfcPDFOPT_LINECAP--Enables you to control the treatment of the ends of the geometry lines exported to PDF.
It is given by the EpfcPDFLinecap enumerated class and takes the following values:

- EpfcPDF_LINECAP _BUTT--Specifies the butt cap square end. Thisis the default value.

- EpfcPDF_LINECAP_ROUND--Specifies the round cap end.

- EpfcPDF_LINECAP_PROJECTING_SQUARE--Specifies the projecting sguare cap end.
EpfcPDFOPT _LINEJOIN--Enables you to control the treatment of the joined corners of connected lines exported to
PDF. It is given by the EpfcPDFLinejoin enumerated class and takes the following values:

- EpfcPDF_LINEJOIN_MITER--Specifies the miter join. Thisis the default.

- EpfcPDF_LINEJOIN_ROUND--Specifies the round join.

- EpfcPDF_LINEJOIN_BEVEL--Specifiesthe bevel join.
o EpfcPDFOPT_SHEETS--Allows you to specify the sheets from a Pro/ENGINEER drawing that are to be exported
to PDF. It is given by the EpfcPrintSheets enumerated class and takes the following values:
- EpfcPRINT_CURRENT _SHEET--Only the current sheet is exported to PDF.
- EpfcPRINT_ALL_SHEETS--All the sheets are exported to PDF. Thisis the default value.
- EpfcPRINT_SELECTED_SHEETS--Sheets of a specified range are exported to PDF. If thisvalueis
assigned, then the value of the option EpfcPDFOPT_SHEET RANGE must aso be known.

o EpfcPDFOPT_SHEET RANGE--Specifies the range of sheetsin adrawing that are to be exported to PDF. If this
option is set, then the option EpfcPDFOPT_SHEETS must be set to the value EpfcPRINT_SELECTED SHEETS.

o EpfcPDFOPT_EXPORT_MODE--Enables you to select the object to be exported to PDF and the export format. It is
given by the EpfcPDFExportMode enumerated class and takes the following values:

- EpfcPDF_2D_DRAWING--Only drawings are exported to PDF. Thisis the default value.

- EpfcPDF_3D_AS NAMED_VIEWS--3D models are exported as 2D raster images embedded in PDF files.
- EpfcPDF_3D_AS U3D_PDF--3D models are exported as U3D models embedded in one-page PDF files.

- EpfcPDF_3D_AS U3D--A 3D model is exported as a U3D (.u3d) file. This value ignores the options set
for the EpfcPDFOptionType enumerated class.

o EpfcPDFOPT_LIGHT_DEFAULT--Enables you to set the default lighting style used while exporting 3D modelsin
the U3D format to a one-page PDF file, that is when the option EpfcPDFOPT_EXPORT_MODE is set to
EpfcPDF_3D_AS U3D. The valuesfor this option are given by the EpfcPDFU3DLightingM ode enumerated class.

o EpfcPDFOPT_RENDER STYLE DEFAULT--Enablesyou to set the default rendering style used while exporting
Pro/ENGINEER modelsin the U3D format to a one-page PDF file, that is when the option
EpfcPDFOPT_EXPORT_MODE is set to EpfcPDF_3D_AS _U3D. The values for this option are given by the
EpfcPDFU3DRenderMode enumerated class.

o EpfcPDFOPT_SIZE--Allows you to specify the page size of the exported PDF file. The values for this option are
given by the EpfcPlotPaperSize enumerated class. If the value is set to EpfcVARIABLESIZEPLOT, you also need
to set the options EpfcPDFOPT_HEIGHT and EpfcPDFOPT_WIDTH.

o EpfcPDFOPT_HEIGHT--Enables you to set the height for a user-defined page size of the exported PDF file. The
default valueis 0.0.

o EpfcPDFOPT_WIDTH--Enables you to set the width for a user-defined page size of the exported PDF file. The
default valueis 0.0.

o EpfcPDFOPT_ORIENTATION--Enables you to specify the orientation of the pages in the exported PDF file. It is
given by the EpfcSheetOrientation enumerated class.

- EpfcORIENT_PORTRAIT--Exports the pagesin portrait orientation. This is the default value.
- EpfcORIENT_LANDSCA PE--Exports the pages in landscape orientation.

o EpfcPDFOPT_TOP_MARGIN--Allows you to specify the top margin of the view port. The default valueis 0.0.

o EpfcPDFOPT_LEFT_MARGIN--Allows you to specify the left margin of the view port. The default value is 0.0.

o EpfcPDFOPT_BACKGROUND_COLOR_RED--Specifies the default red background color that appears behind the
U3D model. You can set any value within the range of 0.0 to 1.0. The default valueis 1.0.

o EpfcPDFOPT_BACKGROUND_COLOR_GREEN--Specifies the default green background color that appears
behind the U3D model. Y ou can set any value within the range of 0.0 to 1.0. The default value is 1.0.

o EpfcPDFOPT_BACKGROUND_COLOR_BLUE--Specifies the default blue background color that appears behind
the U3D model. Y ou can set any value within the range of 0.0 to 1.0. The default valueis 1.0.

o EpfcPDFOPT_ADD_VIEWS-If true, allows you to add view definitions to the U3D model from afile. By defaullt,
itistrue.

o EpfcPDFOPT_VIEW_TO_EXPORT--Specifies the view or views to be exported to the PDF file. It is given by the
EpfcPDFSel ectedViewMode enumerated class and takes the following values:

- EpfcPDF_VIEW_SELECT_CURRENT--Exports the current graphical areato a one-page PDFfile.

- EpfcPDF_VIEW_SELECT_ALL--Exportsall the viewsto a multi-page PDF file. Each page contains one
view with the view name displayed at the bottom center of the view port.

- EpfcPDF_VIEW_SELECT_BY_NAME--Exports the selected view to a one-page PDF file with the view
name printed at the bottom center of the view port. If thisvalueis assigned, then the option
PDFOPT_SELECTED_VIEW must also be set.

o EpfcPDFOPT_SELECTED_VIEW--Sets the option EpfcPDFOPT_VIEW_TO_EXPORT to the value
EpfcPDF_VIEW_SELECT_BY_NAME, if the corresponding view is successfully found.

Exporting 3D Geometry

The VB API alows you to export three dimensional geometry to various formats. Pass the instructions object
containing information about the desired export file to the method | pfcM odel .Export().

Export Instructions
Methods and Properties Introduced:
. IpfcExport3DInstructions.Configuration
. IpfcExport3DInstructions.ReferenceSystem
. IpfcExport3Dinstructions.Geometry
. IpfcExport3Dinstructions.IncludedEntities
. IpfcExport3Dinstructions.LayerOptions
. CCpfcGeometryFlags.Create()
. CCpfcinclusionFlags.Create()
. CCpfcLayerExportOptions.Create()
. CCpfcSTEP3DEXxportinstructions.Create()
. CCpfcSET3DExportinstructions.Create()
. CCpfcVDA3DEXxportinstructions.Create()
. CCpfclGES3DNewExportinstructions.Create()
. CCpfcCATIA3DEXxportinstructions.Create()
. CCpfcCATIAModel3DExportinstructions.Create()
. CCpfcPDGS3DEXxportinstructions.Create()
. CCpfcACIS3DExportinstructions.Create()
. CCpfcCatiaPart3DExportinstructions.Create()
. CCpfcCatiaProduct3DExportinstructions.Create()
. CCpfcCatiaCGR3DEXxportlInstructions.Create()
. CCpfcJT3DExportinstructions.Create()
. CCpfcParaSolid3DExportinstructions.Create()

. CCpfcUG3DExportinstructions.Create()

The interface | pfcExport3DI nstructions contains data to export a part or an assembly to a specifed 3D format. The
fields of thisinterface are:

o Configuration--While exporting an assembly you can specify the structure and contents of the output files. The
options are:
- EXPORT_ASM_FLAT_FILE--Exports all the geometry of the assembly to asinglefile asif it were a part.
- EXPORT_ASM_SINGLE_FILE--Exports an assembly structure to afile with external references to
component files. Thisfile contains only top-level geometry.
- EXPORT_ASM_MULTI_FILE--Exports an assembly structure to a single file and the components to
component files. It creates component parts and subassemblies with their respective geometry and external
references. This option supports al levels of hierarchy.
- EXPORT_ASM_ASSEMBLY _FILE--Exports an assembly as multiple files containing geometry
information of its components and assembly features.
o ReferenceSystem--The reference coordinate system used for export. If thisvaueis null, the system uses the default
coordinate system.
o Geometry--The object describing the type of geometry to export. The CCpfcGeometryFlags.Create() returns this
instruction object. The types of geometry supported by the export operation are:
- Wireframe--Export edges only.
- Solid--Export surfaces along with topology.
- Surfaces--Export al model surfaces.
- Quilts--Export as quilt.
o IncludedEntities--The object returned by the method CCpfclnclusionFlags.Create() that determines whether to
include certain entities. The entities are:
- Datums--Determines whether datum curves are included when exporting files. If true the datum curve
information isincluded during export. The default valueis false.
- Blanked--Determines whether entities on blanked layers are exported. If true entities on blanked layers are
exported. The default value isfalse.
o LayerOptions—-The instructions object returned by the method CCpfcL ayerExportOptions.Create() that describes
how to export layers. To export layers you can specify the following:
- UseAutol d--Enables you to set or remove an interface layer ID. A layer is recognized with this ID when
exporting the file to a specified output format. If true, automatically assigns interface IDsto layers not
assigned IDs and exports them. The default valueisfalse.
- LayerSetupFile--Specifies the name and compl ete path of the layer setup file. Thisfile contains the layer
assignment information which includes the name of the layer, its display status, the interface ID and number
of sub layers.

Export 3D Instructions Table

Interface Used to Export
| pfcSTEP3DExportlnstructions A part or assembly in STEP format
I pfcV DA3DEXxportInstructions A part or assembly in VDA format
| pfcSET3DExportlnstructions A classthat defines aruled surface

| pfcl GES3DNewEXxportlnstructions A part or assembly in IGES format

A part or assembly in CATIA format (as precise

IpfcCATIA3DEXportinstructions geometry)

IpfcCATIAModel SDExportinstructions | A part or assembly in CATIA MODEL format

I pfcPDGS3DEXxportInstructions A part or assembly in PDGS format
| pfcACIS3DEXxportlnstructions A part or assembly in ACIS format
| pfcCatiaPart3DExportl nstructions A part or assembly in CATIA PART format

| pfcCatiaProduct3DExportlnstructions | A part or assembly in CATIA PRODUCT format

| pfcCatiaCGR3DEXxportInstructions A part or assembly in CATIA CGR format

| pfcIT3DEXxportInstructions A part or assembly in JT format

| pfcParaSolid3DExportInstructions A part or assembly in PARASOLID format

| pfcUG3DExportl nstructions A part or assembly in UG format

Export Utilities
Methods Introduced:
. IpfcBaseSession.IsConfigurationSupported)

. IpfcBaseSession.IsGeometryRepSupported()

The method | pfcBaseSession.| sConfigurationSupported() checks whether the specified assembly configuration is
valid for a particular model and the specified export format. The input parameters for this method are:

o Configuration--Specifies the structure and content of the output files.
o Type--Specifies the output file type to create.

The method returns atrue value if the configuration is supported for the specified export type.

The method | pfcBaseSession.| sGeometryRepSupported() checks whether the specified geometric representation is
valid for a particular export format. The input parametersare ;

o Flags-The type of geometry supported by the export operation.
o Type--The output file typeto create.

The method returns atrue value if the geometry combination is valid for the specified model and export type.

The methods pfcl pfcBaseSession.l sConfigurationSupported() and pfcl pfcBaseSession.

I sGeometryRepSupported() must be called before exporting an assembly to the specified export formats except for
the CADDS and STEP2D formats. The return values of both the methods must be true for the export operation to be
successful.

Use the method | pfcM odel.Export() to export the assembly to the specified output format.
Shrinkwrap Export

To improve performance in alarge assembly design, you can export lightweight representations of models called
shrinkwrap models. A shrinkwrap model is based on the external surfaces of the source part or asssembly model and
captures the outer shape of the source model.

Y ou can create the following types of nonassociative exported shrinkwrap models:

o Surface Subset--This type consists of a subset of the original model's surfaces.
o Faceted Solid--Thistypeis afaceted solid representing the original solid.

o Merged Solid--The external components from the reference assembly model are merged into a single part
representing the solid geometry in al collected components.

Methods Introduced:
. IpfcSolid.ExportShrinkwrap()

Y ou can export the specified solid model as a shrinkwrap model using the method | pfcSolid.ExportShrinkwrap().
This method takes the ShrinkwrapExportlnstruction object as an argument.

Use the appropriate interface given in the following table to create the required type of shrinkwrap. All the interfaces
have their own static method to create an object of the specified type. The object created by these interfaces can be
used as an object of type ShrinkwrapExportlnstructions or ShrinkwrapM odelExportlnstructions.

Type of Shrinkwrap Model Interfaceto Use

Surface Subset I pfcShrinkwrapSurfaceSubsetInstructions
Faceted Part I pfcShrinkwrapFacetedParti nstructions
Faceted VRML | pfcShrinkwrapFacetedV RM LI nstructions
Faceted STL I pfcShrinkwrapFacetedSTL Instructions
Merged Solid I pfcShrinkwrapM ergedSolidlinstructions

Setting Shrinkwrap Options

The interface | pfcShrinkwr apM odel Expor tl nstructions contains the general methods available for all the types of

shrinkwrap models. The object created by any of the interfaces specified in the preceeding table can be used with
these methods.

Properties Introduced:

. IpfcShrinkwrapModelExportinstructions.Method

. IpfcShrinkwrapModelExportinstructions.Quality

. IpfcShrinkwrapModelExportinstructions.AutoHoleFilling

. IpfcShrinkwrapModelExportinstructions.lgnoreSkeleton

. IpfcShrinkwrapModelExportinstructions.lgnoreQuilts

. IpfcShrinkwrapModelExportinstructions.AssignMassProperties
. IpfcShrinkwrapModelExportinstructions.lgnoreSmallSurfaces
. IpfcShrinkwrapModelExportinstructions.SmallSurfPercentage
. IpfcShrinkwrapModelExportinstructions.DatumReferences

The property IpfcShrinkwrapM ode Exportlnstructions.M ethod returns the method used to create the shrinkwrap.
The types of shrinkwrap methods are:

» SWCREATE_SURF_SUBSET--Surface Subset
» SWCREATE_FACETED_SOLID--Faceted Solid
» SWCREATE_MERGED_SOLID--Merged Solid

The property I pfcShrinkwrapM odel Exportl nstructions.Quality specifies the quality level for the system to use
when identifying surfaces or components that contribute to the shrinkwrap model. Quality ranges from 1 which
produces the coarsest representation of the model in the fastest time, to 10 which produces the most exact
representation. The default valueis 1.

The property | pfcShrinkwrapM odel Exportlnstructions.AutoHoleFilling sets aflag that forces Pro/ENGINEER
toidentify all holes and surfaces that intersect a single surface and fills those holes during shrinkwrap. The default
valueistrue.

The property IpfcShrinkwrapM odel Exportlnstructions. gnoreSkeleton determine whether the skeleton model
geometry must be included in the shrinkwrap model.

The property I pfcShrinkwrapM odel Exportlnstructions.| gnor eQuilts determines whether externa quilts must be
included in the shrinkwrap model.

The property | pfcShrinkwrapM odel Exportl nstructions.AssignM assPr oper ties assigns mass properties to the
shrinkwrap model. The default value is false and the mass properties of the original model is assigned to the
shrinkwrap model. If the valueis set to true, the user must assign a value for the mass properties.

The property I pfcShrinkwrapM odel Exportl nstructions.l gnoreSmallSur faces sets a flag that forces Pro/
ENGINEER to skip surfaces smaller than a certain size. The default value isfalse. The size of the surface is
specified as a percentage of the model's size. This size can be modified using the property

I pfcShrinkwrapM odel Exportl nstructions.SmallSur fPer centage.

The property | pfcShrinkwrapM odel Exportlnstructions.DatumRefer ences specifies and selects the datum planes,
points, curves, axes, and coordinate system references to be included in the shrinkwrap model.

Surface Subset Options

Methods and Properties Introduced:

. CCpfcShrinkwrapSurfaceSubsetinstructions.Create()
. IpfcShrinkwrapSurfaceSubsetinstructions.AdditionalSurfaces
. IpfcShrinkwrapSurfaceSubsetinstructions.OutputModel

The static method CCpfcShrinkwr apSurfaceSubset| nstructions.Create() returns an object used to create a
shrinkwrap model of surface subset type. Specify the name of the output model in which the shrinkwrap isto be
created as an input to this method.

The property I pfcShrinkwrapSurfaceSubsetl nstructions.Additional Surfaces selectsindividual surfacesto be
included in the shrinkwrap model.

The property | pfcShrinkwrapSur faceSubsetl nstructions.OutputM odéd returns the template model where the
shrinkwrap geometry is to be created.

Faceted Solid Options
The | pfcShrinkwr apFacetedFor matl nstr uctionsinterface consists of the following types:

o SWFACETED_PART--Pro/ENGINEER part with normal geometry. Thisis the default format type.
o SWFACETED_STL--An STL file.
o SWFACETED_VRML--A VRML file.

Use the Cr eate method to create the object of the specified type. Upcast the object to use the general methods
availablein thisinterface.

Properties Intoduced:
. IpfcShrinkwrapFacetedFormatinstructions.Format
. IpfcShrinkwrapFacetedFormatinstructions.FramesFile

The property | pfcShrinkwr apFacetedFor matl nstructions.Format returns the the output file format of the
shrinkwrap model.

The property | pfcShrinkwr apFacetedFor matl nstructions.FrameskFile enables you to select aframefileto create a

faceted solid motion envelope model that represents the full motion of the mechanism captured in the framefile.
Specify the name and complete path of the framefile.

Faceted Part Options

Methods and Properties Introduced:
. CCpfcShrinkwrapFacetedPartinstructions.Create()
. IpfcShrinkwrapFacetedPartinstructions.Lightweight

The static method CCpfcShrinkwrapFacetedPartl nstructions.Create() returns an object used to create a
shrinkwrap model of shrinkwrap faceted type. The input parameters of this method are:

o OutputM odel--Specify the output model where the shrinkwrap must be created.
o Lightweight--Specify this value as True if the shrinkwrap model is a Lightweight Pro/ENGINEER part.

The property | pfcShrinkwrapFacetedPartl nstructions.Lightweight specifiesif the Pro/ENGINEER part is
exported as alight weight faceted geometry.

VRML Export Options

Methods and Properties Introduced:
. CCpfcShrinkwrapVRMLInstructions.Create()
. IpfcShrinkwrapVRMLInstructions.OutputFile

The static method CCpfcShrinkwrapVRMLInstructions.Create() returns an object used to create a shrinkwrap
model of shrinkwrap VRML format. Specify the name of the output model as an input to this method.

The property | pfcShrinkwrapVRM LI nstructions.OutputFile specifies the name of the output file to be created.
STL Export Options
Methods and Properties Introduced:
. CCpfcShrinkwrapVRMLInstructions.Create()
. IpfcShrinkwrapVRMLInstructions.OutputFile

The static method CCpfcShrinkwrapVRM LInstructions.Create() returns an object used to create a shrinkwrap
model of shrinkwrap STL format. Specify the name of the output model as an input to this method.

The property | pfcShrinkwrapSTL Instructions.OutputFile specifies the name of the output file to be created.
Merged Solid Options
Methods and Properties Introduced:
. CCpfcShrinkwrapMergedSolidinstructions.Create()
. IpfcShrinkwrapMergedSolidinstructions.AdditionalComponents

The static method CCpfcShrinkwrapM ergedSolidl nstructions.Create() returns an object used to create a
shrinkwrap model of merged solids format. Specify the name of the output model as an input to this method.

The property IpfcShrinkwrapM er gedSolidl nstructions.Additional Components specifies individual components
of the assembly to be merged into the shrinkwrap model.

VRML Representation
Exanpl e Code

The following example code leverages the fact that when amodel with amodel program attached is erased or deleted
the stop method of the model program is called. This example code uses the stop method to produce aVRML
representation of the model in a standard directory for Web publishing.

| mports pfcls

Publ i c A ass pfcl nterfaceExanpl esl
I npl enment s | pf cAsyncActi onLi st ener
I mpl ements | Cl PCl i ent Obj ect
I mpl ement s | pf cActi onLi st ener

Di mW t hEvent s event Ti ner As Ti mers. Ti mer
Di mexi t Fl ag As Bool ean = Fal se
Di maCAs pfcl s. | pf cAsyncConnecti on

Publ i ¢ Sub New(ByRef asyncConnecti on As pfcl s. | pf cAsyncConnecti on)
aC=asyncConnecti on
End Sub

Public FunctionGetdientlnterfaceNanme() As Stringl nplenents pfcls.|ClPdientObject.
GetCientlnterfaceNane
GetCientlnterfaceNanme ="1pfcAsyncActi onLi stener”
End Functi on

Publ i ¢ Sub OnTer i nat e(ByVal _Status As | nteger) | npl enents pfcls.
| pf cAsyncAct i onLi st ener. OnTer m nat e
aC. I nterrupt Event Processi ng()
exitFlag =True
End Sub

"VRML. on er ase

"Function : createVRML.OnErase

"Purpose : Thisfunctionusesthelistener OnBef oreMddel Erase
tocreateVRMLfileingivendirectory.

Not et hat thi s operatesinFull Asynchronous Mode.

Publ i ¢ Sub cr eat eVRMLOnEr ase(ByVal dirPath As String)
D mli st ener Cbj As NewVRM_Event Li st ener (di r Pat h)

event Ti mer = NewTi nmer s. Ti mer (500)
event Ti mer . Enabl ed = Tr ue
AddHandl er event Ti ner . El apsed, AddressOF Me. ti nmeEl apsed

ac. Sessi on. AddActi onLi stener (IistenerChj)
aC. AddAct i onLi st ener (M)

Cat ch ex As Excepti on
MsgBox(ex. Message. ToStri ng + Chr (13) +ex. StackTrace. ToStri ng)
End Try
End Sub

"Function : tinmeEl apsed
"Purpose : Thisfunctionhandelsthetineelapsedevent of tinmer
whichisfiredat regular intervals

Private SubtinmeEl apsed(ByVal sender As (bj ect, ByVal e As
System Ti mers. El apsedEvent Ar gs)
| f exitFl ag = Fal se Then

aC. Event Process()

El se
event Ti ner . Enabl ed = Fal se
End | f
End Sub
"Class : VRM.EventLi stener
"Purpose : Thisclassnustinplenent thelistnerinterfaceal ong

withthecorrect client interfacenane. Thei npl enent ed
nmet hods are cal | ed aft er correspondi ng acti onsonthe
nodel .

Pri vat e O ass VRMLEvent Li st ener
I mpl ement s | pf cSessi onActi onLi st ener
I npl enents | Cl PO i ent Obj ect
| mpl enent s | pf cActi onLi st ener

DimoutDir As String

Publ i ¢ Sub New(ByVal dirPathAs String)
outDir =dirPath
End Sub

Public FunctionGetdientlnterfaceNanme() As String I nplenents | Cl PO ienthject.
GetdientlnterfaceNane
CGetdientlnterfaceNane ="1 pfcSessi onActi onLi st ener”
End Functi on

Publ i ¢ Sub OnBef or eMbdel Erase() | npl enent s pfcl s. | pf cSessi onAct i onLi st ener.

OnBef or eMbdel Er ase

Di mnodel As | pf cModel

Di mcACAs Newpf cl s. CCpf cAsyncConnecti on

Di maCAs pfcl s. | pf cAsyncConnecti on

Di msessi on As | pf cBaseSessi on

Di mvrm I nstructi ons As | pf cVRMLMbdel Export | nstructions

Try

aC=cAC. Get Acti veConnecti on
sessi on =aC. Sessi on

| f model |'s Not hi ng Then
Ret urn

End | f

I f (Not nodel . Type = Epf cMbdel Type. Epf cMDL_PART) Then
Ret urn

End I f

vrm | nstructi ons = (NewCCpf cVRMLMbdel Export | nstructions). Create(outDir)
nmodel . Export (Not hi ng, vrm I nstructi ons)

Cat ch ex As Excepti on
MsgBox(ex. Message. ToStri ng + Chr (13) +

ex. StackTrace. ToStri ng)
End Try

End Sub

Publ i ¢ Sub OnAft erDi rect oryChange(ByVal _Path As String) | npl enments pfcls.
| pf cSessi onActi onLi stener. OnAfter Di r ect or yChange

End Sub

Publ i ¢ Sub OnAft er Model Di spl ay() | npl enent s pfcl s. | pf cSessi onActi onLi stener.
OnAf t er Model Di spl ay

End Sub

Publ i ¢ Sub OnAf t er Model Pur ge(ByVal _Desrc As pfcls. | pf cModel Descri ptor) | nmpl enent s
pfcls. | pfcSessionActionLi st ener. OnAft er Model Pur ge

End Sub

Publ i ¢ Sub OnAf t er W ndowChange(ByVal _NewW ndowAs Cbj ect) | npl enent s pfcl s.
| pf cSessi onActi onLi st ener. OnAf t er W ndowChange

End Sub

Publ i ¢ Sub OnBef or eModel Copy(ByVal _Cont ai ner As pfcls. | pfcDescri ptorContai ner2)
I mpl enent s pfcl s. | pf cSessi onAct i onLi st ener. OnBef or eModel Copy

End Sub

Publ i ¢ Sub OnBef or evbdel Del et e() | npl enent s pfcl s. | pf cSessi onActi onLi st ener.
OnBef or eMbdel Del et e

End Sub

Publ i ¢ Sub OnBef or eModel Pur ge(ByVal _Cont ai ner As pfcl s. | pf cDescri pt or Cont ai ner)
I npl ement s pfcls. | pfcSessi onActi onLi st ener. OnBef or eMbdel Pur ge

End Sub

Publ i ¢ Sub OnBef or eMbdel Renanme(ByVal _Cont ai ner As pfcl s. | pfcDescri pt or Cont ai ner 2)
| mpl enent s pfcl s. | pf cSessi onActi onLi st ener. OnBef or eModel Renane

End Sub

Publ i ¢ Sub OnBef or eMbdel Save(ByVal _Cont ai ner As pfcls. | pfcDescri ptorContai ner)
| mpl enent s pfcl s. | pf cSessi onActi onLi st ener. OnBef or eModel Save

End Sub
End Cl ass
End Cl ass

Importing Files

Method Introduced:

. IpfcModel.Import()

The method | pfcM odel.Import() reads afile into Pro/ENGINEER. The format must be the same as it would be if
these files were created by Pro/ENGINEER. The parameters are:;

o FilePath--Absolute path of the file to be imported along with its extension.
o ImportData--The ImportInstructions object that controls the import operation.

Import Instructions
Methods Introduced:
. CCpfcRelationimportinstructions.Create()
. CCpfclGESSectionimportinstructions.Create()
. CCpfcProgramimportinstructions.Create()
. CCpfcConfigimportinstructions.Create()
. CCpfcDWGSetuplmportinstructions.Create()
. CCpfcSpoolimportinstructions.Create()
. CCpfcConnectorParamsimportinstructions.Create()
. CCpfcASSEMTreeCFGImportinstructions.Create()
. CCpfcWireListimportinstructions.Create()
. CCpfcCableParamsimportinstructions.Create()
. CCpfcSTEPImport2DInstructions.Create()
. CCpfclGESImport2Dinstructions.Create()
. CCpfcDXFImport2DInstructions.Create()
. CCpfcDWGImport2DInstructions.Create()
. CCpfcSETImport2DInstructions.Create()

The methods described in this section create an instructions data object to import afile of a specified type into Pro/
ENGINEER. The details are as shown in the table below:

Interface Used to Import

| pfcRelationlmportinstructions

A list of relations and parametersin a part or assembly.

| pfcl GESSectionlmportl nstructions

A section model in IGES format.

| pfcProgramlmportInstructions

A program file for a part or assembly that can be edited to change the
model.

I pfcConfigl mportlnstructions

Configuration instructions.

| pfcDWGSetupl mportl nstructions

A drawing Sufile.

| pfcSpool Importl nstructions

Spool instructions.

| pfcConnectorParamsl mportInstructions

Connector parameter instructions.

| pfcASSEM TreeCFGImportinstructions

Assembly tree CFG instructions.

I pfcWireListimportl nstructions

Wirelist instructions.

| pfcCableParamsl mportlnstructions

Cable parameters from an assembly.

| pfcSTEPImport2DInstructions

A part or assembly in STEP format.

I pfcl GESImport2DInstructions

A part or assembly in IGES format.

I pfcDXFImport2DInstructions

A drawing in DXF format.

I pfcDWGImport2DInstructions

A drawing in DWG format.

| pfcSET Import2DI nstructions

A class that defines aruled surface.

Note:

- The method I pfcM odel.Import() does not support importing of CADAM type of files.
- If amodel or the file type STEP, IGES, DWX, or SET aready exists, the imported model is appended to the

current model. For more information on methods that return models of the types STEP, IGES, DWX, and SET, refer

to Getting a Model Object.

Importing 2D Models

Method Introduced:

. IpfcBaseSession.Import2DModel()

The method | pfcBaseSession.I mport2DM odel () imports atwo dimensional model based on the following
parameters:

o NewM odelName--Specifies the name of the new model.
Type--Specifies the type of the model. The type can be one of the following:
- STEP
- IGES
- DXF
-DWG
- SET
FilePath--Specifies the location of the file to be imported aong with the file extension
Instructions--Specifies the | pfcl mport2DInstructions object that controls the import operation.

[}

]

o

Theinterface | pf cl nport 2Dl nst ruct i ons contains the following attributes:
- Import2DViews--Defines whether to import 2D drawing views.
- ScaleToFit--If the current model has a different sheet size than that specified by the imported file, set the
parameter to true to retain the current sheet size. Set the parameter to false to retain the sheet size of the
imported file.
- FitToLeftCorner--1f this parameter is set to true, the bottom left corner of the imported file is adjusted to the
bottom left corner of the current model. If it is set to false, the size of imported file is retained.

Note:
The method I pfcBaseSession.Import2DModel () does not support importing of CADAM type of files.

Importing 3D Geometry

Methods Introduced:
. IpfcBaseSession.GetimportSourceType()
. IpfcBaseSession.ImportNewModel()

For some input formats, the method | pfcBaseSession.Getl mportSour ceType() returns the type of model that can be
imported using a designated file. The input parameters of this method are:

o FileTolmport--Specifies the path of the file along with its name and extension
o NewMode ImportType--Specifies the type of model to be imported.

The method | pfcBaseSession.I mportNewM odel () is used to import an external 3D format file and creates a new
model or set of models of type | pf cMbdel . Theinput parameters of this method are:

o FileTolmport--Specifies the path to the file along with its name and extension
o EpfcNewModellmportType--Specifies the type of model to be imported. The types of models that can be imported
areasfollows:

- EpfclMPORT_NEW_IGES

- EpfcMPORT_NEW_SET

- EpfcMPORT_NEW_VDA

- EpfclMPORT_NEW_NEUTRAL

- EpfclMPORT_NEW_CADDS

- EpfcMPORT_NEW_STEP

- EpfclMPORT_NEW_STL

- EpfcMPORT_NEW_VRML

- EpfcMPORT_NEW_POLTXT

- EpfclMPORT_NEW_CATIA_SESSION

- EpfcMPORT_NEW_CATIA_MODEL

- EpfcMPORT_NEW_DXF

- EpfclMPORT_NEW_ACIS

- EpfclMPORT_NEW_PARASOLID

- EpfclMPORT_NEW_ICEM

- EpfcMPORT_NEW_DESKTOP

- EpfcMPORT_NEW_CATIA_PART

- EpfclMPORT_NEW_UG

- EpfclMPORT_NEW_PRODUCTVIEW

- EpfcMPORT_NEW_CATIA_CGR

- EpfclMPORT_NEW_JT
o EpfcMode Type--Specifies the type of the model. It can be a part, assembly or drawing.
o NewModelName--Specifies a name for the imported model.
o IpfcLayerlmportFilter--Specifies the layer filter. This parameter is optional.

Plotting Files

From Pro/ENGINEER Wilfire 5.0 onwards, the | pf cPl ot | nst ruct i ons object containing the instructions for
plotting files has been deprecated. All the methods listed below for creating and accessing the instruction attributes
inl pfcPlotlnstructions have aso been deprecated. Use the new interface typel pf cPri nter I nstructi ons
and its methods described in the next section.

Methods and Properties Deprecated:
. CCpfcPlotinstructions.Create()
. IpfcPlotinstructions.PlotterName
. IpfcPlotinstructions.OutputQuality
. IpfcPlotinstructions.UserScale
. IpfcPlotinstructions.PenSlew
. IpfcPlotinstructions.PenVelocityX
. IpfcPlotinstructions.PenVelocityY
. IpfcPlotinstructions.SegmentedOutput
. IpfcPlotinstructions.LabelPlot
. IpfcPlotinstructions.SeparatePlotFiles
. IpfcPlotinstructions.PaperSize
. IpfcPlotinstructions.PageRangeChoice
. IpfcPlotinstructions.PaperSizeX

. IpfcPlotinstructions.FirstPage

. IpfcPlotinstructions.LastPage

Printing Files
The printer instructions for printing afile are defined in | pf cPrint er I nstructi ons dataobject.
Methods and Properties Introduced:
. CCpfcPrinterInstructions.Create()
. IpfcPrinterinstructions.PrinterOption
. IpfcPrinterinstructions.PlacementOption
. IpfcPrinterinstructions.ModelOption
. IpfcPrinterinstructions.Windowld

The method CCpfcPrinterInstructions.Create() creates anew instance of thel pf cPri nterl nstructi ons
object. The object contains the following instruction attributes:

o PrinterOption--Specifies the printer settings for printing afile in terms of the IpfcPrintPrinterOption object. Set this
attribute using the property pfcExport.Printerl nstructions. SetPrinterOption.

o PlacementOption--Specifies the placement options for printing purpose in terms of the IpfcPrintMdlOption object.
Set this attribute using the property pfcExport.Printer|nstructions.SetPlacementOption.

o Model Option--Specifies the model options for printing purpose in terms of the | pfcPrintPlacementOption object. Set
this attribute using the property pfcExport.PrinterInstructions.SetM odel Option.

o Windowld--Specifies the current window identifier. Set this attribute using the property pfcExport.
PrinterInstructions.SetWindowld.

Printer Options
The printer settings for printing afile are defined inthe | pf cPri nt Pri nt er Opt i on object.
Methods and Properties Introduced:
. CCpfcPrintPrinterOption.Create()
. IpfcBaseSession.GetPrintPrinterOptions()
. IpfcPrintPrinterOption.DeleteAfter
. IpfcPrintPrinterOption.FileName
. IpfcPrintPrinterOption.PaperSize
. CCpfcPrintSize.Create()
. IpfcPrintSize.Height

. IpfcPrintSize.Width

. IpfcPrintSize.PaperSize
. IpfcPrintPrinterOption.PenTable
. IpfcPrintPrinterOption.PrintCommand
. IpfcPrintPrinterOption.PrinterType
. IpfcPrintPrinterOption.Quantity
. IpfcPrintPrinterOption.RollMedia
. IpfcPrintPrinterOption.RotatePlot
. IpfcPrintPrinterOption.SaveMethod
. IpfcPrintPrinterOption.SaveToFile
. IpfcPrintPrinterOption.SendToPrinter
. IpfcPrintPrinterOption.Slew
. IpfcPrintPrinterOption.SwHandshake
. IpfcPrintPrinterOption.UseTtf
The method CCpfcPrintPrinter Option.Create() creates anew instance of the | pf cPri nt Pri nt er Opt i on object.

The method | pfcBaseSession.GetPrintPrinter Options() retrieves the printer settings.

Thel pf cPrint Pri nt er Qpt i on object contains the following options:

DeleteAfter--Determinesiif the fileis deleted after printing. Set it to true to delete the file after printing. Use the
property IpfcPrintPrinterOption.Del eteAfter to assign this option.
FileName--Specifies the name of the file to be printed. Use the property | pfcPrintPrinterOption.FileName to set the
name.
PaperSize--Specifies the parameters of the paper to be printed in terms of the IpfcPrintSize object. The property
I pfcPrintPrinterOption.PaperSize assigns the PaperSize option. Use the method CCpfcPrintSize.Create() to create a
new instance of the I pfcPrintSize object. This object contains the following options:
- Height--Specifies the height of paper. Use the property IpfcPrintSize.Height to set the paper height.
- Width--Specifies the width of paper. Use the property |pfcPrintSize.Width to set the paper width.
- PaperSize--Specifies the size of the paper used for the plot in terms of the pfcM odel.PlotPaperSize object.
Use the property I pfcPrintSize.PaperSize to set the paper size.
PenTable--Specifies the file containing the pen table. Use the property |pfcPrintPrinterOption.PenTable to set this
option.
PrintCommand--Specifies the command to be used for printing. Use the property |pfcPrintPrinterOption.
PrintCommand to set the command.
PrinterType--Specifies the printer type. Use the property | pfcPrintPrinterOption.Printer Type to assign the type.
Quantity--Specifies the number of copiesto be printed. Use the property I pfcPrintPrinterOption.Quantity to assign
the quantity.
RollMedia--Determinesiif roll mediaisto be used for printing. Set it to true to use roll media. Use the property
IpfcPrintPrinterOption.RolIMedia to assign this option.

o RotatePlot--Determinesif the plot is rotated by 90 degrees. Set it to true to rotate the plot. Use the property
I pfcPrintPrinterOption.RotatePlot to set this option.
o SaveMethod--Specifies the save method in terms of the EpfcPrintSaveM ethod enumerated class. Use the property
I pfcPrintPrinterOption.SaveMethod to specify the save method. The available methods are as follows:
- EpfcPRINT_SAVE_SINGLE_FILE--Plot is saved to asinglefile.
- EpfcPRINT_SAVE MULTIPLE FILE--Plot is saved to multiple files.
- EpfcPRINT_SAVE_APPEND_TO_FILE--Plot is appended to afile.
o SaveToFile--Determinesif the fileis saved after printing. Set it to true to save the file after printing. Use the
property IpfcPrintPrinterOption.SaveToFile to assign this option.
o SendToPrinter--Determinesif the plot is directly sent to the printer. Set it to true to send the plot to the printer. Use
the property |pfcPrintPrinterOption.SendToPrinter to set this option.
o Slew--Specifies the speed of the pen in centimeters per second in X and Y direction. Use the property
I pfcPrintPrinterOption.Slew to set this option.
o SwHandshake--Determinesif the software handshake method isto be used for printing. Set it to true to use the
software handshake method. Use the property | pfcPrintPrinterOption.SwHandshake to set this option.
o UseTtf--Specifies whether TrueType fonts or stroked text is used for printing. Set this option to true to use
TrueType fonts and to false to stroke al text. Use the property | pfcPrintPrinterOption.UseTtf to set this option.

Placement Options
The placement options for printing purpose are defined in the | pf cPri nt Pl acenent Opt i on object.
Methods and Properties Introduced:
. CCpfcPrintPlacementOption.Create()
. IpfcBaseSession.GetPrintPlacementOptions()
. IpfcPrintPlacementOption.BottomOffset
. IpfcPrintPlacementOption.ClipPlot
. IpfcPrintPlacementOption.KeepPanzoom
. IpfcPrintPlacementOption.LabelHeight
. IpfcPrintPlacementOption.PlaceLabel
. IpfcPrintPlacementOption.Scale
. IpfcPrintPlacementOption.ShiftAllCorner
. IpfcPrintPlacementOption.SideOffset
. IpfcPrintPlacementOption.X1ClipPosition
. IpfcPrintPlacementOption.X2ClipPosition
. IpfcPrintPlacementOption.Y1ClipPosition
. IpfcPrintPlacementOption.Y2ClipPosition

The method CCpfcPrintPlacementOption.Create() creates anew instance of thel pf cPri nt Pl acement Qpt i on

object.
The method | pfcBaseSession.GetPrintPlacementOptions() retrieves the placement options.
Thel pf cPri nt Pl acenent Opt i on object contains the following options:

o BottomOffset--Specifies the offset from the lower-left corner of the plot. Use the property | pfcPrintPlacementOption.
BottomOffset to set this option.

o ClipPlot--Specifies whether the plot is clipped. Set this option to true to clip the plot or to false to avoid clipping of
plot. Use the property | pfcPrintPlacementOption.ClipPlot to set this option.

o KeepPanzoom--Determines whether pan and zoom values of the window are used. Set this option to true use pan
and zoom and false to skip them. Use the property | pfcPrintPlacementOption.K eepPanzoom to set this option.

o LabelHeight--Specifies the height of the label in inches. Use the property | pfcPrintPlacementOption.LabelHeight to
set this option.

o Placel abel--Specifies whether you want to place the label on the plot. Use the property | pfcPrintPlacementOption.
Placel abel to set this option.

o Scale--Specifiesthe scale used for the plot. Use the property | pfcPrintPlacementOption.Scale to set this option.

o ShiftAllCorner--Determines whether all corners are shifted.Set this option to true to shift all cornersor to false to
skip shifting of corners. Use the property 1pfcPrintPlacementOption.ShiftAllCorner to set this option.

o SideOffset--Specifies the offset from the sides. Use the property | pfcPrintPlacementOption.SideOffset to set this
option.

o X1ClipPosition--Specifiesthe first X parameter for defining the clip position. Use the property
I pfcPrintPlacementOption.X 1ClipPosition to set this option.

o X2ClipPosition--Specifies the second X parameter for defining the clip position. Use the property
I pfcPrintPlacementOption. X 2ClipPosition to set this option.

o Y 1ClipPosition--Specifies the first Y parameter for defining the clip position. Use the property
I pfcPrintPlacementOption.Y 1ClipPosition to set this option.

o Y 2ClipPosition--Specifies the second Y parameter for defining the clip position. Use the property
I pfcPrintPlacementOption.Y 2ClipPosition to set this option.

Model Options
The model options for printing purpose are defined inthe I pf cPri nt Ml Opt i on object.
Methods and Properties Introduced:
. CCpfcPrintMdIOption.Create()
. IpfcBaseSession.GetPrintMdIOptions()
. IpfcPrintMdIOption.DrawFormat
. IpfcPrintMdIOption.FirstPage
. IpfcPrintMdIOption.LastPage
. IpfcPrintMdIOption.LayerName
. IpfcPrintMdIOption.LayerOnly
. IpfcPrintMdIOption.MdI

. IpfcPrintMdIOption.Quality

. IpfcPrintMdIOption.Segmented

. IpfcPrintMdIOption.Sheets

. IpfcPrintMdIOption.UseDrawingSize

. IpfcPrintMdIOption.UseSolidScale
The method CCpfcPrintM dlOption.Create() creates a new instance of the pf cExport. Pri nt Mil Opt i on object.
The method | pfcBaseSession.GetPrintM dlOptions() retrieves the model options.
Thel pf cPri nt Mil Opt i on abject contains the following options:

o DrawFormat--Displays the drawing format used for printing. Use the property |pfcPrintMdlOption.DrawFormat to
set this option.
FirstPage--Specifies the first page number. Use the property | pfcPrintMdl Option.FirstPage to set this option.
L astPage--Specifies the last page number. Use the property 1pfcPrintM dlOption.L astPage to set this option.
LayerName--Specifies the name of the layer. Use the property | pfcPrintM dIOption.LayerName to set the name.
LayerOnly--Prints the specified layer only. Set this option to true to print the specified layer. Use the property
I pfcPrintMdlOption.LayerOnly to set this option.
o Mdl--Specifies the model to be printed. Use the property |pfcPrintMdlOption.Mdl to set this option.
o Quality--Determines the quality of the model to be printed. It checks for no line, no overlap, simple overlap, and
complex overlap. Use the property IpfcPrintMdlOption.Quality to set this option.
o Segmented--If set to true, the printer prints the drawing in full size, but in segments that are compatible with the
selected paper size. Thisoption isavailable only if you are plotting a single page. Use the property
I pfcPrintM dlOption.Segmented to set this option.
o Sheets-Specifies the sheets that need to be printed in terms of the EpfcPrintSheets class. Use the property
I pfcPrintM dlOption. Sheets to specify the sheets. The sheets can be of the following types:
- EpfcPRINT_CURRENT_SHEET--Only the current sheet is printed.
- EpfcPRINT_ALL_SHEETS--All the sheets are printed.
- EpfcPRINT_SELECTED_SHEETS--Sheets of a specified range are printed.
o UseDrawingSize--Overrides the paper size specified in the printer options with the drawing size. Set this option to
true to use the drawing size. Use the property I pfcPrintM dlOption.UseDrawingSize to set this option.
o UseSolidScale--Prints with the scale used in the solid model. Set this option to true to use solid scale. Use the
property IpfcPrintMdlOption.UseSolidScale to set this option.

] [} a]

Plotter Configuration File (PCF) Options
The printing options for PCF file are defined in the | pf cPri nt er PCFOpt i ons object.
Methods and Properties Introduced:
. CCpfcPrinterPCFOptions.Create()
. IpfcPrinterPCFOptions.PrinterOption
. IpfcPrinterPCFOptions.PlacementOption
. IpfcPrinterPCFOptions.ModelOption

The method CCpfcPrinter PCFOptions.Create() creates anew instance of thel pf cPri nt er PCFOpt i ons object.

Thel pf cPri nt er PCFOpt i ons object contains the following options:

o PrinterOption--Specifies the printer settings for printing afile in terms of the IpfcPrintPrinterOption object. Set this
attribute using the property pfcExport.PrinterPCFOptions.SetPrinterOption.

o PlacementOption--Specifies the placement options for printing purpose in terms of the IpfcPrintMdlOption object.
Set this attribute using the property pfcExport.PrinterPCFOptions. SetPlacementOption.

o ModelOption--Specifies the model options for printing purpose in terms of the | pfcPrintPlacementOption object. Set
this attribute using the property pfcExport.PrinterPCFOptions.SetM odel Option.

Solid Operations
Method Introduced:
. IpfcSolid.CreatelmportFeat()

The method | pfcSolid.Createl mportFeat() creates a new import feature in the solid and takes the following input
arguments:

o IntfData--The source of data from which to create the import feature. It is given by the pfcModel.IntfDataSource
object. The type of source data that can be imported is given by the Epfclntf Type class and can be of the following
types:

- EpfcINTF_NEUTRAL

- EpfcINTF_NEUTRAL_FILE
- EpfcINTF_IGES

- EpfcINTF_STEP

- EpfcINTF_VDA

- EpfcINTF_SET

- EpfcINTF_PDGS

- EpfcINTF_ICEM

- EpfcINTF_ACIS

- EpfcINTF_DXF

- EpfcINTF_CDRS

- EpfcINTF_STL

- EpfcINTF_VRML

- EpfcINTF_PARASOLID

- EpfcINTF_Al

- EpfcINTF_CATIA_PART

- EpfcINTF_UG

- EpfcINTF_PRODUCTVIEW
- EpfcINTF_CATIA_CGR

- EpfcINTF_JT

o CoordSys--The pointer to a reference coordinate system. If thisis NULL, the function uses the default coordinate
system.

o FeatAttr--The attributes for creation of the new import feature given by the IpfclmportFeatAttr object. If this pointer
isNULL, the function uses the default attributes.

Exanpl e Code: Ret urni ng a Feat ur e Obj ect
This method will return afeature object when provided with a solid coordinate system name and an import feature's

file name. The method will find the coordinate system in the model, set the Import Feature Attributes, and create an
import feature. Then the feature is returned.

Publ i c Functi on creat el nport Feat ur eFronDat aFi | e(ByVal solidAs | pfcSolid,

_ByVal csys As String, ByVal fil eNane As Stri ng,
_ByVal type As EpfclntfType) As | pfcFeature

Di mdat aSour ce As | pf cl nt f Dat aSour ce

Di mcSyst ens As | pf cModel |t ens

Di mcSyst emAs | pf cCoor dSyst em= Not hi ng
Di mi nport Feat ure As | pf cFeat ure
Dimfeat Attr As | pfclnport Feat Attr

Di mi As | nt eger

Try

Sel ect Casetype
Case Epf cl nt f Type. Epf cl NTF_NEUTRAL
dat aSource = (NewCCpfclntfNeutral Fil e).
Create(fil eNane)
Case Epf cl ntf Type. Epf cl NTF_I GES
dat aSour ce = (NewCCpfclntflges). Create(fil eNane)
Case Epf cl ntf Type. Epf cl NTF_SET
dat aSource = (NewCCpfclntfSet). Create(fil eNane)
Case Epfcl ntf Type. Epf cl NTF_STEP
dat aSour ce = (NewCCpfclntf Step). Creat e(fil eNane)
Case Epf cl ntf Type. Epf cl NTF_VDA
dat aSour ce = (NewCCpf cl ntf VDA). Creat e(fi |l eNane)
Case El se
Thr owNewExcepti on(" Unknown Fi | e Type")
End Sel ect

cSystens =solid. Listltens
(Epf cModel | t enTType. Epf cl TEM COORD_SYS)

For i =0 TocSystens. Count - 1
If (cSystens.lten(i).Get Nane. ToStri ng =csys) Then
cSystem=cSystens. I ten(i)
Exi t For
End I f
Next

| f cSyst eml s Not hi ng Then
Thr owNewExcepti on(" Coor di nat e Syst emnot foundi ncurrent
Sol i d")

"Createtheinport I nportFeat Attr structurejoinsurfaces, make sol i ds
"fromeveryclosedquilt usingtheaddoperation

feat Attr = (NewCCpf cl nport Feat Attr). Create()

feat Attr. Joi nSurfs =True

feat Attr. MakeSolid=True

feat Attr. Operati on=EpfcQOperati onType. Epf cADD_OPERATI ON

i mport Feat ure =sol i d. Creat el mport Feat (dat aSour ce, cSystem
feat Attr)
Returninport Feature

Cat ch ex As Excepti on
MsgBox(ex. Message. ToString + Chr (13) +ex. StackTrace. ToStri ng)

Ret ur n Not hi ng
End Try
End Functi on

Window Operations
Methods Introduced:
. IpfcWindow.ExportRasterimage()

The method | pfcWindow.ExportRaster | mage() outputs a standard Pro/ENGINEER raster output file.
Exanpl e Code: Generating Raster Fil es

The following code is used to generate raster image files using a specified window and file type.

Generating Raster Files

Function : outputl nageW ndow

Purpose : Thisfunctiontakes aWndowand out puts araster i mage
filedepictingthew ndow. This nethodtakes as an
argunment thetypeof theraster file, but thesizeand
image quality of theraster fil eare hardcoded.

Publ i ¢ Sub out put | mrageW ndow ByRef wi ndowAs | pf cW ndow,
_ByVal type As | nt eger, _ByVal i mageNane As Stri ng)

Di mi nstructions As | pf cRast er | mageExport | nstructi ons
Di mi mageExt ensi on As String

Di mr ast er Hei ght As Double=7.5

Di mr ast er Wdt h As Doubl e =10. 0

Di mdot sPer | nch As | nt eger

Di mi mageDept h As | nt eger

Try
dot sPer | nch = Epf cDot sPer | nch. Epf cRASTERDPI _100
i mageDept h = Epf cRast er Dept h. Epf cRASTERDEPTH_ 24

i nstructions =getRasterlnstructions(type, rasterWdth,
_rasterHeight, dotsPerlnch, _i mageDepth)

i mageExt ensi on = get Rast er Ext ensi on(t ype)
wi ndow. Export Rast er | mage(i nrageNane +i nageExt ensi on, i nstructi ons)

Cat ch ex As Excepti on
MsgBox(ex. Message. ToStri ng + Chr (13) +ex. StackTrace. ToStri ng)

End Try
End Sub
"Function : outputlnmgeScreen
"Purpose : Thisfunctiontakes aProESessionandoutputsaraster

i mgefil edepictingthew ndow. This nethodtakes as an
argunent thetypeof theraster file, but thesizeand

i mgequalityof theraster fil earehardcoded.

Publ i ¢ Sub out put | mageScr een(ByRef sessi on As | pf cBaseSessi on,
_ByVal type As | nt eger,
_ByVal i mageNane As Stri ng)

Di mi nstructions As | pf cRast erl mageExport | nstructi ons
Di mi mageExt ensi on As String

Di mr ast er Hei ght As Double=7.5

Di mrast er Wdth As Doubl e =10.0

Di mdot sPer I nch As | nt eger

Di mi mageDept h As | nt eger

Try
dot sPer | nch = Epf cDot sPer | nch. Epf cRASTERDPI _100
i mageDept h = Epf cRast er Dept h. Epf cRASTERDEPTH_24

i nstructions =getRasterlnstructions(type, rasterWdth,
_rasterHei ght, dotsPerlnch, _i mageDept h)

i mageExt ensi on = get Rast er Ext ensi on(type)
sessi on. Export Current Rast er | mage(i mageNane +i mageExt ensi on, i nstructions)

Cat ch ex As Excepti on
MsgBox(ex. Message. ToStri ng + Chr (13) +ex. StackTrace. ToStri ng)
End Try
End Sub

"Function : getRasterlnstructions
"Purpose : Ahel per met hodwhichcreatesa
Rast er | negeExport | nstructi ons obj ect based ont hetype.

Pri vat e Functi on get RasterlInstructi ons(ByVal type As | nt eger,
_ByVal rasterWdthAs Doubl e,
_ByVal rasterHei ght As Doubl e,
_ByVal dotsPerl nch As | nt eger,
_ByVal i mageDept h As | nt eger) As
_I pfcRast erl mageExportlnstructions

Di mi nstructions As | pf cRast er |l mageExport | nstructi ons
Sel ect Casetype

Case Epf cRast er Type. Epf cRASTER_BMP
Di mbnpl nstrs As | pf cBi t mapl mageExport | nstructi ons
brmpl nstrs = (NewCCpf cBi t mapl mageExportlnstructions). Create(rasterWdth,
rast er Hei ght)
instructions=bnplnstrs

Case Epf cRast er Type. Epf cRASTER Tl FF
Dmtifflnstrs As | pfcTl FFl mageExportl nstructions
tifflnstrs=(NewCCpfcTl FFl mageExportlnstructions). Create(rasterWdth,
rast er Hei ght)
instructions=tifflnstrs

Case Epf cRast er Type. Epf cRASTER _JPEG

Di mj pegl nstrs As | pf cJPEA mageExportl nstructions

j pegl nstrs =(NewCCpf cJPEG nmageExport | nstructions). Create(rasterWdth,
rast er Hei ght)

instructions=jpeglnstrs

Case Epf cRast er Type. Epf cRASTER_EPS
Di mepsl nstrs As | pf cEPSI mageExport | nstructions
epsl nstrs = (NewCCpf cEPSI mageExport | nstructions). Create(rasterWdth,
rast er Hei ght)
instructions=epslnstrs

Case El se
Thr owNewExcept i on(" Unsupport ed Rast er Type")
End Sel ect

i nstructions. Dot sPer | nch =dot sPer | nch
i nstructions. | mageDept h =i nageDept h

Returni nstructions
End Functi on

"Function : getRasterExtension
"Purpose : Ahel per nethodtocreatefil eextensionbasedonthe
' Rast er type.

Privat e Functi on get Rast er Ext ensi on(ByVal type As I nteger) As String
Sel ect Casetype

Case Epf cRast er Type. Epf cRASTER _BMP
Return". brmp"

Case Epf cRast er Type. Epf cRASTER_TI FF
Return".tiff"

Case Epf cRast er Type. Epf cRASTER _JPEG
Return".j pg"

Case Epf cRast er Type. Epf cRASTER_EPS
Return". eps”

Case El se
Thr owNewExcept i on(" Unsupport ed Rast er Type")
End Sel ect

End Functi on

Simplified Representations

The VB API gives programmeatic access to all the ssmplified representation functionality of Pro/
ENGINEER. Create simplified representations either permanently or on the fly and save, retrieve,
or modify them by adding or deleting items.

Topic

Overview

Retrieving Simplified Representations

Creating and Deleting Simplified Representations
Extracting Information About Simplified Representations
Modifying Simplified Representations

Simplified Representation Utilities

Overview

Using the VB API, you can create and manipulate assembly simplified representations just as you
can using Pro/ENGINEER interactively.

Note:
The VB API supports simplified representation of assemblies only, not parts.

Simplified representations are identified by the | pf cSi nRep class. Thisclassisachild of
| pfcModelltem, so you can use the methods dealing with | pf cModelltems to collect, inspect, and
modify simplified representations.

The information required to create and modify a simplified representation is stored in a class
called | pf cSi npRepl nst ructi ons which contains several data objects and fields, including:

o String--The name of the simplified representation
o IpfcSimpRepAction--The rule that controls the default treatment of items in the simplified
representation.

o IpfcSimpRepltem--An array of assembly components and the actions applied to them in the
simplified representation.

A | pfcSimpRepltem isidentified by the assembly component path to that item. Each
| pfcSimpRepltem hasit's own | pfcSimpRepAction assigned to it. | pfcSimpRepActionisavisible
data object that includes afield of type | pfcSimpRepActionType.

EpfcSimpActionType is an enumerated type that specifies the possible treatment of itemsin a
simplified representation. The possible values are as follows

Values Action

EpfcSIMPREP_NONE No action is specified.

Reverse the default rule for this component (for example, include it

EpfcSIMPREP_REVERSE if the default ruleis exclude).

EpfcSIMPREP_INCLUDE Include this component in the simplified representation.

EpfcSIMPREP_EXCLUDE Exclude this component from the smplified representation.

EpfcSIMPREP_SUBSTITUTE | Substitute the component in the ssmplified representation.

EpfcSIMPREP_GEOM Use only the geometrical representation of the component.

EpfcSIMPREP_GRAPHICS Use only the graphics representation of the component.

Retrieving Simplified Representations
Methods Introduced:
. IpfcBaseSession.RetrieveAssemSimpRep()
. IpfcBaseSession.RetrieveGeomSimpRep()
. IpfcBaseSession.RetrieveGraphicsSimpRep()
. IpfcBaseSession.RetrieveSymbolicSimpRep()
. CCpfcRetrieveExistingSimpRepinstructions.Create()

Y ou can retrieve a named simplified representation from a model using the method

| pfcBaseSession.RetrieveAssemSimpRep(), which is analogous to the Assembly mode option
Retrieve Rep inthe SI MPLFD REP menu. This method retrieves the object of an existing
simplified representation from an assembly without fetching the generic representation into
memory. The method takes two arguments, the name of the assembly and the simplified
representation data.

To retrieve an existing simplified representation, pass an instance of
CCpfcRetrieveExistingSimpRepl nstructions.Create() and specify its name as the second
argument to this method. Pro/ENGINEER retrieves that representation and any active submodels
and returns the object to the simplified representation as a | pfcAssembly.Assembly object.

Y ou can retrieve geometry, graphics, and symbolic ssimplified representations into session using
the methods | pfcBaseSession.RetrieveGeomSimpRep(), | pfcBaseSession.
RetrieveGraphicsSimpRep(), and | pfcBaseSession.RetrieveSymbolicSimpRep() respectively.
Like | pfcBaseSession.RetrieveAssemSimpRep(), these methods retrieve the simplified
representation without bringing the master representation into memory. Supply the name of the
assembly whose simplified representation is to be retrieved as the input parameter for these
methods. The methods output the assembly. They do not display the smplified representation.

Creating and Deleting Simplified Representations
Methods Introduced:

. CCpfcCreateNewSimpReplInstructions.Create()

. IpfcSolid.CreateSimpRep()

. IpfcSolid.DeleteSimpRep()

To create asimplified representation, you must allocate and fill al pf ¢cSi npRepl nst ructi ons

object by calling the method CCpfcCreateNewSimpRepl nstructions.Cr eate(). Specify the name
of the new simplified representation as an input to this method. Y ou should also set the default
action type and add SimpRepltems to the object.

To generate the new simplified representation, call |1 pfcSolid.CreateSimpRep(). This method
returnsthe | pf cSi npRep object for the new representation.

The method | pfcSolid.DeleteSimpRep() deletes a ssmplified representation from its model owner.
The method requires only the | pf cSi npRep object as input.

Extracting Information About Simplified Representations
Methods and Properties Introduced:

. IpfcSimpRep.Getinstructions()

. IpfcSimpReplinstructions.DefaultAction

. IpfcCreateNewSimpReplinstructions.NewSimpName

. IpfcSimpReplnstructions.IsTemporary

. IpfcSimpReplnstructions.ltems

Given the object to a simplified representation, | pfcSimpRep.Getlnstructions() fills out the
| pfcSimpRepl nstructions object.

The I pfcSimpRepl nstructions.DefaultAction, | pfcCreateNewSimpRepl nstructions.
NewSimpName, and | pfcSimpRepl nstructions.| sTempor ary methodsproperties return the
associated values contained in the | pfcSimpRepl nstructions object.

The methodproperty | pfcSimpRepl nstructions.Itemsreturns all the items that make up the
simplified representation.

Example 1: Working with Simplified Representation

This code demonstrates the functionality used when working with existing simplified
representations in Pro/ENGINEER. This function matchSimpRepltem returns an array of
simplified representation matching a Conponent Pat h for a certain feature as well asthe

Si mpRepAct i onType for that item's action in the representation. If none are found the method
prints the <NOT FOUND> message and returns null.

Publ i c C ass pfcSinplifiedRepresent ati onExanpl es
"Workingwith SinplifiedRepresentation

"Function : matchSi npRepltem

"Purpose : Thisnethodw Il returnanarrayof Sinplified
Repr esent ati on mat chi ng a Conponent Pat hfor acertain
featureas wel | asthe Si npRepActi onType for t hat
item sactionintheRepresentation.

Publ i ¢ Functi on mat chSi npRepl t em(ByVal pat h As | pf cConponent Pat h,
ByVal type As Epf cSi npRepActi onType) _
As Cpf cSi npReps

mr oot Assenbl y As | pf cAssenbl y
mnodel |t ens As | pf cModel |t ens
mnuni npReps As | nt eger =0

mi, j As | nteger

msi mRep As | pf cSi npRep

msi mRepl nstrs As | pf cCr eat eNewSi npRepl nstructi ons
msi mRepl t ens As Cpf cSi npRepl t ens
mnumConponent s As | nt eger

msi mMRepl t emAs | pf cSi npRepl t em
mact i on As Epf cSi npRepActi onType
Di mf ound As Bool ean = Fal se

OO0 O000000

Di mequal | nt Seq As Bool ean = Fal se
Di mi t enPat h As G nt seq
D msi npReps As Cpf ¢cSi npReps

r oot Assenbl y = pat h. Root
nodel | tens =

root Assenbl y. Li stltens(Epf cModel | t enType. Epf cl TEM_SI MPREP)
nunsi npReps = nodel |t ers. Count
| f nunSi npReps =0 Then

Thr owNewException("No Si nplifiedRepresentationsexist")
End | f

si npReps = NewCpf cSi npReps

For i =0 To nuntSi npReps - 1
si mMRep =nodel I tens. I ten(i)
si MRepl nstrs =si nRep. Get I nstructions()
si mMRepltens =si nReplnstrs. | tens
nunConponent s =si nRepl t ens. Count

"Loopthroughall theitenmsineachsinprepandcheckif
any mat chestheinputstothefunction.

For j =0 To nunmConponents - 1
si mMRepltem=sinRepltens.lten(j)

I f TypeO sinRepltemItenPathls
| pf ¢Si npRepConpl t enPat h Then
i tenPat h =CType(si mRepltem ItenPat h,
| pf cSi npRepConpl tenPat h) . It enPat h
I f (conpareSeq(itenPath, path. Conponentlds)) Then
action=sinRepltem Acti on. Get Type()
| f acti on=type Then
si npReps. I nsert (si npReps. Count, si nRep)
End | f
End | f
End | f
Next
Next

| f si npReps. Count =0 Then
Ret ur n Not hi ng
El se

Ret ur n si npReps
End | f

Cat ch ex As Excepti on
MsgBox(ex. Message. ToString + Chr (13) +ex. StackTrace. ToStri ng)
Ret ur n Not hi ng
End Try
End Functi on

"Function : conpareSeq
"Purpose : This nethodconparestwo C ntseqobjects.

Publ i c Functi on conpar eSeq(ByVal seql As C ntseq, ByVal seq2 As
Ci ntseq) _As Bool ean

Di ml enl, | en2 As | nt eger
Di mi As | nt eger

| enl =seql. Count
| en2 =seq2. Count
I f Not | enl=1en2 Then
Ret ur n Fal se
El se
Fori =0Tolenl-1
I f Not segl.lten(i) =seq2.ltem(i) Then
Ret ur n Fal se
EndIf
Next
End | f

Ret urn True
End Functi on

End C ass
Modifying Simplified Representations
Methods and Properties Introduced:

. IpfcSimpRep.Getinstructions()

. IpfcSimpRep.Setinstructions()

. IpfcSimpReplnstructions.DefaultAction

. IpfcCreateNewSimpRepinstructions.NewSimpName
. IpfcSimpReplnstructions.IsTemporary

Using the VB API, you can modify the attributes of existing simplified representations. After you
create or retrieve a simplified representation, you can make calls to the set methods listed in this
section to designate new values for the fieldsin the | pf ¢Si npRepl nst ruct i ons object.

To modify an existing simplified representation retrieve it and then get the

| pf cSi npRepl nstructi ons object by calling I pfcSimpRep.Getlnstructions(). If you created
the representation programmatically within the same application, the

| pf ¢cSi npRepl nst ructi ons object is aready available. Once you have modified the data

object, reassign it to the corresponding simplified representation by calling the method
I pfcSimpRep.Setl nstructions().

Adding Items to and Deleting Items from a Simplified Representation
Methods and Properties Introduced:

. IpfcSimpReplnstructions.ltems

« CCpfcSimpRepltem.Create()

. IpfcSimpRep.Setinstructions()

. CCpfcSimpRepReverse.Create()

. CCpfcSimpRepinclude.Create()

. CCpfcSimpRepExclude.Create()

. CCpfcSimpRepSubstitute.Create()

« CCpfcSimpRepGeom.Create()

. CCpfcSimpRepGraphics.Create()

Y ou can add and delete items from the list of componentsin asimplified representation using the
VB API. If you created a simplified representation using the option Exclude as the default rule,
you would generate a list containing the items you want to include. Similarly, if the default rule for
asimplified representation is I nclude, you can add the items that you want to be excluded from
the ssimplified representation to the list, setting the value of the Epf ¢cSi npRepAct i onType to
EpfcSI MPREP_EXCL UDE.

How to Add Items

Get the I pfcSimpRepl nstructions object, as described in the previous section.
Specify the action to be applied to the item with a call to one of following methods.

Initialize al pf cSi npRepl t emaobject for the item by calling the method
CCpfcSimpRepltem.Create() .

Add the item to the | pf ¢Si npRepl t emsequence. Put the new
| pf cSi npRepl nst ructi ons using I pfcSimpReplnstructions.Items.

Reassign the | pf cSi npRepl nst r uct i ons object to the corresponding | pf ¢Si npRep
object by calling | pfcSimpRep.Setlnstructions() .

How to Remove Items

Follow the procedure above, except remove the unwanted | pf ¢cSi npRepl t emfrom the sequence.

Simplified Representation Utilities

Methods Introduced:

. IpfcModelltemOwner.Listltems()

. IpfcModelltemOwner.GetltemByld()
. IpfcSolid.GetSimpRep()

. IpfcSolid.SelectSimpRep()

. IpfcSolid.ActivateSimpRep()

. IpfcSolid.GetActiveSimpRep()

This section describes the utility methods that relate to simplified representations.

The method | pfcM odelltemOwner .Listltems() can list al of the smplified representationsin a

Solid.

The method | pfcM odelltemOwner .GetltemByl d() initializes a pfcSimpRep.SimpRep object. It
takes an integer id.

Note:

The VB API supports ssimplified representation of Assemblies only, not Parts.

The method | pfcSolid.GetSimpRep() initializes al pf c¢Si npRep object. The method takes the
following arguments:

SimpRepname-- The name of the simplified representation in the solid. If you specify this
argument, the method ignores the rep _id.

The method | pfcSolid.SelectSimpRep() creates a Pro/ENGINEER menu to enable interactive
selection. The method takes the owning solid as input, and outputs the object to the selected
simplified representation. If you choose the Quit menu button, the method throws an exception
XToolkitUserAbort.

The methods | pfcSolid.GetActiveSimpRep() and | pfcSolid.ActivateSimpRep() enable you to
find and get the currently active simplified representation, respectively. Given an assembly object,
I pfcSolid.Solid.GetActiveSimpRep() returns the object to the currently active smplified
representation. If the current representation is the master representation, the return is null.

The method I pfcSolid.ActivateSimpRep() activates the requested simplified representation.

To set asimplified representation to be the currently displayed model, you must also call
I pfcM odel Display().

Task Based Application Libraries

Applications created using different Pro/ENGINEER API products are
interoperable. These products use Pro/ENGINEER as the medium of interaction,
eliminating the task of writing native-platform specific interactions between
different programming languages.

Application interoperability allowsthe VB API applications to call into Pro/
TOOLKIT from areas not covered in the native interface. It allows you to put a
VBA or VB.NET front end on legacy Pro/TOOLKIT applications, and also allows
you to use J-Link applications and listeners in conjunction with a Pro/Web.Link or
asynchronous J-Link application.

Topic
Managing Application Arguments

Launching a Pro/TOOLKIT DLL
Launching Tasks from J-Link Task Libraries

Managing Application Arguments

The VB API passes application data to and from tasks in other applications as
members of a sequence of | pf cAr gunent objects. Application arguments consist
of alabel and avalue. The value may be of any one of the following types:

Integer

Double

Boolean

ASCII string (a non-encoded string, provided for compatibility with arguments
provided from C applications)

o String (afully encoded string)

o |pfcSelection (a selection of an item in a Pro/ENGINEER session)

o IpfcTransform3D (a coordinate system transformation matrix)

O O O O

Methods and Properties Introduced:

. CMpfcArgument.CreatelntArgValue()

. CMpfcArgument.CreateDoubleArgValue()

« CMpfcArgument.CreateBoolArgValue()

. CMpfcArgument.CreateASCIIStringArgValue()
. CMpfcArgument.CreateStringArgValue()

. CMpfcArgument.CreateSelectionArgValue()
. CMpfcArgument.CreateTransformArgValue()
. IpfcArgValue.discr

. IpfcArgValue.IntValue

. IpfcArgValue.DoubleValue

. IpfcArgValue.BoolValue

. IpfcArgValue.ASCIIStringValue

. IpfcArgValue.StringValue

. IpfcArgValue.SelectionValue

IpfcArgValue.TransformValue

The class pf ¢. Ar gVal ue contains one of the seven types of values. The VB AP
provides different methods to create each of the seven types of argument values.

The IpfcArgValue.discr returns the type of value contained in the argument value
object.

Use the methods listed above to access and modify the argument val ues.

Modifying Arguments

Methods and Properties Introduced:
. CCpfcArgument.Create()
. IpfcArgument.Label
. IpfcArgument.Value

The method CCpfcArgument.Create() creates a new argument. Provide a name
and value as the input arguments of this method.

The property | pfcArgument.L abel returns the label of the argument.

The property | pfcArgument.Value returns the value of the argument.

Launching a Pro/TOOLKIT DLL

The methods described in this section enable theVB APl user to register and launch
aPro/TOOLKIT DLL from a application. The ability to launch and control a Pro/
TOOLKIT application enables the following:

o Reuse of existing Pro/TOOLKIT code with theVB API applications.
o ATB operations.

Methods and Properties Introduced:
. IpfcBaseSession.LoadProToolkitDII()
. IpfcBaseSession.LoadProToolkitLegacyDlIl()
. IpfcBaseSession.GetProToolkitDll()
. IpfcDIl.ExecuteFunction()
. IpfcDlIlId

. IpfcDll.IsActive()

. IpfcDIl.Unload()

Use the method | pfcBaseSession.L oadProT oolkitDII() to register and start a Pro/
TOOLKIT DLL. Theinput parameters of this method are similar to the fields of a
registry file and are as follows:

ApplicationName--The name of the application to initialize.

DllPath--The full path to the DLL binary file.

TextPath--The path to the application's message and user interface text files.
UserDisplay--Set this parameter to true to register the application in the Pro/
ENGINEER user interface and to see error messages if the application fails. If this
parameter isfalse, the application will be invisible to the user.

O O O O

The application's user _initialize() function is called when the application is started.
The method returns a handle to the loaded Pro/TOOLKIT DLL.

In order to register and start alegacy Pro/TOOLKIT DLL that is not Unicode-
compliant, use the method | pfcBaseSession.L oadProT oolkitL egacyDII(). This
method conveys to Pro/ENGINEER that the loaded DLL application is not
Unicode-compliant and built in the pre-Wildfire 4.0 environment. It takes the same
input parameters as the earlier method | pfcBaseSession.L oadPr oT oolkitDII().

Note:
The method | pfcBaseSession.LoadProT ool kitL egacyDII() must be used

only by apre-Widlfire 4.0 VB API application to load a pre-Wildfire 4.0
Pro/TOOLKIT DLL.

Use the method | pfcBaseSession.GetProT oolkitDII() to obtain a Pro/TOOLKIT
DLL handle. Specify the Application_Id, that is, the DLL's identifier string as the
input parameter of this method. The method returns the DLL object or null if the

DLL wasnot in session. The Application_Id can be determined as follows:

o Use the function ProToolkitDII1dGet() within the DLL application to get a string
representation of the DLL application. Pass NULL to the first argument of
ProToolkitDIl1dGet() to get the string identifier for the calling application.

o Use the Get method for the Id attribute in the DLL interface. The method IpfcDII.
Id returnsthe DLL identifier string.

Use the method | pfcDIl.ExecuteFunction() to call aproperly designated function
inthe Pro/TOOLKIT DLL library. The input parameters of this method are:

o FunctionName--Name of the function in the Pro/TOOLKIT DLL application.

o InputArguments--1nput arguments to be passed to the library function.

The method returns an object of | pfcFunctionReturn. Thisinterface contains data
returned by a Pro/TOOLKIT function call. The object contains the return value, as
integer, of the executed function and the output arguments passed back from the
function call.

The method | pfcDII.IsActive() determines whether a Pro/TOOLKIT DLL
previously loaded by the method | pfcBaseSession.L oadProT oolkitDII() is still
active.

The method | pfcDIl.Unload() is used to shutdown a Pro/TOOLKIT DLL
previously loaded by the method | pfcBaseSession.L oadProT oolkitDll() and the
application's user _terminate() function is called.

Launching Tasks from J-Link Task Libraries

The methods described in this section allow you to launch tasks from a predefined J-
Link task library.

Methods Introduced:
. IpfcBaseSession.StartJLinkApplication()

IpfcILinkApplication.ExecuteTask()

IpfcILinkApplication.IsActive()

IpfcILinkApplication.Stop()

Use the method | pfcBaseSession.StartJL ink Application() to start a J-Link
application. The input parameters of this method are similar to the fields of a
registry file and are as follows:

o ApplicationName--Assigns a unique name to this J-Link application.

o ClassName--Specifies the name of the Java class that contains the J-Link
application’s start and stop method. This should be afully qualified Java package
and class name.

o StartMethod--Specifies the start method of the J-Link application.

o StopMethod--Specifies the stop method of the J-Link application.

o Additional ClassPath--Specifies the locations of packages and classes that must be
loaded when starting this J-Link application. If this parameter is specified as null,
the default classpath locations are used.

o TextPath--Specifies the application text path for menus and messages. If this
parameter is specified as null, the default text locations are used.

o UserDisplay--Specifies whether to display the application in the Auxiliary
Applications dialog box in Pro/ENGINEER.

Upon starting the application, the static start() method isinvoked. The method
returnsal pf cJLi nkAppl i cati on referring to the J-Link application.

The method | pfcJLinkApplication.ExecuteT ask() calls aregistered task method
inaJ-Link application. The input parameters of this method are:

o Name of the task to be executed.
o A sequence of name value pair arguments contained by the interface

| pfcArguments.
The method outputs an array of output arguments.

The method | pfcJLinkApplication.l sActive() returnsa True value if the
application specified by the | pf cJLi nkAppl i cati on object is active.

The method | pfcJLinkApplication.Stop() stops the application specified by the
| pf cJLi nkAppl i cati on object. This method activates the application's static

Stop() method.

Graphics

This section coversthe VB API Graphicsincluding displaying lists, displaying text and using the mouse.
Topic

Overview

Getting Mouse | nput
Displaying Graphics
Display Lists and Graphics

Overview

The methods described in this section allow you to draw temporary graphicsin a display window. Methods that are
identified as 2D are used to draw entities (arcs, polygons, and text) in screen coordinates. Other entities may be drawn
using the current model's coordinate system or the screen coordinate system'slines, circles, and polylines. Methods are
aso included for manipulating text properties and accessing mouse inputs.

Getting Mouse Input

The following methods are used to read the mouse position in screen coordinates with the mouse button depressed.
Each method outputs the position and an enumerated type description of which mouse button was pressed when the
mouse was at that position. These values are contained in the interface | pf cMouseSt at us.

The enumerated values are defined in EpfcM ouseButton and are as follows:

- EpfcMOUSE_BTN_LEFT

- EpfcMOUSE_BTN_RIGHT

- EpfcMOUSE_BTN_MIDDLE

- EpfcMOUSE_BTN_LEFT_DOUBLECLICK

Methods Introduced:
. IpfcSession.UIGetNextMousePick()
. IpfcSession.UIGetCurrentMouseStatus()

The method | pfcSession. Ul GetNextM ousePick() returns the mouse position when you press a mouse button. The
input argument is the mouse button that you expect the user to select.

The method | pfcSession.Ul GetCurrentM ouseStatus() returns a value whenever the mouse is moved or abutton is
pressed. With this method a button does not have to be pressed for avalue to be returned. Y ou can use an input
argument to flag whether or not the returned positions are snapped to the window grid.

Drawing a Mouse Box
This method allows you to draw a mouse box.

Method Introduced:

. IpfcSession.UIPickMouseBox()

The method | pfcSession.UI PickM ouseBox() draws a dynamic rectangle from a specified point in screen coordinates
to the current mouse position until the user presses the left mouse button. The return value for this method is of the type
I pf cQutline3D.

Y ou can supply the first corner location programmatically or you can allow the user to select both corners of the box.
Displaying Graphics

All the methods in this section draw graphics in the Pro/ENGINEER current window and use the color and linestyle set
by callsto | pfcBaseSession.SetStdColor FromRGB() and | pfcBaseSession.SetL ineStyle(). The methods draw the
graphicsin the Pro/ENGINEER graphics color. The default graphics color iswhite.

The methods in this section are called using the interface | pf cDi spl ay. The Display interface is extended by the
| pf cBaseSessi on interface. This architecture allows you to cal all these methods on any | pf cSessi on object.

Methods Introduced:

IpfcDisplay.SetPenPosition()

IpfcDisplay.DrawLine()

. IpfcDisplay.DrawPolyline()

. IpfcDisplay.DrawCircle()

. IpfcDisplay.DrawArc2D()

. IpfcDisplay.DrawPolygon2D()

The method | pfcDisplay.SetPenPosition() sets the point at which you want to start drawing aline. The method

I pfcDisplay.DrawlL ing() draws aline to the given point from the position given in the last call to either of the two
methods. Call pfcDisplay.Display.SetPenPosition() for the start of the polyline, and pfcDisplay.Display.DrawlLine
for each vertex. If you use these methods in two-dimensional modes, use screen coordinates instead of solid
coordinates.

The method | pfcDisplay.DrawCir cle() uses solid coordinates for the center of the circle and the radius value. The
circlewill be placed to the XY plane of the model.

The method | pfcDisplay.DrawPolyling() aso draws polylines, using an array to define the polyline.
In two-dimensional models the Display Graphics methods draw graphics at the specified screen coordinates.

The method | pfcDisplay.DrawPolygon2D() draws a polygon in screen coordinates. The method | pfcDisplay.
DrawArc2D() draws an arc in screen coordinates.

Controlling Graphics Display
Properties Introduced:

. IpfcDisplay.CurrentGraphicsColor

. IpfcDisplay.CurrentGraphicsMode

The property IpfcDisplay.CurrentGraphicsColor returns the Pro/ENGINEER standard color used to display
graphics. The Pro/ENGINEER default is EpfcCOLOR_DRAWING (white).

The property I pfcDisplay.CurrentGraphicsM ode returns the mode used to draw graphics:

o EpfcDRAW_GRAPHICS _NORMAL--Pro/ENGINEER draws graphicsin the required color in each invocation.
o EpfcDRAW_GRAPHICS COMPLEMENT--Pro/ENGINEER draws graphics normally, but will erase graphics drawn
a second time in the same location. This alows you to create rubber band lines.

Exanpl e Code: Creati ng Graphi cs On Screen

This example demonstrates the use of mouse-tracking methods to draw graphics on the screen. The static method
DrawRubberbandL ine prompts the user to pick a screen point. The example uses the “complement mode' to cause the
line to display and erase as the user moves the mouse around the window.

Note:
This example uses the method transformPosition to convert the coordinates into the 3D coordinate system of a
solid model, if oneis displayed.

| mports pfcls
Publ i ¢ d ass pf cG aphi csExanpl es
Publ i ¢ Sub dr awRubber bandLi ne(ByRef sessi on As pfcl s. | pf cSessi on)

Di mnmouse As | pf cMbusesSt at us

Di mfirstPositionAs CpfcPoi nt3D

Di msecondPosi ti on As Cpf cPoi nt 3D
Di mcur r ent Mode As Epf cGraphi csMbde

Try
sessi on. U Di spl ayMessage(" pf cG aphi csExanpl es. txt", _
"Pickfirst locationfor rubberbandline", Nothing)

nouse = sessi on. U Get Next MousePi ck(Epf cMouseBut t on. Epf cMOUSE_ BTN _LEFT)

session. U D spl ayMessage(" pf cG aphi csExanpl es. txt", _
"Clickleft nousebuttontoexit", Nothing)

current Mode =sessi on. Current G- aphi csMbde
sessi on. Current G aphi csMbde = Epf cG aphi csMbde. Epf cDRAW GRAPHI CS_COVPLEMENT

nouse = sessi on. Ul Get Cur rent MouseSt at us(Fal se)

Whi | e Not nouse. Sel ect edBut t on = Epf cMouseBut t on. Epf cMOUSE_BTN_LEFT
sessi on. Set PenPosi ti on(firstPosition)
secondPosi tion=transformnmPosition(sessi on, nouse. Posi tion)

sessi on. DrawLi ne(secondPosi ti on)
nouse = sessi on. Ul Get Cur r ent MouseSt at us(Fal se)

sessi on. Set PenPosi ti on(firstPosition)
sessi on. DrawLi ne(secondPosi ti on)

End Whi | e
sessi on. Current G aphi csMbde = curr ent Mode

Cat ch ex As Excepti on
MsgBox(ex. Message. ToString + Chr (13) +ex. StackTrace. ToStri ng)

End Try
End Sub

"Function : transfornPosition
"Purpose : Thisfunctiontransfornmsthe2Dscreencoordinatesinto
' 3Dnodel coordinates, if necessary.

Privat e Functi ontransfornPosition(ByRef sessionAs pfcls.|pfcSession, _
ByVal i nPositi on As Cpf cPoi nt 3D) _
As | pf cPoi nt 3D
Di mnodel As | pf cModel
Di mcurr Vi ewAs | pf cVi ew
Di mi nvOri ent As | pf cTransf or nBD
Di mout Posi ti on As Cpf cPoi nt 3D

nodel =sessi on. Current Mbdel

I f nodel | s Not hi ng Then
ReturninPosition
End | f

I f (Not nodel . Type = Epf cModel Type. Epf cMDL_PART) And _
(Not nodel . Type = Epf cModel Type. Epf cMDL_ASSEMBLY) And _
(Not nodel . Type = Epf cMbdel Type. Epf cMDL_M-G Then
Ret urninPosition

End | f

currVi ew=nodel . Get Current Vi ew()
invOrient =currView Transform
invOrient.Invert()

' Get t he nodel poi nt

out Position=invOient. TransfornPoi nt (i nPosi ti on)
Ret ur n out Posi ti on

End Functi on
End Cl ass

Di spl ay exanpl et ext

#

#

Pick first | ocationfor rubberbandl!ine
Pick first | ocationfor rubberbandline
#

#

Cickleft nousebuttontoexit
Clickleft nousebuttontoexit

#

#

Displaying Text in the Graphics Window
Method Introduced:
. IpfcDisplay.DrawText2D()

The method I pfcDisplay.DrawText2D() places text at a position specified in screen coordinates. If you want to add
text to a particular position on the solid, you must transform the solid coordinates into screen coordinates by using the
view matrix.

Text items drawn are not known to Pro/ENGINEER and therefore are not redrawn when you select View, Repaint. To
notify the Pro/ENGINEER of these objects, create them inside the OnDisplay() method of the Display Listener.

Controlling Text Attributes
Properties Introduced:
. IpfcDisplay.TextHeight
. IpfcDisplay.WidthFactor
. IpfcDisplay.RotationAngle
. IpfcDisplay.SlantAngle
These properties control the attributes of text added by callsto | pfcDisplay.DrawT ext2D().
Y ou can accessthe following information:

o Text height (in screen coordinates)

o Width ratio of each character, including the gap, as a proportion of the height
o Rotation angle of the whole text, in counterclockwise degrees

o Slant angle of the text, in clockwise degrees

Controlling Text Fonts
Methods and Properties Introduced:
. IpfcDisplay.DefaultFont
. IpfcDisplay.CurrentFont
. IpfcDisplay.GetFontByld()
. IpfcDisplay.GetFontByName()

The property | pfcDisplay.DefaultFont returns the default Pro/ENGINEER text font. The text fonts are identified in
Pro/ENGINEER by names and by integer identifiers. To find a specific font, use the methods | pfcDisplay.
GetFontByld() or | pfcDisplay.GetFontByName().

Display Lists and Graphics

When generating adisplay of asolid in awindow, Pro/ENGINEER maintains two display lists. A display list contains
aset of vectors that are used to represent the shape of the solid in the view. A 3D display list contains a set of three-
dimensional vectors that represent an approximation to the geometry of the edges of the solid. Thislist gets rebuilt
every time the solid is regenerated.

A 2D display list contains the two-dimensional projections of the edges of the solid 3D display list onto the current
window. It isrebuilt from the 3D display list when the orientation of the solid changes. The methods in this section
enable you to add your own vectors to the display lists, so that the graphics will be redisplayed automatically by Pro/
ENGINEER until the display lists are rebuilt.

When you add graphics itemsto the 2D display list, they will be regenerated after each repaint (when zooming and
panning) and will beincluded in plots created by Pro/ENGINEER. When you add graphics to the 3D display list, you
get the further benefit that the graphics survive a change to the orientation of the solid and are displayed even when you
spin the solid dynamically.

Methods Introduced:

IpfcDisplayListener.OnDisplay()

. IpfcDisplay.CreateDisplayList2D()
. IpfcDisplay.CreateDisplayList3D()
. IpfcDisplayList2D.Display()

. IpfcDisplayList3D.Display()

. IpfcDisplayList2D.Delete()

. IpfcDisplayList3D.Delete()

A display listener is a class that acts similarly to an action listener. Y ou must implement the method inherited from the
| pf cDi spl ay. Di spl ayLi st ener interface. The implementation should provide calls to methods on the provided
| pf cDi spl ay. Di spl ay object to produce 2D or 3D graphics.

In order to create adisplay list in Pro/ENGINEER, you call | pfcDisplay.CreateDisplayList2D() or | pfcDisplay.
CreateDisplayList3D() to tell Pro/ENGINEER to use your listener to create the display list vectors.

I pfcDisplayList2D.Display() or | pfcDisplayList3D.Display() will display or redisplay the elementsin your display
list. The application should delete the display list datawhen it is no longer needed.

The methods I pfcDisplayL ist2D.Delete() and the method | pfcDisplayList3D.Delete() will remove both the specified
display list from a session.

Note:
The method I pfcWindow.Refresh() does not cause either of the display lists to be regenerated, but simply
repaints the window using the 2-D display list.

Exceptions

Possible exceptions that might be thrown by displaying graphics methods are shown in the following table:

Exception Reason

XToolkitNotExist The display list is empty.

The method could not find the display list or the font specified in a previous call to | pfcDisplay.

XToolkitNotFound CurrentFont was not found.

XToolkitCantOpen The use of display listsis disabled.

XToolkitAbort The display was aborted.

XToolkitNotValid The specified display list isinvalid.

XToolkitlnvaliditem | Thereisaninvalid item in the display list.

XToolkitGeneralError | The specified display list is already in the process of being displayed.

Example Code
This example demonstrates the use of pfcDisplay methods with 3D display lists. The static method AddCir cleDisplay

() creates anew 3D display list whose graphics are generated by the code in the OnDisplay() method of the Display
Circlesclass. Thisdisplay list places circles at al of the vertices of a part model on the screen.

Di mlist3DAs | pfcDi spl ayLi st 3D
Publ i ¢ Sub addCi rcl eDi spl ay(ByRef sessi on As pfcl s. | pf cSessi on)
Di mdrawCi rcl es As NewDi spl ayGi rcl es

Try

"Idisanarbitrary number but shoul d be uni quetothe
"application

i st3D=session. Creat eDi spl ayLi st 3D(1, drawCi rcl es)
sessi on. Current W ndow. Repai nt ()

Cat ch ex As Excepti on
MsgBox(ex. Message. ToString + Chr (13) +ex. StackTrace. ToStri ng)
End Try
End Sub

"Function : deleteC rcleD splay
"Purpose : Thenethoddel etesthedisplaylist.

Publ i c Sub del et eCircl eDi spl ay(ByRef sessi on As pfcl s. | pf cSessi on)
I f Not i st3DIs Nothing Then
list3D. Del ete()
sessi on. Current W ndow. Repai nt ()

End | f
End Sub
"Class : DisplayCircles
"Purpose : Displaylistlistener class- determ nes howt he

di splay |l ist shows t he graphi cs.

Private C ass Di spl ayCircl es
I mpl ement s | pf cDi spl ayLi st ener
I mpl emrent s | Cl PA i ent Obj ect
| mpl erent s | pf cActi onLi st ener

Public FunctionGetdientlnterfaceNane() As Stringl nplenents pfcls.|C PdientQoject.
GetdientlnterfaceNane
GetCientlnterfaceNane ="1pfcDi spl ayLi st ener"
End Functi on

Publ i ¢ Sub OnDi spl ay(ByVal _Di spl ay As pfcls. | pfcbDi splay) | npl ement s pfcl s.

| pf cDi spl ayLi st ener. OnDi spl ay

Di mcur r Col our As Epf cSt dCol or

Di msessi on As | pf cSessi on

Di mnodel As | pf cModel

Di medges As | pf cModel |t ens

Di mi As I nteger

Di medge As | pf cMbdel 1t em

Di mvertexl, vertex2 As | pf cPoi nt 3D

Di mradi us As Doubl e =0.5

currCol our =_Di spl ay. Current Graphi csCol or
_Di spl ay. Current Graphi csCol or = Epf ¢St dCol or . Epf cCOLOR_ERROR

sessi on = CType(_Di spl ay, | pf cSessi on)
nodel =sessi on. Current Model

I f nodel |'s Not hi ng Or El se (Not nodel . Type = Epf cModel Type. Epf cMDL_PART) Then
Ret urn

edges =nodel . Li stltens(Epf cMdel I t enilype. Epf cl TEM _EDGE)
For i =0 To edges. Count - 1

edge =edges. Item(i)
vertexl =edge. Eval 3DDat a(0. 0) . Poi nt
vert ex2 = edge. Eval 3DDat a(1. 0) . Poi nt

_Display. DrawCi rcl e(vertexl, radius)
_Display. DrawCi rcl e(vertex2, radius)

Next

_Di spl ay. Current Graphi csCol or =curr Col our

End Sub

End Cl ass

External Data

This chapter explains using External Datain the VB API.
Topic

External Data
Exceptions

External Data

This chapter describes how to store and retrieve external data. External data enablesa The VB API application to
store its own datain a Pro/ENGINEER database in such away that it isinvisible to the Pro/ENGINEER user.
This method is different from other means of storage accessible through the Pro/ENGINEER user interface.

Introduction to External Data

External data provides away for the Pro/ENGINEER application to store its own private information about a Pro/
ENGINEER model within the model file. The datais built and interrogated by the application as a workspace
data structure. It is saved to the model file when the model is saved, and retrieved when the model is retrieved.
The external datais otherwise ignored by Pro/ENGINEER; the application has complete control over form and
content.

The external datafor a specific Pro/ENGINEER model is broken down into classes and dots. A classisanamed
“bin" for your data, and identifies it as yours so no other Pro/ENGINEER API application (or other classesin
your own application) will use it by mistake. An application usually needs only one class. The class name should
be unique for each application and describe the role of the datain your application.

Each class contains a set of data slots. Each slot isidentified by an identifier and optionally, aname. A slot
contains a single data item of one of the following types:

The VB API Type Data

EpfcEXTDATA_INTEGER | integer

EpfcEXTDATA_DOUBLE | double

EpfcEXTDATA_STRING | string

The The VB API interfaces used to access external datain Pro/ENGINEER are:

TheVB API Type Data Type

| pfcExternalDataAccess | Thisisthe top level object and is created when attempting to access external data.

| pfcExternalDataClass | Thisisaclass of external dataand isidentified by a unique name.

| pfcExternal DataSl ot Thisisacontainer for one item of data. Each slot is stored in aclass.

Thisis acompact data structure that contains either an integer, double or string

| pfcE D
pfcExternalData value.

Compatibility with Pro/TOOLKIT

The VB API and Pro/TOOLKIT share external datain the same manner. The VB APl external datais accessible
by Pro/TOOLKIT and the reverse is also true. However, an error will result if The VB API attempts to access
external data previously stored by Pro/TOOLKIT as a stream.

Accessing External Data
Methods Introduced:
. IpfcModel.AccessExternalData()
. IpfcModel. TerminateExternalData()

. IpfcExternalDataAccess.IsValid()

The method | pfcM odel.AccessExter nalData() prepares Pro/ENGINEER to read external data from the model
file. It returnsthe | pf cExt er nal Dat aAccess object that is used to read and write data. This method should be

called only once for any given model in session.
The method | pfcM odel.Ter minateExter nal Data() stops Pro/ENGINEER from accessing external datain a
model. When you use this method all external datain the model will be removed. Permanent removal will occur
when the model is saved.
Note:
If you need to preserve the external data created in session, you must save the model before calling this
function. Otherwise, your data will be lost.

The method | pfcExter nalDataAccess.|sValid() determinesiif the | pf ¢ External DataA ccess object can be used
to read and write data.

Storing External Data

Methods and Properties Introduced:

. IpfcExternalDataAccess.CreateClass()
. IpfcExternalDataClass.CreateSlot()
. IpfcExternalDataSlot.Value

Thefirst step in storing external datain anew class and sot isto set up a class using the method
| pfcExter nal DataA ccess.Cr eateClass(), which provides the class name. The method outputs
pf cExt er nal Dat adl ass, used by the application to reference the class.

The next step isto use | pfcExternalDataClass.CreateSlot() to create an empty data slot and input a slot name.
The method outputs a pf cExt er nal Dat aSl ot object to identify the new slot.

Note:
Slot names cannot begin with a number.

The property | pfcExter nalDataSlot.Value specifies the data type of a slot and writes an item of that type to the
dlot. Theinput isapf cExt er nal Dat a object that you can create by calling any one of the methods in the next
section.

Example Code:

Thi s functi on denonstrat esthe usage of external data. It providesutility methodsto
convert aVBhasht abl et o anopdel ' s external data.
I mports pfcls

Publ i c C ass pf cExt er nal Dat aExanpl es
Publ i ¢ Sub st or eExt er nal Dat a(ByRef sessi on As | pf cBaseSessi on, _
ByVal tabl e As Hashtabl e, _
ByVal cl assName As Stri ng)

Di mnodel As | pf chodel

Di mdat aAccess As | pf cExt er nal Dat aAccess
Di mdat aCl ass As | pf cExt er nal Dat ad ass
Di mrowAs Di ctionaryEntry

Di mval ue As (bj ect

Di mdat a As | pf cExt er nal Dat a

Di msl ot As | pf cExt er nal Dat aSl ot

nodel =session. Current Mbdel
I f model |'s Not hi ng Then

Thr owNewExcepti on(" Model not present™)
End | f

dat aAccess = nodel . AccessExt er nal Dat a()
dat adl ass = get C assByNane(dat aAccess, cl assNane)

| f dat adl ass | s Not hi ng Then
dat all ass =dat aAccess. Creat e ass(cl assNane)
End | f

I f Not row. Key. Get Type. ToString="System String" Then
Cont i nue For

End | f

val ue =r ow. Val ue

I f val ue. Get Type. ToString="System I nt 16" O _
val ue. Get Type. ToString="System I nt 32" O _
val ue. Get Type. ToStri ng =" Syst em Byt e" Then

dat a = (NewCMf cExternal). _
Cr eat el nt Ext er nal Dat a(CType(val ue, System I nt 32))

El sel f val ue. Get Type | s Syst em Type. Get Type(" Syst em Doubl e") Then

dat a = (NewCMof cExternal). _
Cr eat eDoubl eExt er nal Dat a(CType(val ue, System Doubl e))

El se
dat a = (NewCMof cExternal). _
Creat eStri ngExt er nal Dat a(val ue. ToStri ng)

sl ot =get Sl ot ByNane(dat aCl ass, row. Key. ToSt ri ng)
I f sl ot IsNothingThen
sl ot =dat aCl ass. Creat eS| ot (r ow. Key. ToStri ng)

End | f

sl ot. Val ue =dat a
Next
' nodel . Save()

Cat ch ex As Excepti on
MsgBox(ex. Message. ToString + Chr (13) +ex. StackTrace. ToStri ng)
End Try
End Sub
End C ass

Initializing Data Objects

Methods Introduced:

. CMpfcExternal.CreatelntExternalData()
. CMpfcExternal.CreateDoubleExternalData()

. CMpfcExternal.CreateStringExternalData()

These methods initialize a pf cExt er nal Dat a object with the appropriate data inputs.

Retrieving External Data
Methods and Properties Introduced:
. IpfcExternalDataAccess.LoadAll()
. IpfcExternalDataAccess.ListClasses()
. IpfcExternalDataClass.ListSlots()
. IpfcExternalData.discr
. IpfcExternalData.IntegerValue
. IpfcExternalData.DoubleValue
. IpfcExternalData.StringValue

For improved performance, external data is not loaded automatically into memory with the model. When the
model isin session, call the method | pfcExter nal DataAccess.L oadAll() to retrieve al the external data for the
specified modd from the Pro/ENGINEER model file and put it in the workspace. The method needs to be called
only onceto retrieve all the data.

The method | pfcExter nalDataAccess.ListClasses() returns a sequence of | pfcExter nalDataClasses registered
in the model. The method | pfcExter nalDataClass.ListSlots() provide a sequence of | pfcExter nalDataSlots
existing for each class.

To find out adatatype of al pf cExt er nal Dat a, call |pfcExternalData.discr and then call one of these
propertiesto get the data, depending on the data type:

o |pfcExternal Data.lntegerVaue
o IpfcExternalData.DoubleVaue
o IpfcExternal Data. StringValue

Example Code:

This function demonstrates the usage of external data. It provides utility methodsto get a VB hashtable from a
model's external data.

Publ i c Functionretri eveExternal Dat a(ByRef sessi on As | pf cBaseSessi on,

_ByVal cl assNane As String) As
Hasht abl e

Di mnodel As | pf chodel

Di mdat aAccess As | pf cExt er nal Dat aAccess

Di mdat aCl ass As | pf cExt er nal Dat ad ass

Di msl ots As | pf cExt ernal Dat aSl ot s

Di mi As | nteger

D mt abl e As Hasht abl e

Di mval ue As (bj ect

Di mdat a As | pf cExt er nal Dat a

Di msl ot As | pf cExt er nal Dat aS| ot

nodel =session. Current Mbdel
I f model | s Not hi ng Then

Thr owNewExcepti on(" Model not present")
End | f

t abl e = NewHasht abl e

dat aAccess = nodel . AccessExt er nal Dat a()
dat adl ass = get C assByNane(dat aAccess, cl assNane)

I f Not dat adl ass | s Not hi ng Then
sl ot s =dat ad ass. Li st Sl ot s()

Fori =0Toslots. Count - 1
val ue = Not hi ng
slot =slots. lten(i)

dat a =sl ot . Val ue
Sel ect Case dat a. di scr
Case Epf cExt er nal Dat aType. Epf cEXTDATA_STRI NG
val ue = CType(dat a. Stri ngVal ue, Qbj ect)
Case Epf cExt er nal Dat aType. Epf cEXTDATA | NTEGER
val ue = CType(dat a. | nt eger Val ue, bj ect)
Case Epf cExt er nal Dat aType. Epf cEXTDATA_DOUBLE
val ue = CType(dat a. Doubl eVal ue, Qbj ect)
End Sel ect

t abl e. Add(sl ot . Nane, val ue)
Next
End|f

Returntabl e

Cat ch ex As Excepti on

MsgBox(ex. Message. ToString + Chr (13) +ex. StackTrace. ToStri ng)
Ret ur n not hi ng
End Try
End Functi on

"Function : getd assByNane
"Purpose : Thisutilitynmethodreturnsaclass, givenitsnane.

Pri vat e Functi on get C assByNane(ByVal dat aAccess As | pf cExt er nal Dat aAccess, _ByVal
cl assNane As Stri ng)
_As | pf cExt er nal Dat aCl ass

D mcl asses As | pf cExt er nal Dat aCl asses
Di mi As I nteger

cl asses =dat aAccess. Li st Cl asses()
For i =0 Tocl asses. Count - 1
If classes.|ten(i). Name =cl assNane Then
Return(classes.lten(i))
End | f
Next
Ret ur n not hi ng
End Functi on

"Function : getSl ot ByNane
"Purpose : Thisutilitymethodreturnsaslot, givenits nane.

Privat e Functi on get Sl ot ByNanme(ByVal ext Cl ass As | pf cExt er nal Dat aCl ass, _ByVal
sl ot Name As String) _As | pf cExt er nal Dat aSl ot
Di mext Sl ot s As | pf cExt er nal Dat aSl ot s
Di mi As | nteger

ext Sl ot s =ext d ass. Li st Sl ot s()

For i =0ToextSlots. Count - 1
If extSlots.Iten(i). Nane =sl ot Nane Then
Return(extSlots.ltem(i))
End | f
Next
Ret ur n not hi ng
End Functi on

Exceptions

Most exceptions thrown by external data methodsin The VB API extend | pf cXExt er nal Dat aErr or , whichis
asubclass of | pf cXTool kit Error.

An additional exception thrown by external data methodsis| pf cXBadExt er nal Dat a. This exception signals
an error accessing data. For example, external data access might have been terminated or the model might

contain stream data from Pro/TOOLKIT.

The following table lists these exceptions.

Exception Cause

IpfcX Exter nalDatal nvalidObj ect Generated when amode or classisinvalid.

Generated when creating a class or ot and the proposed class or slot

IpfcX Exter nalDataClassOr SlotExists alreadly exisis,

IpfcX Exter nalDataNamesT ool ong Generated when aclass or dot name istoo long.

IpfcX Exter nalDataSlotNotFound Generated when a specified class or slot does not exist.

IpfcX Exter nalDataEmptySlot Generated when the ot you are attempting to read is empty.

IpfcXExter nalDatal nvalidSlotName | Generated when a specified slot nameisinvalid.

Generated when you try to access an incorrect datatypein a

IpfcXBadGetExter nalData of CExt er nal Dat a object,

Windchill Connectivity APIs

Pro/ENGINEER has the capability to be directly connected to Windchill solutions,
including Windchill Foundation, ProjectLink, PDMLink, and Windchill ProductPoint
servers. This access allows users to manage and control the product data seamlessly
from within Pro/ENGINEER.

This section lists the VB APIsthat support Windchill servers and server operationsin a
connected Pro/ENGINEER session.

Topic

| ntroduction

Accessing aWindchill Server from a Pro/ENGINEER Session
Accessing Workspaces

Workflow to Register a Server

Aliased URL

Server Operations

Utility APIs
Sample Batch Workflow

Introduction

The methods introduced in this section provide support for the basic Windchill server
operations from within Pro/ENGINEER. With these methods, operations such as
registering a Windchill server, managing workspaces, and check in or check out of
objects will be possible viathe VB API. The capabilities of these APIs are similar to
the operations available from within the Pro/ENGINEER Wildfire client, with some
restrictions.

Windchill ProductPoint does not have the concept of a workspace. New objects are
directly stored to a user-specified folder in the Windchill ProductPoint server. New
iteration of the objects are stored in the same folder as the previous iteration. Hence
some of the APIsrelated to Workspace operations may not be supported for
customizations using Windchill ProductPoint.

Non-Interactive Mode Operations

Some of the APIs specified in this section operate only in batch mode and cannot be
used in the normal Pro/ENGINEER interactive mode. Thisrestriction is mainly
centered around the VB API registered servers, that is, serversregistered by the VB
APl are not availablein the Pro/ENGINEER Server Registry or in other locationsin
the Pro/ENGINEER user interface such as the Folder Navigator and embedded
browser. If aVB API customization requires the user to have interactive access to the
server, the server must be registered viathe normal Pro/ENGINEER techniques, that is,
either by entry in the Server Registry or by automatic registration of a previously
registered server.

All of these APIs are supported from a non-interactive, that is, batch mode application
or asynchronous application. For more information about batch mode and
asynchronous mode, refer to the section "VB APl Fundamentals.Controlling Pro/

ENGINEER".

Accessing a Windchill Server from a Pro/ENGINEER
Session

Pro/ENGINEER allows you to register Windchill servers as a connection between the
Windchill database and Pro/ENGINEER. Although the represented Windchill database
can be from Windchill Foundation, Windchill ProjectLink, Windchill PDMLink, or
Windchill ProductPoint, all types of databases are represented in the same way.

Y ou can use the following identifiers when referring to Windchill serversin the VB
API:

o Codebase URL--Thisisthe root portion of the URL that is used to connect to a
Windchill server. For example http://wcserver.company.com/Windchill.

o Server Alias--A server diasisused to refer to the server after it has been registered.
The aliasis aso used to construct paths to filesin the server workspaces and
commonspaces. The server aliasis chosen by the user or application and it need not
have any direct relationship to the codebase URL. An alias can be any normal name,
suchasmy_alias.

Accessing Information Before Registering a Server

To start working with aWindchill server, you must establish a connection by
registering the server in Pro/ENGINEER. The methods described in this section allow
you to connect to a Windchill server and access information related to the server.

Methods and Properties Introduced:

. IpfcBaseSession.AuthenticateBrowser)
. IpfcBaseSession.GetServerLocation()

. IpfcServerLocation.Class

. IpfcServerLocation.Location

. IpfcServerLocation.Version

. IpfcServerLocation.ListContexts()

. IpfcServerLocation.CollectWorkspaces()

Use the method | pfcBaseSession.AuthenticateBrowser () to set the authentication
context using a valid username and password. A successful call to this method allows
the Pro/ENGINEER session to register with any server that accepts the username and
password combination. A successful call to this method also ensures that an
authentication dialog box does not appear during the registration process. Y ou can call
this method any number of times to set the authentication context for any number of
Windchill servers, provided that you register the appropriate servers or servers
immediately after setting the context.

The property | pfcSer ver L ocation.L ocation specifies apf cSer ver .
Ser ver Locat i on object representing the codebase URL for apossible server. The

server may not have been registered yet, but you can use this object and the methods it
contains to gather information about the server prior to registration.

The property | pfcServer L ocation.Class specifies the class of the server or server
location. The values are:

Windchill--Denotes either a Windchill Classic PDM server or a Windchill PDMLink
server.

ProjectLink--Denotes Windchill ProjectLink type of servers.

productpoint--Denotes a Windchill ProductPoint server.

The property | pfcSer ver L ocation.Version specifies the version of Windchill that is
configured on the server or server location, for example, "7.0" or "8.0." This method
accepts the server codebase URL as the input.

Note:
| pfcServerL ocation.Version works only for Windchill servers and throws the

pfcExceptions. X ToolkitUnsupported exception, if the server is not awindchill
server.

The method | pfcServer L ocation.ListContexts() gives alist of al the available
contexts for a specified server. A context is used to associate a workspace with a
product, project, or library.

The method | pfcSer ver L ocation.CollectWor kspaces() returns the list of available
workspaces for the specified server. The workspace objects returned contain the name
of each workspace and its context.

Note:
This method is not supported for Windchill ProductPoint.

Registering and Activating a Server

The methods described in this section are restricted to the non-interactive mode only.
Refer to the section, Non-Interactive M ode Operations, for more information.

Methods Introduced:
. IpfcBaseSession.RegisterServer()
. IpfcServer.Activate()
. IpfcServer.Unregister()

The method | pfcBaseSession.Register Server () registers the specified server with the
codebase URL. A successful call to | pfcBaseSession.AuthenticateBrowser () with a
valid username and password is essential for pfcSession.BaseSession.Register Server
to register the server without launching the authentication dialog box. Registration of
the server establishes the server aias. Y ou must designate an existing workspace to use
when registering the server. After the server has been registered, you may create a new
workspace.

Note:
While working with the Windchill ProductPoint server, specify the value of the
input argument WorkspaceName as NULL for this method.

The method | pfcServer .Activate() sets the specified server asthe active server in the
Pro/ENGINEER session.

The method | pfcServer.Unregister () unregisters the specified server. Thisissimilar to
Server Registry>Delete through the user interface.

Accessing Information From a Registered Server
Properties Introduced:
. IpfcServer.IsActive

IpfcServer.Alias

IpfcServer.Context

IpfcWPPServer.GetServerTargetfolder ()

IpfcWPPServer.SetServerTargetfolder()
The property | pfcServer .l sActive specifiesif the server is active.

The property | pfcServer.Alias returns the alias of aserver if you specify the codebase
URL.

The property | pfcSer ver.Context returns the active context of the active server.
Note:
This function is not supported while working with a Windchill ProductPoint

Server.

The method | pfcWPPSer ver .GetSer ver Tar getfolder () returns alocation on the
Windchill ProductPoint server where you can save new product items. Specify the
location of the target folder on the Windchill ProductPoint server using the method

| pfcW PPSer ver .SetSer ver T ar getfolder (). These methods are applicable only when
working with aWindchill ProductPoint server.

Information on Servers in Session
Methods Introduced:
. IpfcBaseSession.GetActiveServer()

. IpfcBaseSession.GetServerByAlias()

. IpfcBaseSession.GetServerByUrl()

. IpfcBaseSession.ListServers()

The method | pfcBaseSession.GetActiveSer ver () returns returns the active server
handle.

The method | pfcBaseSession.Get Ser ver ByAlias() returns the handle to the server
matching the given server dlias, if it existsin session.

The method | pfcBaseSession.Get Ser ver ByUr | () returns the handle to the server
matching the given server URL and workspace name, if it existsin session.

The method | pfcBaseSession.ListServer S() returns alist of serversregistered in this
session.

Accessing Workspaces

For every workspace, a new distinct storage location is maintained in the user's
personal folder on the server (server-side workspace) and on the client (client-side
workspace cache). Together, the server-side workspace and the client-side workspace
cache make up the workspace.

Note:
Windchill ProductPoint does not have the concept of aworkspace or active
workspace. Therefore, many methods in this section are not applicable for this

product.
Methods and Properties Introduced:
. CCpfcWorkspaceDefinition.Create()
. IpfcWorkspaceDefinition.WorkspaceName

. IpfcWorkspaceDefinition.WorkspaceContext

The class | pfcWor kspaceDefinition contains the name and context of the workspace.
The method | pfcSer ver L ocation.CollectWor kspaces() returns an array of workspace
data. Workspace datais also required for the method | pfcSer ver .CreateW or kspace()
to create a workspace with a given name and a specific context.

The method CCpfcWor kspaceDefinition.Create() creates a new workspace definition
object suitable for use when creating a new workspace on the server.

The property | pfcWor kspaceDefinition.W or kspaceName retrieves the name of the
workspace.

The property | pfcW or kspaceDefinition.Wor kspaceContext retrieves the context of
the workspace.

Creating and Modifying the Workspace
Methods and Properties Introduced:

. IpfcServer.CreateWorkspace()

. IpfcServer.ActiveWorkspace

. IpfcServerLocation.DeleteWorkspace()

All methodsand properties described in this section, except | pfcServer .
ActiveWor kspace, are permitted only in the non-interactive mode. Refer to the
section, Non-Interactive Mode Operations, for more information.

The method | pfcServer .CreateWor kspace() creates and activates a new workspace.

The property | pfcServer .ActiveW or kspace retrieves the name of the active
workspace.

The method | pfcSer ver L ocation.DeleteW or kspace() deletes the specified workspace.
The method del etes the workspace only if the following conditions are met:

o The workspace is not the active workspace.
o The workspace does not contain any checked out objects.

Use one of the following techniques to delete an active workspace:

o Make the required workspace inactive using | pfcServer.ActiveWorkspace with the
name of some other workspace and then call pfcServer.ServerL ocation.
DeleteWorkspace.

o Unregister the server using IpfcServer.Unregister() and del ete the workspace.

Workflow to Register a Server

To Register a Server with an Existing Workspace
Perform the following steps to register a Windchill server with an existing workspace:

1. Set the appropriate authentication context using the method | pfcBaseSession.
AuthenticateBrowser() with avalid username and password.

2. Look up the list of workspaces using the method | pfcSer ver L ocation.
CollectWorkspaces(). If you already know the name of the workspace on the
server, then ignore this step.

3. Register the workspace using the method | pfcBaseSession.Register Ser ver ()
with an existing workspace name on the server.

4. Activate the server using the method | pfcServer Activate().

To Register a Server with a New Workspace
Perform the following steps to register a Windchill server with a new workspace:

1. Perform steps 1 to 4 in the preceding section to register the Windchill server
with an existing workspace.

2. Use the method | pfcServer L ocation.ListContexts() to choose the required
context for the server.

3. Create a new workspace with the required context using the method | pfcServer.
CreateWor kspace(). This method automatically makes the created workspace
active.

Note:
Y ou can create aworkspace only after the server is registered.

Aliased URL

An aliased URL serves as a handle to the server objects. Y ou can access the server
objects in the commonspace (shared folders) and the workspace using an aliased URL.
An aiased URL isaunique identifier for the server object and its format is as follows:

o Object in workspace has a prefix wtws
wtws://<server _alias>/ <workspace_nane>/ <obj ect _server _nanme>
where <obj ect _server _name> includes <obj ect _nane>. <obj ect _ext ensi on>

For example, wt ws: / / my_server/ ny_wor kspace/ abcd. prt, wws://
nmy_server/ ny_wor kspace/intf _file.igs

where

<server _alias>isny_server

<wor kspace_nane> isny_wor kspace
o Object in commonspace has a prefix wtpub

wt pub: // <server _al i as>/ <f ol der _| ocati on>/ <obj ect _server _nane>
For example, wt pub: / / my_server/ pat h/to/ cs_f ol der/ abcd. prt

where

<server _alias>isny_server

<f ol der | ocation>ispath/to/cs_fol der

Note:

. Object_server name must be in lowercase.

. The APIsare case-sensitive to the aliased URL.

. <object_extension> should not contain Pro/ENGINEER versions, for
example, .1 or .2, and so on.

o For Windchill ProductPoint servers, you can specify alarge number of URL variations
aslong as the base server URL isincluded. For example,
- wpp://<Server_Alias>/ProdA/ProENGINEER/Document/jan.prt
- <Server_Alias>/ProdA/ProENGINEER/Documents/jan.prt

Y ou can also specify only the part name and the object will be accessed from the
server, if the server isthe default location being explored.

Server Operations

After registering the Windchill server with Pro/ENGINEER, you can start accessing
the data on the Windchill servers. The Pro/ENGINEER interaction with Windchill
servers leverages the following locations:

Commonspace (Shared folders)

Workspace (Server-side workspace)
Workspace local cache (Client-side workspace)
Pro/ENGINEER session

Local disk

O O O O O

The methods described in this section enable you to perform the basic server

operations. The following illustration shows how datais transferred among these
locations.

Check-out -
Commuonspace Werkspace
. Check-in

Retrieve Retvieve [

Download Tpload

el Retrieve
Seszsion Local Cache
Save =
Retrieve Import

Local Disk

Save

Methods and Property Introduced:

. IpfcModel.Save()

« CCpfcServerSynchronizeConflict.Create()
. IpfcWPPServer.SynchronizeServer()

. IpfcServerSynchronizeConflict.Description

. IpfcWPPServer.GetServerSynchronizationState()

The method | pfcM odel.Save() stores the object from the session in the local
workspace cache, when a server is active.For Windchill ProductPoint servers, this
method saves an existing model to the location from where it was retrieved. To save a
new object to a specified location on the ProductPoint server, first use the method

| pfcW PPSer ver .SetServer T ar getfolder () to set the target folder location on the
server and then call the method pfcM odel.M odel.Save. If you do not set the target
folder location, the method pfcM odel.M odel .Save saves the new objects to the top-
level folder of the active product or context.

The method CCpfcServer SynchronizeConflict.Create() creates the
Server SynchronizeConflicts object containing the description of the conflicts
encountered during server synchronization.

The method | pfcWPPSer ver .SynchronizeSer ver () synchronizes the objectsin the
local cache with the contents in the Windchill ProductPoint server. Specify NULL asthe
value of the input synchronization options. The method returns the synchronization
conflict object created by the method CCpfcServer SynchronizeConflict.Create().
Use the property | pfcSer ver SynchronizeConflict.Description to access the
description of the synchronization conflict.

The method | pfcWPPSer ver .Get Ser ver SynchronizationState() specifiesif the
contents of the Windchill ProductPoint server are synchronized with the local cache.
This method returns true if the server is synchronized, and false, if otherwise.

Upload

An upload transfers Pro/ENGINEER files and any other dependencies from the local

workspace cache to the server-side workspace.
Methods Introduced:
. IpfcServer.UploadObjects()
. IpfcServer.UploadObjectsWithOptions()

. CCpfcUploadOptions.Create()

The method | pfcSer ver .UploadObjects() uploads the object to the workspace. The
object to be uploaded must be present in the current Pro/ENGINEER session. You
must save the object to the workspace using pfcM odel .M odel.Save, or import it into
the wor kspace using | pfcBaseSession.ImportToCurrentW S() before attempting to
upload it.

The method | pfcSer ver .UploadObj ectsWithOptions() uploads objects to the
workspace using the options specified in the | pf cUpl oadOpt i ons interface. These
options allow you to upload the entire workspace, auto-resolve missing references, and
indicate the target folder location for the new content during the upload. Y ou must save
the object to the workspace using pfcM odel.M odel.Save, or import it to the

wor kspace using | pfcBaseSession.| mportToCurrentWS() before attempting to
upload it.

Create the | pf cUpl oadOpt i ons object using the method CCpfcUploadOptions.
Create().

The methods available for setting the upload options are described in the following
section.

ChecklIn

After you have finished working on objects in your workspace, you can share the
design changes with other users. The checkin operation copies the information and files
associated with all changed objects from the workspace to the Windchill database.

Note:
The methods described in this section are not applicable to Windchill
ProductPoint server operations.

Methods and Properties Introduced:

O

0

. IpfcServer.CheckinObjects()

« CCpfcCheckinOptions.Create()

. IpfcUploadBaseOptions.DefaultFolder

. IpfcUploadBaseOptions.NonDefaultFolderAssignments
. IpfcUploadBaseOptions.AutoresolveOption

. IpfcCheckinOptions.BaselineName

. IpfcCheckinOptions.BaselineNumber

. IpfcCheckinOptions.BaselineLocation

. IpfcCheckinOptions.BaselineLifecycle

. IpfcCheckinOptions.KeepCheckedout

The method | pfcServer .CheckinObjects() checksin an object into the database. The
object to be checked in must be present in the current Pro/ENGINEER session.
Changes made to the object are not included unless you save the object to the
workspace using the method | pfcM odel.Save() before you check it in.

If you pass NULL as the value of the options parameter, the checkin operation is similar

to the Auto Check-In option in Pro/ENGINEER. For more details on Auto Check-In,
refer to the online help for Pro/ENGINEER.

Use the method CCpfcCheckinOptions.Create() to create a new
| pf cChecki nOpt i ons object.

By using an appropriately constructed options argument, you can control the checkin
operation. Use the APIs listed above to access and modify the checkin options. The
checkin options are as follows:

DefaultFol der--Specifies the default folder location on the server for the automatic
checkin operation.

NonDefaultFol derAssignment--Specifies the folder location on the server to which the
objects will be checked in.

AutoresolveOption--Specifies the option used for auto-resolving missing references.

These options are defined in the EpfcServerAutoresolveOption enumerated type, and
are asfollows:
- EpfcSERVER_DONT_AUTORESOLVE--Model references missing from the
workspace are not automatically resolved. This may result in a conflict upon
checkin. This option is used by default.
- EpfcSERVER_AUTORESOLVE_IGNORE--Missing references are
automatically resolved by ignoring them.
- EpfcSERVER_AUTORESOLVE_UPDATE_IGNORE--
Missing references are automatically resolved by updating them in the database
and ignoring them if not found.
o Baseline--Specifies the baseline information for the objects upon checkin. The baseline
information for a checkin operation is as follows:
- BaselineName--Specifies the name of the baseline.
- BaselineNumber--Specifies the number of the baseline.

The default format for the baseline name and baseline number is"Username + time
(GMT) in milliseconds’
- Baselinel ocation--Specifies the location of the baseline.
- BaselineL ifecycle--Specifies the name of the lifecycle.
o KeepCheckedout--If the value specified is true, then the contents of the selected object

are checked into the Windchill server and automatically checked out again for further
modification.

Retrieval

Standard VB API provides several methods that are capable of retrieving models.
When using these methods with Windchill servers, remember that these methods do
not check out the object to allow modifications.

Methods Introduced:
. IpfcBaseSession.RetrieveModel()
. IpfcBaseSession.RetrieveModelWithOpts()
. IpfcBaseSession.OpenFile()

The methods | pfcBaseSession.RetrieveM odel(), | pfcBaseSession.

RetrieveM odelWithOpts(), and | pfcBaseSession.OpenFile() load an object into a
session given its name and type. The methods search for the object in the active
workspace, the local directory, and any other paths specified by the sear ch_pat h
configuration option. For Windchill ProductPoint servers, the method pfcSession.
BaseSession.RetrieveM odelWithOpts supports thei nst ance<gener i ¢> notation

for the name of the object.

Checkout and Download

To modify an object from the commonspace, you must check out the object. The
process of checking out communicates your intention to modify adesign to the
Windchill server. The object in the database is locked, so that other users can obtain
read-only copies of the object, and are prevented from modifying the object while you
have checked it out.

Checkout is often accompanied by a download action, where the objects are brought
from the server-side workspace to the local workspace cache. In The VB API, both
operations are covered by the same set of methods.

Note:
The methods described in this section are not applicable to Windchill
ProductPoint server operations.

Methods and Properties Introduced:
. IpfcServer.CheckoutObjects()
. IpfcServer.CheckoutMultipleObjects()
. CCpfcCheckoutOptions.Create()
. IpfcCheckoutOptions.Dependency
. IpfcCheckoutOptions.Selectedincludes
. IpfcCheckoutOptions.Includelnstances
. IpfcCheckoutOptions.Version
. IpfcCheckoutOptions.Download
. IpfcCheckoutOptions.Readonly

The method | pfcSer ver .CheckoutObjects() checks out and optionally downloads the
object to the workspace based on the configuration specifications of the workspace.
The input arguments of this method are as follows:

O

O

Mdl--Specifies the object to be checked out. Thisis applicable if the model has already
been retrieved without checking it out.

File--Specifies the top-level object to be checked out.

Checkout--The checkout flag. If you specify the value of this argument as true, the
selected object is checked out. Otherwise, the object is downloaded without being
checked out. The download action enables you to bring read-only copies of objects
into your workspace. This allows you to examine the object without locking it.
Options--Specifies the checkout options object. If you pass NULL as the value of this
argument, then the default Pro/ENGINEER checkout rules apply. Use the method
CCpfcCheckoutOptions.Create() to create a new | pfcCheckoutOptions object.

Use the method | pfcSer ver .CheckoutM ultipleObjects() to check out and download
multiple objects to the workspace based on the configuration specifications of the
workspace. This method takes the same input arguments as listed above, except for
Mdl and File. Instead it takes the argument Files that specifies the sequence of the
objects to check out or download.

By using an appropriately constructed options argument in the above functions, you
can control the checkout operation. Use the APIs listed above to modify the checkout
options. The checkout options are as follows:

o Dependency--Specifies the dependency rule used while checking out dependents of the

object selected for checkout. The types of dependencies given by the
EpfcServerDependency enumerated type are as follows:

- EpfcSERVER _DEPENDENCY _ALL--All objects that are dependent on the
selected object are checked out.

- EpfcSERVER_DEPENDENCY _REQUIRED--All models required to
successfully retrieve the originally selected model from the CAD application

are selected for checkout.
- EpfcSERVER_DEPENDENCY _NONE--None of the dependent objects are

checked ouit.

o Includel nstances--Specifies the rule for including instances from the family table

during checkout. The type of instances given by the EpfcServerincludel nstances
enumerated type are as follows:

- EpfcSERVER_INCLUDE_ALL--All the instances of the selected object are
checked out.

- EpfcSERVER_INCLUDE_SEL ECTED--The application can select the
family table instance members to be included during checkout.

- EpfcSERVER _INCLUDE_NONE--No additional instances from the family
table are added to the object list.

o Selectedlncludes--Specifies the sequence of URL s to the selected instances, if

Includel nstances is of type EpfcSERVER_INCLUDE_SELECTED.

o Version--Specifies the version of the checked out object. If thisvalueis set to NULL,

the object is checked out according to the current workspace configuration.

o Download--Specifies the checkout type as download or link. The value download
specifies that the object content is downloaded and checked out, while link specifies
that only the metadata is downloaded and checked out.

o Readonly--Specifies the checkout type as a read-only checkout. Thisoptionis
applicable only if the checkout typeislink.

The following truth table explains the dependencies of the different control factorsin
the method | pfcSer ver .CheckoutObjects() and the effect of different combinations on

the end resullt.
Argument checkout pfcServer. pfcServer.
in IpfcServer. CheckoutOptions. CheckoutOptions. Result
CheckoutObjects() SetDownload SetReadonly
Object is
true true NA chec_ked out
and its content
is downl oaded.
Object is
checked out
true true NA but content is
not
downloaded.
Object is
fase NA true dqwnl oaded
without
checkout.
false NA fase Not supported
Undo Checkout

Method Introduced:

. IpfcServer.UndoCheckout()

Use the method | pfcSer ver .UndoCheckout() to undo a checkout of the specified
object. When you undo a checkout, the changes that you have made to the content and
metadata of the object are discarded and the content, as stored in the server, is
downloaded to the workspace. This method is applicable only for the model in the
active Pro/ENGINEER session.

Import and Export

The VB API provides you with the capability of transferring specified objects to and
from aworkspace. Import and export operations must take place in a session with no
models. An import operation transfers afile from the local disk to the workspace.

Methods and Properties Introduced:
. IpfcWPPServer.SetWsimpexFolderoption()
. IpfcBaseSession.ExportFromCurrentWs()
. IpfcBaseSession.ImportToCurrentWS()
. IpfcWSImportExportMessage.Description
. IpfcWSImportExportMessage.FileName
. IpfcWSImportExportMessage.MessageType
. IpfcWSImportExportMessage.Resolution
. IpfcWSImportExportMessage.Succeeded
. IpfcBaseSession.SetWSExportOptions()
« CCpfcWSExportOptions.Create()

« IpfcWSExportOptions.IncludeSecondaryContent

The method | pfcW PPSer ver .SetW simpexFolder option() sets the target folder to
import data or the source folder to the Windchill ProductPoint servers or to export data
from these servers. Set the target folder location using this method before calls to

| pfcBaseSession.ExportFromCurrentWS() and | pfcBaseSession.

ImportToCurrentWS(). This function is used for Windchill ProductPoint servers
only.

The method | pfcBaseSession.Expor tFromCurrentW S() exports the specified objects
from the current workspace to adisk in alinked session of Pro/ENGINEER. For
Windchill ProductPoint servers this function exports files from the specified source
folder location on the server to adisk.

The method | pfcBaseSession.I mportToCurrentW S() imports thespecified objects
from a disk to the current workspace in alinked session of Pro/ENGINEER. For
Windchill ProductPoint servers this method copies files from the local disk to the
specified target folder location on the server.

Both | pfcBaseSession.ExportFromCurrentW §() and | pfcBaseSession.
ImportToCurrentWS() alow you to specify a dependency criterion to process the
following items:

All external dependencies
Only required dependencies
No external dependencies

Both I pfcBaseSession.ExportFromCurrentW §() and | pfcBaseSession.
ImportToCurrentW () return the messages generated during the export or import
operation in the form of the | pf c\WBI npor t Expor t Messages object. Use the APIs

listed above to access the contents of a message. The message specified by the
| pf cWBI npor t Expor t Message object contains the following items:

Description--Specifies the description of the problem or the message information.
FileName--Specifies the object name or the name of the object path.
M essageType--Specifies the severity of the message in the form of the
EpfcWSImportExportM essageType enumerated type. The severity is one of the
following types:
- EpfcWSIMPEX _MSG_INFO--Specifies an informational type of message.
- EpfcWSIMPEX_MSG_WARNING--Specifies alow severity problem that
can be resolved according to the configured rules.
- EpfcWSIMPEX_MSG_CONFLICT--Specifies a conflict that can be
overridden.
- EpfcWSIMPEX_MSG_ERROR--Specifies a conflict that cannot be
overridden or a serious problem that prevents processing of an object.
Resol ution--Specifies the resolution applied to resolve a conflict that can be
overridden. Thisis applicable when the message is of the type
WSIMPEX_MSG_CONFLICT.
Succeeded--Determines whether the resolution succeeded or not. Thisis applicable
when the message is of the type EpfcWSIMPEX _MSG _CONFLICT.

The method | pfcBaseSession.SetW SExpor tOptions() sets the export options used
while exporting the objects from a workspace in the form of the
| pf cWBEXxpor t Opt i ons object. Create this object using the method

CCpfcW SExportOptions.Create(). The export options are as follows:

- Include Secondary Content--1ndicates whether or not to include secondary content
while exporting the primary Pro/ENGINEER model files. Use the property
| pfcW SExportOptions.IncludeSecondary Content to set this option.

File Copy

The VB API provides you with the capability of copying afile from the workspace or
target folder to alocation on the disk and vice-versa.

Methods Introduced:
. IpfcBaseSession.CopyFileToWS()
. IpfcBaseSession.CopyFileFromWS()

Use the method | pfcBaseSession.CopyFileToW () to copy afile from the disk to the
workspace. The file can optionally be added as secondary content to a given workspace
file. For Windchill ProductPoint servers, use this method to copy a viewable file from
disk asanew item in the target folder specified by the method | pfcW PPSer ver .
SetServer Targetfolder (). If the viewablefile is added as secondary content, a
dependency is created between the Pro/ENGINEER model and the viewablefile.

Use the method | pfcBaseSession.CopyFileFromW () to copy afile from the
workspace to alocation on disk.For Windchill ProductPoint servers, use this method to
copy asingle file from the current target folder specified by the method

| pfcWPPServer .SetServer Tar getfolder () to the local disk.

When importing or exporting Pro/ENGINEER models, PTC recommends that you use
methods | pfcBaseSession.I mportToCurrentW () and | pfcBaseSession.
ExportFromCurrentW (), respectively, to perform the import or export operation.
Methods that copy individual files do not traverse Pro/ENGINEER model
dependencies, and therefore do not copy afully retrievable set of models at the same
time.

Additionally, only the methods pfcSession.BaseSession.ImportToCurrentWS and
pfcSession.BaseSession.ExportFromCurrentW S provide full metadata exchange and
support. That means pfcSession.BaseSession.mportToCurrentW S can communicate
al the Pro/ENGINEER designated parameters, dependencies, and family table

information to a PDM system while pfcSession.BaseSession.
ExportFromCurrentWS can update exported Pro/ENGINEER data with PDM system
changes to designated and system parameters, dependencies, and family table
information. Hence PTC recommends the use of | pfcBaseSession.CopyFileT oW ()
and | pfcBaseSession.CopyFileFromW () to process only non-Pro/ENGINEER files.

Server Object Status
Methods Introduced:

. IpfcServer.IsObjectCheckedOut()

. IpfcServer.IsObjectModified()

The methods described in this section verify the current status of the object in the
workspace. The method | pfcSer ver . sSObjectCheckedOut() specifies whether the
object is checked out for modification.

The method | pfcSer ver .1 sObjectM odified() specifies whether the object has been
modified since checkout. This method returnsthe value f al se if newly created objects
have not been uploaded.

Note:
These methods are not applicable for Windchill ProductPoint server operations.

Object Lock Status

In comparison with other Windchill servers, Windchill ProductPoint does not have the
concept of aworkspace. This means that as soon as changes are saved to the server,
they are visible to all users with access to work-in-progress versions. The functions
described in this section enable you to establish an exclusive lock when modifying a
server-managed part in Pro/ENGINEER. The functions described in this section are
applicable only for Windchill ProductPoint server operations.

Methods and Properties Introduced:
. IpfcWPPServer.LockServerObjects()
. CCpfcServerLockConflict.Create()

. IpfcServerLockConflict.ObjectName

. IpfcServerLockConflict.ConflictMessage

. IpfcWPPServer.GetServerObjectLockStatus()
. IpfcWPPServer.GetServerObjectsLockStatus()
. CCpfcServerLockStat.Create()

. IpfcServerLockStat.ObjectName

. IpfcServerLockStat.Status

. IpfcServerLockStat.StatusMessage

. IpfcWPPServer.UnlockServerObjects()

The method | pfcWPPSer ver .L ock Ser ver Obj ects() establishes an explicit lock on the
specified objects on the server. Specify the full path, name, and extension for the input
objects. This method returnsthe | pf cSer ver LockConf | i ct object that contains the
details of conflicts, if any, that occurred during the lock operation. Use the property

| pfcSer ver L ock Conflict.ObjectName to access the name of the object for which the
lock conflict occurred. Use the property | pfcSer ver L ock Conflict.ConflictM essage to
get details of the lock conflict.

The method | pfcWPPSer ver .Get Ser ver Obj ectL ock Status() checks the lock status of
the specified object on the Windchill ProductPoint server. Specify the full path, name,
and extension for the input object. The method returnsthe | pf cSer ver LockSt at

object that contains information regarding the lock status.

The method | pfcW PPSer ver .GetSer ver ObjectsL ock Status() checks the lock status
of a set of objects on the Windchill ProductPoint server. Specify the full path, name,
and extension for the input objects. The method returns an array of

| pf cSer ver LockSt at objects that contain information regarding the lock status of

the input objects.

Use the property | pfcSer ver L ock Stat.ObjectName to access the name of the object,
including the extension, for which the lock status is described.

Use the property | pfcServer L ock Stat.Status to access the status of the lock on the
object on the server.

o PRO _OBJ LOCK_STAT UNSET--Specifiesthat no lock has been applied on the
object.

o PRO_OBJ LOCK_STAT HARDLOCK--Specifies that objects are locked and that
the current user is not the owner of the locks. Therefore, this user cannot modify or
release the lock.

n PRO_OBJ LOCK_STAT_SOFTLOCK--Specifies that the objects are locked and the
current user is the owner of the locks. Therefore, this user can release the lock.

o PRO_OBJ LOCK_STAT_UNLOCKED--Specifiesthat the explicit or implicit lock
has been removed from the object and it is available for editing.

Use the property | pfcServer L ock Stat.StatusM essage to access the status of the object
on the server. It provides the name of the user who locked the object and the time of
locking.

The method | pfcWPPSer ver .Unlock Server Objects() unlocks a set of objects that

have been explicitly locked on the product server. This method returns the
| pf cServer LockConfli ct object that contains the details of conflicts, if any, that

occurred during the unlock operation.

Delete Objects
Method Introduced:
. IpfcServer.RemoveObjects()
The method | pfcSer ver .RemoveODbjects() deletes the array of objects from the

workspace. When passed with the ModelNames array as NULL, this method removes all
the objects in the active workspace.

Conflicts During Server Operations

An exception is provided to capture the error condition while performing the following
server operations using the specified APIs:

Operation API

Checkin an object or

workspace | pfcServer.CheckinObjects()

Checkout an object | pfcServer.CheckoutObjects()
Undo checkout of an object | pfcServer.UndoCheckout()
Upload object | pfcServer.UploadObjects()

Download object

| pfcServer.CheckoutObjects() (with download as
true)

Delete workspace

| pfcServerL ocation.Del eteWorkspace()

Remove object

| pfcServer.RemoveObjects()

These APIs throw a common exception XToolkitCheckoutConflict if an error is
encountered during server operations. The exception description will include the details
of the error condition. This description is similar to the description displayed by the

Pro/ENGINEER HTML user interface in the conflict report.

Utility APIs

The methods specified in this section enable you to obtain the handle to the server
objects to access them. The handle may be the aliased URL or the model name of the

http URL. These utilities enable the conversion of one type of handle to another.

Methods Introduced:

. IpfcServer.GetAliasedUrl()

. IpfcBaseSession.GetModelNameFromAliasedUrl()

. IpfcBaseSession.GetAliasFromAliasedUrl()

. IpfcBaseSession.GetUrlFromAliasedUrl()

The method | pfcServer .GetAliasedUr () enables you to search for a server object by

its name. Specify the complete filename of the object as the input, for example,

test part. prt. The method returns the aliased URL for amodel on the server. For
more information regarding the aliased URL, refer to the section Aliased URL. During
the search operation, the workspace takes precedence over the shared space.

Y ou can also use this method to search for files that are not in the Pro/ENGINEER
format. For example, my_t ext .t xt,prodev. dat,intf_file.stp,andsoon.

The method | pfcBaseSession.GetM odel NameFromAliasedUr [() returns the name of
the object from the given aliased URL on the server.

The method | pfcBaseSession.GetUrIFromAliasedUr [() converts an aliased URL to a
standard URL for the objects on the server.

For example, wt ws: / / my_al i as/ W I df i re/ abcd. prt isconverted to an
appropriate URL onthe server ashtt p: // server. myconpany. com W ndchi | | .

For Windchill ProductPoint, the aliased URL wpp: / / <Ser ver _Al i as>/ Pr odA/
Pr oENG NEER/ Docunent / j an. prt isconverted to an appropriate URL on server, for
example, htt p: // server. myconpany. cont .

The method | pfcBaseSession.GetAliasFromAliasedUr [() returns the server alias from
aliased URL.

Sample Batch Workflow

A typical workflow using the Windchill APIsfor an asynchronous non-graphical
application is as follows:

1. Start a Pro/ENGINEER session using the method pfcAsyncConnection.
pfcAsyncConnection.AsyncConnection_Connect.

2. Authenticate the browser using the method | pfcBaseSession.
AuthenticateBrowser ().

3. Register the server with the new workspace using the method | pfcBaseSession.
Register Server ().

4. Activate the server using the method | pfcSer ver .Activate().

5. Check out and retrieve the model from the vault URL using the method
| pfcSer ver.CheckoutObjects() followed by | pfcBaseSession.RetrieveM odel

10.

11.

0.
Modify the model according to the application logic.
Save the model to the workspace using the method | pfcM odel .Save().

Check in the modified model back to the server using the method | pfcServer.
CheckinObjects().

After processing all models, unregister from the server using the method
I pfcServer.Unregister ().

Delete the workspace using | pfcSer ver L ocation.DeleteW or k space().

Stop Pro/ENGINEER using the method | pfcAsyncConnection.End().

Summary of Technical Changes

This section contains alist of new and enhanced capabilities for VB API for Pro/
ENGINEER Wildfire 5.0. See the APIWizard online browser for complete
descriptions of the functions.

Each release of VB API includes a README file in the loadpoint directory. Check
the README file for the most current information.

Topic

Critical Technica Changes

New Methods and Properties
Superseded M ethods and Properties
Miscellaneous Technical Changes

Note:
Reference information on all capabilitiesisavailableinthe VB API
APIWizard online browser. Use the APIWizard Search function to find
information on afunction. See section "Online Documentation -- Pro/Web.
Link APIWizard" for information on the APIWizard.

Critical Technical Changes

This section describes the changes in Pro/ENGINEER Wildfire 5.0 and VB AP
that might require alteration of existing VB API applications.

IpfcDetailSymbolinstitem.GetInstructions()

The method | pfcDetail Symboll nstltem.Getl nstructions() now takes a new
Boolean argument G vePar anmet er sAsNanes. Set thisargument tot r ue to

display symbolic representations of parameters and drawing properties in the
symbol instance. Set it to f al se to display the actual text seen by the user. To
ensure that the compilation succeeds, rebuild your existing VB API applications
calling the method | pfcDetail Symboll nstltem.Getl nstructions().

Printing Instructions

Theinterface| pf cPl ot | nst ruct i ons containing the instructions for plotting
files has been deprecated. Existing VB APl methods and properties for creating and
accessing the instruction attributes have also been deprecated. Use the new
interface type | pf cPri nt er I nstructi ons and its methods and properties
instead. Refer to the Superseded M ethods and Properties section for the complete
list of methods and properties that have been deprecated.

The following new interface types have al so been added:

| pfcPrintPrinterOption for printer settings

I pfcPrintMdlOption for the definition of the model for printing

| pfcPrintPlacementOption for the placement options for use while printing

I pfcPrinterPCFOptions for the definition of the printing options for a Plotter
Configuration File (PCF)

O O O O

No-Resolve Mode

Pro/ENGINEER Wildfire 5.0 introduces No-Resolve mode, wherein if amodel and
feature regeneration fails, failed features and children of failed features are created
and the regeneration of other features continues. By default, Pro/ENGINEER
Wildfire 5.0 operates in No-Resolve mode. However, VB API does not support
regeneration in this mode. If Pro/ENGINEER is running in No-Resolve mode, the
methods | pfcSolid.Regenerate() and | pfcSolid.ExecuteFeatur eOps() throw an
exception | pf cXTool ki t BadCont ext .

To continue with the behavior of Pro/ENGINEER Wildfire 4.0 in Resolve mode,
set the configuration option r egen_f ai | ure_handl i ng tor esol ve_node in the

Pro/ENGINEER session. Setting the configuration option to switch to Resolve
mode ensures the old behavior as long as you do not retrieve the models saved
under No-Resolve mode. To consistently preserve the old behavior, use Resolve
mode from the beginning and throughout your Pro/ENGINEER session.

New Methods and Properties
The following section describes the new VB API methods and properties.

2D Export

New Method or Property

Description

CCpfcMedusaExportlnstructions.Create
0

Creates a new instructions object for export
of adrawing in EXPORT_MEDUSA
format (using |pfcModel.Export()).

CCpfcExport2DOption.Create()
| pfcExport2D Option.ExportSheetOption
| pf cExport2D Option.M odel SpaceSheet

| pf cExport2D Option.Sheets

Accesses the options to export multiple
sheets of adrawing to 2D formats.

3D Export

New Method or Property

Description

CCpfcCatiaPart3DExportInstructions.
Create()

CCpfcCatiaProduct3DEXxportlnstructions.
Create()

CCpfcCatiaCGR3DEXxportInstructions.
Create()

CCpfcJT3DEXxportInstructions.Create()

CCpfcParaSolid3DExportInstructions.
Create()

CCpfcUG3DExportlnstructions.Create()

Creates a new instructions object for
import of the following 3D import
formats:

EXPORT _CATIA_PART
EXPORT_CATIA_PRODUCT
EXPORT _CATIA_CGR
EXPORT_JT
EXPORT_PARASOLID
EXPORT UG

O O O O O O

Datum Features

CCpfcDatumPlaneTangentConstraint.Create()

| pfcDatumPlaneT angentConstraint. TangentRef
CCpfcDatumPlaneOffsetConstraint.Create()

| pfcDatumPlaneOffsetConstraint. OffsetRef

| pfcDatumPlaneOffsetConstraint. OffsetVaue
CCpfcDatumPlaneOffsetCoordSysConstraint.Create()

| pfcDatumPlaneOffsetCoordSysConstraint. CsysAXis

New Method or Property Description

Datum Plane Feature

| pfcDatumPlanefFeat.Flip

| pfcDatumPlaneFeat. Constraints

| pfcDatumPlaneConstraint.ConstraintType

CCpfcDatumPlaneT hroughConstraint.Create()

| pfcDatumPlaneT hroughConstraint. ThroughRef

CCpfcDatumPlaneNormal Constraint.Create()

| pfcDatumPlaneNormal Constraint. Normal Ref

CCpfcDatumPlaneParallel Constraint.Create() Provides read
accessto the

| pfcDatumPlaneParall el Constraint.Parall el Ref properties of the
Datum Plane
feature.

CCpfcDatumPlaneAngleConstraint.Create()

| pfcDatumPlaneA ngleConstraint. AngleRef
| pfcDatumPlaneAngleConstraint. AngleVaue

CCpfcDatumPlaneSectionConstraint.Create()

Provides read
| pfcDatumPlaneSectionConstraint. SectionRef access to the
properties of the
| pfcDatumPl aneSecti onConstraint. Secti onl ndex Datum Plane
feature.
CCpfcDatumPlaneDefaultX Constraint.Create()
CCpfcDatumPlaneDefaultY Constraint.Create()
CCpfcDatumPlaneDefaultZConstraint.Create()
Datum Axis Feature
| pfcDatumA xisFeat.Constraints
CCpfcDatumAxisConstraint.Create()
| pfcDatumAxisConstraint.ConstraintType
Provides read
| pfcDatumA xisConstraint. Constrai ntRef accessto the
properties of the
| pfcDatumA xisFeat.DimConstraints Datum Axis
feature.

CCpfcDatumAxisDimensionConstraint.Create()
| pfcDatumA xisDimensionConstraint. DimOffset

| pfcDatumA xisDimensionConstraint.DimRef

General Datum Point Feature

| pfcDatumPointFeat. FeatName
| pfcDatumPointFeat. GetPoints()
| pfcGeneral DatumPoint.Name

CCpfcDatumPointPlacementConstraint.Create()

Provides read

| pfcGeneral DatumPoint.PlaceConstraints accessto the
properties of the

CCpfcDatumPointDimensionConstraint.Create() General Datum
Point feature.

| pfcGeneral DatumPoint.DimConstraints

| pfcDatumPointConstrai nt.Constrai ntRef

| pfcDatumPointConstraint.ConstraintType

| pfcDatumPointConstraint.Value

Datum Coordinate System Feature

| pfcCoordSysFeat.OriginConstraints

CCpfcDatumCsysOriginConstraint.Create()

| pfcDatumCsysOriginConstraint.OriginRef Provides read
accessto the

| pfcCoordSysFeat.DimensionConstraints
CCpfcDatumCsysDimensionConstraint.Create()
| pfcDatumCsysDimensionConstrai nt.DimRef

| pfcDatumCsysDimensionConstraint.DimVaue

properties of the
Datum Coordinate
System feature.

| pfcDatumCsysDimensionConstraint. DimConstraintType
| pfcCoordSysFeat.OrientationConstraints
CCpfcDatumCsysOrientMoveConstraint.Create()

| pfcDatumCsysOrientM oveConstraint.

OrientMoveConstraintType Provides read

accessto the
properties of the

| pfcDatumCsysOrientM oveConstraint.OrientM oveV aue Datum Coordinate

System feature.
| pfcCoordSysFeat.IsSNormal ToScreen
| pfcCoordSysFeat.OffsetType
| pfcCoordSysFeat.OnSurfaceType
| pfcCoordSysFeat.OrientByM ethod
Drawing Sheets
New Method or Property Description
| pfcSheetOwner. Returns the model descriptor of the drawing
GetSheetFormatDescr format used for the specified drawing sheet.
Export to PDF
New Method or Property Description

CCpfcPDFEXxportInstructions.Create | Creates a new instructions object for export to
0 PDF format (using I pfcModel .Export()).

| pfcPDFEXportlnstructions.FilePath

| pfcPDFEXxportlnstructions.Options

Accesses the instructions for export to PDF.

CCpfcPDFOption.Create()
| pfcPDFOption.OptionType ﬁ\é?:asses the options required for export to
| pfcPDFOption.OptionValue

Family Tables

New Method or Property

Description

| pfcFamilyM ember.Getl mmediateGenericlnfo
0

Returns the model descriptor of the
immediate generic model.

| pfcFamilyMember.GetTopGenericlnfo()

Returns the model descriptor of the
top generic model.

| pfcFamilyMember.GetCell I sDefault()

Determinesif theitemin the
specified cell has the default value.
The default value is the value of the
specified item in the generic model.

Models
New Method or Property Description
| pfcBaseSession. Returns the active Pro/ENGINEER

GetActiveM odel mode!.

Printing Files

New Method or Property

Description

Printing Instructions

CCpfcPrinterlnstructions.Create()

Createsthel pfcPrinterlnstructions
object.

| pfcPrinterl nstructions.PrinterOption
| pfcPrinter| nstructions.PlacementOption
| pfcPrinterl nstructions.M odel Option

| pfcPrinterlnstructions.Windowld

Accesses and modifies the plotting
Instructions.

Printer Options

CCpfcPrintPrinterOption.Create()

Createsthe | pf cPrint Pri nter Option
object.

| pfcBaseSession.GetPrintPrinterOptions
0

Returnsthe | pf cPrint Pri nt er Opti on
object containing the printer options.

| pfcPrintPrinterOption.Del eteAfter

| pfcPrintPrinterOption.FileName

| pf cPrintPrinterOption.PaperSize
CCpfcPrintSize.Create()
|pfcPrintSize.Height

| pfcPrintSize.Width

| pfcPrintSize.PaperSize

| pfcPrintPrinterOption.PenTable

| pfcPrintPrinterOption.PrintCommand
| pfcPrintPrinterOption.Printer Type

| pfcPrintPrinterOption.Quantity

| pfcPrintPrinterOption.RolIMedia

| pfcPrintPrinterOption.RotatePl ot

| pfcPrintPrinterOption.SaveM ethod

| pfcPrintPrinterOption.SaveToFile

| pfcPrintPrinterOption.SendToPrinter
| pfcPrintPrinterOption.Slew

| pfcPrintPrinterOption.SwHandshake

| pfcPrintPrinterOption.UseTtf

Accesses and modifies the options for a
specified printer.

Placement Options

CCpfcPrintPlacementOption.Create()

Createsthe | pf cPri nt Pl acement Opt i on
object.

| pfcBaseSession.
GetPrintPlacementOptions()

Returnsthel pf cPri nt Pl acenent Qpti on
object containing the placement options.

| pfcPrintPlacementOption.BottomOffset

| pf cPrintPlacementOption.ClipPl ot

| pf cPrintPlacementOption.
KegpPanzoom

| pfcPrintPlacementOption.L abel Height

| pfcPrintPlacementOption.Placel abel
| pfcPrintPlacementOption.Scale

| pfcPrintPlacementOption.
ShiftAllCorner

| pfcPrintPlacementOption.SideOffset

| pf cPrintPlacementOption.
X1ClipPosition

| pfcPrintPlacementOption.
X2ClipPosition

| pfcPrintPlacementOption.
Y 1ClipPosition

| pfcPrintPlacementOption.
Y 2ClipPosition

Accesses and modifies the placement
options.

Model Options

CCpfcPrintMdIOption.Create()

Createsthe | pf cPri nt Mil Opt i on object.

| pfcBaseSessi on.GetPrintM dl Options()

Returnsthe | pf cPri nt Mil Opt i on object

containing the model options for printing
purpose.

| pfcPrintM dl Option.DrawFormat

| pfcPrintM dlOption.FirstPage

| pfcPrintM dlOption.LastPage

| pfcPrintMdlOption.LayerName
|pfcPrintMdIOption.LayerOnly
|pfcPrintMdlOption.Mdl

| pfcPrintM dlOption.Quality

| pfcPrintM dl Option.Segmented

| pfcPrintM dlOption.Sheets

| pfcPrintMdlOption.UseDrawingSize

| pfcPrintM dlOption.UseSolidScale

Accesses and modifies the model options.

Plotter Configuration File (PCF) Option

CCpfcPrinterPCFOptions.Create()

Createsthe | pf cPri nt er PCFQpt i ons
object.

Returnsthel pf cPri nt er PCFOpt i ons
| pfcBaseSession.GetPrintPCFOptions() | object containing the printing options for a
Plotter Configuration File (PCF).

| pf cPrinterPCFOptions.PrinterOption

| pfcPrinterPCFOptions.M odel Option

| pfcPrinterPCFOptions. Accesses and modifies the printing options
PlacementOption for a Plotter Configuration File (PCF).

User Interface

New Method or Property

Description

File > Open

| pfcBaseSession.UI RegisterFileOpen()
CCpfcFileOpenRegisterOptions.Create()

| pfcFileOpenRegisterOptions.FileDescription

| pfcFileOpenRegisterOptions.FileType

| pfcFileOpenRegisterListener.FileOpenAccess()

| pfcFileOpenRegisterListener.OnFileOpenRegister
0

Adds anew filetypein the
Open dialog box.

File> Save

| pfcBaseSession.UIRegisterFileSave()
CCpfcFileSaveRegisterOptions.Create()

| pfcFileSaveRegisterOptions.FileDescription
| pfcFileSaveRegisterOptions.FileType

| pfcFileSaveRegisterListener.FileSaveA ccess()

| pfcFileSaveRegisterListener.OnFileSaveRegister()

Adds anew file typein the Save
a Copy dialog box.

Navigation Area

| pfcSession.NavigatorPaneBrowserAdd()
| pfcSession.NavigatorPaneBrowserl conSet()

| pfcSession.NavigatorPaneBrowserURL Set()

Adds custom panes containing
custom Web pages to the
Navigation area.

Utility

New Method or Property

Description

Pro/TOOLKIT DLL

| pfcBaseSession.LoadProT ool kitL egacyDl|
0

Registers and starts alegacy Pro/
TOOLKIT DLL that is not Unicode-
compliant and built in the pre-Wildfire
4.0 environment.

Pro/ENGINEER Window

New Method or Property Description

Window ID

Retrievesthe ID of the Pro/ENGINEER

| pfcWindow.Getld() window

Superseded Methods and Properties

The following table lists the superseded methods and propertiesin this release.

Superseded Method or Property New Method or Property

CCpfcPlotlnstructions.Create()

| pfcPlotl nstructions.PlotterName

| pfcPlotl nstructions.OutputQuality
| pfcPlotlnstructions.UserScale

| pfcPl otl nstructions.PenSlew

| pfcPl otl nstructions.PenV el ocity X CCpfcPrinterlnstructions.Create()

| pfcPlotl nstructions.PenV el ocity Y | pfcPrinterI nstructions.PrinterOption
| pfcPlotl nstructions.SegmentedOutput | |pfcPrinterlnstructions.

PlacementOption

| pfcPlotl nstructions.L abel Plot
| pfcPrinterl nstructions.M odel Option

| pfcPlotl nstructions. SeparatePl otFiles
| pfcPrinterInstructions.Windowld

| pfcPlotl nstructions.PaperSize

| pfcPlotl nstructions.
PageRangeChoice

| pfcPl otl nstructions.Paper SizeX
| pfcPlotl nstructions.FirstPage

| pfcPlotInstructions.L astPage

Miscellaneous Technical Changes

The following changesin Pro/ENGINEER Wildfire 5.0 can affect functional
behavior in VB API. PTC does not anticipate that these changes cause critical
issues with existing VB API applications.

3D Import Formats

The enumerated type Epf cNewibdel | nport Type now contains new 3D import

formats. The VB API method | pfcBaseSession.l mportNewM odel () supports the
following new import formats:

EpfclMPORT _NEW_CATIA_PART
EpfclMPORT _NEW_UG
EpfclMPORT _NEW_PRODUCTVIEW
EpfclMPORT _NEW_CATIA_CGR
EpfclMPORT_NEW_JT

O O O O O

The enumerated type Epf cl nt f Type also contains new 3D feature import formats.

The VB API method pfcSolid.Createl mportFeat() supports the following new
import formats:

EpfcINTF_ICEM
EpfcINTF_ACIS
EpfcINTF_DXF
EpfcINTF_CDRS
EpfcINTF_STL
EpfcINTF_VRML
EpfcINTF_PARASOLID

O O O O O O O

EpfcINTF_Al
EpfcINTF_CATIA_PART
EpfcINTF_UG
EpfcINTF_PRODUCTVIEW
EpfcINTF_CATIA_CGR
EpfcINTF_JT

O O O O O O

Datum Features Properties

VB API now provides read access to the properties of Datum features. The table
below lists the Datum features supported and the new modules in which their
attributes and the corresponding methods and properties for reading have been

defined:

Datum Feature VB APl Module
Datum Plane feature pf cDat unPl aneFeat
Datum Axis feature pf cDat umAxi sFeat
Datum Point feature pf cDat unPoi nt Feat
fCec;?L::iénate System pf cCoor dSysFeat

Export Formats

New export formats have been added to the enumerated type Epf cExpor t Type.

The following table lists the new export formats and the new instructions interface
added for each format:

Export For mat Interface

EpfcEXPORT_MEDUSA | pf cMedusaExport | nstructions

EpfcEXPORT_CATIA_PART | pf cCati aPart 3DExport | nstructions

EpfcEXPORT_CATIA PRODUCT || pf cCati aProduct 3DExport | nstructions

EpfcEXPORT_CATIA_CGR | pf cCat i aCGR3DEXxport | nstructions
EpfcEXPORT _JT | pf cJT3DEXport | nstructions
EpfcEXPORT_PARASOLID | pf cPar aSol i d3DExport | nstructions
EpfcEXPORT_UG | pf cUG3Dexport | nstructions
EpfcEXPORT_PDF | pf cPDFExport | nstructions

Export to PDF and U3D

VB API now supports the export of Pro/ENGINEER drawings and solid modelsto
PDF and U3D formats. A drawing can be exported as a 2D raster image embedded
in a PDF file. The 3D models can be exported in the following ways:

o AsaU3D model embedded in a one-page PDF file
o As 2D raster images representing saved views embedded in pages of a PDF file
o Asastandalone U3D file

A new interface | pf cPDFExport | nst ruct i ons containing all the instructions for

export to PDF has been added. New PDF option types have aso been defined in the
enumerated type Epf cPDFOpt i onType.

ProductView Export Formats

The VB APl method pfcM odel .Export() now supports export to any one of the

ProductView formats listed in the next table. These formats have been defined in a
new enumerated type Epf cPr oduct Vi ewFor mat .

ProductView Format Type Constant
PVS EpfcPV_FORMAT_PVS
ED EpfcPV_FORMAT_ED
EDZ EpfcPV_FORMAT_EDZ
PVZ EpfcPV_FORMAT_PVZ

The attribute PVEXxportOptions has been added to the existing class
| pf cProduct Vi ewExport | nstructi ons. The valuestaken by this attribute are

given by the new class| pf cPr oduct Vi ewExport Opt i ons. Thisclass contains

the attribute PVFormat, which can be set to any one of the ProductView formats
listed above.

New Types for IpfcBaseSession.ListFiles()

Starting with Pro/ENGINEER Wildfire 5.0 M040, the method | pfcBaseSession.
ListFiles() has been enhanced to return instance objects when accessing Windchill
workspaces or folders. A PDM location (for workspace or commonspace) must be
passed as the directory path. The following new types have been added under the
enumerated type Epf cFi | eLi st Opt :

o EpfcFILE_LIST_ALL_INST--Same asthe EpfcFILE_LIST_ALL option. It
returns instances only for PDM locations.

o EpfcFILE_LIST_LATEST_INST--Same asthe EpfcFILE_LIST_LATEST option.
It returnsinstances only for PDM locations.

Obsolete Data Exchange Formats

The following data exchange formats and the corresponding type constants are no

longer supported:

Data Exchange For mat Type Constant

EpfcCADAM_CPTR_FILE

EpfcCADAM_DIRECT_FILE

CADAM
EpfcCADAM_FILE
EpfclMPORT 2D _CADAM
PDGS EpfcEXPORT_PDGS
EpfcEXPORT_CATIA
CATIA EpfcINTF_CATIA

EpfcMPORT_NEW_CATIA

Sample Applications

This section lists the sample applications provided with the VB API.,
Topic

Installing the VB API
Sample Applications

Installing the VB API

The VB API isavailable on the sasme CD as Pro/ENGINEER. When Pro/
ENGINEER isinstalled using PTC.SetUp, one of the optional componentsis"API
Tool ki t s". Thisincludes Pro/TOOLKIT, JLink, Pro/Web.Link, and Visual Basic
API.

If you select Visual Basic API, adirectory called vbapi is created under the Pro/
ENGINEER loadpoint and the VB API isautomatically installed in this directory.
This directory contains all the libraries, example applications, and documentation
specificto the VB API.

Sample Applications

The VB API sample applications are available in the directories vbapi _exanpl es
and vbapi _appl s under the root directory vbapi .

VBAPIExamples
L ocation Main Classes
vbapi / f or mMConnect i on and
vbapi _exanpl es f or mExanpl es

Thevbapi _exanpl es directory isacollection of all the VB.NET example source
filespresent in the VB API User's Guide. All the example source files are also
available along with aVB.NET solution called VB APl Exanpl es. sl n and a
project file called VB APl Exanpl es. vbpr oj asasingle VBAPI Exanpl es. zi p
filein the same directory.

Set up and run the examples using the following procedure:

1. Setthe PRO_COMM_MSG EXE environment variable to the full path of
the executable pro_comm_msg.exe for your application to communicate
with Pro/ENGINEER. Typically, the path to the executable is [Pro/E
loadpoint]/[machine type]/obj/pro_comm_msg.exe, where machine typeis
1486 _nt for 32-bit Windows and x86_win64 for 64-bit Windows
installations.

2. Register the COM server by running thevb_api _r egi st er. bat file
located at [Pr o/ E| oadpoi nt]/ bi n.

3. Unzip the VBAPI Exanpl es. zi p filein alocal folder on your machine and
open the VB APl Exanpl es. sl n solution in Microsoft Visua Studio.

4. Set the COM reference for your project to Pro/E VB API TypelLibrary
for Pro/E Wildfire 4.0.

5. Build the solution and execute the VB APl Exanpl es. exe created in your
local folder. The VB API Examples - Connection form as shown in the
following figure is loaded.

L% VB API Examples - Connection

Pio/EMGIMEER E xecutable Path

Prio/EMGINEER Working Directomn

Asynchnonous Mode Essmples

| Batch Mods | Run ProfE in Batch Made

| Full Azyrc | Run ProfE in Full Asynchronous Mode

Prio/EMGIMEER Session

| Shat | Start a new Pro/E Sezsion

| Connect | Connect to an exasting PralE Session

6. Click Start to start anew Pro/ENGINEER session in the smple
asynchronous mode. Y ou must specify the Pro/ENGINEER working
directory and executable path before attempting to start a new session. Y ou
can also connect to an existing session in the simple asynchronous mode by
clicking Connect. Click Batch Modeto start anew Pro/ENGINEER
session in the batch mode, or click Full Async to start anew Pro/
ENGINEER session in the full asynchronous mode. Refer to the 'VB AP

Fundamentals.Controlling Pro/ENGINEER' chapter for more information
on the modes of communication.

7. Once you are connected to a Pro/ENGINEER session, the VB API
Examplesform isloaded. Y ou can execute all the examples available in the
vbapi _exanpl es directory from thisform.

Parameters and Dimensions

L ocation Main Class

vbapi / vbapi _appl s/

For nPD
vbpar am

The parameters and dimensions example is an asynchronous mode VB.NET
application that alows you to access and modify the parameters and dimensions of
aPro/ENGINEER model. All the VB source files for this application are available
along with aVB.NET solution called Par anet er AndDi nensi on. sl nand a
project file called Par anet er AndDi nensi on. vbpr oj asasingle VBPar am zi p
filein the vbpar amdirectory.

Set up and run this application using the following procedure:

1. Setthe PRO_COMM_MSG EXE environment variable to the full path of
the executable pro_comm_msg.exe for your application to communicate
with Pro/ENGINEER. Typicaly, the path to the executable is [Pro/E
|oadpoint]/[machine type]/obj/pro_comm_msg.exe, where machine _typeis
1486 _nt for 32-bit Windows and x86_win64 for 64-bit Windows
installations.

2. Register the COM server by running thevb_api _regi st er. bat file
located at [Pr o/ E| oadpoi nt]/ bi n.

3. Unzip the vBPar am zi p filein alocal folder on your machine and open the
Par amet er AndDi nensi on. sl n solution in Microsoft Visual Studio.

4. Set the COM reference for your project to Pro/E VB API TypelLibrary
for Pro/E Wildfire 4.0.

5. Build the solution and execute the Par anet er AndDi nensi on. exe created
in your local folder. The Parameters and Dimensions form is loaded.

6. Start Pro/ENGINEER and open a PART model containing parameters and
dimensions.

7. Click the Connect button in the form to connect to the active Pro/
ENGINEER session in the simple asynchronous mode. Click the Add
button to connect in the full asynchronous mode, wherein anew PDMenu
menu gets added to the menubar in the Pro/ENGINEER user interface.

Y ou can perform the same set of operations on parameters and dimensions
from the Par ameter s and Dimensions form in the simple asynchronous
mode and from the PDM enu menu in the full asynchronous mode.

8. Click Disconnect to disconnect from the current Pro/ENGINEER session.

Y ou can perform the following operations on parameters from the Par ameter s and
Dimensions form:

Retrieve adl the parameters of a PART model in the current Pro/ENGINEER
session inside the parameter table in the Parameters and Dimensions form.
Modify the unit, value, designated status, and description, except name and type
for each parameter.

Delete a parameter and all the values associated with it.

Save the updated list of parameters back in the model.

Save the list of parameters retrieved from the model in an XML file, or read the
parameters from a previously saved XML filein the form.

Y ou can perform the following operations on dimensions from the Par ameter s and
Dimensions form:

Retrieve all the dimensions of a PART model in the current Pro/ENGINEER
session inside the dimensions table in the Parameters and Dimensions form.
Modify the name, nominal value, tolerance type, tolerance value 1, and tolerance
value 2, except ID and type for each dimension.

Save the updated list of dimensions back in the model.

Savethelist of dimensions retrieved from the model in an XML file or read the
dimensions from a previously saved XML file in the form.

The Parameter s and Dimensions form containing the parameters retrieved from a
PART model is shown in the following figure.

¥ Parameters And Dimensions

Parameter Dimensions

Iodel
Fatrieve Retneve Parameter Save Parameters to
from current Model current Modsl
ML Fi
Path to XkL File

Fead Parameter from Save Parameters to XhL
[_Peas R P

Buto Delete F s w
MAME TYPE UNIT VALUE DESIS . DESCRIPTION
STATUS

k DESCRIPTION B w | Mo Links Thee %
MODELED _BY | Sinirg W Mo Uit T s w
FTC_COMMO... | 5tng |% Wolnkz |p_mdichk_tk_1.. Fale
YERSION Integer % MoUnk: |1 Falze &
F_FC2_INFO Irdeger % Mo Unpis 1] False
P_FLCZ2_PAR&AM | Irteger % Mo Uniks 0 Falze
F_FC2_LAYER | Integer |% MoUrtz |0 Falze W
P_FC2_FEAT Irdeges % Mo lnis 1] Fals=
P_FCZ2_RELAT | Imteger |% Mo lUnks 0 Fake
F_FC2_DATUM Feal ¥ MoUntz |0 Falze w

4 »

v

Stalus

Parameter information obtained from Model P_MDLCHE_TE_1

l Add I Add Imipor | Export functionality to ProlEnginesr Menu

[Dizeonnect

Digital Rights Management

This section describes the implications of DRM on the VB API applications.
Topic

| ntroduction
Implications of DRM on the VB API
Additional DRM Implications

Introduction

Digital Rights Management (DRM) helps to control access to your intellectual
property. Intellectual property could be sensitive design and engineering
information that you have stored within Pro/ENGINEER parts, assemblies, or
drawings. Y ou can control access by applying policies to these Pro/ENGINEER
objects. Such objects remain protected by the policies even after they are
distributed or downloaded. Pro/ENGINEER objects for which you have applied
policies are called DRM-protected objects. For more information on the use of
DRM in Pro/ENGINEER Wildfire 4.0, refer to the DRM online help.

The following sections describe how the VB API applications deal with DRM-
protected objects.

Implications of DRM on the VB API

Any VB API application accessing DRM-protected objects can run only in
interactive Pro/ENGINEER sessions having COPY permissions. Asthe VB AP
applications can extract content from models into an unprotected format, the VB
API applications will not run in a Pro/ENGINEER session lacking COPY
permission.

If the user tries to open amodel lacking the COPY permission into a session with a
VB API application running, Pro/ENGINEER prompts the user to spawn a new
session. Also, new VB API applications will not be permitted to start when the Pro/
ENGINEER session lacks COPY permission.

If aVB API application tries to open amodel lacking COPY permission from an
interactive Pro/ENGINEER session, the application throws the pfcExceptions.
XToolkitNoPer mission exception.

When aVB API application tries to open a protected model from a non-interactive
or batch mode application, the session cannot prompt for DRM authentication,
instead the application throws the pfcExceptions. X ToolkitAuthenticationFailure
exception.

Exception Types

Some VB APl methods require specific permissionsin order to operate on a DRM-
protected object. If these methods cannot proceed due to DRM restrictions, the
following exceptions are thrown:

o pfcExceptions. X ToolkitNoPermission--Thrown if the method cannot proceed due
to lack of needed permissions.

o pfcExceptions. X ToolkitAuthenticationFailure--Thrown if the object cannot be
opened because the policy server could not be contacted or if the user was unable
to interactively login to the server.

o pfcExceptions. X ToolkitUserAbort--Thrown if the object cannot be operated upon
because the user cancelled the action at some point.

The following table lists the methods along with the permission required and
implications of operating on DRM-protected objects.

Per mission

Required I mplications

M ethods

| pfcBaseSession.
RetrieveA ssemSimpRep()

| pfcBaseSession.
CreateDrawingFromTemplate()
| pfcBaseSession.
RetrieveGraphicsSimpRep()

o If file has OPEN and COPY
| pfcBaseSession. permissions, model opens
RetrieveGeomSimpRep() OPEN after authentication.

o Throws the pfcExceptions.
| pfcBaseSession.RetrieveModel () XToolkitNoPermission

exception otherwise.
| pfcBaseSession.
RetrieveM odel WithOpts()
| pfcBaseSession.
RetrievePartSimpRep()
| pfcBaseSession.
RetrieveSymbolicSimpRep()

o Fileis saved with the
| pfcM odel.Rename() OPEN current policy to disk if it

has COPY permission.

o Fileis saved with the
current policy to disk if it
has SAVE and COPY

| pfcModel .Backup() permissions.
SAVE o Throws the pfcExceptions.

|pfcModel.Copy()

XToolkitNoPermission
exception if model has
COPY permission, but lacks
SAVE permission.

o Fileis saved with the
current policy to disk if it
has SAVE and COPY
permissions.

o Throws the pfcExceptions.
XToolkitNoPermission
exception if model has

IpfcM odel.Save() SAVE COPY permission, but lacks
SAVE permission.

o Throws the pfcExceptions.
XToolkitNoPermission
exception if the assembly
file has models with COPY
permission, but lacking
SAVE permission.

| pfcM odel .Export() for
Plotlnstructions

o Drawing fileis printed if it

| pfcM odel .Export() for has PRINT permission.
ProductViewExportlnstructions PRINT o Throws the pfcExceptions.
(only if the input model isa XToolkitNoPermission
drawing) exception if drawing file

lacks PRINT permission.

| pfcBaseSession.
ExportCurrentRasterl mage()

Copy Permission to Interactively Open Models

When the user tries to open protected content lacking COPY permission through
the Pro/ENGINEER user interface with a VB API application running in the same
session:

1. Pro/ENGINEER checks for the authentication credentials through the user
interface, if they are not already established.

2. If the user has permission to open the file, Pro/ENGINEER checksiif the
permission level includes COPY. If the level includes COPY/, Pro/
ENGINEER opensthefile.

3. If COPY permission is not included, the following message is displayed:

CONFIRMATION

<P You do not have COPY permission For this DRM prokected content, and therefore

H woll can nok access ProfTOOLKIT applications. & new session of Pro/ERNGIMEER.

H{/ will be skarked without the ProfTOOLKIT applications, Proceed ¢

[84] [Cancel]

4. If the user clicks Cancdl, the file is not opened in the current Pro/
ENGINEER session and no new session is spawned.

5. If the user clicks OK, an additional session of Pro/ENGINEER is spawned
which does not permit any VB API application. VB APl applications set to
automatically start by Pro/ENGINEER will not be started. Asynchronous
applications will be unable to connect to this session.

6. The new session of Pro/ENGINEER is automatically authenticated with the
same session credentials as were used in the previous session.

7. The model that Pro/ENGINEER was trying to load in the previous session
isloaded in this session.

8. Other models already open in the previous session will not be loaded in the
new session.

9. Session settings from the previous session will not be carried into the new
session.

10. The new session will be granted the licenses currently used by the previous
session. This means that the next time the user tries to do something in the
previous session, Pro/ENGINEER must obtain a new license from the
license server. If the license is not available, the action will be blocked with

an appropriate message.

Additional DRM Implications

o The method IpfcModel.ChecklsSaveAllowed() returns false if prevented from save

by DRM restrictions.

The method | pfcBaseSession.CopyFileToWS() is designed to fail and throw the
pfcExceptions. X ToolkitNoPermission exception if passed a DRM-protected Pro/
ENGINEER mode file.

The method | pfcBaseSession.ImportToCurrentWS() reports a conflict in its output
text file and does not copy a DRM -protected Pro/ENGINEER model file to the
Workspace.

While erasing an active Pro/ENGINEER model with DRM restrictions, the
methods I pfcModel .Erase() and | pfcM odel .EraseWithDependencies() do not clear
the data in the memory until the control returnsto Pro/ENGINEER from the Pro/
TOOLKIT application. Thus, the Pro/ENGINEER session permissions may also
not be cleared immediately after these methods return.

Geometry Traversal

This section illustrates the rel ationships between faces, contours, and edges.
Examples E-1 through E-5 show some sample parts and list the information about
their surfaces, faces, contours, and edges.

Topic

Example 1
Example 2
Example 3

Example 4
Example 5

Example 1

..-.__ . .E'1 EE .-..._ T

E4 o) Face B
A //

—
Faog A ED

This part has 6 faces.

o Face A has 1 contour and 4 edges.
o Edge E2 isthe intersection of faces A and B.
o Edge E2 isacomponent of contours C1 and C2.

Example 2
Ei
T s
Face A E2
E4
=
E4
Face A has 2 contours and 6 edges.
Example 3
Faca B
Face C
4 Protrusion featurs
Face A-——_________h

This part was extruded from a rectangular cross section. The feature on the top was
added later as an extruded protrusion in the shape of a semicircle.

o Face A has 1 contour and 6 edges.
1 Face B has 2 contours and 8 edges.
o Face C has 1 contour and 4 edges.

Example 4
Face C
Facs B \
- o Face D
Face A—-___‘_______ | L
e F____f Base pan
\\.1 Mo features added

This part was extruded from a cross section identical to Face A. In the Sketcher, the
top boundary was sketched with two lines and an arc. The sketch was then extruded
to form the base part, as shown.

Face A has 1 contour and 6 edges.
Face B has 1 contour and 4 edges.
Face C has 1 contour and 4 edges.
Face D has 1 contour and 4 edges.

O O O O

Example 5

Face B

This part was extruded from arectangular cross section. The slot and hole features
were added | ater.

o Face A has 1 contour and 8 edges.
o Face B has 3 contours and 10 edges.

Geometry Representations

This section describes the geometry representations of the data used by the VB API.

Topic

Surface Parameterization

Edge and Curve Parameterization

Surface Parameterization

O

O

O

0

O O O (] O O O O

A surface in Pro/ENGINEER contains data that describes the boundary of the surface,
and a pointer to the primitive surface on which it lies. The primitive surface is a three-
dimensional geometric surface parameterized by two variables (u and v). The surface
boundary consists of closed loops (contours) of edges. Each edge is attached to two
surfaces, and each edge contains the u and v values of the portion of the boundary that it
forms for both surfaces. Surface boundaries are traversed clockwise around the outside of
asurface, so an edge has a direction in each surface with respect to the direction of
traversal.

This section describes the surface parameterization. The surfaces are listed in order of
complexity. For ease of use, the alphabetical listing of the data structuresis as follows:

Cone

Coons Patch

Cylinder

Cylindrical Spline Surface
Fillet Surface

General Surface of Revolution
NURBS Surface

Plane

Ruled Surface

Spline Surface

Tabulated Cylinder

Torus

Plane

a3
|f&2

a

The plane entity consists of two perpendicular unit vectors (el and €2), the normal to the
plane (e3), and the origin of the plane.

Data Format:

elf 3] Unit vector, intheudirection
e2[3] Unit vector, inthevdirection
e3[3] Nor mal tot he pl ane

origin[3] Oiginof theplane

Parameterization:
(x, Yy, z)=u*el+v*¥e2+origin

Cylinder

AT

) -

]

a3
as
TN
\d/

The generating curve of acylinder isaline, paralld to the axis, at adistance R from the
axis. Theradia distance of apoint is constant, and the height of the point isv.

Data Format:

el[3] Unit vector, intheudirection
e2[3] Unit vector, inthevdirection

e3[3] Normal tothe pl ane

origin[3] Oiginof thecylinder

radi us Radi us of the cylinder

Parameterization:

(x,y, z)=radius*[cos(u) *el+sin(u) *e2] +
v*e3+origin

Engineering Notes:

For the cylinder, cone, torus, and general surface of revolution, alocal coordinate system
Is used that consists of three orthogonal unit vectors (€1, e2, and e3) and an origin. The
curve liesin the plane of el and €3, and isrotated in the direction from el to €2. Theu
surface parameter determines the angle of rotation, and the v parameter determines the
position of the point on the generating curve.

Cone

el

ol

al

The generating curve of aconeisaline at an angle aphato the axis of revolution that
intersects the axis at the origin. The v parameter is the height of the point along the axis,
and the radial distance of the pointisv * tan(alpha).

Data Format:

el[3] Unit vector, intheudirection

e2[3] Unit vector, inthevdirection

e3[3] Normal tothe pl ane

origin[3] Oiginof thecone

al pha Angl e betweent he axi s of the cone
andt he generatingline

Parameterization:
(x,y, z) =v*tan(al pha) *[cos(u) *el+
sin(u) * e2] + v * e3+ origin

Torus

The generating curve of atorusisan arc of radius R2 with its center at a distance R1 from
the origin. The starting point of the generating arc is located at adistance R1 + R2 from
the origin, in the direction of the first vector of the local coordinate system. The radial

distance of apoint onthetorusisR1 + R2 * cos(v), and the height of the point along the
axis of revolutionisR2 * sin(v).

Data Format:

el[3] Unit vector, intheudirection
e2[3] Unit vector, inthevdirection
e3[3] Normal tothe pl ane

origin[3] Oiginof thetorus

radi usl Di stancefromthecenter of the

generatingarctotheaxis of
revol ution

radi us2 Radi us of thegeneratingarc

Parameterization:

(x,y,2z)=(RL+R2* cos(v)) *[cos(u) *el+
sin(u) *e2] +R2*sin(v) *e3+
origin

General Surface of Revolution

ad
i a?
]
ai

clv)

A general surface of revolution is created by rotating a curve entity, usually a spline,
around an axis. The curveis evaluated at the normalized parameter v, and the resulting
point is rotated around the axis through an angle u. The surface of revolution data
structure consists of alocal coordinate system and a curve structure.

Data Format:

el[3] Unit vector, intheudirection
e2[3] Unit vector, inthevdirection
e3[3] Nor mal tot he pl ane

origin[3] Oiginof thesurfaceof revol ution
curve Ceneratingcurve

Parameterization:

curve(v) =(cl1, c2, c3) isapoint onthecurve.
(X, Yy, z)=[cl*cos(u) -c2*sin(u)] *el+

[cl*sin(u) +c2* cos(u)] *e2+
c3*e3+origin

Ruled Surface

a3 a2

c2

cl

al

A ruled surface is the surface generated by interpolating linearly between corresponding
points of two curve entities. The u coordinate is the normalized parameter at which both
curves are evaluated, and the v coordinate is the linear parameter between the two points.
The curves are not defined in the local coordinate system of the part, so the resulting
point must be transformed by the local coordinate system of the surface.

Data Format:

el[3] Unit vector, intheudirection
e2[3] Unit vector, inthevdirection
e3[3] Normal tot he pl ane

origin[3] Originof therul edsurface
curve_1 First generatingcurve
curve_2 Secondgeneratingcurve

Parameterization:

(x'",y",z")isthepoint inlocal coordi nates.
(x*,y,z")=(1-v)*Cl(u) +v* C2(u)
(X, Yy, z)=x"*el+y" *e2+z' *e3+origin

Tabulated Cylinder

A tabulated cylinder is calculated by projecting a curve linearly through space. The curve
Is evaluated at the u parameter, and the z coordinate is offset by the v parameter. The
resulting point is expressed in local coordinates and must be transformed by the local
coordinate system to be expressed in part coordinates.

Data Format:

el[3] Unit vector, intheudirection
e2[3] Unit vector, inthevdirection
e3[3] Nor mal tothe pl ane

origin[3] Oiginof thetabul atedcylinder
curve Generatingcurve

Parameterization:
(x',y",z")isthepointinlocal coordinates.
(x*,y",z") =C(u) +(0, 0, v)

(x,y, z)=x"*el+y" *e2+z" *e3d3+origin

Coons Patch

up_curve Coons Patch “7
u= "‘"‘--I.v-—r“" = /™~ Ra
= =1
U_}- HL ' n Torus
W Gurva
f’j TR ,J'II f f_curva Coons Patch
ﬁ;}ﬂﬂ” / A R1
—
u=0 : u=1
v=U v=0 -
dn_curve Rz’)

A Coons patch is used to blend surfaces together. For example, you would use a Coons
patch at a corner where three fillets (each of a different radius) meet.

Data Format:

| e _curve u =0 boundary
ri_curve u=1boundary
dn_curve v =0 boundary
up_curve v =1 boundary

point_matrix[2][2] Corner points
uvder _matrix[2][2] Corner m xedderivatives

Fillet Surface

LU= m2
’lf Civ) T=R

Li=0

Flv)

A fillet surface is found where around or afillet is placed on a curved edge, or on an

edge with non-constant arc radii. On a straight edge, a cylinder would be used to
represent thefillet.

Data Format:

pnt _spline P(v) splinerunningal ongtheu=0boundary
ctr_spline C(v) splinealongthecentersof the
fillet arcs

tan_spline T(v) splineof unit tangentstothe
axisof thefillet arcs

Parameterization:

R(v) =P(v) - C(v)
(x,y,z) =C(v) +R(v) *cos(u) +T(v) XR(v) *
sin(u)

Spline Surface

¥
v_par_arfiw-1] -~ L

i I\Tﬁj Jn}"‘*-——fjfﬂ']m.m

.-'r"' ‘-\—_‘_‘_‘1 | I - {JI
- f Cwij jr _,_.--"
.Z’/?i ;*{m’.’i / 1}_

, I l:uu I+1
u_par_arfiMu-1]

V_par_amfg] - I

u_par_ar[d]

The parametric spline surface is a nonuniform bicubic spline surface that passes through
agrid with tangent vectors given at each point. The grid is curvilinear in uv space. Use
thisfor bicubic blending between corner points.

Data Format:

u par_arr[] Point paraneters, intheu
di rection, of size Nu

v_par_arr[] Point paraneters, inthev
di rection, of sizeNv

point _arr[][3] Array of interpol ant poi nts, of
Ssi ze Nu x Nv

u tan arr[][3] Array of utangent vectors
at i nterpol ant poi nts, of size
Nu x Nv

v_tan_arr[][3] Arrayof vtangent vectors at
i nt er pol ant poi nts, of size
Nu x Nv

uvder _arr[][3] Array of m xedderivatives at
i nt er pol ant poi nts, of size
Nu x Nv

Engineering Notes:

o Allowsfor aunique 3x3 polynomial around every patch.
o Thereis second order continuity across patch boundaries.
o The point and tangent vectors represent the ordering of an array of [i][j], where u varies

with i, and v varies with j. In walking through the point_arr[][3], you will find that the
innermost variable representing v(j) variesfirst.

NURBS Surface

The NURBS surface is defined by basis functions (in u and v), expandable arrays of
knots, weights, and control points.

Cubic NURBS Surface

Data Format:

deg[2] Degr ee of t he basi s
functions (i nuandv)

u_par_arrj] Array of knotsonthe
paranmeter lineu

v_par_arr[] Array of knotsonthe
paraneter | inev

wght s] Array of wei ghtsfor
rati onal NURBS, ot herw se
NUL L

c_point_arr[][3] Arrayof control points

Definition:

Ml M2

Y 3O E B lux B v

v o= 1=01 =0
Riu. vi = 5=

Y 3wy By lulx By iv)
i=03=4

k =degreeinu

| =degreeinv

N1 = (nunber of knotsinu) - (degreeinu)- 2
N2 = (nunber of knotsinv) - (degreeinv)- 2
Bj k=basisfunctioninu

Bj, | =basisfunctioninyv
W | =wei ghts
Ci,j =control points(x,y,z)*wi,j

Engineering Notes:
Theweightsand c_points_arr arrays represent matrices of size wghtg N1+1] [N2+1] and

c_points_arr [N1+1] [N2+1]. Elements of the matrices are packed into arrays in row-
major order.

Cylindrical Spline Surface

The cylindrical spline surface is a nonuniform bicubic spline surface that passes through
agrid with tangent vectors given at each point. The grid is curvilinear in modeling space.

cone surface, 5
cyhndrical spline
surface, 5,

Data Format:

el[3] x' vector of thel ocal coordi nate
system

e2[3] y' vector of thel ocal coordinate
system

e3[3] z' vector of thel ocal coordinate

system whichcorrespondstothe
axi s of revol utionof thesurface
origin[3] Originof thelocal coordinate
system
splsrf Splinesurfacedatastructure

The spline surface data structure contains the following fields:

u_par_arrj] Poi nt paraneters, inthe
udirection, of sizeNu
v_par_arr|] Poi nt paraneters, inthe

vdirection, of sizeNv
point _arr[]][3] Array of points, in
cylindrical coordinates,
of sizeNux Nv. The array
conponents are as f ol | ows:
point _arr[i][0] - Radi us
point_arr[i][1] - Theta
point _arr[i][2] - Z
utan_ arr[][3] Array of utangent vectors.
i ncylindrical coordinates,
of si ze Nux Nv
v tan_arr[][3] Array of vtangent vectors,
i ncylindrical coordinates,
of si ze Nux Nv
uvder __arr[][3] Array of m xed derivati ves,
i ncylindrical coordinates,
of si ze Nux Nv

Engineering Notes:

If the surface is represented in cylindrical coordinates (r, theta, z), the local coordinate
system values (X, ', Z) are interpreted as follows:

r cos (theta)
r sin(theta)
z

Xl
yl
Z 1
A cylindrical spline surface can be obtained, for example, by creating a smooth rotational

blend (shown in the figure).

In some cases, you can replace a cylindrical spline surface with a surface such as a plane,
cylinder, or cone. For example, in the figure, the cylindrical spline surface S1 was

replaced with a cone
(rl=r2,r3=r4,andrl # r3).

If areplacement cannot be done (such as for the surface 0 in the figure (ra # rbor rc
rd)), leave it asacylindrical spline surface representation.

Edge and Curve Parameterization

This parameterization represents edges (line, arc, and spline) aswell as the curves (line,
arc, spline, and NURBS) within the surfaces.

This section describes edges and curves, arranged in order of complexity. For ease of use,
the alphabetical listing is asfollows:

Arc
Line
NURBS
Spline

O O O O

Line
Data Format:
endl[3] Startingpoint of theline
end2[3] Endi ng poi nt of theline
Parameterization:

(x,y,2z)=(1-1t) *endl+t * end2

Arc

The arc entity is defined by a plane in which the arc lies. The arc is centered at the origin,
and is parameterized by the angle of rotation from the first plane unit vector in the
direction of the second plane vector. The start and end angle parameters of the arc and the
radius are also given. The direction of the arc is counterclockwise if the start angleisless
than the end angle, otherwiseit is clockwise.

Data Format:

vector1l[3] First vector that definesthe

pl ane of thearc

vector2[3] Secondvector that definesthe
pl ane of thearc

origin[3] Oiginthat definestheplane

of thearc

start_angl e Angul ar paraneter of thestarting
poi nt

end_angl e Angul ar paranet er of t he endi ng
poi nt

radi us Radi us of t he arc.

Parameterization:

t' (theunnormalizedparaneter) is
(1-t) *start_angle+t * end_angl e
(x,y,z)=radius*[cos(t') *vectorl+

sin(t') *vector2] +origin

Spline

The spline curve entity is a nonuniform cubic spline, defined by a series of three-
dimensional points, tangent vectors at each point, and an array of unnormalized spline
parameters at each point.

Data Format:

par_arr[] Arrayof splineparaneters

(t) at each poi nt.
pnt _arr[][3] Arrayof splineinterpol ant points
tan_arr[][3] Array of tangent vectors at

each poi nt

Parameterization:

X, Y, and z are a series of unique cubic functions, one per segment, fully determined by
the starting and ending points, and tangents of each segment.

Let p_max be the parameter of the last spline point. Then, t', the unnormalized parameter,
ISt* p_max.

L ocate the ith spline segment such that:

par_arr[i] <t' <par_arr[i+1]
(Ift<Oort>+1, usethefirst or last segment.)

tO=(t"' - par_arr[i]) [/ (par_arr[i+1l] - par_arr[i])
tl=(par_arr[i+l1l] -t")/ (par_arr[i+1] - par_arr[i])

NURBS

The NURBS (nonuniform rational B-spline) curve is defined by expandable arrays of
knots, weights, and control points.

Co C4

Cubic MURBS Curve

Data Format:

degree Degr ee of t he basi s functi on
par ans| | Array of knots

wei ghts[] Arrayof weightsfor rational
NURBS, ot herw se NULL.

c_pnts[][3] Arrayof control points

Definition:

ZCI * B, It}

Rit) = L=0

Z--I-' B, It

i=0

k = degree of basis function
N = (number of knots) - (degree) - 2

w; = weights
C; = control points (X, Y, z) * W;
Bj k = basisfunctions

By this equation, the number of control points equals N+1.
References:

Faux, 1.D., M.J. Pratt. Computational Geometry for Design and Manufacture. Ellis
Harwood Publishers, 1983.

Mortenson, M.E. Geometric Modeling. John Wiley & Sons, 1985.

	The VB API User's Guide
	About This Guide
	Overview of the VB API
	VB API Fundamentals:Controlling Pro/ENGINEER
	The VB API Online Browser
	Session Objects
	Selection
	Menus, Commands, and Pop-up Menus
	Models
	Drawings
	Solid
	Windows and Views
	ModelItem
	Features
	Datum Features
	Geometry Evaluation
	Dimensions and Parameters
	Relations
	Assemblies and Components
	Family Tables
	Action Listeners
	Interface
	Simplified Representations
	Task Based Application Libraries
	Graphics
	External Data
	Windchill Connectivity APIs
	Summary of Technical Changes
	Sample Applications
	Digital Rights Management
	Geometry Traversal
	Geometry Representations

