

ThingWorx and Azure IoT Hub

Reference Benchmark
Document Version 1.0.1

September 2020

1

Copyright © 2020 PTC Inc. and/or Its Subsidiary Companies. All Rights Reserved.

User and training guides and related documentation from PTC Inc. and its subsidiary companies (collectively

“PTC”) are subject to the copyright laws of the United States and other countries and are provided under a

license agreement that restricts copying, disclosure, and use of such documentation. PTC hereby grants to

the licensed software user the right to make copies in printed form of this documentation if provided on

software media, but only for internal/personal use and in accordance with the license agreement under

which the applicable software is licensed. Any copy made shall include the PTC copyright notice and any

other proprietary notice provided by PTC. Training materials may not be copied without the express written

consent of PTC. This documentation may not be disclosed, transferred, modified, or reduced to any form,

including electronic media, or transmitted or made publicly available by any means without the prior written

consent of PTC and no authorization is granted to make copies for such purposes.

Information described herein is furnished for general information only, is subject to change without notice,

and should not be construed as a warranty or commitment by PTC. PTC assumes no responsibility or liability

for any errors or inaccuracies that may appear in this document.

The software described in this document is provided under written license agreement, contains valuable

trade secrets and proprietary information, and is protected by the copyright laws of the United States and

other countries. It may not be copied or distributed in any form or medium, disclosed to third parties, or used

in any manner not provided for in the software licenses agreement except with written prior approval from

PTC.

UNAUTHORIZED USE OF SOFTWARE OR ITS DOCUMENTATION CAN RESULT IN CIVIL DAMAGES AND CRIMINAL

PROSECUTION. PTC regards software piracy as the crime it is, and we view offenders accordingly. We do not

tolerate the piracy of PTC software products, and we pursue (both civilly and criminally) those who do so

using all legal means available, including public and private surveillance resources. As part of these efforts,

PTC uses data monitoring and scouring technologies to obtain and transmit data on users of illegal copies of

our software. This data collection is not performed on users of legally licensed software from PTC and its

authorized distributors. If you are using an illegal copy of our software and do not consent to the collection

and transmission of such data (including to the United States), cease using the illegal version, and contact

PTC to obtain a legally licensed copy.

Important Copyright, Trademark, Patent, and Licensing Information: See the About Box, or copyright notice,

of your PTC software.

United States Governments Rights

PTC software products and software documentation are “commercial items” as that term is defined at 48

C.F.R. 2.101. Pursuant to Federal Acquisition Regulation (FAR) 12.212 (a)-(b) (Computer Software) (MAY 2014)

for civilian agencies or the Defense Federal Acquisition Regulation Supplement (DFARS) at 227.7202-1 (a)

(Policy) and 227.7202-3 (a) (Rights in commercial computer software or commercial computer software

documentation) (FEB 2014) for the Department of Defense, PTC software products and software

documentation are provided to the U.S. Government under the PTC commercial license agreement. Use,

duplication or disclosure by the U.S. Government is subject solely to the terms and conditions set forth in the

applicable PTC software license agreement.

PTC Inc., 121 Seaport Boulevard, Boston, MA 02210 USA

2

Document Revision History ... 2

What is a Reference Benchmark? .. 3

Benchmark Scenario Overview... 3

What is Microsoft Azure IoT Hub? .. 3

ThingWorx Azure IoT Hub Connector .. 4

Use-Case Overview ... 4

Edge Load ... 5

User Load ... 7

Additional Data Processing in ThingWorx Foundation ... 7

Implementation Architecture .. 7

Azure IoT Hub Configuration .. 8

Simulator for Devices & Messages .. 9

Simulation Parameters and KPIs .. 10

Soak Test ... 10

Simulation Matrix 1 – Data Ingestion Every 180 seconds.. 11

Simulation Matrix 2 – Data Ingestion Every 90 Seconds ... 12

Simulation Matrix 3 – Data Ingestion Every 45 Seconds ... 13

Simulation Matrix 4 – Data Ingestion of 25 Properties Every 180 Seconds 14

Simulation Matrix 5 – Alerts CPU Utilization .. 15

Recovery from ThingWorx Outage ... 15

Multiple Connection Server.. 16

Analysis and Conclusions.. 16

Document Revision History

Revision Date Version Description of Change

July 2020 1.0 Initial Version

September 2020 1.0.1 Fixed formatting issues

3

What is a Reference Benchmark?

As stated in previous benchmarks, a great way to evaluate how an IOT implementation will

perform is to compare it against a reference, helping to:

• Understand the results and limitations in a known reference scenario

• Identify what differences exist between the implementation and the reference

• Evaluate how those differences change the behavior of the system

The purpose of this document is to provide a known reference scenario that can be used

for these purposes and is targeted at a reader familiar with ThingWorx architecture and

implementations. The third in a series of documents, this furthers the IOT EDC’s goal of

providing a rich catalog of baselines, each which can be used to inform the scalability and

viability of different field implementations.

Benchmark Scenario Overview

The goal of this reference benchmark was to scale test a specific implementation

architecture using generic data ingestion scenarios. The implementation combined

ThingWorx Foundation and ThingWorx Azure IoT Hub Connector v.3.0.0 with the

Microsoft Azure IoT Hub.

The deployment architecture was tested with different edge workload configurations to

record the behavior and scalability limits of this specific architecture as the number of

edge devices or data properties is scaled upwards to increase the amount of data

ingestion.

While adjustments to the deployment architecture and configuration parameters can

typically solve many scale challenges, specific adjustments are intentionally not in

scope for this document. This is not a sizing nor a performance guide. The benchmark

goal is to establish a baseline reference for comparison and initial estimates. Modified

deployment architectures for other use-cases and/or protocols may be documented in

separate reference benchmark documents.

What is Microsoft Azure IoT Hub?

Microsoft Azure IoT Hub is a cloud-hosted solution backend that facilitates secure and

reliable communication between an IoT application such as ThingWorx and the devices

it manages. For more information about Azure IoT Hub, including pricing, see:

https://azure.microsoft.com/en-us/services/iot-hub/

Azure IoT Hub, when used in conjunction with ThingWorx, is an additional device

management layer between the Connection server(s) and remote devices.

The Microsoft Azure IoT Hub offering provides the following basic functions needed for

IoT devices:

https://community.ptc.com/t5/IoT-Tech-Tips/IOT-EDC-Reference-Benchmark-Remote-Monitoring-of-Assets/td-p/641031
https://azure.microsoft.com/en-us/services/iot-hub/

4

• Reliable, bi-directional communication between edge devices and back-end

applications. The Service Level Agreement for IoT Hub is 99.9%.

• Multiple paths for telemetry messages, in addition to ThingWorx, can be

configured.

• Secure device communication, using per-device security credentials and access

control.

• Azure IoT Edge Device and Azure IoT Edge Device Module SDKs for Java, C, .NET

(C#), and Javascript (Node.js). The SDKs support sending messages to and

receiving messages from back-end applications.

• Optional data storage capabilities for incoming telemetry messages.

• Data retention of incoming telemetry messages for up to 7 days.

ThingWorx Azure IoT Hub Connector

The ThingWorx Azure Iot Hub Connector is a specialized implementation of the

ThingWorx Connection Server. It is used to connect ThingWorx Foundation to the Azure

IoT Hub. Edge devices can send and receive information from ThingWorx using the

Azure IoT Hub connected using this connector.

For more information about the ThingWorx Azure IoT Hub Connector v.3.0.0, see:

http://support.ptc.com/help/thingworx_scm_azure/r3.0/en/

Use-Case Overview

A healthy Remote Monitoring of Assets implementation balances parallel workloads of

ingesting edge data, rapid processing of any business logic (checking data conditions

or thresholds to generate alarms and events) and responding to data visualization

requests in user mashups.

In addition to handling constant workloads, the combined system must have enough

capacity in reserve to handle spikes in activity without causing data loss or significant

delays in event processing or user requests. Azure IoT Hub increases the availability,

data retention and overload handling of the data ingestion system. In some cases,

ThingWorx Foundation could have a smaller overall footprint as a result.

In this benchmark PTC checked the reliability and scalability of ingesting data through

the Azure IoT Hub into ThingWorx Azure IoT Hub Connector(s) and ThingWorx

Foundation. The resulting Writes Per Second measurements from various data loads

can be used as a starting point for estimating the initial size of the ThingWorx Foundation

server and ThingWorx Azure IoT Hub Connectors, but such estimates must be further

refined, modeled and tested if extensive business logic and/or data visualization is

required.

http://support.ptc.com/help/thingworx_scm_azure/r3.0/en/

5

The criteria for a “successful” test of data ingestion was arbitrarily lowered to 60%

Average CPU Utilization and 85% Maximum CPU Utilization for ThingWorx Foundation, in

order to allow for additional processing to be applied outside of data ingestion. In most

circumstances, the unused CPU resources would be enough to allow for typical user

loads and/or data processing (subscriptions, alerts, and events).

In addition to benchmark testing of data ingestion through the Azure IoT Hub, further

testing explored additional scenarios, such as load balancing between Azure IoT Hub

and multiple ThingWorx Azure Iot Hub Connectors, downtime and recovery of

ThingWorx components, and throttling of incoming data due to exceeding Azure IoT

Hub subscription limits.

Edge Load

The target edge configuration for this scenario was 60,000 assets, each with 25

changed properties and a 3-minute (180 second) sampling rate (MQTT message rate).

These assets were created and simulated using Azure IoT SDK and ThingWorx RESTful

APIs.

Once the correct implementation architecture was identified for this target edge, a

total of 39 edge configurations were evaluated by varying the number of assets,

properties, transmission frequency and alerts, as indicated in the following tables:

Number of Things
(T)

Properties per Thing
(P)

Frequency
(F)

5,000 50 45 seconds

15,000 100 90 seconds

30,000 200 180 seconds
Table 1: Data Ingestion Input Variations for Matrix 1,2,3

6

Number of Things

(T)

Alerts Properties per Thing

(P)

Frequency

(F)

30,000 *0

*25
*180

seconds

*60,000 5

 10

90,000
0

100,000
Table 2: Alert-based Input Variations for Matrix 4-5

 Note: Asterisk (*) indicates target edge configuration used for deployment sizing

This variance created scenarios where the performance of similar edge data volumes

can be compared to see how performance changes.

For example, five scenarios result in the same expected Writes Per Second (WPS) from

the Edge:

Things
(T)

Properties
(P)

Frequency
(F)

Series Count
(T × P)

Expected WPS
(T × P) ÷ F

15,000 50 45 sec 750 K 16,667

15,000 100 90 sec 1.5 M 16,667

15,000 200 180 sec 3.0 M 16,667

30,000 50 90 sec 1.5 M 16,667

30,000 100 180 sec 3.0 M 16,667
Table 3: Configurations with Similar Expected WPS

All properties designated (25, 50, 100, 200) within each test were changed during each

update period.

Note that the 100 and 200 property cases are extremely large and unlikely to occur in

typical implementations. These were used to stress test the system. Smaller property sets

with shorter update intervals (higher frequency) are more likely in real-world scenarios.

7

User Load

This benchmark did not simulate user load. Depending on future data collected about

customer implementations of these combined systems, PTC may add a user load to

later versions of this benchmark.

In most ThingWorx sizing guide scenarios, PTC simulates a user workload that either views

historical device data for human analysis and/or responds manually to a logic-triggered

alarm. Note that there are many other possible user actions and custom mashups in

ThingWorx; these can have greatly varying data loads and response times. An in-depth

discussion of modeling Data Visualization is featured in the ThingWorx Platform Sizing

Guide(s).

In the preliminary version of this benchmark the primary focus was not on simulating user

activity, but rather on how the Azure IoT Hub’s capabilities modify and/or enhanced

the data ingestion and device management capabilities of ThingWorx. In most typical

remote monitoring scenarios, most of the ThingWorx resource utilization is generated by

data ingestion rather than visualization or business logic.

Additional Data Processing in ThingWorx Foundation

To measure the effect of simple business logic in ThingWorx, basic alerting for 5 and 10

properties was used in several of the 25-property tests to allow for some CPU utilization

comparison versus a pure data ingestion workload. These results are outlined in Matrix 5.

For more information about business logic strategies and optimizations for performance

of the overall system, see the PTC ThingWorx Help Center and/or the ThingWorx SCP

Remote Monitoring of Assets Benchmark.

Implementation Architecture

The following deployment model was used for this simulation, leveraging Microsoft

Azure and based on the size needed for the target edge configuration (60,000 assets,

25 properties per asset, 180 second transmission frequency) and data ingestion rates.

Due to compatibility requirements for the ThingWorx Azure IoT Hub Connector v.3.0.0,

this simulation was performed using ThingWorx Platform version 8.5.4, PostgreSQL 9.5.17

and InfluxDB 1.7.

https://www.ptc.com/en/support/refdoc/ThingWorx_Platform/9.0/ThingWorx%20Platform%209%20Sizing%20Guide
https://www.ptc.com/en/support/refdoc/ThingWorx_Platform/9.0/ThingWorx%20Platform%209%20Sizing%20Guide
https://support.ptc.com/help/thingworx/platform/r9/en/index.html#page/ThingWorx/Help/Getting_Started/ProgrammingForTheIoT.html
https://community.ptc.com/t5/IoT-Tech-Tips/IOT-EDC-Reference-Benchmark-Remote-Monitoring-of-Assets/m-p/641031/thread-id/1484?attachment-id=73780
https://community.ptc.com/t5/IoT-Tech-Tips/IOT-EDC-Reference-Benchmark-Remote-Monitoring-of-Assets/m-p/641031/thread-id/1484?attachment-id=73780

8

Figure 1 - Architecture diagram for this simulation.

Azure IoT Hub Configuration

The benchmark utilized an S2 Standard Tier edition of the Azure IoT Hub. One or more

IoT Hub “units” were allocated as needed in order to accomplish each test based on

the predicted number of messages, size of messages, and number of devices.

In addition to the choice of pricing tier, customers also select the number of partitions

when creating the hub. Values typically range from 4 (default) to 32. In this benchmark,

we selected 8 partitions in order to emulate a typical implementation while maintaining

flexibility, if needed, as the number of devices scaled up. Any failures traced back to

the Azure IoT Hub element would have resulted in recreating the hub using different

partition sizes as needed.

9

Note that the number of partitions cannot be changed after creating an Azure IoT Hub,

but the pricing tier (S1, S2, S3) and number of units can be modified after creation.

For more details, see: https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-scaling

Simulator for Devices & Messages

The simulator written for this benchmark had several primary functions:

• Provision matching devices/things in Azure IoT Hub and ThingWorx Foundation.

The devices were defined with a configurable number of properties of various

types (Boolean, String, Number, Integer) and value ranges.

• Generate MQTT payload of json objects that update a configurable number of

property updates.

• Delete devices from both servers.

• Update device connection SaS tokens when needed.

The simulator controlled the number of connected devices, the number of properties

being updated, the property value ranges, and the sampling rate at which new

payloads occurred. At higher device counts, network limitations required the simulation

to be split between multiple simulators on several hosts to load the system.

Note that there are Demo Applications available and documented in the ThingWorx

Azure IoT Hub Connector Help Center. However, these demo apps were not designed

with controls and provisioning to scale up to the range of values selected for this

benchmark.

https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-scaling

10

Simulation Parameters and KPIs

To check the system performance and reliability, the following KPIs were monitored:

 D2C (hub) Cxn Server Ingestion Processing

Primary

KPIs

Total Messages

Used

Telemetry

Messages Sent

Connection

CPU Utilization

Connection

Memory

Utilization

Value Stream

WPS

InfluxDB CPU

Utilization

Foundation

CPU/Mem

Utilization

Alert Rate

Secondary

KPIs

Connected

Devices

Number of

Throttling Errors

Cxn-to-IoT Log

metrics

Log errors

Value Stream

Queue Size

Alert Queue

Size

The simulations consisted of one-hour executions of each edge configuration.

Soak Test

In addition to the one-hour simulations, a seven-day simulation was conducted to

ensure the architecture remained stable with the target edge configuration (15,000

assets, 200 properties per asset, 180 second transmission frequency).

Figure 2 – Telemetry from 7-day “soak test” of 15,000 asset, 200 property, 180 second frequency simulation.

Note stable queue sizes, data ingestion at expected level, and constant CPU utilization (average 21%).

11

Simulation Matrix 1 – Data Ingestion Every 180 seconds

180s
Frequency (F)

Number of Things (T)

5,000 15,000 30,000

F
re

q
u

e
n

c
y

 (
F)

P
ro

p
e

rt
ie

s
p

e
r

Th
in

g
 (

P
) 5

0

WPS: 1,377

CPU Min/Avg/Max:

5% / 7% / 14%

Memory Avg:

68%

WPS: 4,133

CPU Min/Avg/Max:

5% / 10% / 26%

Memory Avg:

80%

WPS: 8,264

CPU Min/Avg/Max:

5% / 14% / 42%

Memory Avg:

83%

1
0

0

WPS: 2,732

CPU Min/Avg/Max:

5% / 8% / 24%

Memory Avg:

79%

WPS: 8,664

CPU Min/Avg/Max:

5% / 15% / 49%

Memory Avg:

81%

WPS: 16,722

CPU Min/Avg/Max:

5% / 23% / 67%

Memory Avg:

82%

2
0

0

WPS: 5,400

CPU Min/Avg/Max:

5% / 11% / 44%

Memory Avg:

80%

WPS: 16,419

CPU Min/Avg/Max:

5% / 24% / 80%

Memory Avg:

82%

WPS: 32,957

CPU Min/Avg/Max:

5% / 42% / 87%

Memory Avg:

83%

Analysis

The Foundation architecture is oversized for scenarios below 8,700 writes-per-second (in

blue above). A smaller Azure VM size for the platform (D8s_v3) may work, and InfluxDB

may not be needed if

PostgreSQL is resized

to compensate.

Both 16,667 write-per-

second scenarios

completed (in green

above) with peak

CPU utilization still at

80% or below.

The 32,957 write-per-

second run (in orange

above) has a high

maximum CPU

utilization but the

average still leaves

some room for alerts

and/or other business

logic.

Figure 3 – These charts are from the 30,000 asset, 200 property scenario. Note the CPU

Utilization spikes at 180s intervals and the initial stabilization of a herd of streams incoming from

the Azure IoT Hub.

12

Simulation Matrix 2 – Data Ingestion Every 90 Seconds

90s
Frequency (F)

Number of Things (T)

5,000 15,000 30,000

F
re

q
u

e
n

c
y

 (
F
)

P
ro

p
e

rt
ie

s
p

e
r

Th
in

g
 (

P
) 5

0

WPS: 2,548

CPU Min/Avg/Max:

5% / 8% / 15%

Memory Avg:

83%

WPS: 8,058

CPU Min/Avg/Max:

5% / 13% / 42%

Memory Avg:

83%

WPS: 15,909

CPU Min/Avg/Max:

5% / 23% / 50%

Memory Avg:

83%

1
0

0

WPS: 5,510

CPU Min/Avg/Max:

5% / 11% / 27%

Memory Avg:

83%

WPS: 16,585

CPU Min/Avg/Max:

5% / 23% / 84%

Memory Avg:

83%

WPS: 31489

CPU Min/Avg/Max:

5% / 37% / 68%

Memory Avg:

84%

2
0

0

WPS: 10,687

CPU Min/Avg/Max:

5% / 18% / 41%

Memory Avg:

83%

WPS: 32,056

CPU Min/Avg/Max:

5% / 41% / 94%

Memory Avg:

83%

WPS: 54,066

CPU Min/Avg/Max:

6% / 58% / 95%

Memory Avg:

84%

Analysis

Similar to the 180-second simulations, the scenarios below 10,700 writes-per-second

could run on the next smallest Azure VM size for the platform (D8s_v3) and may not

require InfluxDB if PostgreSQL is resized to compensate.

The scenarios between 10,700 WPS and 31,500 WPS ran correctly on the current Azure

VM size, with some room for additional business logic.

For the 32,056 WPS and 54,066 WPS cases, the maximum CPU utilization exceeded 90%,

indicating no additional room for alerts and/or other business logic.

Note there was no data loss in these scenarios.

13

Simulation Matrix 3 – Data Ingestion Every 45 Seconds

45s
Frequency (F)

Number of Things (T)

5,000 15,000 30,000

F
re

q
u

e
n

c
y

 (
F
)

P
ro

p
e

rt
ie

s
p

e
r

Th
in

g
 (

P
)

5
0

WPS: 5,565

CPU Min/Avg/Max:

6% / 10% / 16%

Memory Avg:

83%

WPS: 16,172

CPU Min/Avg/Max:

6% / 20% / 25%

Memory Avg:

83%

WPS: 32,043

CPU Min/Avg/Max:

6% / 35% / 40%

Memory Avg:

84%

1
0

0

WPS: 10,606

CPU Min/Avg/Max:

6% / 15% / 24%

Memory Avg:

83%

WPS: 32,781

CPU Min/Avg/Max:

6% / 36% / 63%

Memory Avg:

83%

WPS: 57,526

(should be 66,666)

CPU Min/Avg/Max:

6% / 62% / 95%

Memory Avg:

84%

2
0

0

WPS: 22,058

CPU Min/Avg/Max:

5% / 28% / 57%

Memory Avg:

83%

WPS: 65,827

CPU Min/Avg/Max:

41% / 69% / 94%

Memory Avg:

84%

WPS: 86,952

(should be 133,333)

CPU Min/Avg/Max:

56% / 90% / 95%

Memory Avg:

84%

Analysis

The cases with 200 Properties on 15,000 Things and 100 Properties on 30,000 Things

stressed the ThingWorx server nearly to the point of failure. In the former case, the WPS

was nearly at the target value, though the max CPU was very high. In the latter case,

the average CPU Utilization of 62% left no additional headroom for alerts or business

logic. A lower WPS of 57,526 versus the expected rate of 66,666 indicated the system

was not able to maintain the write load.

The largest case tested was 30,000 Things at 45s with 200 properties. This case did not

achieve the projected WPS and is considered a failure.

14

Simulation Matrix 4 – Data Ingestion of 25 Properties Every

180 Seconds

180s
Frequency (F)

Properties Per Thing (P): 25

ThingWorx Foundation Azure IoT Hub Connector

F
re

q
u

e
n

c
y

 (
F
)

N
u

m
b

e
r

o
f

Th
in

g
s

(T
)

1
5

,0
0

0

WPS: 2,083

CPU Min/Avg/Max:

6% / 8% / 13%

Memory Avg:

83%

CPU Min/Avg/Max:

2% / 4% / 13%

Memory Avg:

28%

3
0

,0
0

0

WPS: 3955

CPU Min/Avg/Max:

6% / 10% / 20%

Memory Avg:

83%

CPU Min/Avg/Max:

1% / 6% /39%

Memory Avg:

23%

6
0

,0
0

0

WPS: 8,120

CPU Min/Avg/Max:

6% / 14% / 26%

Memory Avg:

83%

CPU Min/Avg/Max:

1% / 5% / 8%

Memory Avg:

83%

9
0

,0
0

0

WPS: 12,500

CPU Min/Avg/Max:

6% / 19% / 52%

Memory Avg:

83%

CPU Min/Avg/Max:

2% / 38% / 81%

Memory Avg:

32%

1
0

0
,0

0
0

WPS: 13,485

CPU Min/Avg/Max:

6% / 21% / 46%

Memory Avg:

83%

(2 Connection Servers)

CPU Min/Avg/Max:

1% / 37% / 93%

Memory Avg:

32%

Analysis

The 25-properties-per-device simulation was thought to be closest to a real-world

scenario for ThingWorx combined with Azure IoT Hub. For this case, up to 100,000 Things

were simulated and the property updates were successfully ingested. CPU Utilization in

all cases left room for additional data processing or user load.

Note that the standard recommendation is to not run more than 100,000 things per

standard ThingWorx Connection Server. The ThingWorx Azure IoT Hub Connector

performance data leads to the same recommendation.

15

Simulation Matrix 5 – Alerts CPU Utilization

180s
25 Properties

Number of Things (T)
 30,000 60,000

F
re

q
u

e
n

c
y

 (
F
)

A
le

rt
s

0
 CPU Avg:

10%

CPU Avg:

14%

5
 CPU Avg:

12%

CPU Avg:

15%

1
0

 CPU Avg:

13%

CPU Avg:

19%

This is a comparison of the effect on CPU Utilization when adding Alerts to the Thing

Model. 5 alerts were configured for one series, and 10 alerts for another.

Recovery from ThingWorx Outage

The following graphs show the results of a ThingWorx outage, during which many

messages were cached by the Azure IoT Hub. The hub can cache up to 7 days’ worth

of data if needed.

During the recovery period, the ThingWorx Foundation server showed very high CPU

Utilization but did not exit. Eventually the system caught up to the incoming data

stream and the stream queue size dropped back down below 100,000 entries.

Recover Only at Current Time

Note that in some circumstances, a customer whose ThingWorx component was offline

for an extended time period might prefer to skip forward past the stored messages and

16

start ingesting at the current time instead of letting the system “catch up”. In order to

accomplish this goal, the basics of the procedure are as follows:

• Change the Azure Blob Storage Account used within the Azure IoT Hub

configuration to a different or new account with ThingWorx and the ThingWorx

Azure IoT Hub Connector(s) offline.

• Bring ThingWorx online and change the blob storage thing in the configuration to

match the new value in Azure IoT Hub.

• Bring the Connector(s) online.

Multiple Connection Server

When more than one Azure IoT Hub Connector server exists, the connection and load

balancing behavior is as follows:

- Each new partitioned connection from the Azure IoT Hub is assigned the next

Connection server in a round-robin fashion.

- Once connected via websocket, the connection is not further load-balanced. If

a disconnect occurs, the new automatic reconnection is assigned to the next

available Connection Server.

- If a Connection Server node becomes unavailable, the disconnected partitions

will be automatically reconnected and distributed to the remaining Connection

Server(s). Incoming data is held in the Azure IoT Hub until the data path is re-

established, then the delayed messages are sent to ThingWorx as fast as possible

until the system is caught up.

Analysis and Conclusions

The primary limiting factors for these simulations were Azure IoT Hub subscription limits

and ThingWorx Foundation CPU limits.

Additional business logic and/or alerting will add to the CPU load on the ThingWorx

Foundation server. If business logic is included and the main factors (Things, Frequency,

Properties) are similar to what is measured in this benchmark, ThingWorx Foundation

should be upsized for additional capacity if resulting writes are already driving Average

CPU Utilization above approximately 50% or Maximum CPU Utilization above 90%.

Throttling of the message rate or device connection rate by the Azure IoT Hub will occur

after several minutes when the subscription limit is exceeded. If errors or data loss are

occurring, check the IoT Hub metric Number of Throttling errors. The size of the Azure IoT

Hub can be adjusted if needed by adding more units or upsizing from S2 to S3.

17

Increasing the frequency of updates or the number of properties per device will cause

more significant increases in CPU processing than increasing the number of devices.

The 7-day soak test showed that the Azure IoT Hub reliably maintains connections and

ingests data to pass along to ThingWorx. The test stability compared favorably to

Remote Monitoring of Assets Benchmark soak test.

Testing showed that Azure IoT Hub preserves data even when other components like

the Connection server or ThingWorx become non-responsive for short periods.

Future refinements to this benchmark may include certain business logic scenarios,

Cloud-to-Device updates, file transfers, and other message protocols like OPC-UA.

Additional References

ThingWorx Platform 9.0 Sizing Guide:

https://www.ptc.com/en/support/refdoc/ThingWorx_Platform/9.0/ThingWorx%20Platfor

m%209%20Sizing%20Guide

ThingWorx SCP Remote Monitoring of Assets Reference Benchmark:

https://community.ptc.com/t5/IoT-Tech-Tips/IOT-EDC-Reference-Benchmark-Remote-

Monitoring-of-Assets/m-p/641031

Azure IoT Hub: https://azure.microsoft.com/en-us/services/iot-hub/

Azure IoT Hub communication protocols: https://docs.microsoft.com/en-us/azure/iot-

hub/iot-hub-devguide-protocols

https://community.ptc.com/t5/IoT-Tech-Tips/IOT-EDC-Reference-Benchmark-Remote-Monitoring-of-Assets/m-p/641031
https://www.ptc.com/en/support/refdoc/ThingWorx_Platform/9.0/ThingWorx%20Platform%209%20Sizing%20Guide
https://www.ptc.com/en/support/refdoc/ThingWorx_Platform/9.0/ThingWorx%20Platform%209%20Sizing%20Guide
https://community.ptc.com/t5/IoT-Tech-Tips/IOT-EDC-Reference-Benchmark-Remote-Monitoring-of-Assets/m-p/641031
https://community.ptc.com/t5/IoT-Tech-Tips/IOT-EDC-Reference-Benchmark-Remote-Monitoring-of-Assets/m-p/641031
https://azure.microsoft.com/en-us/services/iot-hub/
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-protocols
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-protocols

