
Page 1 of 47

JMeter for

A Comprehensive Guide on Load Testing with JMeter

Contents
Overview .. 2

Getting Started With JMeter ... 3

Tutorial: Downloading and Installing JMeter... 3

Tutorial: Creating a Test ... 4

Thread Groups .. 14

Tutorial: Adding More Thread Groups .. 14

Parameterization in JMeter Tests ... 23

Tutorial: Parameterizing the Thread Groups .. 23

Post Processors and Extractors ... 26

Tutorial: Adding JSON and Regex Extractors .. 26

Distributed Testing ... 28

Tutorial: Setting Up Distributed Testing on One Host .. 29

Client-Side Reports in JMeter ... 33

Tutorial: Creating JMeter Reports ... 33

Server-Side Results in DynaTrace ... 37

How to Use the Test Results... 40

Conclusion .. 42

Appendix I: JMeter Best Practice Tips .. 43

Appendix II: General Load Testing Guidelines ... 46

Overview JMeter for ThingWorx

Page 2 of 47

Overview
Apache JMeter is an open-source tool designed for load testing and measuring the
performance of a web application. JMeter has a wide range of features to facilitate this testing,
including support for a variety of server and protocol types, a full-featured testing IDE with the
ability to record the test steps from both a browser or a native application, and built-in
debugging tools. Information about JMeter can be found on Apache’s website.

Working with JMeter is not always intuitive, but it also isn’t that much harder than regular
software development. Take some time to explore the official Apache JMeter Documentation
and figure out where things go and how to mechanically make use of the JMeter IDE. Then step
through this guide to create a basic test that logins to ThingWorx, accesses a mashup, and clicks
on a few widgets.

Then, continue on in this guide to make that simple project more complex, working towards a
better representation of a real load test. Note that the screenshots do appear a little differently
in later sections because a new “Look and Feel” was selected for the JMeter application
(switched from “Metal” to “Windows Classic”) to provide more readable screenshots. There are
sections on creating and configuring thread groups, as well as parametrizing the procedures
defined by each thread group.

Running JMeter to the scale required by most customers is something that demands additional
considerations. At scale, a test may need to simulate thousands of users, which will require more
than just one JMeter client be set-up on one or many hosts, as shown in the section on
distributed testing.

Finally, learn how to push the limits of an application with your load testing, as well as how to
generate and analyze the reports once the testing completes. Multiple criteria can be used to
evaluate results, including: response time (as monitored both by JMeter, and by some other tool
on the system side), throughput, number of errors, resource saturation, CPU, Memory, disk, and
network utilization.

Depending on use case, some of these may be considered more important than others. For
instance, some customers don't care if users wait a while for results to appear on the page
(response time), because they set their users' expectations and mitigate the experience with
well-designed loading graphics. With response times secondary, the real issues center around
data loss or system outages, with resource utilization and number of errors becoming the more
important indicators of system health. Request and database timeout errors are more important
indicators, as they occur most often when resources are saturated and there is data loss.

It is typical for many customers to find preventing data loss and/or promoting data integrity to
be more important than preventing long response times. Consider which of these factors is most
important to your use case as you determine what kind of information to gather and review in
your reports.

This guide is a comprehensive, but relatively basic guide to JMeter. Anyone should be able to
perform enterprise-level load testing after reviewing the content here, but further reading and
development may also be required depending on the needs and complexities of any individual
application.

https://jmeter.apache.org/
https://jmeter.apache.org/usermanual

Getting Started With JMeter JMeter for ThingWorx

Page 3 of 47

Getting Started With JMeter
JMeter is not a PTC owned tool, but rather Apache. Download it from Apache’s website, as
shown in the tutorial below.

Tutorial: Downloading and Installing JMeter

1. Download JMeter from Apache’s website.

2. Unpack the archive and copy the files to a desired location.

3. Run the application by double clicking on the “ApacheJMeter.jar” file within the bin
directory.

4. JMeter is now installed and ready to use.

https://jmeter.apache.org/download_jmeter.cgi

Getting Started With JMeter JMeter for ThingWorx

Page 4 of 47

Tutorial: Creating a Test

1. Set up a proxy in your browser of choice (or on the OS in settings).

2. Select the green “templates” icon in JMeter, and then select “Recording” for the
template.

Getting Started With JMeter JMeter for ThingWorx

Page 5 of 47

3. Configure the recording template to point towards your ThingWorx Navigate or
Foundation server, then click “Create”.

4. Hit “Start” under the “HTTP(S) Test Script Recorder” tab of the new JMeter project. Make
sure the port is set correctly under Global Settings.

5. A pop-up box will appear that always stays visible on top of the active browser window,
so that the recording can be controlled and stopped at any time. Leave the “Transaction
name” field empty so that each transaction recorded by the software is automatically
named after the web request (this helps differentiate one from the other, and they can
each be renamed later).

6. Open your browser, and navigate (via direct URL if possible, to keep things simple) to the
mashup you wish to test. Login and let the page load.

7. Click on anything you’d like on the mashup to capture, the activity of that test.

8. Then click “Stop” on the pop-up recorder window to stop the recording.

Getting Started With JMeter JMeter for ThingWorx

Page 6 of 47

9. Each transaction will be assigned an index as well, and the source code behind each of
these transactions can be reviewed and manually modified in the main JMeter window.
Here is the login request for instance:

10. The HTTP Authorization Manager is used to automatically authorize a defined user login
for the thread to any of the Base URLs listed. In this case, though, there are two separate
servers being accessed during the test, and one may need to be added manually:

11. Save the project before continuing,
as manual modifications are next.

12. Within the task page as you do the
recording, a set of parameters or
body data will be recorded.
Modifying this is how you want to
parametrize the test scenario,
variables like the username and
password. To simulate logging in
as other users, you have to
parameterize this, and not rely on
the administrator account name
and password entered into the
browser.

Getting Started With JMeter JMeter for ThingWorx

Page 7 of 47

13. Rename the task controller to “MyTasks” or something more easily identified than the
long string it has now:

Getting Started With JMeter JMeter for ThingWorx

Page 8 of 47

14. Some recorded items like static images and stylesheets will be non-essential, things the
browser processes for better graphical representation, but which are often cached and
do not greatly affect the scalability results of the test. These can be highlighted and
disabled all at once:

15. Also ensure that any cascading stylesheets have been
disabled.

16. Enable the “View Results Tree” to ensure you can
review the results of the test script during the editing
phase. However, this “Listener” element has a high
memory footprint during test execution, so it should be
disabled before running an actual scale test.

17. Next we need to parametrize the user login information
and pull it from a csv file.

The colon means that “Administrator” is the default user to use for login.

Getting Started With JMeter JMeter for ThingWorx

Page 9 of 47

18. You can add other properties as well, like ramp up time, run time, number of users, and
protocols to use.

The ramp up time determines how quickly the threads are allocated for the test, which if
done slowly enough, prevents the thundering herd scenario.

19. In more complex scenarios, logic controllers can be inserted to control the flow of the
test. This allows for options such as if-then conditions for different user permissions, or
parameter-based routes for better randomization of actions in different threads. This is
mentioned in more detail in Appendix I.

20. Pre- and Post-Processors can be used as well, with the latter being used here much
more than the former, to extract information from the response, in order to then use that
as part of the variables going into one of the follow up requests.

Getting Started With JMeter JMeter for ThingWorx

Page 10 of 47

For example, see the script in this image:

This one has a variable that it extracts from the object number property, defined in the
CSV file, and converts it into another variable that is used in subsequent scripts.

Getting Started With JMeter JMeter for ThingWorx

Page 11 of 47

This script uses the object number reference to
pull the name out of the body data and make the
request, which is then post-processed by a
bunch of these extractors. One is a JSON
extractor which is trying to get an ID out of the
JSON response. There is a regular expression
extractor and a bean shell post-processor, which
populates some variables based on what it
responded with. Once it extracts all of the
variables from the response to this particular
request (GetSearchResults in this case), it then
tailors the additional requests based on these.

21. Customize the script according to the needs of your own application. Alternate between
recording and manually modifying the recording code to ensure the test performs
exactly as required and from the perspective of different users with different
permissions. Also vary the type of activity performed on the mashup.

22. Highlight the “View Results Tree” tab and click the green start button at the top of the
window to see the results appear.

23. If you are getting an unauthorized message, ensure that the scope is right for the login

information, which may require moving the “HTTP Authentication Manager” component

Getting Started With JMeter JMeter for ThingWorx

Page 12 of 47

around in the project. Be sure to check the URLs and credentials entered for each type
of user.

Occasionally the recorder will insert a long authentication string into the URL, and you
want to manually set the URL for the credentials to the most generic URL possible for
the server.

This can be parametrized too:

Referencing the CSV file defined here:

Getting Started With JMeter JMeter for ThingWorx

Page 13 of 47

Which looks like this for a more complicated scenario (mentioned in Appendix I):

The columns here represent the username, password, object number in Windchill, and
object name in Windchill, as well as the wait time used to vary the way the logic is
executed and some extra variables which differentiate for the switches what to do to
create a more varied and realistic test.

Following these steps again and again on the various mashups throughout an application can
ensure that a script for each web page and each type of user on each web page is created and
added to the testing suite. This results in a load test that is perfectly representative of the real-
world user load placed on an application.

Thread Groups JMeter for ThingWorx

Page 14 of 47

Thread Groups
Within JMeter, thread groups are used to organize the HTTP requests in a test into various
processes or procedures, such that different mashups (and all of the HTTP requests required on
each) or processes can be executed simultaneously by different thread groups throughout the
test. Varying the number of threads in a group is how to vary the number of users accessing that
mashup during the test, a number which increases over time in accordance with the ramp up
time. The thread group name will also show up in the Summary Report tab at the end of the test,
making it easier to parse through and graph the results.

Tutorial: Adding More Thread Groups

1. Start by
renaming the
existing
thread
groups so
that their
process or
procedure
names are
recognizable
at the end of
the test:

2. Highlight the line which reads “HTTP(S) Test Script Recorder”.

Thread Groups JMeter for ThingWorx

Page 15 of 47

(Optional) Add an Include filter to only capture the URLs relevant to your application
using the Requests Filtering tab. For example, the escape character \ necessary for ‘.’, so
that: myhost.mycompany.mydomain becomes: myhost\.mycompany\.mydomain

3. Now record a new thread group clicking the “Start” button:

4. Once the control box shows up in

the top left corner, click to open a
browser and access the ThingWorx
Navigate application. Then click on
“View Parts List” or some other mashup:

Thread Groups JMeter for ThingWorx

Page 16 of 47

5. Once the mashup
loads, search using a
string and/or wildcard,
or click on one of the
recent results if any
exist:

6. Wait for the mashup to fully load with the details on that part or assembly, and then click
“Stop” in the recording controller window:

Thread Groups JMeter for ThingWorx

Page 17 of 47

7. All of the HTTP requests performed in the process of loading and using this mashup will
be added to the JMeter project here:

8. Next, add a new thread group manually to the project:

9. Highlight the newly created “Thread Group” (default name) and rename it to something
that relates to the nature of that process:

Thread Groups JMeter for ThingWorx

Page 18 of 47

10. Drag and drop the new collection of requests so that it is considered a part of the new
thread group:

11. Then drag the whole group up so that it is next to the other thread groups in the test:

12. In more complex
projects, different
thread groups may
be added at
different times, and
each time, the
service calls are all
assigned an index
(at the end of the
request URL, for
example:
<request>-344).
These indexes may
not be unique
depending on how
and when the
thread groups were
created, especially
in more complex tests. The easiest way to fix this issue is save the test from the JMeter
GUI, then open the JMX file in a text editor and perform a find and replace within the

Thread Groups JMeter for ThingWorx

Page 19 of 47

relevant section of text. This is usually done using a regular expression for the number.
For example, if the request name indexes are numbered -500 through -525, a regular
expression to increase them to -700 through -725 would be (in Notepad++):

Find: -5([0-9])([0-9])

Replace: -7\1\2

13. Note that if you do not use a Request Filter, sometimes the recorder will log URLs that
are not part of the target application, like these “generate” samplers. These URLs are
typically happening in the background of the browser to track performance, security and
errors. These can be deleted:

14. At other times, you will be repeating
steps that are already part of another
thread group, for example: logging in.
This genidkey is a part of the login, as
you can see if you look back at the login
thread group. Because logging in is only
necessary once, and it is assumed to be
complete by the time the test starts on
the second thread group, this entire
section can be deleted.

15. To see for sure if a request can be
removed because it is called in a
previous thread group, do a non-case-
sensitive search for the name of the
request.

Thread Groups JMeter for ThingWorx

Page 20 of 47

16. All of the requests found in this particular instance were performed in the previous
thread group, so therefore this entire category can also be deleted:

17. Another odd thing you
may see (if you do not
use a Request Filter
with the recording
feature) are “blank”
requests like these:

The recorder isn’t sure
what to call these “non-
requests”, so anything
like this that isn’t an
actual URL within the
target application
should be deleted.

Thread Groups JMeter for ThingWorx

Page 21 of 47

18. Static downloads should be disabled or deleted from scale testing since they are usually
cached by the user browser client. In this ThingWorx example, there are static
“MediaEntites” which can be deleted or disabled:

Within the JMeter client there is no good way to highlight and reset them all at once,
unfortunately. The easiest way to remove all of these at once is to open the JMX file in a
text editor and use regex expressions for search and replace “enabled=true” with
“enabled=false”.

Thread Groups JMeter for ThingWorx

Page 22 of 47

Most text editors have examples on how to use regular expressions within their Help topics.
The above example is for Notepad++.

Parameterization in JMeter Tests JMeter for ThingWorx

Page 23 of 47

Parameterization in JMeter Tests
Parameterization is usually the part of creating a JMeter test that takes the most effort and
knowledge. Some requests will require the same information for every thread, information which
can therefore be defined statically within the JMeter element rather than being parameterized.
Some values used within the JMeter test script can be parameterized as inputs in the top level
of the test controller, for example: Duration, RampUp time, ApplicationHost, ApplicationPort.

Other values may be unique to only one thread group and could be defined in a User Defined
Variables element within that group controller. The value(s) used within a request can also be
determined on the fly by the results of earlier requests within a thread group. These request
results typically must be post-processed and parameterized for later thread elements to
function correctly.

The highest level values that are unique to each thread should be inputs from a CSV file that are
passed into the threads as parameters, for example Username and Password. Data used within
the test is usually parameterized in order to better emulate real world application use by
multiple users. In the following example, we will parameterize the number of users for each
thread group by adding a user- defined variable.

Tutorial: Parameterizing the Thread Groups

1. Start by selecting the new thread group and parametrizing the number of threads (i.e. the
number of users accessing this mashup at a time during the test). The way to enter a
variable is with syntax like this: $(searchandviewpartstructure_threads)

2. In this case, make this a user defined variable:

Parameterization in JMeter Tests JMeter for ThingWorx

Page 24 of 47

or a variable for the whole project, by highlighting “Test Plan” and adding the information
there.

3. Begin looking at the samplers to see what types of things need to be parameterized in
your test. Consider such things as: thread count (as shown above), ramp up time (also
depicted above), duration, timings, roles, URL arguments, info table information, search
result information, etc.

Another example here parameterizes the search parameters for a query by adding an
overall search string column to a CSV file (which can then be randomly generated by some
other script):

1. First,
parameterize the
body data of the
request by
highlighting the
request, and
changing the
value of the
desired field to
something like
this:
$(searchString)

2. Next, define the
parameter under
the Test Plan and
set a default
value:

Parameterization in JMeter Tests JMeter for ThingWorx

Page 25 of 47

3. Now define the searchString column again as part of the CSV Data Set:

Now it can be varied simply by providing different pseudo-random values with wildcards
and/or known values in the CSV file.

Removing extraneous requests from thread groups reduces the overall ambiguity of which
groups represent which processes or mashup calls. Parameterizing individual requests is
typically necessary in creating a real replica of user load, and things like Windchill URL and
hostname, search parameters and part IDs, timings, durations, offsets, anything at all that
influence the results of the test, should not be hard-coded. It is better to create variables for
these things to ensure that all of the various simulated activities are configured in the exact
same way every time. That way, the system can be tested again and again under various strains
and loads until the capabilities of the application are verified.

Post Processors and Extractors JMeter for ThingWorx

Page 26 of 47

Post Processors and Extractors
Most JMeter load tests become more complex when the results of one request are sent as
parameters into later requests. This is done in JMeter by using Post Processors (Extractors), tools
which facilitate extracting information out of the request results so it can be assigned to JMeter
parameters.

There are many different types of extractors which can process the results of previous requests:

• CSS Selector Extractor – commonly used extractor for values returned as html attributes
• JSON Extractor – processes JSON objects using regular expressions
• BeanShell Post Processor –facilitates using code scripts to process return text
• Regular Expression Extractor –support for use of regular expressions on request results

The JSON Extractor can be used to find and store information like the partOID number for a
Windchill part as a parameter in JMeter, which can then be used to build more realistic
workflows within the JMeter test. The example below steps you through setting up a JSON Post
Processor.

Tutorial: Adding JSON and Regex Extractors

1. Start by right-clicking the request that contains the results of our search. Then click “Add” >
“Post Processors”> “JSON Extractor”, as shown in the image below:

https://jmeter.apache.org/usermanual/component_reference.html#CSS_Selector_Extractor
https://jmeter.apache.org/usermanual/component_reference.html#JSON_Extractor
https://jmeter.apache.org/usermanual/component_reference.html#BeanShell_PostProcessor
https://jmeter.apache.org/usermanual/regular_expressions.html

Post Processors and Extractors JMeter for ThingWorx

Page 27 of 47

2. The extractor will now show up under that request as a sub-menu item. Select it, and name
the variable something easy to reference. For the JSON Path expressions, pull the object
number or some other identifying characteristic out of the search results: $.rows[0].objNumber
for example.

3. Another option would be to take information like the partOID number send that into the
search string field, by defining both as properties and having one refer to the other. To pull
the partOID out, use a Regular Expression Extractor:

Another thing to parametrize is the summary report result file name. Adding in the number of
users and ramp up time can result in files that are easier to reference later being stored on
your machine. We will cover generating and reviewing Summary Reports in full in a future
section.

Distributed Testing JMeter for ThingWorx

Page 28 of 47

Distributed Testing
One key aspect of a proper JMeter load test is distributed or remote testing, i.e. making use of
more than one JMeter client at a time to simulate the user load on the Application server. There
are many reasons to make use of a network of clients such as this, like mimicking cross-region
user access to the Foundation server, simulating different levels of latency for different users,
and increasing the overall number of users which can contribute to the load test, while
minimizing the performance cost of
hosting that many threads on any
single server.

A single JMeter client has a
practical limit of 150-250 threads
across all groups and requires
about 1 CPU and 8 GB of RAM. After
this point, the amount of garbage
collection and other processing
there is for each client to do is
substantial. As the client processes
its own data and sends requests to
the Application server at the same
time, there are diminishing returns,
and the responses begin to take
longer (or errors start occurring)
simply because of resource
starvation within the client process
rather than on the Application
server. Therefore, distributed
testing is required for most
customers doing larger load tests
using JMeter. Many applications will have more than a few hundred users and/or will have users
accessing the system from a variety of regions and networks, each of which could have
significantly different network latency. So, in order to work with the limitations of the JMeter
executable and address regional concerns, distributed or remote testing is typically required for
almost all of PTC’s customers who scale test with JMeter.

With a simple (monolithic) distributed test, all of the JMeter clients are located on the same host
and share an IP address, but each must be configured with a unique RMI port to connect to the
controlling process. If these are located on a VM, then the resource specifications can merely be
increased and the VM sized larger as necessary to ensure the network of JMeter clients runs as
expected. Each JMeter client requires around 8 GB for its heap size and 1 CPU (with some
additional resources for the host operating system).

Multi-hosted testing becomes the required option when limited by physical hardware (or a
relatively small VM hardware host). If there are only 4-core, 32-GB machines, then plan for a
machine per every 3 JMeter clients. If simulating thousands of users, this could mean half a
dozen machines or more are required, which can still sometimes work out to be more cost
efficient than one large, 256 GB, VM hosted in the cloud. Using many hosts in physical locations
can also simulate regions with different network characteristics.

Figure 1 -Remote Testing configuration in which the main JMeter client is
located at one IP address, controlling the rest as they step through their own
copies of the JMeter tests, based on their own unique data files as necessary,
to simulate a user load across a network, a series of regions, or simply across
many machines if limited by the size of the physical hardware [image citation].

https://jmeter.apache.org/usermanual/jmeter_distributed_testing_step_by_step.html

Distributed Testing JMeter for ThingWorx

Page 29 of 47

A tutorial for distributed testing across one host is shown here. For more information, see the
Apache web articles on each topic: Remote Testing and Distributed Testing Step by Step.

Tutorial: Setting Up Distributed Testing on One Host

1. Copy the source directory for the whole JMeter project and rename it however many
times as required. Here there are 22 JMeter clients side-by-side on a single, 256-GB VM
(3000+ users):

https://jmeter.apache.org/usermanual/remote-test.html
https://jmeter.apache.org/usermanual/jmeter_distributed_testing_step_by_step.html

Distributed Testing JMeter for ThingWorx

Page 30 of 47

2. Each directory (shown above) is identical, except that the “jmeter.properties” files (found
in the bin directory in each project) have unique settings, namely the server port:

3. Each JMeter client must contain a copy of the same test scripts found on the main
server:

4. In the “jmeter.properties” file for the main server, specify the IPs and ports for each

remote/distributed client (under remote_hosts), as shown:

Note here that all of the IPs are all the same, with just the port differing from client to
client. Here only 4 clients are in use, with the rest commented out for future tests. This is
how to scale up and test incrementally more users each time. Just add another server to
add another 150-250 users, until eventually the target number of users is reached, or the
server is saturated.

These IPs will differ if doing a true remote test, with each being the server location of the
JMeter client within the same network. The combination of IP address and port will all

Distributed Testing JMeter for ThingWorx

Page 31 of 47

still need to be unique, and communication between the overall jmeter controller and
the clients over the RMI ports needs to be allowed by the network/firewalls.

5. Also note that the number of users is set using the parameter under “Test Plan” which
was set-up last time. This value represents the number of users by specifying the
number of threads per thread group, and it can remain the same for every client or vary
accordingly, if for instance one region is smaller than another. The “Test Plan” parameters
are shown here:

6. To optionally
start all of the
clients at once in
preparation for
test execution,
create a basic
batch or shell
script which
goes to the bin
directory of each
agent and calls
the start
command:
“jmeter-server”.
In this image
from a Windows
JMeter host, only
the first few
agents are in
use, but
removing the
“rem” to
uncomment the
other start
command lines in this file would add more servers to be started. Note how the Java
parameter for java.rmi.server.hostname must match the main JMeter client network
configuration here for them to connect (see Apache links above for more information).
This will start each of them in their own CMD window, which once closed, will terminate
the JMeter client processes.

Distributed Testing JMeter for ThingWorx

Page 32 of 47

7. Parameter like rampUp time within the main test script will scale with the number of
client processes. For example, 100 users and 300 seconds rampUp with 4 clients results
in 400 overall user threads that are all logged in after 300 seconds.

8. Once all clients are running, then click Remote Start All to start the
test across every server from a GUI (usually for debugging) or
execute the test using command line: jmeter -n -r -t <test.jmx> -l
<results.jtl>:

9. The main server sends the actions to the remote clients to run, so all
the clients need is input parameters. For instance, a CSV file may
exist in each directory which has different data from client to client,
to create pseudo-random user loads and represent different kinds of
user activity. The file shown in this image is different, and unique, in
each of the client directories:

Horizontally scaling or setting up many JMeter clients side-by-side, is the way to facilitate larger,
more complete user loads. Distributed and remote testing are slightly different; the former is
easier to set up and use, especially on VMs, but the latter might be better for simulating regional
differences and the impact of network latency. The latter will likely also be required if there are
hardware constraints to consider, since each JMeter client needs about 8 GB for its heap, and
another 8 GBs, or a core or two of similar size, is needed per every 3 JMeter clients for the
communication and processing of data.

Client-Side Reports in JMeter JMeter for ThingWorx

Page 33 of 47

Client-Side Reports in JMeter
Creating reports for the client-side data is very simple using JMeter, both from the command
line and within the UI (as shown in the tutorial below). These reports have graphical displays of
response times, information about the number and type of response errors, and other criteria of
performance used to gauge the success or failure of a load test. Follow these steps to generate
an index file, which when opened in your browser of choice, will show all of the relevant JMeter
data.

Tutorial: Creating JMeter Reports

1. Create an empty directory in which to store reports:

2. Start the JMeter test with these options, or run these commands after the fact, to
generate the HTML report:

a. Once the test completes, use:
jmeter -g <outputfile.jtl/csv> -o <path to output folder for html report>

b. To start a test correctly for report generation, use this command:
jmeter -n -t <test JMX file> -l <outputfile.jtl/csv> -e -o <Path to output folder>

c. Running the above commands will generate these files:

3. When the test is complete, the many JMeter client consoles will look like this:

4. Go ahead and close the windows to terminate once they are finished. Optionally you can
run multiple tests sequentially using the same jmeter-server windows.

Client-Side Reports in JMeter JMeter for ThingWorx

Page 34 of 47

5. Click on the “index.html” file to open the results viewing window:

6. At any time, modify the settings of this “HTML dashboard” using the details from the
JMeter user manual. This citation describes many options for these dashboards, as well
as recommendations on how to group and format the results in ways which best convey
the success or failure of the test, based on the custom requirements of the application
and how granular the view needs to be. Most of the time, the default settings work ok,
showing something similar to this:

a. The charts aren’t labeled very well here, so click on the Response Times submenu:

https://jmeter.apache.org/usermanual/generating-dashboard.html

Client-Side Reports in JMeter JMeter for ThingWorx

Page 35 of 47

This page may take some time to render if there is a lot of data.

b. Next, scroll down to see all the requests that occurred and sort them by how long they
took to complete. Anything which took over 5 seconds (or more depending on what is
expected) should be investigated as part of the post-test analysis. Does something
need to be tuned or optimized? This is how to tell which request is holding things up
for your customers.

c. There is also a chart that shows the overview, grouping the response times by how
long they took to demonstrate the health of the system more concretely. Typically, the
bars look something like this:

This represents expected behavior, where most of the requests are quite fast, and then
there are a few that had errors or took a bit longer. This is pretty typical for web activity.

Client-Side Reports in JMeter JMeter for ThingWorx

Page 36 of 47

7. You can also generate the report through the main JMeter client:

a. Give it a results file and an output directory
to generate the same index file:

8. There are log files in each of the JMeter client
directories called “jmeter-server.log”:

a. These files may show the wrong timezone, but the elapsed times are correct, and

they will show when the JMeter clients started, how many threads they ran,
which servers were which, and if there were any errors. Not all errors will mean a
failed test, so review anything that appears and determine what is expected.

b. Consider designing a batch script to gather all of these logs together, or even
analyze them automatically to extract only relevant information.

Generating and reviewing reports within JMeter is straight-forward and easily customizable.
Continue on to the next section to see how to monitor the system itself using an external tool
like DynaTrace.

Server-Side Results in DynaTrace JMeter for ThingWorx

Page 37 of 47

Server-Side Results in DynaTrace
Collecting data from the environment, including CPU usage, Memory utilization (used vs. total),
Garbage Collection times and other metrics of system health on the server, will require the use
of an external tool. PTC’s official tool for this is called DynaTrace (PTC System Monitor), shown
here. PTC offers a runtime license for DynaTrace to anyone who buys certain products,
including Kepware Server, ThingWorx Foundation and Navigate, Windchill, Integrity, and more.
Read more information about DevOps on the PTC Community, and stay tuned for more articles
on the subject to come from the EDC.

Another option would be something like telegraf and Grafana (from an IoT EDC blog post), which
facilitate the option to create dashboards around the data output specific to the needs of the
application, which can still be monitored even once the application goes live. It can certainly be
worth it to use such a tool for monitoring the server-side, but the set-up takes more time.
Likewise, many VMs have monitoring faculties for CPU usage and memory utilization built-in,
but DynaTrace also has visualization, consolidation of system elements, and other features that
make it easy to use right out of the box. See the screenshots below for some examples on how
to use DynaTrace, and be sure to review PTC’s full documentation here.

The example shown here is a ThingWorx Navigate system, with Windchill and ThingWorx
Foundation set up side-by-side. This chart shows the overall response times of the server-side
of the system. JMeter collects the statistics on what the client looks like, while another tool is
required to collect the server-side metrics like CPU usage and Memory utilization, things that
indicate the health of the VM or computer hosting the clients. An older version of DynaTrace is
depicted here, available for free for all ThingWorx customers from the PTC Downloads Site
(under various product listings).

https://www.ptc.com/support/-/media/4A96E9DF66984082BBD7BEED2E164F90.pdf?sc_lang=en
https://community.ptc.com/t5/IoT-Tech-Tips/How-can-ThingWorx-play-an-active-role-in-my-team-s-DevOps/td-p/613328?art_lang=en&posno=1&q=dynatrace%20jmeter&source=search
https://community.ptc.com/t5/IoT-Tech-Tips/ThingWorx-Performance-Monitoring-with-Grafana/m-p/656996
https://www.ptc.com/go/psm
https://support.ptc.com/appserver/auth/it/esd/index.jsp

Server-Side Results in DynaTrace JMeter for ThingWorx

Page 38 of 47

In DynaTrace, you can build new dashboards using PurePaths:

You can also look at the response times for each service
but be sure to change the response limit to a large number
so that all the results are returned.

Changing the response limit to
a large number to ensure all of
the results show in the
PurePaths dashboard.

Server-Side Results in DynaTrace JMeter for ThingWorx

Page 39 of 47

Highlighted here in DynaTrace is the longest service that ran, which in this case took 95 seconds
to fully respond:

More specific analysis of this service can now begin. Perhaps it needs to be tuned, or otherwise
optimized to handle the number of threads, i.e. the number of users. Perhaps the system needs
more resources or the VM isn’t large enough for the test. Perhaps more JMeter clients and
system resources are required. Something will explain this long response time, and that will
inform as to what work might still remain before this system can scale up to the enterprise level.

How to Use the Test Results JMeter for ThingWorx

Page 40 of 47

How to Use the Test Results
Load Testing often means scaling the test up a little more each time until the system eventually
breaks, or the target performance is reached. Within JMeter, this won’t mean increasing the
overall number of threads per one JMeter client, but instead, scaling horizontally to other JMeter
clients (as covered in a previous section). Now that the remote or distributed clients are
configured and the test running, how do we know when the test is beginning to fail?

It turns out that this answer is not a simple one. Which results are considered desirable will vary
from one customer to the next based on many factors, and analyzing the test results is a
massive topic all on its own. However, there is one thing that any customer would care to
review, and that is the response time overview chart found within the JMeter reports. This chart
can be used to compare the performance of the majority of threads against a baseline,
indicating the point at which the test begins to fail, i.e. the point at which the limits of the system
are reached.

The easiest way to determine a good standard response time for a load test, a baseline, is to
start with a single JMeter client and record the response times for just 1-5 threads. You can
record the response times for individual requests, particularly queries and other services with
expected long response times, or the average response times across all requests or groups of
requests, if the performance of some mashups are more important than others.

This approach is better than relying on the response times seen in a browser because HTML
pages load differently when rendered in a browser, with differing graphical resource
requirements than what is requested in JMeter. Note that some customers will also manually
record response times within a separate browser-based test scenario during load testing as
either a sanity check or as part of their overall benchmarking in order to further validate the
scalability of the application, but this wouldn’t involve JMeter given that browsers load things
differently and cross-comparison is a bad idea.

Once the baseline response times are established, start increasing the thread counts across the
many JMeter clients until you see the response times go up on average. PTC’s standard criteria
for load testing is exceeded when the average response times are roughly doubled, or when the
system seems overwhelmed with the user load on the server side (which is what to look out for
in DynaTrace or the external system monitor). At this point, the application is said to have
reached a bottleneck, which could be a simple tuning problem, or it could be saturated by
resource requirements. Either way, the bottleneck is proof that the system can’t take any more
threads without users beginning to notice and the response times approaching an unreasonable
delay.

Other criteria can be used as well, say if any one thread takes more than 5 seconds to respond.
Also ensure there are no unexpected errors, as gateway errors represent failed tests too.
Sometimes there will be errors even when the test is successful, though, so consider monitoring
the error percentage, a column in the Summary Report tab of JMeter, to see what is normal. The
throughput column may also be something to monitor. Many watch for increases in throughput
as the thread count increases to ensure there is no degradation in performance (which may
indicate hardware or sizing constraints).

How to Use the Test Results JMeter for ThingWorx

Page 41 of 47

The Summary Report will look something like this, with thread group results from all of the
clients appearing side by side, differentiated from each other by the unique port:

If the system looks healthy on the server side and the response times are within an acceptable
range on the client side, then the application is ready for enterprise use. Be sure to generate a
baseline for response times within JMeter, remembering that browsers have different loading
processes than JMeter, and not to cross-compare.

Conclusion JMeter for ThingWorx

Page 42 of 47

Conclusion
Load testing is a critical part of the development lifecycle in any application, and ThingWorx is
no exception. Any further questions about the capabilities of JMeter not covered here, can be
answered by the whole JMeter user manual, found on the Apache website.

Proper load tests can become quite complex, as shown here in an example of one tool PTC
uses for internal QA of a ThingWorx Navigate application (specifically its built-in mashups):

Something similar to this tool may eventually be released by PTC, but in the meantime, feel free
to use the tutorials above to create scripts of your own. Any issues building your custom load
tests in JMeter can be discussed on the PTC Community.

https://www.ptc.com/en/support/article/CS271995?&language=en&posno=1&q=change%20management%20thingworx&source=search
https://jmeter.apache.org/usermanual
https://community.ptc.com/t5/forums/filteredbylabelpage/board-id/iottechtips/label-name/edc

Appendix I: JMeter Best Practice Tips JMeter for ThingWorx

Page 43 of 47

Appendix I: JMeter Best Practice Tips

➢ Use Distributed Testing
o As already mentioned in a previous section, each JMeter client can only handle

about 150-250 threads depending on the complexity of the tests, and each
client will need around 1 CPU and up to 8 GB of RAM for the Java heap.

o Some test plans will run with fewer host resources, so resizing the test client VM
up or down is often required during test development.

o Create a batch or shell script to start the multiple JMeter clients for greater ease
of use.

➢ Use Non-Graphical Mode
o Non-graphical mode allows the system to scale up higher; client processing

uses up resources just to keep the simulation running, but with graphical mode
turned off, there is less of an impact on the response times and other results.

o Graphical mode is essentially only used for debugging.

➢ Turn off Embedded Resources
o This setting reloads all of the typically cached requests over and over; there

will be far more download requests, and to the exclusion of other requests, than
is helpful.

o Ensure this box is not checked,
especially in the HTTP Requests
Defaults element:

o Browser caching means that this setting doesn’t actually simulate a proper user
load, given that many of the reloaded resources would not be reloaded by actual
users.

o Use this incrementally, for one or two HTTP requests only, if there is a reason
why those requests might need to download fresh images, scripts, or other
resources with each call; for instance, simulate page timeouts using this once per
hour or something similar.

o Using this across the whole project will prevent it from scaling well, while not
actually simulating real-world conditions.

➢ Avoid Using Listeners
o For instance, the “View Results Tree”, which uses additional resources that may

impact the results in disingenuous ways, based around the needs of the clients
themselves and not the actual response times of the server.

o Many listeners are only for debugging a handful of threads while designing the
tests.

Appendix I: JMeter Best Practice Tips JMeter for ThingWorx

Page 44 of 47

o A list of recommended listeners for different purposes is in JMeter
documentation.

o Summary Report is the only one you want enabled, as that exports the results as
a csv or similarly formatted file, which can then be used to build reports.

➢ JMeter CAN handle SSO
o JMeter can authenticate into and test an SSO-enabled system.

o Sometimes the SSO configuration is essential for customers, and they may be
quick to assume therefore that they cannot use JMeter, but that’s not entirely
true.

o Some external tools that might help with this are BlazeMeter (mentioned again in
just a moment) and Fiddler, a good tool for decoding what data a particular SSO
setup is exchanging during the authentication process.

➢ Use Logic Controllers for Parametrization
o Parametrization is critical to mirroring a proper user load, and allowing different

data sets to be queried or created; the load should seem organic, random in the
right ways, with actions occurring at random times, not predictable times, to
prevent seeing
artificial peaks of
usage that don’t
represent real usage
of the Foundation
server.

o Random order
controllers direct the
threads down
different paths
based on random
dice rolls, allowing
for a randomized
collection of user
activity each time,
not something that
has to be
regenerated like a
set of Boolean values
that is specified in an
input CSV and used
to navigate a series
of true or false switches.

o Switches just look for an environment variable to be either 1 or 0, and when it
hits a switch that’s a 1, it triggers the switch below, running them in the order
given under the transaction controller that goes with the switch.

https://jmeter.apache.org/usermanual/component_reference.html#listeners
https://jmeter.apache.org/usermanual/component_reference.html#listeners
https://dzone.com/articles/how-to-load-test-saml-sso-secured-websites-with-jm
https://dzone.com/articles/how-to-load-test-saml-sso-secured-websites-with-jm
https://www.blazemeter.com/blog/how-load-test-saml-sso-secured-websites

Appendix I: JMeter Best Practice Tips JMeter for ThingWorx

Page 45 of 47

o In this image, the 1’s and 0’s are given in the CSV input file; randomizing that input
file therefore randomizes the execution of the switches too:

➢ Use Commercial Add-Ons
o There are many external, add-on tools and plugins which enhance JMeter’s

capabilities.

o One external tool that can enhance JMeter’s capabilities is Blazemeter, which
has some free and some paid options to help create better reports, removing
automatically much of the “garbage” REST calls (which would otherwise need to
be manually deleted), and provide more consumable test reports right out of the
box.

o Other tools and plugins include:
▪ Maven
▪ Netbeans
▪ SonarQube
▪ Jenkins
▪ Autometer
▪ Gradle
▪ Amazon EC2
▪ Lightning
▪ IntelliJ IDEA
▪ Cassandra
▪ Grafana

➢ For more best practice information, see the JMeter Best Practice Manual.

https://www.blazemeter.com/pricing/%3e-
https://jmeter.apache.org/usermanual/best-practices.html

Appendix II: General Load Testing Guidelines JMeter for ThingWorx

Page 46 of 47

Appendix II: General Load Testing Guidelines
➢ Concurrency Requirements – How to Properly Estimate the Size of the Load Test

o Take a brand new ThingWorx-based app. How people will be accessing the
system and how often? How many are business users? How many are engineers?
What do they do?

o Many assume that every named user in the corporate LDAP will need to access
to the server, often 10s of thousands of users; this generally drastically
oversizes the system.

o Load testing for many thousands of users is very hard and requires a lot of set-
up, tuning, and optimization to get right; so if it seems that thousands of users
are expected, then validating this claim is important: most customers don’t really
have that many concurrent users in an engineering system.

o Use estimates
based on how
many people
work at which
offices, which
time zones
those people
are in, and what
kinds of users
they are. Do
they need
access to
engineering
data? Perhaps
there are
simpler
mashups for
them that uses
less resources.

o One tool for
these sorts of
estimations that
PTC offers is the
office time zone
overlap
Windchill Sizing
Calculator
(shown here)

Figure 2 – This tool for Windchill can be helpful here too, calculating the number of users over
a peak duration based on the type of the users and how many live within each region. The tool
as directions to follow which make it very easy to use, and it is free to download.

https://www.ptc.com/support/refdoc/Windchill_PDMLink/11.0/WindchillSizingCalculator_136972?&art_lang=en&posno=1&q=windchill%20calculator&source=search
https://www.ptc.com/support/refdoc/Windchill_PDMLink/11.0/WindchillSizingCalculator_136972?&art_lang=en&posno=1&q=windchill%20calculator&source=search
https://www.ptc.com/en/support/refdoc/Windchill_PDMLink/11.0/WindchillSizingCalculator_136972?&art_lang=en&posno=1&q=windchill%20calculator&source=search

Appendix II: General Load Testing Guidelines JMeter for ThingWorx

Page 47 of 47

o Other ways to estimate include:

• Analyzing the business processes, things like how long workloads
typically take to complete and how many workloads are generated per
day, converted into hour, minute, or second as desired for the peak
duration, the length of the test.

• “Day in the Life” modelling, or considering things like “what does user X
do in a day?” Maybe, user X checks out some drawings, edits them, and
then checks them back in at 4:30. Maybe user Y actually digs into the
underlying parts and assemblies, putting in change requests or orders
throughout the day, instead of waiting for the end. Models are made
based around the types of users.

o Also consider:
• What are worst case scenarios?
• What are the longest running activities?
• What produces the largest data transfers?
• What activities have large, heavy data base queries?
• When is the peak overlap of usage?

o Beginning and end of day downloads and check ins?
o Reports that are generated regularly?
o How do these impact the foreground users?

o For a simpler estimate, start with a percentage of the named user count,
anywhere from 5-15% is a good ballpark percentage.

o Don’t overestimate to feel like the application has been financially worth it; even if
everyone is logged in and using it all at once, which is unlikely, load testing for
every single user doesn’t take into account the fact that people pause in
between clicking on things to think, type emails, get coffee, and so forth.

o Fewer people than expected are actually doing concurrent activities like
loading web pages and updating data streams.

o Whenever possible, use concurrency data from existing customer systems to
guide the estimate for the new system. Legacy system are great places to start.

➢ Use Grafana to monitor the system side throughout the load test, which is also required
to know the test has been successful; also set up Grafana to monitor the application
once it goes live, to both prevent and mitigate more rapidly any technical issues with
the server.

➢ Also remember that PTC Technical Support is here to help! Provide thread dumps with
an open case to any TSE, and they will help troubleshoot the tests and review any errors
in the ThingWorx or Tomcat logs.

https://www.ptc.com/en/support/refdoc/Pro_INTRALINK_8.x/9.1/WCProEDay_in_the_LifePerfCompare_123342?
https://community.ptc.com/t5/IoT-Tech-Tips/ThingWorx-Performance-Monitoring-with-Grafana/m-p/656996
https://www.ptc.com/en/support/case-logger

