cancel
Showing results for 
Search instead for 
Did you mean: 
cancel
Showing results for 
Search instead for 
Did you mean: 

ThingWorx Navigate is now Windchill Navigate Learn More

IoT & Connectivity Tips

Sort by:
Neural Net is a learning algorithm that is inspired by how the human brain works. For example, imagine you love chocolate cake so much that, you joyfully exercise a bit more during the week just to enjoy that delicious chocolate cake without feeling guilty. But if the weather is terrible there is no way you go exercise, and then you can’t eat the delicious chocolate cake. Although, if your beautiful girlfriend / boyfriend exercise with you, then you ignore the weather and joyfully exercise and then you can enjoy that delicious chocolate cake without feeling guilty. The brain’s nervous system passes information using a synapse structure which allows neurons to pass information to other neurons and finally make a decision. This structure of passing information and decision making is the construction behind neural net algorithm. The data structure provides weights on the edges for the nodes/synapses in a directed graph. For example, our chocolate cake decision making could be translated into: w1=6 Whether or not your girlfriend or boyfriend exercise together with you w2=3 Enjoying delicious chocolate cake w3=2 Weather The high weights for example indicates the condition to have a high influence on your output decision making, while lower weight is not that influential. The illustration below is an example of neural net with 5 different input of information: The edges/arrows represent weights each input/node have a weight associated with it. These weights are applied when training neural net. Three of the inputs could represent 1= Delicious chocolate cake, 2= The weather, 3= Your girlfriend or boyfriend, and the last two inputs could be other information. The output is the condition of the decision determined by the hidden layer. ThingWorx Analytics Server applies neural net with full interconnection layer, which means each value from the input layer is duplicated and sent to each node in the hidden layer, just like in following illustration.
View full tip
Scoring is the process of making the prediction on the basis of the available data. Scoring is the process of assigning a predicted outcome to an individual record based on running that record’s conditions through the trained model. It allows you to request and retrieve individual record level prediction scores for a defined data set for a set of prediction topics. The accuracy of the score will likely be a direct reflection of the error rate produced by the Trained Model. Why the score value exceeds min or max value range of feature There are a few concepts to address with regards to this: Scoring outputs: It is important to note that when training an analytics model, the method is to create a generalizable model from a relatively small training dataset. By its nature, we expect the training process to see a limited subset and not an exhaustive list of all possible values for many constraints, especially time and practicality. As such, these generalized models will be expected to handle unseen data in the form of new combinations or values outside of previously observed ranges (more on this below). One common way to see scores that exceed the observed ranges in training, under the assumption that the goals are continuous, is to use prescriptive scoring. Prescriptive scoring attempts to find optimal values for lever, meaning tunable, features in order to maximize or minimize score values. Min/Max constraints: these are constraints that are placed upon the inputs for training and expected inputs for scoring. For training: If theses ranges were provided as part of the upload process, then training will raise exceptions regarding invalid data. However, if the ranges are not provided - they will be inferred from the data and, as such, training will not see values outside of observed ranges. For scoring: validation of the ranges will only be performed on the inputs - not the outputs. It is very important to note that the handling of these "constraints" is dependent upon the data type. For categorical (e.g. colors) and ordinal data (e.g. shirt sizes), the constraints are strict and data that was not observed in training will raise exceptions during scoring. However, for continuous values (e.g. temperature ranges) these constraints are more informational in nature. For predictive scoring, our code will accept records with values outside of those ranges. The rule of thumb is that values slightly outside these ranges are acceptable and that as the values stray farther from the ranges, the accuracy of the model degrades very quickly. For prescriptive scoring, these constraints are used to determine the acceptable ranges of values to try when determining the optimal values. Values outside of these constraints will NOT be tried. How to handle goal values while scoring What should be the value for the goal(objective TRUE) column in new data which would be scored using existing prediction model? <Dataset for making prediction model> Independent value goal field -0.65 0 -0.75 0 -0.85 0 0.85 1 0.45 1 ~~~ ~~~ <New data to be scored> Independent value goal field -0.25 ?? 0.35 ?? -0.45 ?? 0.95 ?? 0.15 ?? ~~~ ~~~ Now scoring, by its definition, does not take into consideration the goal column when being run. Seeing as the goal column above is a Boolean, we can populate the yet to be scored records with either a 0 or 1 and it won’t matter when it comes to scoring.
View full tip
This video begins Module 7: Predictive & Prescriptive Scoring of the ThingWorx Analytics Training videos. It describes how a trained machine learning model takes inputs and makes predictions of different kinds, depending on the use case. It shows how scoring works in production, taking inputs from various sources and producing a score to help users make informed decisions. It also covers the concept of field importance in an individual score.
View full tip
This video covers the new features of ThingWorx Analytics Builder 8.1   Updated Link for access to this video: What's New in ThingWorx Analytics Builder 8.1
View full tip
In this video we are going through a few steps to ensure the installation process went fine.   Updated Link for access to this video:  Validating a ThingWorx Analytics Server 8.1 Installation
View full tip
This is part 3 out of 3 videos on Getting Started with ThingWorx Analytics During this video you will learn:   Executing a “Signals” Job Getting the results of the “Signals” Job Executing a “Training Model” Job Getting the results of the “Training Model” Job   Updated Link for access to this video:  Getting Started with ThingWorx Analytics: Part 3 of 3
View full tip
    Use Analytics Manager to automatically perform engine analytical calculations.   Guide Concept   This guide will use ThingWorx Analytics Manager to compare external-data from an Edge MicroServer (EMS) "Engine Simulator" to a previously-built analytical model.   Following the steps in this guide, you will learn how to deploy the model which you created in the earlier Builder guide.   We will teach you how to utilize this deployed model to investigate whether or not live data indicates a potential engine failure.   You'll learn how to   Deploy and execute computational models Define and trigger Analysis Events Map incoming data to the Model Map analytic outputs to applications   NOTE: This guide's content aligns with ThingWorx 9.3. The estimated time to complete this guide is 60 minutes       Step 1: Scenario   In this guide, we're continuing the same MotorCo scenario, where an engine can fail catastrophically in a low-grease condition.   In previous guides, you've gathered and exported engine vibration-data from an Edge MicroServer (EMS) and used it to build an engine analytics model.   The goal of this guide is to now operationalize that previously-created model to analyze individual, external readings to see if the "low grease" condition is currently happening.     Analytical model creation can be extremely helpful for the automotive segment in particular. For instance, each car that comes off the factory line could have an EMS constantly sending data from which an analytical model could automatically detect engine trouble.   This could enable your company to offer an engine monitoring subscription service to your customers.   This guide will show you how to put an analytic model of your engine into service to actively monitor performance.       Step 2: Configure Provider   In ThingWorx terminology, an Analysis Provider is a mathematical analysis engine.   Analytics Manager can use a variety of Providers, such as Excel, Mathcad, or even Analytics Server pre-built ones.   In this guide, we use the built-in AnalyticsServerConnector, a Provider that has been specifically created to work seamlessly in Manager and to use Builder Models.   From the ThingWorx Composer Analytics tab, click Analytics Manager > Analysis Providers > New....   In the Provider Name field, type Vibration_Provider. In the Connector field, search for and select TW.AnalysisServices.AnalyticsServer.AnalyticsServerConnector.   Leave the rest of the options at default and click Save.     Step 3: Publish Analysis Model   Once you have configured an Analysis Provider, you can publish Models from Analytics Builder to Analytics Manager. On the ThingWorx Composer Analytics tab, click Analytics Builder > Models.   Select vibration_model_s1_only and click Publish.   On the Publish Model? pop-up, click Yes. A new browser tab will open with the Analytics Manager's Analysis Models menu. Close that new browser tab, and instead click Analysis Models in the ThingWorx Composer Analytics navigation. This is the same interface as the auto-opened tab which you closed.   Click the model to select it. At the top, click Enable. Note the pop-up indicating that the Enable was successful.       Step 4: Modify EdgeThing   In previous guides in this Vehicle Predictive Pre-Failure Detection Learning Path, you have created various Entities, including Things such as EdgeThing.   In order to automate the process of pushing data from EdgeThing to Analytics Manager, we need to add a few more Properties to EdgeThing.   These Properties are simple STRING variables, and we'll also set Default Values for them to configure parameters of Analytics Manager.   The first is causalTechnique, which tells Analytics Manager which criteria to use when measuring the impact of a feature on a range of goal values.   The second is goalField, which is simply the data field for which Analytics Manager should try to identify the correlation. In this case, it'll be our primary issue, i.e. low_grease.   It is not mandatory that these suggested Property names match, but they are the names used within ThingWorx Analytics. You could use any Property name you wanted, as you'll be mapping from a particular Property to the functionality within Analytics in a later step.   Return to EdgeThing > Properties and Alerts.   Click + Add.   In the Name field, type causalTechnique. Check Has Default Value. In the text field under "Has Default Value", type FULL_RANGE. Note that you MUST type FULL_RANGE, including capitalization, as that is a command within Analytics Server.   Click the "Check with a +" icon for Done and Add. In the Name field, type goalField. Check Has Default Value. In the text field under "Has Default Value", type low_grease. Note that you MUST type low_grease, including being all lower-case, as that is the exact name of the Analytics Server goal.   Click the "Check" icon for Done. Click Save.   Results Storage   We also need a place in which to store the results that Analytics Manager returns. We'll utilize a few additional Properties for that as well.   On the EdgeThing > Properties and Alerts tab, click + Add. In the Name field, type Result_low_grease. Check the Base Type to BOOLEAN. Check Persistent.   Click the "Check with a +" icon for Done and Add. In the Name field, type Result_low_grease_mo. Change the Base Type to NUMBER. Check Persistent.   Click the "Check" icon for Done. Click Save.       Step 5: Create Event   Events are automatic analysis jobs which are submitted based on a pre-defined condition. In this step, we'll configure an Analysis Event, which will execute automatically whenever there is a data-change in our simulated engine.   On the ThingWorx Composer Analytics tab, click Analytics Manager > Analysis Events.   Click New.... If not already selected, change Source Type (Required) to Thing.   In Source, search for and select EdgeThing. In Event, select DataChange. In Property, select s1_fb1. If there are multiple s1_fb1 Properties, select the first one, as the second one is the s1_fb1 entry in the Info Table Property. In Provider Name, select Vibration_Provider. In Model Name, select the published Model.   Click Save.       Click here to view Part 2 of this guide.  
View full tip
This video begins Module 5: Descriptive Analytics of the ThingWorx Analytics Training videos. It covers signals, profiles, and clusters, and how these forms of descriptive analytics provide crucial insight into your data.
View full tip
This video begins Module 8: Time Series Modeling of the ThingWorx Analytics Training videos. It describes the differences between time series and cross-sectional datasets. It begins to show how ThingWorx Analytics automatically transforms time series datasets into ones that are ready for machine learning. 
View full tip
Video Author:                     Christophe Morfin Original Post Date:            October 10, 2016 Applicable Releases:        ThingWorx Analytics 52.x and 7.4   Description: In this video we cover the process of installing ThingWorx Analytics Server 52.1.  It is suggested that you first review the first part on prerequisites.      
View full tip
In this video we cover the installation of the platform analytics services which include: Descriptive services and property transform services.  
View full tip
This video concludes Module 8: Time Series Modeling of the ThingWorx Analytics Training videos. 
View full tip
This video continues Module 8: Time Series Modeling of the ThingWorx Analytics Training videos. It continues to show how ThingWorx Analytics automatically transforms time series datasets into ones that are ready for machine learning. It also describes the concept of virtual sensors. It finishes by describing the time series dataset that will be used in the following modules.
View full tip
In this video we show a simple use case on how to setup a transformed property to collect statistical values  
View full tip
This video concludes Module 7: Predictive & Prescriptive Scoring of the ThingWorx Analytics Training videos. It describes how ThingWorx Analytics automatically evaluates a range of values for chosen fields to produce prescriptive scores. 
View full tip
This video begins Module 6: Predictive Models & Model Validation of the ThingWorx Analytics Training videos. It gives examples of different types of goal variables. It also discusses data considerations in predictive modeling, It begins describing the machine learning algorithms used by ThingWorx Analytics to build predictive models. 
View full tip
Beginning with version 8.4.0 ThingWorx Analytics Manager is now able to delete Jobs by filter. Underneath video demonstrates this capability.   
View full tip
This video is Module 2: Use Case Discussion of the ThingWorx Analytics Training videos. It covers what a use case is, and what a successful use case requires. It details a few examples that have been explored using ThingWorx Analytics. 
View full tip
In this video we introduce the Descriptive Services and property transform services that are found on the platform analytics media  
View full tip
This video begins Module 4: Data Transformation & Feature Engineering of the ThingWorx Analytics Training videos. It describes what data transformation is, and how feature engineering can improve machine learning models. You will learn about independent and dependent variables in your data, and how an "analytics ready view" looks for use with ThingWorx Analytics.
View full tip
Hi I have attached a Postman collection, this can be used as a template and be modified. steps to upload the collection to Postman. 1. In your Postman window click at Import. 2. Once you clicked import, you can chose your file. 3. The collection is now visible in your left side of the window.
View full tip
Announcements