cancel
Showing results for 
Search instead for 
Did you mean: 
cancel
Showing results for 
Search instead for 
Did you mean: 

ThingWorx Navigate is now Windchill Navigate Learn More

IoT & Connectivity Tips

Sort by:
Alerts are a special type of event.  Alerts allow you to define rules for firing events.  Like events, you must define a subscription to handle a change in state.  All properties in a Thing Shape, Thing Template, or Thing can have one or more alert conditions defined.   You can even define several of the same type of alert.  When an alert condition is met, ThingWorx throws an event. You can subscribe to the event and define the response to the alert using JavaScript.  Events also fire when a property alert is acknowledged and when it goes out of alert condition.   Alert Types Alerts have conditions which describe when the alert is triggered.  The types of conditions available depend upon the property type.  For example, string alerts may be triggered when the string matches pre-set text.  A number alert may be set to trigger when the value of the number is within a range.   EqualTo: Alert is triggered when the defined Value is reached. Applies to Boolean, DateTime, Infotable (in regard to number of rows), Integer, Long, Location, Number, and String base types. NotEqualTo: Alert is triggered when the defined Value is not reached. Applies to Boolean, DateTime, Infotable (in regard to number of rows), Integer, Long, Location, Number, and String base types. Above: Alert is triggered when the defined Limit is exceeded or met (if the Limit is included).  By default, the Limit is included.  Applies to DateTime, Infotable, Integer, Long, and Number base types. Below: Alert is triggered when the alert value is below the defined Limit or meets it (if the Limit is included).  By default, the Limit is included.  Applies to DateTime, Infotable, Integer, Long, and Number base types. InRange: Alert is triggered when a value is between a defined range.  By default, the minimum value is included, but the maximum can be included as well.  Applies to DateTime, Integer, Long, and Number base types. OutofRange: Alert is triggered when a value is outside a defined range.  By default, the minimum value is included, but the maximum can be included as well.  Applies to DateTime, Integer, Long, and Number base types. DeviationAbove: Alert is triggered when the property value minus the alert Value is greater than the alert Limit ((property value - alert value) > alert Limit).  If the Limit is included, the alert is triggered when the property value minus the alert Value is greater than or equal to the alert Limit ((property value - alert value) >= alert Limit).   By default, the Limit is included.  Applies to DateTime, Integer, Long, Location, and Number base types. DeviationBelow: Alert is triggered when the property value minus the alert Value is less than the alert Limit ((property value - alert value) < alert Limit).  If the Limit is included, the alert is triggered when the property value minus the alert Value is less than or equal to the alert Limit ((property value - alert value) <= alert Limit). By default, the Limit is included.  Applies to DateTime, Integer, Long, Location, and Number base types. Anomaly: Alert is triggered when the property value falls outside of an expected pattern as defined by a predictive model.  Applies to Integer, Long, and Number base types.   Alert types are specific to the data type of the property.  Properties configured as the following base types can be used for alerts:   Boolean Datetime Infotable Integer Location Number String   Creating an Alert When creating an alert:   You can set it to be enabled or disabled Alerts must have a ThingWorx-compatible name and can optionally contain a description You must set the limit(s) to determine when the event fires If an Include Limit is included, the event fires when the Limit Condition is met Not including the Limit causes the event to fire when the Limit Condition is surpassed The priority is a metadata field that enables the addition of a priority. It does not impact the Event/Subscription handling or sequence because the system fires events off asynchronously.   Steps to create or modify an Alert:   Select an existing Property or create a new Property for a Thing, Thing Shape, or Thing Template for which to create/update the Alert Click Manage Alerts Click the New Alert drop-down and select the appropriate Alert Type Note:  The available fields will be vary depending on data type of the Property   Deselect Enabled if you do not wish to make the Alert enabled at the present time (Alert is enabled by default) Provide a Name and optional Description for the Alert Enter a Limit (numeric properties) Select Include Limit? if the value entered in the Limit field should trigger the Alert   Select the appropriate Priority. (The Priority is a metadata field for searching and categorization only.  It does not affect the order of processing, CPU or memory usage.) After defining an Alert, you can click New Alert to add additional alerts of either the same or different condition. You can also click Add New to add additional alerts of the same condition. When all Alerts have been created, click Update Click Done Once all Properties have been updated as needed, click Save   Once Alerts are defined, they appear on the Properties page (while in Edit mode).       After an Alert is defined, a Subscription to that Alert can be configured to launch the appropriate business logic, such as notifying a user of an Event through email or text message.     Monitoring Alerts   When an Alert condition is met, ThingWorx fires off an Alert. You can create a Subscription to the Alert so that you are automatically notified when an Alert is triggered.  Alerts are written to the alert history file and can be viewed through the Alert Summary and Alert History Mashups. The system tracks acknowledged and unacknowledged alerts. Alerts do not fire redundant events. For example, if a numeric property has a rule defined that generates an alert when the value is greater than 50, and a value = 51, an alert is generated and an alert event will fire. If another value comes in at 53 before the original alert is acknowledged, another event will not be fired because the current state is still greater than 50.   The Alert History and Alert Summary streams provide functionality to monitor alerts in the system.  Alert History is a comprehensive log that records all information recorded into the alert stream, where the data is stored until manually removed.   The Alert Summary provides the ability to filter by all alerts, unacknowledged alerts, or acknowledged alerts. You can also acknowledge alerts on a selected property or all alerts from a particular source (thing).   This information can be retrieved using Scripts as well, so you can create your own Alert Summary and History mashups.   From the ThingWorx header, choose Monitoring > Alert History. All Alerts are listed here. Click the Alert Summary Click the Unacknowledged tab to view alerts that have not been acknowledged. Choose to acknowledge an alert on a property or on the source. Type a message in the corresponding field. Click Acknowledge.   For each alert, the following displays: Property name. Source thing – lists the thing that contains this property with the alert. Timestamp – indicates when the alert was triggered. Name and type of alert. Duration – details how long the alert has been active. AckBy – indicates if the alert has been acknowledged and, if so, by whom and when. Message – defaults to the condition but is overwritten with the acknowledge message if one exists. Alert description.    The Alert History screen displays all Alerts that were once in an alert condition, but have moved out of that alert condition.  A Data Filter is provided at the top of the mashup to more easily find a particular Source, Property, or Alert.   The Alert History report is a Thingworx Mashup created using standard Thingworx functionality.  This means that any developer has the ability to re-create this report or a modification of this report.       Acknowledging Alerts   An acknowledgement (ack) is an indication that someone has seen the alert and is dealing with it (for example, low helium in an MRI machine and someone is filling it).  Alert History shows when alerts were acknowledged and any comments.   You can acknowledge an alert on a property or on the source. A source acknowledgment acknowledges all alerts on the source Thing for the selected alert in Monitoring > Alert Summary. A property acknowledgment (ack) only acknowledges the alerts on the property for the selected alert in Alert Summary.   For example, you create a Thing with two properties that have alerts set up. You put both properties in their alert states. View Alert Summary and select the Unacknowledged tab. You should see two alerts. Select one, and do a property acknowledgement. The alert you selected moves to the Acknowledged tab and is removed from the Unacknowledged tab. Put both properties in their alert states again, select one of the alerts on the Unacknowledged tab, and this time do a source acknowledgement. In this case, both alerts move to the Acknowledged tab, even though you only selected one of them.    For more information about Alerts, click here. To view a tutorial video on alerts, click here. Refer to this article for best practices affecting alerts.
View full tip
Business logic and actions in a ThingWorx application are driven by events.  Events are interesting or critical property states that a Thing publishes to subscribers.  Events are defined at the thing, thing template, or thing shape level, and can be as simple as a new data value from a device, to complex events from many data points.  An event that is created on a thing shape or thing template level is inherited down into the entities that implement the shape or template that defines the event.   Types of Events Built-in Custom   Built-in Events Every entity in ThingWorx can use several built-in events.  These events are automatically triggered when a prerequisite condition is met.  In some cases, you must provide information that determines the specifics of that prerequisite.   Common built-in events include: Data Change Alert Timer  In ThingWorx, there are standard events and related data packets (defined by Data Shapes).  The most common type of event is a Data Change related to a Thing property.  The Data Change fires when a property value changes. The specifics of this event can be configured from the Data Change Info section of the Property Creation page.  When you define a property, there are many configuration aspects.   Example:   Using DataChangeEvent, you have a few options for setting an event to fire when there is new data for a property: only if the data has changed only if the data evaluates true or false only if the new value changed beyond a defined threshold   The Alert event is also attached to a property and is set up from the Property Definition page.  An Alert event fires when the value of the property reaches a certain threshold or value.  Depending on the base type, you may specify the condition of this event from the Manage Alerts button.   Timer events can be used to run jobs or fire events on a regular basis.  Things themselves can fire specific events such as Thing Start or “special” things, like a Timer type thing that contains special event(s).   How to Set up and Configure Timers   Creating a Custom Event To create a new custom event:   In ThingWorx Composer, open up the Thing, Thing Template, or Thing Shape for edit where the new Event will be added From the sidebar menu under Entity Information, select Events Click Add My Event Provide the event with a name and a data shape that describes the data being sent to a subscriber Click Done and Save   Once created, the event appears on the Subscriptions page for subscribing.  Since the event is custom built, you must specify when it triggers.  This is often accomplished from within a service.   Best Practices There should be a subscriber to the event in the model. The subscriber is sent a data packet and the subscription is initiated. If no one is subscribed to the event (no one is listening), nothing happens. DataChange events hit the event processing subsystem (see Event Processing Subsystem below), which has fewer threads allocated to it than some other subsystems: If queries within subscriptions to data change events take too long, this will cause a back-up in the event processing subsystem Too much activity in this subsystem may result in poor system performance, and even server crashes Be cautious what types of calculations are performed in data change event subscriptions Refer to the following knowledge base article regarding tricky data change event use cases, the implementation of rules for alerts, and conditional operations:  Complicated Event Calculations in ThingWorx Load Test all applications in Sandbox before committing changes to Production to ensure mashups can handle all design choices on large scales   Event Processing Subsystem The Event Processing Subsystem manages event processing for external subscriptions (Things subscribing to other Things) throughout ThingWorx.   Event Queue Processing Settings Base Type Default Notes Min Threads Allocated to Event Processing Pool NUMBER 16   Max Threads Allocated to Event Processing Pool NUMBER 500   Max Queue Entries Before Adding New Working Thread NUMBER 200000 Maximum number of entries to queue before adding a thread to the pool     Additional Information PTC ThingWorx Help Center - Thing Events Event Types Creating and Triggering Custom Events in ThingWorx  
View full tip
ThingTemplate   A ThingTemplate, at it's root is nothing but a class definition. Things are instances of a ThingTemplate which encapsulates business logic for a specific asset class.   This could be equated to that of a Class in an object-oriented programming concept. ThingTemplates provides initial state & implementation of behaviour for the Things implementing it. See ThingTemplates in Help Center & Similarities to Object-Oriented Programming for more.   ThingTemplate Use Cases   It's among the many building blocks for an IoT Solution which belong to the highest level objects created and maintained, i.e. Entities. There are several Entity Types in ThingWorx allowing users to model the physical world within the virtual realm of ThingWorx platform. There are following type of entities available within ThingWorx for modeling:   Things Thing Shapes Thing Templates Additional useful read Programming for the IoT Thing-Centric vs Traditional Query Approaches Model-View-Controller (MVC)   Ways to explore the out of the box provided ThingTemplates   All the available ThingTemplates can be listed and reviewed by navigating to the /Server via the ThingWorx REST API. List of ThingTemplates can be reviewed by using one of the following : <serverName>:<portNumber>/Thingworx/Server in a web browser and then locate and click on the ThingTemplates, or by; Typing <serverName>:<postNumber>/Thingworx/ThingTemplates in the web browser Either of the above listed options will display the following list in the web browser   List of ThingTemplates List shows all available ThingTemplates i.e. ThingTemplates that were provided OOTB and the ones that were created by the users as well. Using the column isSystemObject one can verify if the displayed ThingTemplate is provided OOTB or is custom one created by the user.   Accessing ThingTemplate Class description / details   This is covered under the JavaDocs for the ThingWorx Platform API, which can be accessed via the API Documentation   Search for ThingTemplate for following result   API Documentation: ThingTemplate While creating a custom ThingTemplate outside of ThingWorx composer, e.g. creating ThingWorx extension it is must to have following two entities in the metadata.xml file.     <Entities> <ThingTemplate> </ThingTemplate> </Entities> Note: If Eclipse Plugin is used for creating the ThingTemplate, above mentioned entries will automatically be created in the metadata.xml     Tips & tricks How to modify Base Template for a ThingTemplate for a Thing How to iterate through list of Things to identify their ThingTemplate & based on that set a particular property in those Things Add run time permissions through script to Thing Templates, Thing Shapes, etc Changing a Thing's implemented ThingTemplate after it has been created in ThingWorx Basic troubleshooting  Error "Thing [] is not running" when editing ThingTemplates in ThingWorx Troubleshooting Entity Relationship issues in ThingWorx Best Practises How to search for All entities in ThingWorx or by Thing Type How to create custom ThingTemplate when developing custom ThingWorx Extension Inheriting Permissions from a ThingTemplate      
View full tip
Events   Timers and Schedulers both come with a specific Event inherited from the Thing Template: Timer ScheduledEvent Both have a Data Shape allowing to capture the timestamp of when the Event was actually fired. Events in ThingWorx are triggered when a specific condition is met. In this context the condition is met and the Event is fired when a Timer has expired or a Scheduler's time is reached. Once an Event is triggered, Subscriptions will take care of executing custom Services to react to the Event. Subscriptions   Subscriptions listen to Events and can be used to react to certain Events with running custom Service scripts. To follow-up on Timers and Schedulers, a new Subscription must be created, listening to any related Event fired. Add a new Subscription to the Thing with       As the Subscription is usually listening to the Thing that it is configured on, the Source has to be left empty. When listening to other Entities' Subscriptions the corresponding Entity can be picked in the Source Entity picker. Ensure to check the Enabled checkbox to actually enable the Subscription and allow it for executing code in the Script area. The following Script will log into the ScriptLog once the Timer Event is fired     The following Script will log into the ScriptLog once the ScheduledEvent Event is fired  
View full tip
Timers and Schedulers can also be created and configured programmatically via custom services. The following service, which can be created on any Thing, will create a new Timer using the following Inputs:         // create new Thing var params = { name: ThingName /* STRING */, description: undefined /* STRING */, thingTemplateName: "Timer" /* THINGTEMPLATENAME */, tags: undefined /* TAGS */ }; Resources["EntityServices"].CreateThing(params); // read initial configuration // result: INFOTABLE var configtable = Things[ThingName].GetConfigurationTable({tableName: "Settings"}); // update configuration with service parameters configtable.updateRate = updateRate configtable.runAsUser = user // set new configuration table var params = { configurationTable: configtable /* INFOTABLE */, persistent: true /* BOOLEAN */, tableName: "Settings" /* STRING */ }; Things[ThingName].SetConfigurationTable(params);   This code is an example which could also be used to create a new Scheduler. The configuration table for a Timer has the following attributes: updateRate enabled runAsUser The configuration table for a Scheduler has the following attributes: schedule enabled runAsUser  
View full tip
Protocol Adapter Toolkit (PAT) is an SDK that allows developers to write a custom Connector that enables edge devices (without native AlwaysOn support) to connect to and communicate with the ThingWorx Platform. A typical use case is edge communication using a protocol that can't be changed (e.g. MQTT). Prior to PAT, developers had to use the ThingWorx (Edge or Platform) SDKs, or the ThingWorx REST interface, to enable the edge devices to communicate with ThingWorx. Overview PAT provides three main components: the Channel, the Codec, and the ThingWorx Platform Connection. The Channel implements a network protocol to communicate directly with the Edge Device. Its responsibilities include reading data from an Edge Device, writing data to an Edge Device, and routing data to the correct Codec. You can implement your own custom channel or use one of the out of the box channels provided by PTC : WebSocket, HTTP (1.0.x) and MQTT (1.1.x). The Codec translates messages from your edge devices into messages that ThingWorx platform can process (property read/write,service call, events), and provides a means to take the results of those actions and turn them back into messages for the device.  You must implement the Codec. The Platform Connection layer sends and receives messages with the ThingWorx platform. Note : The PAT Connector capabilities depend on edge protocol and channel implementation. Installation The PAT installation media contains : README.md - start here SDK (Java API) and runtime libraries PAT skeleton project (Gradle) Sample codec implementations for the WebSocket, HTTP, and MQTT channels (Gradle) Sample Custom Channel implementation (basic TCP protocol adapter) (Gradle) Required extensions to be installed on the platform : ConnectionServicesExtension and pat-extension Reference Documents ThingWorx Protocol Adapter Toolkit Developers Guide 1.0.0 README.md in various levels of installation folders ThingWorx Connection Services and Compatibility Matrix 1.0.0 Related Knowledge Protocol Adapter Toolkit - MQTT Sample Project hands-on (1.1.x)
View full tip
Put together a quick example mashup in support of a couple of analytics projects to demonstrate use of the new TWX Analytics 8.1 APIs within TWX mashup builder. The intention here is for use in POCs to provide a quick way of demonstrating customer-facing analytics outputs along with the more detailed view available in Analytics Builder. Required pre-requisites are: ThingWorx 8.1 + Analytics Extensions ThingWorx Analytics Server 8.1 Carousel TWX UI widget (attached) imported into TWX Data set(s) loaded with signals / profiles generated. The demo can be installed by importing the attached entities file into TWX composer then launching the mashup 'EMEA.Analytics.CustomerInsightMashUp'. A quick run through of the functionality ... On launching the mashup, data sets and models are displayed for selection on the left hand-side. On selecting dataset and model, signals are presented in two tabs - first an overview of all signals. The list on the left can be expanded by changing the value for 'Top <n> Contributing Features'. On selecting a signal from the list, the 'Selected Signal Details' tab displays additional charting for value ranges, average goal etc. The number of 'bins' to display can be edited. Similarly, profiles can be viewed from the 'Profiles' tab - each profile can be selected by dragging the upper carousel. This is all done using the Analytics 8.1 "Things" in TWX along with an additional custom Thing with some scripted services (EMEA.Analytics.Helper). Thanks to Arian Van Huelsen & Tanveer Saifee at PTC for their support; all comments / feedback welcome.
View full tip
Preface This guide applies to a clean installation of the CentOS 7 Minimal distribution. This is labeled as "Minimal ISO" on the CentOS.org website and the filename of the iso image used to install the operating system will resemble "CentOS-7-x86_64-Minimal-1611.iso." The machine used in this guide was a virtual machine created using Oracle VirtualBox but the same steps should apply to any machine with a clean CentOS 7 Minimal install. It is however possible that some installations may encounter slight variations due to hardware configurations. Before starting Unzip the downloaded "MED-..._ThingWorx-Analytics-Server-Linux-Standalone-8-0-0.zip".  Inside the unzipped directory you will find a file called "ThingWorxAnalyticsServer-8.0.0-linux-x64-installer.run". Before running step number 10, upload that file to your CentOS machine using a SFTP SCP tool of your choice. Configuration and installation steps Step 1: Install Docker with the following commands (these steps are presented at https://docs.docker.com/engine/installation/linux/docker-ce/centos/#install-using-the-repository😞 yum install -y yum-utils device-mapper-persistent-data lvm2 yum-config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo yum makecache fast yum -y install docker-ce Step 2: Create a group called docker (If this command reports the group already exists, that is ok. You can move to the next step): groupadd docker Step 3: Add your non-root user to the docker group, in this example my non-root user is called "thingworx", please replace with the correct username: usermod -aG docker thingworx Step 4: Start the Docker service and enable it to auto start after reboot: systemctl start docker systemctl enable docker Step 5: Verify that docker is working: docker ps Step 6: After running the above command you should see a single line output that resembles the following: "CONTAINER ID        IMAGE              COMMAND            CREATED            STATUS              PORTS              NAMES" Step 7: Disable selinux with the two following commands. Note by doing this you will want to make sure if this is a public facing server that you take appropriate security measures to lock down the system. setenforce 0 sed -i -e 's/SELINUX=enforcing/SELINUX=disabled/' /etc/sysconfig/selinux Step 8: Set the hostname of your machine to something otherthan the default which is "localhost.localdomain".  In this case I am using the name "centos", this can be replaced with a name of your choosing: hostname centos echo "centos" > /etc/hostname Step 9: Allow traffic through the default CentOS firewall.  Note that in a production environment, the firewall should be configured more granular to allow incoming traffic to only the required ports (5432, 2181 and 8080). Please refer to CentOS documentation and consult security best practices within your organization for more information. The following commands will completely disable the CentOS firewall. systemctl disable firewalld systemctl stop firewalld Step 10: Ensure the ThingWorx Analytics Server installer is executable then run the installer. You may have to change to the directory where the installer was uploaded to the machine, in this case I have it in the home directory of the user named thingworx.  Please replace that path with the correct path for your machine.  Note below are 3 separate commands. cd /home/thingworx chmod +x ThingWorxAnalyticsServer-8.0.0-linux-x64-installer.run ./ThingWorxAnalyticsServer-8.0.0-linux-x64-installer.run Step 11: Verify that the ThingWorx Analytics Server installation is successful. Note that it may take a few minutes for the system to become available. Retry the command after a few minutes if an error is initially encountered. curl http://127.0.0.1:8080/analytics/1.0/about/versioninfo NOTE: The response from the above command should resemble the following: {"implementationVersion":"8.0.0"}
View full tip
This is a useful trick for rolling up metrics in Thingworx across various levels of a hierarchy by using Networks, ThingShapes, and recursive service definitions. Say that you have a hierachy of Things in your model such as a Global view, a Region view, and a Store view -- this could be a Mfg Plant, a Building, an Asset, etc; whatever the core metric producing Thing is in your model -- where your Store has KPIs that you want to roll up across regions and globally. First, create a template for each of your hierarchical levels. In my case it is a GlobalTemplate, RegionalTemplate, and StoreTemplate. Add a property to your StoreTemplate that will be the KPI. Now, create a Thing for the Globe, and each of your Regions and Stores. Add them to a hierachical Network as such: Now, we need to create a ThingShape to aggregate our KPIs and apply it to the Global, Regional, and Store template. Now we will define a recursive funciton on our ThingShape called GetKPI ​and define it with the following: //define our base case, when the thing template we are on is the lowest level of our hierarchy, in this case the StoreTemplate if (me.thingTemplate == "StoreTemplate") {     //in our base case, the result is just the property for the metric we want to aggregate     result = me.someMetric } else {     //otherwise, we are at some other level in the hierarchy and we need to get our child connections from the network     //this gets all the things below us in the network     var params = {         name: me.name /* STRING */     };     // result: INFOTABLE dataShape: NetworkConnection     var network = Networks["Network"].GetChildConnections(params);     //loop through each of the things below us in the hierarchy and recursively add the result of GetKPI() to our result     result = 0;     for each (var row in network.rows) {             result += Things[row.to].GetKPI();     } } This is a simple case of just summing up a single property, but we can take this further using the Union and Aggregate snippets provided by thingworx to do other kinds of summarization. First add a new property called someAvgMetric ​to our StoreTemplate, and define a new service GetKPIProperties as such, with an InfoTable result, on the StoreTemplate varparams = {     propertyNames: {"items": ["someMetric", "someAvgMetric"]} /* JSON */ }; // result: INFOTABLE dataShape: "undefined" var result = me.GetNamedProperties(params); Now, define a new service on our ThingShape to utilize this service as our base case, and aggregate the resulting InfoTable when necessary. We'll call this service GetKPIAggregates: //define our base case if (me.thingTemplate == "StoreTemplate") {     //this function will be on the StoreTemplate, and returns the base infotable     result = me.GetKPIProperties() } else {     //grab our network     var params = {         name: me.name /* STRING */     };     // result: INFOTABLE dataShape: NetworkConnection     var network = Networks["Network"].GetChildConnections(params);     //need to create an empty infotable to union into. I glossed over this, but you'll need a datashape here     //create empty infotable     var result = Resources["InfoTableFunctions"].CreateInfoTableFromDataShape({ infoTableName: "InfoTable", dataShapeName: "KPIDataShape" });     //loop through and union each of our results to our new infotable     for each (var row in network.rows) {         var params = {             t1: result /* INFOTABLE */,             t2: Things[row.to].GetKPIAggregates() /* INFOTABLE */         };         var result = Resources["InfoTableFunctions"].Union(params);     }     //aggregate each of our fields     var params = {         t: result /* INFOTABLE */,         columns: "someMetric,someAvgMetric" /* STRING */,         aggregates: "SUM,AVERAGE" /* STRING */,         groupByColumns: undefined /* STRING */     };     // result: INFOTABLE     var result = Resources["InfoTableFunctions"].Aggregate(params);     //need to loop through each of our field names and make them match our base infotable     // infotable datashape iteration     var dataShapeFields = result.dataShape.fields;     for (var fieldName in dataShapeFields) {         var stringName = dataShapeFields[fieldName].name;         var params = {             t: result /* INFOTABLE */,             from: stringName /* STRING */,             to: stringName.split("_")[1] /* STRING */         };         // result: INFOTABLE         var result = Resources["InfoTableFunctions"].RenameField(params);     } } Now, in our mashups, we can use a DynamicThingShape and call our GetKPIs service at any level in our network, and our data will be aggregated correctly for whatever level we are at in the hierarchy!
View full tip
This example provides the ability to generate a simple entity structure and some historical data for each entity. Historical data is run through a ThingWorx service to generate histogram data for display in a bar chart.  The provided ThingWorx entities and PDF document provide the example as well as documentation.
View full tip
This blog post has been written in collaboration with nexiles GmbH, a PTC Software Partner   The Edge Micro Server (EMS) and the LUA Scripting Resource (LSR) allow for an easy connection of sensors and / or data to the ThingWorx Platform.   Connections are usually established through the HTTP protocol and a REST API which sends unencrypted data and user specific credentials or ThingWorx application keys. This could be fine for a non-production environment. However in a more secure environment or in production, encryption and authentication should be used wherever and whenever possible to ensure the safety and integrity of the data.       In this scenario a user, client machine or remote device can utilize the LUA endpoints via the REST APIs endpoints. For this an authentication mechanism with credentials is required to only allow authenticated sessions. Invokation of services etc. are all protected and encrypted via HTTPS. A default HTTP connection would transfer the credentials as clear text which is most likely not desired.   The LSR then communicates via HTTPS to the EMS.   The EMS communicates to the ThingWorx platform via the AlwaysOn protocol using an encrypted websocket on the platform side.   Prerequisite   ThingWorx is already fully configured for HTTPS. See Trust & Encryption Theory and Hands On for more information and examples   Securing the EMS   EMS to ThingWorx connection   The config.json holds information on the complete EMS configuration. To add a trusted and secure connection to the ThingWorx platform, the servers, connection type and certificates have to be adjusted.   Check the config.json.complete for more information and individual settings.   As an example the following configuration could be a rough outline.   Switch the websocket server port to 443 in ws_servers Declare the connection to the websocket as SSL / TLS in wc_connection Declare the certificate used by the ThingWorx platform in certificates Validate the certificate In case you're using a self-signed certificate, allow using it - otherwise just say "false" If not using a self-signed certificate, but a certificate based on a chain of trust, point to the full chain of trust in the cert_chain parameter I used the client certifcate in X509 (PEM) formatted .cer file I used the client certificate's private key as PKCS #8 (PEM) and encrypted it with the super-secure password "changeme" (no really, change it!)   With this the EMS can connect securely to the ThingWorx platform websocket.   EMS as HTTP(S) server   To secure incoming connections to the EMS, it first of all needs to act as a HTTP server which is then configured to use a custom certificate.   In config.json add the http_server section Define the host and port as well and set SSL to true The full path of the certificate (.cer file) must be provided   With this the EMS can receive client requests from the LSR through a secure interface, protecting the (meta) data sent from the LSR to the EMS.   For my tests I'm using a self-signed certificate - created in the Keystore Explorer and exported as X509 (PEM) formatted .cer file. The private key is not required for this part.   Authentication   To further secure the connection to the EMS acting as HTTP(S) server, it's recommended to use user and password for authentication.   With this, only connections are accepted, that have the configured credentials in the HTTP header.   config.json   {      "ws_servers": [ { "host": "supersecretems.ptc.com", "port": 443 } ],        "appKey": "<#appKey>",        "http_server":  {           "host": "localhost",           "port": 8000,           "ssl": true,           "certificate": "C:\\ThingWorx\\ems.cer",           "authenticate": true,           "user": "EMSAdmin",           "password": "EMSAdmin",           "content_read_timeout": 20000      },        "ws_connection": { "encryption": "ssl" },        "certificates": {           "validate": true,           "allow_self_signed": true,           "client_cert": "C:\\ThingWorx\\twx70.cer",           "key_file": "C:\\ThingWorx\\twx70.pkcs8",           "key_passphrase": "changeme"      }   }   Securing the LSR   LSR to EMS connection   All connections going from the LSR to the EMS are defined in the config.lua with the rap_ parameters.   To setup a secure connection to the EMS, we need to provide the server as defined in the config.json in the http_server section (e.g. the default localhost:8000). Define the usage of SSL / TLS as well as the certificate file.   Client to LSR connection   All connection going to the LSR from any client are defined in the config_lua witht the script_resource_ parameters.   To ensure that all requests are done via authenticated users, setup a userid and password. Configure the usage of SSL / TLS to encrypt the connection between clients and the LSR. A custom certificate is not necessarily required - the LSR provideds its own custom certificate by default.   Now opening https://localhost:8001 (default port for the LSR) in a browser will open an encrypted channel forcing authentication via the credentials defined above.   Of course this needs to be considered for other calls implementing e.g. a GET request to the LSR. This GET request also needs to provide the credentials in its header.   Authentication   It's recommended to also configure the LSR for using a credential based authentication mechanism.   When setting up the LSR to only accept incoming requests with credentials in the header, the script_resource_userid and script_resource_password can be used for authentication.   When connecting to an EMS using authentication, the rap_userid and rap_password can be used to authenticate with the credentials configured in the config.json   config.lua   The following configuration can be posted anywhere in config.lua - best place would be just below the log_level configuration.   scripts.rap_host = "localhost" scripts.rap_port = 8000 scripts.rap_ssl = true scripts.rap_deny_selfsigned = false scripts.rap_cert_file = "C:\ThingWorx\ems.cer" scripts.rap_server_authenticate = true scripts.rap_userid = "EMSAdmin" scripts.rap_password = "EMSAdmin" scripts.script_resource_userid = "admin" scripts.script_resource_password = "admin" scripts.script_resource_ssl = true   EMS specific configuration: rap LSR specific configuration: script_resource   Other considerations   When configuring the EMS and LSR for authentication and encrypted traffic, the configuration files hold information that not everyone should have access to.   Therefore the config.json and config.lua must be also protected from an Operating System point of view. Permissions should only be granted to the (process) user that is calling the EMS / LSR. Ensure that no one else can read / access the properties and certificates to avoid password-snooping on an OS level.   It's best to grant restricted access to the whole microserver directory, so that only privileged users can gain access.   You're next...   This blog should have given some insight on what's required and how it's configured to achieve a more secure and safer EMS / LSR integration in a real-life production environment. Of course it always depends on the actual implementation, but use these steps as a guideline to secure and protect your (Internet of) Things!
View full tip
Please refer to the release notes to find information on the new features/changes: PTC Here are some common questions and answers in regards to the Installers feature: Does that mean Thingworx 8 only support docker installation? Or standalone installation is still allowed? Only if using the new installer.  The war file download will still be available for non Docker installs. The WAR files will still be available and usable  the same way as in the past.  Users only need to use Docker if they use the installer. How do customers download/build the docker image? The image is not provided separetly, it is installed and configured by the installer. Does the installer install docker when necessary as well? Or is it expected that the user already has docker installed? No, the user must install it on their operating system before using the installer.  The installer will detect if Docker is properly installed.
View full tip
In this blog I will be testing with the WindchillSwaggerConnector, but most of the steps also apply to the generic SwaggerConnector.     Overview   The WindchillSwaggerConnector enables the connection to the Windchill REST endpoints through the Swagger (OpenAPI) specification. It is a specialized implementation of the SwaggerConnector. See Integration Connectors for documentation.   It relies on three components : Integration Runtime : microservice that runs outside of ThingWorx and has to be deployed separately, it uses Web Socket to communicate with the ThingWorx platform (similar to EMS). Integration Subsystem : available by default in 7.4 (not extension needed) Integration Connectors (WindchillSwaggerConnector) : available by default in 7.4 (not extension needed)   Currently, in 7.4, the WindchillSwaggerConnector  does not support SSO with Windchill (it is more targeted for a "gateway type" integration). Note that the PTC Navigate PDM apps are using the WindchillConnector and not the WindchillSwaggerConnector.   Integration Runtime microservice setup   The ThingWorx Integration Runtime is a microservice that runs outside of ThingWorx. It can run on the ThingWorx server or a remote machine. It is available for download from the ThingWorx Marketplace (Windows or Linux). The installation media contains 2 files : 1 JAR and 1 JSON configuration file.   For this demo, I'm installing the Integration Runtime on a remote machine and will not be using SSL.   1. Prerequisite for the Integration Runtime : Oracle Jre 8 (and of course a ThingWorx 7.4 platform server accessible) 2. Create an ApplicationKey in the composer for the Integration Runtime to use for communication to the ThingWorx platform. 3. Configure the Integration Runtime communication - ThingWorx host, port, appKey, ... - this is done on the Integration Runtime server via the JSON configuration file.   My integrationRuntime-settings.json (sslEnable=false, storagePath is ignored) : { "traceRoutes": "true", "storagePath": "/ThingworxStorage", "Thingworx": {     "appKey": "1234abcd-xxxx-yyyy-zzzz-5678efgh",     "host": "twx74neo",     "port": "8080",     "basePath": "/Thingworx",     "sslEnable": "false",     "ignoreSSLErrors": "true"   } } Note : It is important to completely remove the "SSL": {} block when not using SSL   4. Launch the Integration Runtime service (update the JAR and JSON filenames if needed) java -DconfigFile=integrationRuntime-settings.json -jar integration-runtime-7.4.0-b12.jar The Integration Runtime service uses Web Socket to communicate with the ThingWorx platform (similar to EMS). It registers itself with the ThingWorx platform.   Monitoring the Integration Runtime microservice        In the ThingWorx composer : Monitoring > Subsystems > Integration Subsystem      SMAINENTE1D1 is the hostname of my Integration Runtime server.   Custom WindchillSwaggerConnector implementation   Use the New Composer UI (some setting, such as API maps, are not available in the ThingWorx legacy composer) 1. Create a DataShape that is used to map the attributes being retrieved from Windchill WNCObjectDS : oid, type, name (all fields of type STRING)   2. Create a Thing named WNC11Connector that uses WindchillSwaggerConnector as Thing Template 3. Setup the Windchill connection under WNC11Connector > Configuration Authentication Type = fixed (SSO currently not supported) Username = <Windchill valid user> Password = <password for the Windchill user> Base URL : <Windchill app URL> (e.g. http://wncserver/Windchill)   4. Create an API maps under WNC11Connector > Services and API Maps > API Maps (New Composer only) My API Map : New API Map Mapping ID : FindBasicObjectsMap EndPoint : findObjects (choose the first one) Select DataShape : WNCObjectDS (created at step 1) and map the following attributes : name <- objName ($.items.attributes) type <- typeId ($.items) oid <- id ($.items)   After pressing [done] verify that the API ID is '/objects GET' (and not /structure/objects - otherwise recreate the mapping and choose the other findObjects endpoint). 5. Create a "Route" service under WNC11Connector > Services and API Maps > Services (New Composer only) Name : FindBasicObjects Type (Next to [Done] button) : Route Route Info | Endpoint : findObjects (same as step 4) Route Info | Mapping ID : FindBasicObjectsMap-xxxx created at step 4 Testing our custom WindchillSwaggerConnector   Test the WNC11Connector::FindBasicObjects service Note that the id (oid) and typeId (type) are returned by default by the /objects REST API - objName has to be explicitly requested.   Monitoring the Integration Connector        In the ThingWorx composer : Monitoring > Integration Connectors
View full tip
A Feature - a piece of information that is potentially useful for prediction. Any attribute could be a feature, as long as it is useful to the model. Feature engineering – Feature engineering is the process of transforming raw data into features that better represent the underlying problem to the predictive models, resulting in improved model accuracy on unseen data. It’s a vaguely agreed space of tasks related to designing feature sets for Machine Learning applications. Components: First, understanding the properties of the task you’re trying to solve and how they might interact with the strengths and limitations of the model you are going to use. Second, experimental work were you test your expectations and find out what actually works and what doesn’t. Feature engineering as a technique, has three sub categories of techniques: Feature selection, Dimension reduction and Feature generation. Feature Selection: Sometimes called feature ranking or feature importance, this is the process of ranking the attributes by their value to predictive ability of a model. Algorithms such as decision trees automatically rank the attributes in the data set. The top few nodes in a decision tree are considered the most important features from a predictive stand point. As a part of a process, feature selection using entropy based methods like decision trees can be employed to filter out less valuable attributes before feeding the reduced dataset to another modeling algorithm. Regression type models usually employ methods such as forward selection or backward elimination to select the final set of attributes for a model. For example: Project Development decision-tree:                                                  Dimension Reduction: This is sometimes called feature extraction. The most classic example of dimension reduction is principle component analysis or PCA. PCA allows us to combine existing attributes into a new data frame consisting of a much reduced number of attributes by utilizing the variance in the data. The attributes which "explain" the highest amount of variance in the data form the first few principal components and we can ignore the rest of the attributes if data dimensionality is a problem from a computational standpoint. Feature Generation or Feature Construction: Quite simply, this is the process of manually constructing new attributes from raw data. It involves intelligently combining or splitting existing raw attributes into new one which have a higher predictive power. For example a date stamp may be used to generate 2 new attributes such as AM and PM which may be useful in discriminating whether day or night has a higher propensity to influence the response variable. Feature construction is essentially a data transformation process. Tips for Better Feature Engineering Tip 1: Think about inputs you can create by rolling up existing data fields to a higher/broader level or category. As an example, a person’s title can be categorized into strategic or tactical. Those with titles of “VP” and above can be coded as strategic. Those with titles “Director” and below become tactical. Strategic contacts are those that make high-level budgeting and strategic decisions for a company. Tactical are those in the trenches doing day-to-day work.  Other roll-up examples include: Collating several industries into a higher-level industry: Collate oil and gas companies with utility companies, for instance, and call it the energy industry, or fold high tech and telecommunications industries into a single area called “technology.” Defining “large” companies as those that make $1 billion or more and “small” companies as those that make less than $1 billion.   Tip 2: Think about ways to drill down into more detail in a single field. As an example, a contact within a company may respond to marketing campaigns, and you may have information about his or her number of responses. Drilling down, we can ask how many of these responses occurred in the past two weeks, one to three months, or more than six months in the past. This creates three additional binary (yes=1/no=0) data fields for a model. Other drill-down examples include: Cadence: Number of days between consecutive marketing responses by a contact: 1–7, 8–14, 15–21, 21+ Multiple responses on same day flag (multiple responses = 1, otherwise =0) Tip 3: Split data into separate categories also called bins. For example, annual revenue for companies in your database may range from $50 million (M) to over $1 billion (B). Split the revenue into sequential bins: $50–$200M, $201–$500M, $501M–$1B, and $1B+. Whenever a company falls with the revenue bin it receives a one; otherwise the value is zero. There are now four new data fields created from the annual revenue field. Other examples are: Number of marketing responses by contact: 1–5, 6–10, 10+ Number of employees in company: 1–100, 101–500, 502–1,000, 1,001–5,000, 5,000+ Tip 4: Think about ways to combine existing data fields into new ones. As an example, you may want to create a flag (0/1) that identifies whether someone is a VP or higher and has more than 10 years of experience. Other examples of combining fields include: Title of director or below and in a company with less than 500 employees Public company and located in the Midwestern United States You can even multiply, divide, add, or subtract one data field by another to create a new input. Tip 5: Don’t reinvent the wheel – use variables that others have already fashioned. Tip 6: Think about the problem at hand and be creative. Don’t worry about creating too many variables at first, just let the brainstorming flow.
View full tip
If the ThingWorx 7.4 installation with MSSQL db doesn't start with a license error on the splash screen, despite taking the necessary steps for specifying the license path, the error might be misleading and the problem is actually lying in the database connection. Going to THingworxStorage/logs and opening ApplicationLog.log might reveal the following (or similar ) errors: 2017-04-13 10:26:17.993-0400 [L: INFO] [O: c.t.s.ThingWorxServer] [I: ] [U: SuperUser] [S: ] [T: localhost-startStop-1] Sending Post Start Notifications... 2017-04-13 10:26:17.999-0400 [L: ERROR] [O: c.t.p.m.MssqlModelExceptionTranslator] [I: ] [U: SuperUser] [S: ] [T: localhost-startStop-1] [message: Could not create a transaction for ThingworxPersistenceProvider] 2017-04-13 10:26:18.001-0400 [L: ERROR] [O: E.c.t.p.d.FileTransferDocumentModelProvider] [I: ] [U: SuperUser] [S: ] [T: localhost-startStop-1] [context: Could not create a transaction for ThingworxPersistenceProvider][message: Could not create a transaction for ThingworxPersistenceProvider] 2017-04-13 10:26:18.004-0400 [L: ERROR] [O: c.t.p.m.MssqlModelExceptionTranslator] [I: ] [U: SuperUser] [S: ] [T: localhost-startStop-1] [message: Could not create a transaction for ThingworxPersistenceProvider] 2017-04-13 10:26:18.005-0400 [L: ERROR] [O: c.t.s.s.f.FileTransferSubsystem] [I: ] [U: SuperUser] [S: ] [T: localhost-startStop-1] Error loading queued transfer jobs from persistence provider 2017-04-13 10:26:18.006-0400 [L: ERROR] [O: c.t.p.m.MssqlModelExceptionTranslator] [I: ] [U: SuperUser] [S: ] [T: localhost-startStop-1] [message: Could not create a transaction for ThingworxPersistenceProvider] 2017-04-13 10:26:18.006-0400 [L: ERROR] [O: E.c.t.p.d.FileTransferDocumentModelProvider] [I: ] [U: SuperUser] [S: ] [T: localhost-startStop-1] [context: Could not create a transaction for ThingworxPersistenceProvider][message: Could not create a transaction for ThingworxPersistenceProvider] 2017-04-13 10:26:18.007-0400 [L: ERROR] [O: c.t.p.m.MssqlModelExceptionTranslator] [I: ] [U: SuperUser] [S: ] [T: localhost-startStop-1] [message: Could not create a transaction for ThingworxPersistenceProvider] 2017-04-13 10:26:18.008-0400 [L: ERROR] [O: c.t.s.s.f.FileTransferSubsystem] [I: ] [U: SuperUser] [S: ] [T: localhost-startStop-1] Error loading queued transfer jobs from persistence provider 2017-04-13 10:26:18.008-0400 [L: INFO] [O: c.t.s.ThingWorxServer] [I: ] [U: SuperUser] [S: ] [T: localhost-startStop-1] Thingworx Server Application...ON A few things to check here. First, how the database was set up. The standard expected port if 1433, however, if you choose a different port - ensure that the port is available. If it isn't - update the port setting in SQL configuration manager. Another possible root cause -- the database scripts did not run properly upon the setup. Currently, there is an active Jira PSPT-3587 for resolving the script issue (NOTE, this thread to be updated once the Jira is fixed). There are two options here, either to run the sql files manually (found in the "install" folder of the downloadable), or edit the bat scripts manually. It's recommended to edit the script files instead because running the sql commands allows more room for a mistake. The following line in the bat scripts needs to be edited to have the ".\" removed: sqlcmd.exe -S %server%\%serverinstance%,%port% -U %adminusername% -v loginname=%loginname% -v database=%database% -v thingworxusername=%thingworxusername% -v schema=%schema%  -i .\thingworx-database-setup.sql Note, that the scripts need to be run from the same directory ("/install")
View full tip
Let us consider that we have 2 properties Property1 and Property2 in Thing Thing1 which we want to update using UpdatePropertyValues service. In our service we will use a system defined DataShape NamedVTQ which has following field definitions: In Thing1 create a custom service like following: var params1 = {      infoTableName : "InfoTable",      dataShapeName : "NamedVTQ" }; // CreateInfoTableFromDataShape(infoTableName:STRING("InfoTable"), dataShapeName:STRING):INFOTABLE(NamedVTQ) var InputInfoTable = Resources["InfoTableFunctions"].CreateInfoTableFromDataShape(params1); var now = new Date(); // Thing1 entry object var newEntry = new Object(); newEntry.time = now; // DATETIME - isPrimaryKey = true newEntry.quality = undefined; // STRING newEntry.name = "Property1"; // STRING newEntry.value = "Value1"; // STRING InputInfoTable.AddRow(newEntry); newEntry.name = "Property2"; // STRING newEntry.value = "Value2"; // STRING InputInfoTable.AddRow(newEntry); var params2 = {      values: InputInfoTable /* INFOTABLE */ }; me.UpdatePropertyValues(params2);
View full tip
User Localization vs. Browser Localization Localization in ThingWorx is mainly based on Localization Tables and tokens which are used as a placeholder for the actual word / phrase in a particular language. There's a blog at https://community.thingworx.com/community/developers/blog/2016/08/15/managing-and-using-localization-in-thingworx which is explaining in-application localization in detail. Language preferences are however only considered by the user's settings. For the organization login pages at http://<server>/Thingworx/FormLogin/<organizationName> there's no defined user yet. As the user has not logged in yet, ThingWorx will have no user preferences to identify the need for a specific language. Instead the browser language is used. The login / password-reset page is constructed at runtime via .jsp templates. Via JavaScript the browser language is detected and language specific configuration files are considered. When such a configuration file is present, its tokens will be used to replace the data-i18n placeholders in the .jsp files. Customizing the login related localizations The localization files are stored in <Tomcat>\webapps\Thingworx\Common\locales\ For each language there's a subfolder - by default this is "en" for English. The language and therefore folder to be used will be determined by the user's browser settings. Whatever is top in the language list will be considered first. If a folder, e.g. for German (de), French (fr) or Spanish (es) exists, ThingWorx will use this for localization. In the folder, there's the translation-login.json file. It holds all the tokens required for the login relevant translations / localizations. The FormLogin.jsp holds e.g. the token [placeholder]tw.login.labels.name This is a placeholder (which means text to be overwritten in a textfield in case the textfield is empty). The actual localization can be found in the translation-login.json going down the json object structure to "tw" > "login" > "labels" > "name" which results as Name in the English translation. tw.login.labels.password-title would result in the following String: Password must be at least 5 characters Creating custom languages To create a custom language besides English, copy the en folder and rename it to the correct language short name, from Afar (aa) to Zulu (zu). A list of Language Code References can be found at https://www.w3schools.com/tags/ref_language_codes.asp After copying the folder, open the translation-login.json and alter the resulting Strings into the correct language variant. As soon as the correct translation-login.json is created, it will be considered for localization. No need to restart Tomcat.
View full tip
About This is the second part of a ThingBerry related blog post series. ThingBerry is ThingWorx installed on a RaspBerry Pi, which can be used for portable demonstrations without the need of utilizing e.g. customer networks. Instead the ThingBerry provides its own custom WIFI hotspot and allows Things to connect and send / receive demo data on a small scale. In this particual blog post we'll discuss on how to setup the ThingBerry as a WIFI hotspot to directly connect with mobile devices or other Raspberry Pis. As the ThingBerry is a highly unsupported environment for ThingWorx, please see this blog post for all related warnings. In case this guide looks familiar, it's probably because it's based on https://frillip.com/using-your-raspberry-pi-3-as-a-wifi-access-point-with-hostapd/ WIFI Hot Spot As the ThingBerry is currently connected via ethernet we can utilize the Raspberry Pi's WIFI connection to create a private network where all the wireless devices can connect to, e.g. another Raspberry Pi or a ESP8266 First we need to install dnsmasq and hostapd. Those will help setting up the access point and create a private DNS server to dynamically assign IP-addresses to connecting devices. sudo apt-get install dnsmasq hostapd Interfaces We will need to configure the wlan0 interface with a static IP. For this the dhcpcd needs to ignore the wlan0 interface. sudo nano /etc/dhcpcd.conf Paste the following content to the end of the file. This must be ABOVE any interface lines you may have added earlier! denyinterfaces wlan0 Save and exit. Let's now configure the static IP. sudo nano /etc/network/interfaces Comment out ALL lines for the wlan* configurations (e.g. wlan0, wlan1). By default there are three lines which need to be commented out by adding a # at the beginning of the line. After this the wlan0 can be pasted in: allow-hotplug wlan0 iface wlan0 inet static   address 192.168.0.1 netmask 255.255.255.0 network 192.168.0.0 broadcast 192.168.0.255 Save and exit. Now restart the dhcpcd service and reload the wlan0 configuration with sudo service dhcpcd restart sudo ifdown wlan0 sudo ifup wlan0 Hostapd Hostapd is used to configure the actual WIFI hot spot, e.g. the SSID and the WIFI password (wpa_passphrase) that's required to connect to this network. sudo nano /etc/hostapd/hostapd.conf Paste the following content: interface=wlan0 driver=nl80211 ssid=thingberry hw_mode=g channel=6 wmm_enabled=1 ieee80211n=1 country_code=DE macaddr_acl=0 ht_capab=[HT40][SHORT-GI-20][DSSS_CCK-40] auth_algs=1 ignore_broadcast_ssid=0 wpa=2 wpa_key_mgmt=WPA-PSK wpa_passphrase=changeme rsn_pairwise=CCMP If you prefer another SSID or a more secure password, please ensure updating above configuration! Save and exit. Check if the configuration is working via sudo /usr/sbin/hostapd /etc/hostapd/hostapd.conf It should return correctly, without any errors and finally show "wlan0: AP-ENABLED". With this you can now connect to the "thingberry" SSID. However there's no IP assigned automatically - so that sucks​ can be improved... Stop hostapd with CTRL+C and let's start it on boot. sudo nano /etc/default/hostapd At the end of the file, paste the following content: DAEMON_CONF="/etc/hostapd/hostapd.conf" Save and exit. DNSMASQ Dnsmasq allows to assign dynamic IP addresses. Let's backup the original configuration file and create a new one. sudo mv /etc/dnsmasq.conf /etc/dnsmasq.conf.orig  sudo nano /etc/dnsmasq.conf Paste the following content: interface=wlan0 listen-address=192.168.0.1 bind-interfaces dhcp-range=192.168.0.100,192.168.0.199,255.255.255.0,12h Save and exit. This will make the DNS service listen on 192.168.0.1 and assign IP addresses between 192.168.0.100 and 192.168.0.199 with a 12 hour lease. Next step is to setup the IPV4 forwarding for the wlan0 interface. sudo nano /etc/sysctl.conf Uncomment the following line: You can search in nano with CTRL+W net.ipv4.ip_forward=1 Save and exit. Hostname translation To be able to call the ThingBerry with its actual hostname, the hostname needs to be mapped in the host configuration. sudo nano /etc/hosts Search the line with your hostname and update it to the local IP address (as configured in the listen-address above), e.g. 192.168.0.1 thingberry Save and exit. Please note that this is the hostname and not the SSID of the network! Finalizing the Configuration Run the following command to enable the fowarding and reboot. sudo sh -c "echo 1 > /proc/sys/net/ipv4/ip_forward" sudo reboot Optional: Internet Access The ThingBerry is independent of any internet traffic. However if your connected devices or the ThingBerry itself need to contact the internet, the WIFI connection needs to route those packages to and from the (plugged-in) ethernet device. This can done through iptables sudo iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE  sudo iptables -A FORWARD -i eth0 -o wlan0 -m state --state RELATED,ESTABLISHED -j ACCEPT  sudo iptables -A FORWARD -i wlan0 -o eth0 -j ACCEPT All traffic will be internet related traffic will be forwarded between eth0 and wlan0 and vice versa. To load this configuration every time the ThingBerry is booted, it needs to be saved via sudo sh -c "iptables-save > /etc/iptables.ipv4.nat" Run this file by editing sudo nano /etc/rc.local Above the line exit 0 add the following line: iptables-restore < /etc/iptables.ipv4.nat Save and exit. Verification Connect to the new WIFI hotspot via the SSID and the password configured earlier through any WIFI capable device. When connecting to your new access point check your device's IP settings (in iOS, Android or a laptop / desktop device). It should show a 192.168.0.x IP address and should be pingable from the ThingBerry console. Connect to http://192.168.0.1/Thingworx or http://<servername>/Thingworx to open the Composer.
View full tip
There are multiples approaches to improve the performance Increase the NetWork bandwidth between client PC and ThingWorx Server Reduce the unnecessary handover when client submit requests to ThingWorx server through NetWork Here are suggestions to reduce the unnecessary handover between client and server Eliminate the use of proxy servers between client and ThingWorx It is compulsory to download Combined.version.date.xxx.xxx.js file when the first time to load mashup page (TTFB and Content Download time). Loading performance is affected by using of proxy servers between client and ThingWorx Server. This is testing result with proxy server set up This is the test result after eliminiating proxy server from the same environment Cut off extensions that not used in ThingWorx server After installed extensions, the size of Combined.version.date.xxx.xxx.js increased Avoid Http/Https request errors There is a https request error when calling Google map. It takes more than 20 seconds
View full tip
Welcome to the Thingworx Community area for code examples and sharing.   We have a few how-to items and basic guidelines for posting content in this space.  The Jive platform the our community runs on provides some tools for posting and highlighting code in the document format that this area is based on.  Please try to follow these settings to make the area easy to use, read and follow.   At the top of your new document please give a brief description of the code sample that you are posting. Use the code formatting tool provided for all parts of code samples (including if there are multiple in one post). Try your best to put comments in the code to describe behavior where needed. You can edit documents, but note each time you save them a new version is created.  You can delete old versions if needed. You may add comments to others code documents and modify your own code samples based on comments. If you have alternative ways to accomplish the same as an existing code sample please post it to the comments. We encourage everyone to add alternatives noted in comments to the main post/document.   Format code: The double blue arrows allow you to select the type of code being inserted and will do key word highlighting as well as add line numbers for reference and discussions.
View full tip
Want to do a REST call from ThingWorx Want to use REST to send request to External System. Want to get data from other system using REST Here is how you can do this.... ThingWorx has ContentLoaderFunctions API which provides services to load or post content to and from other web applications. One can issue an HTTP request using any of the allowed actions (GET, POST, PUT, DELETE). List of available ContentLoaderFunctions: Delete GetCookies GetJSON GetText GetXML LoadBinary LoadImage LoadJSON LoadMediaEntity LoadText LoadXML PostBinary PostImage PostJSON PostMultipart PostText PostXML PutBinary PutJSON PutText PutXML Example: Using LoadXML snippet in a custom service to retrieve an XML document from a specific URL Insert the LoadXML snippet into a custom service var params = {     proxyScheme: undefined /* STRING */,     headers: "{ 'header1':'value1','header2':'value2'}" /* JSON */,     ignoreSSLErrors: false /* BOOLEAN */,     useProxy: undefined /* BOOLEAN */,     proxyHost: undefined /* STRING */,       url: "http://some_url/sampleXMLDocument.xml" /* STRING */,     timeout: 30000 /* NUMBER */,     proxyPort: undefined /* INTEGER */,     password: "fakePassword" /* STRING */,     username: "Administrator"/* STRING */ }; var result = Resources["ContentLoaderFunctions"].LoadXML(params); The snippet above contains an example of how to format any headers in JSON that need to be passed in, the URL that points directly to some XML document, a password, username, timeout, and ignoreSSLErrors set to false When LoadXML is exercised it will retrieve the XML document, and this can then be parsed or handled however is necessary To see the XML document that is returned from this service the service can be called from a third-party client, such as Postman Note: If a proxy or username and password are required to connect to the URL, those parameter MUST be specified Using the PostXML snippet in a custom service to send content to another URL, in this example, another service in Composer Insert the PostXML snippet into a custom service var content = "<xml><tag1>NAME</tag1><tag2>AGE</tag2></xml>"; var params = {  url: "http://localhost/Thingworx/Things/thingName/Services/serviceName?postParameter=parameterName" /* STRING */, content: content /* STRING */, password: "admin" /* STRING */, username: "Administrator" /* STRING */ }; var result = Resources["ContentLoaderFunctions"].PostXML(params); When posting XML content to another ThingWorx service the postParameter header must be defined in the url parameter for the PostXML snippet  The postParameter header, in the url parameter, is set equal to the name of the input parameter for the service we are POSTing to Change the parameterName variable in the url to the name of the input parameter defined for the service The content parameter is set to the XML content that will be passed into the function or manually specified Note: When declaring namespace URLs in an element make sure that there is a white space in between each declaration ex: <root xmlns:h="http://www.w3.org/TR/html4/" xmlns:f="http://www.w3schools.com/furniture">
View full tip
Announcements