cancel
Showing results for 
Search instead for 
Did you mean: 
cancel
Showing results for 
Search instead for 
Did you mean: 

ThingWorx Navigate is now Windchill Navigate Learn More

IoT & Connectivity Tips

Sort by:
  A series of training videos for ThingWorx Analytics   Guide Concept   This guide provides a series of training videos covering ThingWorx Analytics Server and Platform Analytics.   It is recommended that they be viewed in order.    Additionally, a downloadable .zip with additional training materials is provided.     You'll learn how to   Use ThingWorx Analytics Understand the Analytics Thought Process Basic Analytics concepts (data types, variables, modeling) Descriptive Analytics Predictive Analytics modeling techniques Familiarity with other topics: Prescriptive Analytics, Clustering, Time Series, Anomaly Detection Acquire basic knowledge of how to create an end-to-end Smart Application Deepen your Foundation and Analytics understanding NOTE: This guide's content aligns with ThingWorx 9.3. The estimated time to complete all parts of this guide is 12 hours       ThingWorx Analytics Overview   This guide will present a series of training videos for ThingWorx Analytics.It is recommended that you view each guide in-order, as future videos may build on the concepts learned in earlier ones.    Download CourseFiles.zip included in this guide, as it contains important materials for particular videos.   In this course, you will learn the basics of the ThingWorx Analytics Machine Learning process. You will understand how to perform Descriptive Analytics such as identifying Signals, Profiles, or building Clusters.   You will also understand how to train a Model and use Predictive and Prescriptive Scoring. Additional topics include Time Series, Anomaly Detection, and near-real-time Scoring. You will also learn about how to create a simple smart application using Analytics together with other pieces of the overall ThingWorx platform.     ThingWorx Analytics Video Guide   Module 1: ThingWorx Analytics Overview Module 2: Use Case Discussion Module 3: Data Profiling Module 4: Data Transformation and Feature Engineering Module 5: Descriptive Analytics Module 6: Predictive Models and Model Validation Module 7: Scoring Predictive Realtime Prescriptive Module 8: Time Series Modeling Module 9: Anomaly Detection Module 10: ThingWorx Foundation and Analytics Integration Module 11: Mini Project     Next Steps   Congratulations! You've successfully completed the Analytics Training Videos guide, and learned how to:   Use ThingWorx Analytics Understand the Analytics Thought Process Basic Analytics concepts (data types, variables, modeling) Descriptive Analytics Predictive Analytics modeling techniques Familiarity with other topics: Prescriptive Analytics, Clustering, Time Series, Anomaly Detection Acquire basic knowledge of how to create an end-to-end Smart Application Deepen your Foundation and Analytics understanding   Additional Resources If you have questions, issues, or need additional information, refer to:   Resource Link Community Developer Community Forum Analytics Support Help Center          
View full tip
  Based on real use cases and industry-leading solutions, this webinar looks at how developers can deliver valuable analytical outputs through experiences that ensure easy consumption of trusted analyses.   By taking a deep dive into a range of the analytics capabilities within ThingWorx, we will demonstrate how you can visualize complex analytic outputs to help your users understand what really matters in your data - and ultimately make quick, insightful business decisions.   Q&A   We didn’t have time to get to all of the questions during the live webcast, but we’ve answered them here on our blog. Have any additional questions? Please leave us a comment.   THIS SESSION TALKED ABOUT CONNECTIVITY WITH OTHER ANALYTICS PROGRAMS, SUCH AS R. HOW WOULD THINGWORX INTERACT WITH THE R PLATFORM? There are multiple reasons for using R and other analytics tools. Say you’re using R to build a predictive model, for instance—you can interact with data and load that information into our Analytics Server, even outside Analytics Builder. You can also interface in script within ThingWorx to run certain calculations driven by R. Moreover, even if you are building a model in R or any other tool, you can use Analytics Manager to operationalize data coming in from a Thing model that’s being scored against variables created elsewhere. Our ultimate goal is not to migrate you away from the tools you’re already using, but rather augment the development experience with ThingWorx integration.   HOW WOULD A DEVELOPER GO ABOUT CREATING & OBTAINING JSON AND CSV DATA FOR ANALYSIS? In terms of creating a historical data view, there are two separate methods. There’s creating a descriptive view for which you are using to create the model, and then there is operationalizing the model. On the operational side, it’s data coming from the Thing model being scored against the actual predictive model that’s created. For the descriptive view, the tool of choice ultimately boils down to organizational preference. How you load represented data into the Analytics Server is completely based on the tools with which you work.   CAN YOU EXPLAIN IN DETAIL THE STEPS FOR CONNECTING A MACHINE TO THE THINGWORX ANALYTICAL MODEL, INCLUDING HOW TO DEFINE THE DATA COMING FROM THE MACHINE TO CREATE THE MODEL? Absolutely. I’d encourage you to go check out our new Operationalize an Analytics Model developer guide available on the ThingWorx Developer Portal. In just 30 minutes, you’ll learn how to use Analytics Manager and ThingPredictor to automatically perform analytical calculations.   OUR ORGANIZATION SEES FEATURE ENGINEERING AS A KEY PART OF THE DATA ANALYSIS PROCESS. DO THINGWORX ALGORITHMS HANDLE FEATURE ENGINEERING INTERNALLY? Yes. There’s feature engineering in terms of getting a dataset ready for consumption. The technology ThingWorx provides is being able to automatically sift through the data and use various features to guide the selection of algorithms. Feature enrichment is what’s really powerful about our supervised machine learning capabilities.    HOW DO I INCORPORATE ADVANCED STYLING IN MY UI, LIKE ANIMATIONS AND RESPONSIVE BEHAVIORS? The standard way of achieving advanced styling in ThingWorx is to leverage the Media Entities, Style and State Definitions. Many widgets, such as the Value Display and the Shape Widget, have out-of-the-box ability to take a State Definition and apply advanced styling for things like severity of risks, etc. Watch our IoT Application Makeover webcast for more information about this topic.   DO YOU HAVE ANY RECOMMENDATIONS FOR GUARANTEEING DESIGN CONSISTENCY IN MY IOT APPLICATION? For non-designers: to keep your design clean and consistent, it is important to properly manage your Style Definitions. Define styles and stick to re-using them; don’t have five different styles for showing model accuracy, for instance. I would recommend creating 5-10 styles for text, and then from there choosing a color scheme for things like buttons, labels, charts, grid headers, and other elements where you need a vibrant color.
View full tip
This post adds to my previous post: Deploying H2 Docker versions quickly   In addition to configuring the basic Docker Images and Containers, it's also possible to deploy them with a TLS / SSL certificate and access the instances via HTTPS protocol.   For this a valid certificate is required inside a .jks keystore. I'm using a self-signed certificate, but commercial ones are even better! The certificate must be in the name of the machine which runs Docker and which is accessed by the users via browser. In my case this is "mne-docker". The password for the keystore and the private key must be the same - this is a Tomcat limitation. In my case it's super secret and "Password123456".   I have the following directory structure on my Operating System   /home/ts/docker/ certificates mne-docker.jks twx.8.2.x.h2 Dockerfile settings platform-settings.json <license_file> storage Thingworx.war   The Recipe File   In the Recipe File I make sure that I create a new Connector on port 8443, removing the old one on port 8080. I do this by just replacing via the sed command - also introducing options for content compression. I'm only replacing the first line of the xml node as it holds all the information I need to change.   Changes to the original version I posted are in green   FROM tomcat:latest MAINTAINER mneumann@ptc.com LABEL version = "8.2.0" LABEL database = "H2" RUN mkdir -p /cert RUN mkdir -p /ThingworxPlatform RUN mkdir -p /ThingworxStorage RUN mkdir -p /ThingworxBackupStorage ENV LANG=C.UTF-8 ENV JAVA_OPTS="-server -d64 -Djava.awt.headless=true -Djava.net.preferIPv4Stack=true -Dfile.encoding=UTF-8 -Duser.timezone=GMT -XX:+UseNUMA -XX:+UseG1GC -Djava.library.path=/usr/local/tomcat/webapps/Thingworx/WEB-INF/extensions RUN sed -i 's/<Connector port="8080" protocol="HTTP\/1.1"/<Connector port="8443" protocol="org.apache.coyote.http11.Http11NioProtocol" maxThreads="150" SSLEnabled="true" scheme="https" secure="true" clientAuth="false" sslProtocol="TLS" enableLookups="false" keystoreFile="\/cert\/mne-docker.jks" keystorePass="Password123456" ciphers="TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA, TLS_DHE_RSA_WITH_AES_128_CBC_SHA, TLS_DHE_RSA_WITH_AES_128_CBC_SHA256, TLS_DHE_RSA_WITH_AES_128_GCM_SHA256, TLS_DHE_RSA_WITH_AES_256_CBC_SHA, TLS_DHE_RSA_WITH_AES_256_CBC_SHA256, TLS_DHE_RSA_WITH_AES_256_GCM_SHA384, TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA, TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA, TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256, TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256, TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA, TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384, TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384, TLS_RSA_WITH_AES_256_CBC_SHA, TLS_RSA_WITH_AES_128_CBC_SHA" compression="on" compressableMimeType="text\/html,text\/xml,text\/plain,text\/css,text\/javascript,application\/javascript,application\/json"/g' /usr/local/tomcat/conf/server.xml COPY Thingworx.war /usr/local/tomcat/webapps VOLUME ["/ThingworxPlatform", "/ThingworxStorage", "/cert"] EXPOSE 8443   Note that I also map the /cert directory to the outside, so all of my Containers can access the same certificate. I will access it read-only.   Deploying     sudo docker build -t twx.8.2.x.h2 . sudo docker run -d --name=twx.8.2.x.h2 -p 88:8443 -v /home/ts/docker/twx.8.2.x.h2/storage:/ThingworxStorage -v /home/ts/docker/twx.8.2.x.h2/settings:/ThingworxPlatform -v /home/ts/docker/certificates:/cert:ro twx.8.2.x.h2   Mapping to the 8443 port ensures to only allow HTTPS connections. The :ro in the directory mapping ensures read-only access.   What next   Go ahead! Only secure stuff is kind of secure 😉 For more information on how to import the certificate into a the Windows Certificate Manager so browsers recognize it, see also the Trusting the Root CA chapter in Trust & Encryption - Hands On
View full tip
This video is Module 10: ThingWorx Foundation & Analytics Integration of the ThingWorx Analytics Training videos. It gives a brief review of core ThingWorx Platform functionality, and how the Analytics server works on top of the platform. It also describes the process of creating a simple application, complete with a mashup to display the information from a predictive model.
View full tip
Check out this new KCS article which links to all known best practice documents available for ThingWorx. This article will get larger in time as more articles are published related to the Dos and Don'ts of building an IoT application! Do you know when to use timers, and where to implement their subscriptions? How about ensuring info tables are used at the proper time, and data tables at others? Pesky performance issues wherein ThingWorx runs slow for apparently no reason? All of these questions and more are addressed here!
View full tip
  Step 5: Mashup Builder API   The following APIs can be accessed by a widget in the context of the Mashup Builder:    API                                                                                                                Description this.jqElementId This is the DOM element ID of your object after renderHtml(). this.jqElement This is the jquery element. this.getProperty(name) / this.setProperty(name,value) Note that every call to this function will call afterSetProperty() if it’s defined in the widget. this.updatedProperties() This function should be called anytime properties are changed in the widget so that the Mashup Builder can update the widget properties window, the connections window, and so on. this.getInfotableMetadataForProperty(propertyName) If you need the infotable metadata for a property that you bound, you can get it by calling this API; it returns undefined if it is not bound. this.resetPropertyToDefaultValue(propertyName) This call resets the named property to its default value. this.removeBindingsFromPropertyAsTarget(propertyName) This call removes target data bindings from the propertyName. Use it only when the user has initiated an action that invalidates the property. this.removeBindingsFromPropertyAsSource(propertyName) This call removes source data bindings from the propertyName. Use this only when the user has initiated an action that invalidates the property. this.isPropertyBoundAsTarget(propertyName) This call returns a result that indicates if the property has been bound as a target. You can use it to determine if a property has been set or bound. this.isPropertyBoundAsSource(propertyName) This call returns a result that indicates if the property has been bound as a source. You can use it to determine if a property has been bound to a target.   Example of the Checkbox Widget’s validate() function: this.validate = function () { var result = []; if (!this.isPropertyBoundAsSource('State') && !this.isPropertyBoundAsTarget('State')) { result.push({ severity: 'warning', message: 'State for {target-id} is not bound' }); } return result; }   Example of the Blog Widgets validate() function: this.validate = function () { var result = []; var blogNameConfigured = this.getProperty('Blog'); if (blogNameConfigured === '' || blogNameConfigured === undefined) { if (!this.isPropertyBoundAsTarget('Blog')) { result.push({ severity: 'warning', message: 'Blog is not bound for {target-id}' }); } } return result; }     Step 6: Mashup Builder Callbacks   The following widget functions are called by the Mashup Builder to control the widget’s behavior. widgetProperties() - Returns a JSON structure that defines the properties of the widget. Listed are the possible properties of the widget:   Required Property   The only required property is:   name - The user-friendly widget name, as shown in the widget toolbar   Optional Properties   There are a number of optional properties that can be contained in the returned JSON structure.    Property                                                                 Description description A description of the widget, used for its tooltip. iconImage - File name of the widget icon/image category An array of strings for specifying one or more categories to which the widget belongs (such as “Common”, “Charts”, “Data”, “Containers”, and “Components”), enabling widgets to be filtered by type/category. isResizable true (default) or false defaultBindingTargetProperty Name of the property to use as the data/event binding target borderWidth If the widget has a border, set this property to the width of the border. This property ensures pixel-perfect WYSIWG between design and runtime. If you set a border of one pixel on the widget-content element at design time, you are making the widget two pixels taller and two pixels wider (one pixel on each side). To account for this discrepancy, set the borderWidth property to make the design-time widget the same number of pixels smaller. This property places the border inside the widget that you created and makes the width and height in the widget properties accurate. isContainer true or false (default). Controls whether an instance of the widget can be a container for other widget instances. customEditor The name of the custom editor dialog for entering and editing the widget configuration. The system assumes there is a dialog you created named TW.IDE.Dialogs.<name>. customEditorMenuText The text that appears on the flyout menu of the widget and the tooltip text for the Configure Widget Properties button. For example, “Configure Grid Columns.” allowPositioning true (default) or false supportsLabel true or false (default). If true, the widget exposes a label property used to create a text label that appears next to the widget in the Composer and at runtime. supportsAutoResize true or false (default). If true, the widget can be placed in responsive containers (such as columns, rows, responsive tabs, responsive mashups). properties A collection of JSON objects for the widget that describe the properties of the widget that can be modified when the widget is added to a mashup. These properties are displayed in the Properties window of the Mashup Builder - the name of each object is used as the property name and the corresponding attributes control how the property value is set. afterLoad() Called after the object is loaded and properties have been restored from the file, but before the object has been rendered renderHtml() [required] Returns HTML fragment that the Composer will place in the screen; the widget’s content container (e.g. div) must have a ‘widget-content’ class specified. After this container element is appended to the DOM, it becomes accessible via jqElement and its DOM element ID will be available in jqElementId widgetEvents() A collection of events. warnIfNotBound true or false; If true, the property will be checked by Composer to determine whether it is bound, then generate a to-do item if/when it is not. widgetServices() A collection of services. warnIfNotBound true or false; If true, the property will be checked by the Composer to determine whether it is bound, then generate a to-do item if/when it is not. afterRender() Called after the HTML fragment is inserted into the DOM. beforeDestroy() Called right before the widget’s DOM element gets removed and the widget is detached from its parent widget and delocated; this is the place in which to perform any clean-up of resources (e.g. plugins, event handlers) acquired throughout the lifetime of the widget. beforeSetProperty(name,value) [Mashup Builder only - not at runtime] Called before any property is updated within Composer; this is a good place to perform validation on the new property value before it is committed. If a message string is returned, then the message will be displayed to the user, and the new property value will not be committed. If nothing is returned, then the value is assumed to be valid. afterSetProperty(name,value) [Mashup Builder only - not at runtime] Called after any property is updated within Composer. Return true to have the widget re-rendered in Composer. afterAddBindingSource(bindingInfo) Whenever data is bound to the widget, you will call back with this (if you implemented it … it’s optional). The only field in bindingInfo is targetProperty which is the propertyName that was just bound. validate() Called when Composer refreshes its to-do list. The call must return an array of result objects with severity (optional and not implemented) and message (required) properties. The message text may contain one or more pre-defined tokens, such as {target-id}, which will contain a hyperlink that allows the user to navigate to or select the specific widget that generated the message.   Properties Section Breakdown   The following attributes can be specified for each property object:    Aspect                                           Description description A description of the widget, which is used for its tooltip. baseType The system base type name - if the baseType value is FIELDNAME the widget property window displays a dropdown list of fields available in the INFOTABLE bound to the sourcePropertyName value based on the baseTypeRestriction. mustImplement If the baseType is THINGNAME and you specify “mustImplement”, the Mashup Builder will restrict popups to those implementing the specified EntityType and EntityName [by calling QueryImplementingThings against said EntityType and EntityName]. baseTypeInfotableProperty If baseType is RENDERERWITHFORMAT, baseTypeInfotableProperty specifies which property’s infotable is used for configuration. sourcePropertyName When the property’s baseType is FIELDNAME, this attribute is used to determine which INFOTABLE’s fields are to be used to populate the FIELDNAME dropdown list. baseTypeRestriction When specified, this value is used to restrict the fields available in the FIELDNAME dropdown list. tagType If the baseType is TAGS this can be ‘DataTags’ (default) or ‘ModelTags.’ defaultValue Default undefined; used only for ‘property’ type. isBindingSource true or false; Allows the property to be a data binding source, default to false. isBindingTarget true or false; Allows the property to be a data binding target, default to false. isEditable true or false; Controls whether the property can be edited in Composer, default to true. isVisible true or false; Controls whether the property is visible in the properties window, default to true. isLocalizable true or false; Only important if baseType is STRING - controls whether the property can be localized or not. selectOptions An array of value / (display) text structures. warnIfNotBoundAsSource true or false; If true, the property will be checked by Composer to determine whether it is bound and generate a to-do item if/when it is not. warnIfNotBoundAsTarget true or false; If true, the property will be checked by Composer to determine whether it is bound and generate a to-do item if/when it is not.   Other Special BaseType   Additional special baseTypes:   STATEDEFINITION - Picks a StateDefinition STYLEDEFINITION - Picks a StyleDefinition RENDERERWITHSTATE - Displays a dialog and allows you to select a renderer and formatting. Note: You can set a default style by entering the string with the default style name in the defaultValue. When your binding changes, you should reset it to the default value, as shown in the code below:   this.afterAddBindingSource = function (bindingInfo) { if(bindingInfo['targetProperty'] === 'Data') { this.resetPropertyToDefaultValue('ValueFormat'); } }; STATEFORMATTING - Displays a dialog and allows you to pick a fixed style or state-based style. Note: You can set a default style by entering the string with the default style name in the defaultValue. When your binding changes, you should reset it to the default value as shown in the code above for RENDERERWITHSTATE. VOCABULARYNAME - Will pick a DataTag vocabulary   Some Examples   An example of the properties property: properties: { Prompt: { defaultValue: 'Search for...', baseType: STRING, isLocalizable: true }, Width: { defaultValue: 120 }, Height: { defaultValue: 20, isEditable: false }, }   An example of mustImplement: 'baseType': 'THINGNAME', 'mustImplement': { 'EntityType': 'ThingShapes', 'EntityName': 'Blog' }   An example of selectOptions:[ {value: ‘optionValue1’, text: ‘optionText1’}, {value: ‘optionValue2’, text: ‘optionText2’} ]   An example of validate function that allows you to navigate/select the specific widget that generated the message: this.validate = function () { var result = []; var srcUrl = this.getProperty('SourceURL'); if (srcUrl === '' || srcUrl === undefined) { result.push({ severity: 'warning', message: 'SourceURL is not defined for {target-id}'}); } return result; }     Click here to view Part 3 of this guide.
View full tip
This script will get all contacts (optionally limited to a particular organization) and check whether there is a DeviceContact associated with it.  If there is no DeviceContact (meaning it is not associated with a device), it deletes the contact. Note - It is worthwhile to test this script by commenting out the contact.delete() line first and reviewing which contacts will be deleted.  Also, this script works by finding all contacts, therefore it is not recommended to run the script repeatedly within a short period of time. Parameter: organizationName  (OPTIONAL) - Str - the name of the organization import net.sf.json.JSONObject import com.axeda.drm.sdk.device.DeviceFinder import com.axeda.drm.sdk.device.Device import com.axeda.drm.sdk.device.ModelFinder import com.axeda.drm.sdk.device.Model import com.axeda.drm.sdk.data.CurrentDataFinder import com.axeda.drm.sdk.data.DataValue import net.sf.json.groovy.JsonSlurper import com.axeda.drm.sdk.contact.Contact import com.axeda.drm.sdk.contact.ContactFinder import com.axeda.drm.sdk.contact.Location import com.axeda.drm.sdk.contact.LocationFinder import com.axeda.drm.sdk.contact.OrganizationFinder import com.axeda.drm.sdk.Context import com.axeda.drm.sdk.contact.Organization import com.axeda.drm.sdk.contact.DeviceContact import com.axeda.drm.sdk.contact.ContactMethodType import com.axeda.drm.sdk.contact.DeviceContactFinder import groovy.json.* import com.axeda.drm.sdk.scripto.Request import com.axeda.common.sdk.id.Identifier /** * ContactDelete.groovy * ----------------------- * * Finds all contacts, then finds the device contact for each contact. If null, deletes the contact. * * @params * organizationName (OPTIONAL) Str - limit the contact deletion to an organization * * * @author Sara Streeter <sstreeter@axeda.com> */ /** * initialize our global variables * json = the contents of our response * infoString = a stringBuilder used to collect debug information during the script * contentType = the content type we will return * scriptname = The name of this Script, used in multiple places */ def json = new groovy.json.JsonBuilder() def infoString = new StringBuilder() def contentType = "application/json" def scriptName = "ContactDelete.groovy" def root = ["result":["deleted":[]]] def timings = [:] timings.contactFinding = 0 timings.contactIterating = 0 wholestart = System.currentTimeMillis() final Context CONTEXT = Context.getSDKContext() try {       def params = Request?.parameters?.size() > 0 ? Request?.parameters : parameters       ContactFinder cfinder = new ContactFinder(CONTEXT)       def start = System.currentTimeMillis()     def organization       if (params.organizationName != null && params.organizationName != ""){         OrganizationFinder oFinder = new OrganizationFinder(CONTEXT)         oFinder.setName(params.organizationName)         organization = oFinder.find()               if (organization){             cfinder.setOrganization(organization)         }     }       List<Contact> contacts = cfinder.findAll()     timings.contactFinding += System.currentTimeMillis()-start       root.result.contactSize = contacts.size()       start = System.currentTimeMillis()     contacts.each{  contact ->           DeviceContactFinder dcfinder = new DeviceContactFinder(CONTEXT)         dcfinder.setContactId(contact.id)         def dc = dcfinder.findAll()         if (dc.size() == 0){             root.result.deleted << [                 id: contact.id.value,                 firstName: contact.firstName,                 lastName: contact.lastName,                 organization: contact.organization?.name             ]             contact.delete()  // comment out this line to check which contacts will be deleted first.         }     }     timings.contactIterating += System.currentTimeMillis()-start     } catch (Exception e) {     processException(scriptName,json,e) } finally {     timings.wholescript = System.currentTimeMillis() - wholestart     root += [timings: timings] } return ['Content-Type': 'application/json', 'Content': JSONObject.fromObject(root).toString(2)] /*     Processes the contents of an Exception and add it to the Errors collection     @param json The markup builder */ private def processException(String scriptName, JsonBuilder json, Exception e) {     // catch the exception output     def logStringWriter = new StringWriter()     e.printStackTrace(new PrintWriter(logStringWriter))     logger.error("Exception occurred in ${scriptName}: ${logStringWriter.toString()}")     /*         Construct the error response         - errorCode Will be an element from an agreed upon enum         - errorMessage The text of the exception      */     json.errors  {         error {             message     "[${scriptName}]: " + e.getMessage()             timestamp   "${System.currentTimeMillis()}"         }     }     return json }
View full tip
The Metadata for the 8.1 release has been updated from that of the previous releases as part of the architecture update that is new in 8.1.  The goal of this blog post is to inform you of these changes to the metadata, and where you can find more information on both the new metadata format, as well as all the other changes that are new for the 8.1 release. New Structure The image below provides an excerpt of what the metadata file itself will look like in practice. The table below provides a definition for what each field in the metadata is and how it should be populated in your metadata file. Parameter Description Required/Optional fieldName The exact name of the field as it appears in the data file. Required values A list of the acceptable values for the field. Note: For Ordinal opTypes, the values must be presented in the correct order. Required if the opType is Ordinal Optional for Categorical opType Do not use for Boolean and Continuous range For a Continuous field, defines the minimum and maximum values the field can accept. For informational purposes only. Optional dataType Describes what type of data the field contains. Options include: Long, Integer, Short, Byte, Double, Boolean, String, Other. Note: Select the most accurate dataType. Selecting the String dataType for numeric data can lead to undesirable results. Required opType Describes how the data in the field can be used. Options include: Categorical, Boolean, Ordinal, Continuous, Informational, Temporal, Entity_ID Required timeSamplingInterval An integer representing the time between observations in a temporal field. Required if the opType is Temporal Do not use for other opTypes isStatic A flag indicating whether or not the value in a temporal field can change over time. Marking a field as static reduces training time by removing redundant data points for fields that do not change. Optional Things to Remember Remember that the Metadata file that you create will need to match the data file that you have; furthermore, all of the columns that you have in your dataset will need to be represented in the metadata file. The metadata file needs to be a JSON file. Setting the opType parameter incorrectly can have a severe impact on system performance.  For example, setting a numerical field that has thousands of different values as categorical instead of continuous will cause the system to handle each value as an independent category, instead of just a number, which will result in significantly longer processing time. Additional References For more information on all the other changes that are new in the 8.1 release please follow this link for the complete reference document. Feel free to use the blank example metadata file attached to this post to help you get started on your own.
View full tip
How to enable ThingWorx Performance Advisor Applies To ThingWorx 7.2+ Description How to enable ThingWorx Performance Advisor Resolution In the ThingWorx Composer, go to Systems > Subsystems, select the PlatformSubsystem and choose Configuration In the Metrics Reporting Service Configuration Select the "Enable Metrics Reporting" checkbox to activate Performance Advisor reporting Enter your current PTC credentials (username and password) for either the customer support portal or the developer portal After providing those details, use the Request button to request an Authorization Key. Customer Number and Name will be filled automatically and an Authorization Key is generated which allows the server identifying itself to the PTC environment. Those fields are read-only. ThingWorx is now ready to send Performance Advisor data and metrics to PTC Related FAQ - Performance Advisor for ThingWorx | PTC https://community.thingworx.com/community/developers/blog/2017/05/22/performance-advisor-for-thingworx-explore-configure…
View full tip
Video Author:                     Polina Osipova Original Post Date:            June 10, 2016   Description: This is a video tutorial on adding State Formatting in a Mashup using State Definitions.      
View full tip
Behavior of ThingWorx Analytics Anomaly Detection with Data Gaps In ThingWorx Analytics, Anomaly detection is performed through the ThingWatcher API framework. This is done by observing the Data from an Edge device, learning what the data stream should look like and then monitoring for any unexpected sequences of Data within the incoming Data stream. Ideally, for this process to work properly, there should be no Data Gaps. However, Data Gaps do occur, this blog describes how ThingWatcher deals with them in order to achieve high performance in anomaly detection. Data Gaps and phases affected: In anomaly detection, ThingWatcher goes through three consecutive phases which are Initializing, Calibrating and then Monitoring. Both the Initializing and Monitoring phases involve either collecting or monitoring streamed Data, so these two phases are sensitive to Data streaming Gaps. The Calibrating phase involves the use of already collected data to create the Anomaly Detection Model. Thus this phase is not directly affected by Data gaps. Dealing with Long and Short Data Gaps: Initializing Phase: During this phase, Data is collected and as part of the collection process, the sampling rate is imputed. So when short data gaps occur these are interpolated so that there are no missing values. However long Gaps might also occur. A Data gap is considered to be long if there is more than three missing Data points which should amount to three times the sampling rate. Basically, if the Timestamp on a data point is greater than the previous timestamp by more than three times the sampling rate that is considered to be a long gap. If a long gap occurs, ThingWatcher would restart the Data Collection process since long Data gaps are not acceptable. The data recollection process could be initiated three times when there are long gaps before failing if the gaps persist. The Data source would then no longer be considered reliable Monitoring Phase: In this phase, the Data stream is monitored to detect any unexpected behavior. In that case, if a short time gap occurs between the previous and the current TimedValue data points, the lookback buffer would be cleared. ThingWatcher will re-enter the Buffering state and will remain in this state until the lookback window buffer is completely filled. For more information on The functionalities of ThingWatcher, Please refer to the ThingWatcher Deployment Guide https://support.ptc.com/WCMS/files/173109/en/ThingWatcher-Deployment-Guide-8.0.pdf However, if the gaps are long and exceed three times the sampling rate, data filling could no longer be a valid solution and Data collection restarts. It is important to note that these imputed values decrease the accuracy of the Anomaly Detection Model. Therefore data monitored by ThingWatcher should be incremented in regular intervals. In general, persistent data gaps should be avoided by ensuring that data is streamed such that the timestamps increase in regular increments and any gaps that exist are generally incidental and small.
View full tip
  How to Display Data in Charts Guide Part 3   Step 6: Configure Charts   You now have a test Thing that has an Info Table Property and Time Series Property with values appropriate for display in various Chart Widgets, as well as a Mashup with those charts inside. However, in order for the Widget to display data, you need to bind it to the data source.   Bring Data into the Mashup   Select the Data tab in the top-right section of Composer.   Click the green + button under Data.   In the Entity Filter field, search for and select DDCThing. In the Services Filter field, type GetProperties. Click the right-arrow beside GetProperties The GetProperties Service will now appear on the right under Selected Services. Check the Execute on Load box under Selected Services. This will cause the GetProperties Service to execute as soon as the Mashup is loaded.   6. In the Services Filter field, type QueryPropertyHistory. 7. Click the right-arrow beside QueryPropertyHistory. 8. Check the Execute on Load box under Selected Services. 9. Click Done to close the Add Data pop-up window.   Drag-and-Drop Data Bindings   Under the Data tab, expand the Things_DDCThing > GetProperties service.   Drag GetProperties > InfoTableProperty to the Pie Chart Widget in the top-left section of the Canvas.           3. On the Select Binding Target pop-up, select Data. 4. Repeat steps 2-3 for the Label, Proportional, and Bubble charts. Note that the Bubble chart will be bound to DataSource1 rather than Data.     5. Drag-and-drop QueryPropertyHistory > Returned Data > All Data to the Line Chart Widget in the bottom-middle section of the Canvas. 6. On the Select Binding Target pop-up, select Data. 7. Repeat steps 5-6 for the Event Chart in the bottom-right of the Canvas.   Configure Chart Properties   Click the Pie Chart in the top-left of the Canvas to select it. In the bottom-left section of Composer, showing the Properties of the Pie Chart, type LabelField in the Filter Properties field. For the LabelField drop-down, select Label.   In the Filter Properties window, type ValueField. In the ValueField drop-down, select Value.       Repeat steps 1-5 for each of the other charts, making the following Widget Property changes: Chart Property Setting Label XAxisField XAxis Label DataField1 Data Proportional XAxisField XAxis Proportional DataField 1 ASensor Proportional DataField 2 BSensor Proportional DataField 3 CSensor Bubble XAxisField1 XValue Bubble YAxisField1 YValue Bubble BubbleValueField1 BubbleValue Line XAxisField timestamp Event XAxisField timestamp Event LabelField TimeSeriesProperty 7. At the top, click Save. 8. Click View Mashup.     Step 7: Next Steps   Congratulations!  In this guide, you learned how to:   Create a Data Shape to format an Info Table Create a Value Stream to record Property Value changes Create a Thing with an Info Table Property and a Time Series Property Create a Mashup with various Chart Widgets Link your Thing's Properties to the Chart Widgets   This is the last guide in the Customize UI and Display Options to Deploy Applications learning path.    Additional Resources   If you have questions, issues, or need additional information, refer to:   Resource Link Community Developer Community Forum Support Widget Help Center    
View full tip
  Some call him JB. Some call him Joe. Others call him @bironology. I call him an awesome guy—he’s our CTO of IoT here at PTC—Joe Biron!   Joe’s an architect at heart, a developer, an avid gamer and a technologist (check him out on Twitter @bironology).   Watch as he guest stars in the Microsoft Channel 9 “IoT Deep Dive Live” show! Listen to him explain how you can build end-to-end industrial solutions with ThingWorx and Azure. ­­ And, guess who’s running the demo behind the scenes: our Global ThingWorx COE Lead, Neal Hagermoser, who you may recognize from a previous Ask Kaya post where I interviewed him on why we chose to partner with Azure.   Enjoy the show and stay connected! Kaya
View full tip
  Connect Devices and Equipment Using Industry-Standard Protocol Drivers in ThingWorx   GUIDE CONCEPT   This guide has step-by-step instructions for connecting ThingWorx Kepware Server to ThingWorx Foundation.   This guide will demonstrate the ease of connecting edge industrial equipment to ThingWorx Foundation without installing any software on production equipment.   We will also show how connecting different systems and devices improves operations through the creation of business intelligence.     YOU'LL LEARN HOW TO   Connect ThingWorx Kepware Server to ThingWorx Foundation Secure the connection with an Application Key Create an IndustrialGateway Thing Map ThingWorx Kepware Server Tags to ThingWorx Foundation Thing Properties Visualize Data from connected digital assets   Note: The estimated time to complete this guide is 30 minutes     Step 1: Installation   Download the ThingWorx Kepware Server executable application from MyKepware. If you desire installation instructions, you may find them in the attached guide: install-thingworx-kepware-server.zip . Navigate to START -> PTC. Click ThingWorx Kepware Server 6 Configuration.                           For additional information on ThingWorx Kepware Server, click Help -> Server Help on the Menu Bar.         Step 2: Create Gateway   To make a connection between ThingWorx Kepware Server and Foundation Server, you must first create a Thing.   WARNING: To avoid a timeout error, create a Thing in ThingWorx Foundation BEFORE attempting to make the connection in ThingWorx Kepware Server.   In ThingWorx Foundation Composer, click Browse > Modeling -> Things.   Click + NEW. In the Name field, type IndConn_Server, including matching capitalization. In the Description field, enter an appropriate description, such as Industrial Gateway Thing to connect to ThingWorx Kepware Server. If the Project field is not already set, search for and select PTCDefaultProject. In the Base Thing Template field, search for and select IndustrialGateway.   Click Save.     Step 3: Create an AppKey   To secure the connection between ThingWorx Foundation and ThingWorx Kepware Server, you need to utilize an Application Key.   In ThingWorx Foundation, click Browse > Security -> Applications Keys.   Click + New. In the Name field, type IndConn_AppKey. If Project is not already set, search for and select PTCDefaultProject. Set User Name Reference to the Administrator User. Click Yes on the warning pop-up.   Assign an Expiration Date that is far enough in the future to not interfere with your trial.   Click Save.   Under Key ID, click the page icon to the right of the Application Key string to copy it.     Step 4: Connect to Foundation   Now that you’ve created an IndustrialGateway Thing and an Application Key, you can configure ThingWorx Kepware Server to connect to ThingWorx Foundation.   Return to the ThingWorx Kepware Server Windows application. Right-click Project. Select Properties….   In the Property Editor pop-up, click ThingWorx. In the Enable field, select Yes from the drop-down. In the Host field, enter the IP address or URL of your ThingWorx Foundation server. Enter the Port number. If you are using the "hosted" Developer Portal trial, enter 443.     In the Application Key field, copy and paste the Application Key you just created. In the Trust self-signed certificates field, select Yes from the drop-down. In the Trust all certificates field, select Yes from the drop-down. In the Disable encryption field, select No from the drop-down if you are using a secure port. Select Yes if you are using an http port. Type IndConn_Server in the Thing name field, including matching capitalization. If you are connecting with a remote instance of ThingWorx Foundation and you expect any breaks or latency in your connection, enable Store and Forward. Click Apply in the pop-up. Click Ok.   In the ThingWorx Kepware Server Event window at the bottom, you should see a message indicating Connected to ThingWorx.     NOTE: If you do not see the "Connected" message, repeat the steps above, ensuring that all information is correct. In particular, check the Host, Port, and Thing name fields for errors.     Click here to view Part 2 of this guide.
View full tip
This video will walk you through the first steps of how to set-up Analytics Manager for Real-Time Scoring. More specifically this video demonstrates how to create an Analysis Provider and start ThingPredictor Agent. NOTE: For version 8.1 the startup command for the Agent has changed view the command in PTC Help center.   Updated Link for access to this video:  ThingWorx Analytics Manager: Create an Analysis Provider & Start the ThingPredictor Agent                                  
View full tip
Back in 2018 an interesting capability was added to ThingWorx Foundation allowing you to enable statistical calculation of service and subscription execution.   We typically advise customers to approach this with caution for production systems as the additional overhead can be more than you want to add to the work the platform needs to handle.  This said, these statistics is used consciously can be extremely helpful during development, testing, and troubleshooting to help ascertain which entities are executing what services and where potential system bottlenecks or areas deserving performance optimization may lie.   Although I've used the Utilization Subsystem services for statistics for some time now, I've always found that the Composer table view is not sufficient for a deeper multi-dimensional analysis.  Today I took a first step in remedying this by getting these metrics into Excel and I wanted to share it with the community as it can be quite helpful in giving developers and architects another view into their ThingWorx applications and to take and compare benchmarks to ensure that the operational and scaling is happening as was expected when the application was put into production.   Utilization Subsystem Statistics You can enable and configure statistics calculation from the Subsystem Configuration tab.  The help documentation does a good job of explaining this so I won't mention it here.  Base guidance is not to use Persisted statistics, nor percentile calculation as both have significant performance impacts.  Aggregate statistics are less resource intensive as there are less counters so this would be more appropriate for a production environment.  Specific entity statistics require greater resources and this will scale up as well with the number of provisioned entities that you have (ie: 1,000 machines versus 10,000 machines) whereas aggregate statistics will remain more constant as you scale up your deployment and its load.   Utilization Subsystem Services In the subsystem Services tab, you can select "UtilizationSubsystem" from the filter drop down and you will see all of the relevant services to retrieve and reset the statistics.     Here I'm using the GetEntityStatistics service to get entity statistics for Services and Subscriptions.     Giving us something like this.      Using Postman to Save the Results to File I have used Postman to do the same REST API call and to format the results as HTML and to save these results to file so that they can be imported into Excel.   You need to call '/Thingworx/Subsystems/UtilizationSubsystem/Services/GetEntityStatistics' as a POST request with the Content-Type and Accept headers set to 'application/xml'.  Of course you also need to add an appropriately permissioned and secured AppKey to the headers in order to authenticate and get service execution authorization.     You'll note the Export Results > Save to a file menu over on the right to get your results saved.   Importing the HTML Results into Excel As simple as I would like to hope that getting a standard web formatted file into Excel should be, it didn't turn out to be as easy as I would have hoped and so I have to switch over to Windows to take advantage of Power Query.   From the Data ribbon, select Get Data > From File > From XML.  Then find and select the HTML file saved in the previous step.     Once it has loaded the file and done some preparation, you'll need to select the GetEntityStatistics table in the results on the left.  This should display all of the statistics in a preview table on the right.     Once the query completed, you should have a table showing your statistical data ready for... well... slicing and dicing.     The good news is that I did the hard part for you, so you can just download the attached spreadsheet and update the dataset with your fresh data to have everything parsed out into separate columns for you.     Now you can use the column filters to search for entity or service patterns or to select specific entities or attributes that you want to analyze.  You'll need to later clear the column filters to get your whole dataset back.     Updating the Spreadsheet with Fresh Data In order to make this data and its analysis more relevant, I went back and reset all of the statistics and took a new sample which was exactly one hour long.  This way I would get correct recent min/max execution time values as well as having a better understanding of just how many executions / triggers are happening in a one hour period for my benchmark.   Once I got the new HTML file save, I went into Excel's Data ribbon, selected a cell in the data table area, and clicked "Queries & Connections" which brought up the pane on the right which shows my original query.     Hovering over this query, I'm prompted with some stuff and I chose "Edit".     Then I clicked on the tiny little gear to the right of "Source" over on the pane on the right side.     Finally I was able to select the new file and Power Query opened it up for me.     I just needed to click "Close & Load" to save and refresh the query providing data to the table.     The only thing at this point is that I didn't have my nice little sparklines as my regional decimal character is not a period - so I selected the time columns and did a "Replace All" from '.' to ',' to turn them into numbers instead of text.     Et Voila!   There you have it - ready to sort, filter, search and review to help you better understand which parts of your application may be overly resource hungry, or even to spot faulty equipment that may be communicating and triggering workflows far more often than it should.   Specific vs General Depending on the type of analysis that you're doing you might find that the aggregate statistics are a better option.  As they'll be far, far less that the entity specific statistics they'll do a better job of giving you a holistic view of the types of things that are happening with your ThingWorx applications execution.   The entity specific data set that I'm showing here would be a better choice for troubleshooting and diagnostics to try to understand why certain customers/assets/machines are behaving strangely as we can specifically drill into these stats.  Keep in mind however that you should then compare these findings with the general baseline to see how this particular asset is behaving compared to the whole fleet.   As a size guideline - I did an entity specific version of this file for a customer with 1,000 machines and the Excel spreadsheet was 7Mb compared to the 30kb of the one attached here and just opening it and saving it was tough for Excel (likely due to all of my nested formulas).  Just keep this in mind as you use this feature as there is memory overhead meaning also garbage collection and associated CPU usage for such.
View full tip
ThingWorx Service Apps Setup and Configuration Guide 8.2 ThingWorx Manufacturing and Service Apps Customization Guide 8.2
View full tip
This tutorial applies to Axeda version 6.1.6+, with sections applicable to 6.5+ (indicated below) Custom objects (or Groovy scripts) are the backbone of Axeda custom applications.  As the developer, you decide what content type to give the data returned by the script. What this tutorial covers? This tutorial provides examples of outputting data in different formats from Groovy scripts and consuming that data via Javascript using the jQuery framework.  While Javascript and jQuery are preferred by the Axeda Innovation team, any front end technology that can consume web services can be used to build applications on the Axeda Machine Cloud.  On the same note, the formats discussed in this article are only a few examples of the wide variety of content types that Groovy scripts can output via Scripto.  The content types available via Scripto are limited only by their portability over the TCP protocol, a qualification which includes all text-based and downloadable binary mime types.  As of July 2013, the UDP protocol (content streaming) is not supported by the current version of the Axeda Platform. Formats discussed in this article: 1) JSON 2) XML 3) CSV 4) Binary content with an emphasis on image files (6.5+) For a tutorial on how to create custom objects that work with custom applications, check out Using Google Charts API with Scripto.  For a discussion of what Scripto is and how it relates to Groovy scripts and Axeda web services, take a look at Unleashing the Power of the Axeda Platform via Scripto. Serializing Data JSON For those building custom applications with Javascript, serializing data from scripts into JSON is a great choice, as the data is easily consumable as native Javascript objects. The net.sf.json JSON library is available to use in the SDK.  It offers an easy way to serialize objects on the Platform, particularly v2 SDK objects. import net.sf.json.JSONArray import static com.axeda.sdk.v2.dsl.Bridges.* def asset = assetBridge.findById(parameters.assetId) def response = JSONArray.fromObject(asset).toString(2) return ["Content-Type": "application/json", "Content": response] Outputs: [{     "buildVersion": "",     "condition": {         "detail": "",         "id": "3",         "label": "",         "restUrl": "",         "systemId": "3"     },     "customer": {         "detail": "",         "id": "2",         "label": "Default Organization",         "restUrl": "",         "systemId": "2"     },     "dateRegistered": {         "date": 11,         "day": 1,         "hours": 18,         "minutes": 7,         "month": 2,         "seconds": 49,         "time": 1363025269253,         "timezoneOffset": 0,         "year": 113     },     "description": "",     "detail": "testasset",     "details": null,     "gateways": [],     "id": "12345",     "label": "",     "location": {         "detail": "Default Organization",         "id": "2",         "label": "Default Location",         "restUrl": "",         "systemId": "2"     },     "model": {         "detail": "testmodel",         "id": "2345",         "label": "standalone",         "restUrl": "",         "systemId": "2345"     },     "name": "testasset",     "pingRate": 0,     "properties": [         {             "detail": "",             "id": "1",             "label": "TestProperty",             "name": "TestProperty",             "parentId": "2345",             "restUrl": "",             "systemId": "1",             "value": ""         },         {             "detail": "",             "id": "4",             "label": "TestProperty0",             "name": "TestProperty0",             "parentId": "2345",             "restUrl": "",             "systemId": "4",             "value": ""         },         {             "detail": "",             "id": "3",             "label": "TestProperty1",             "name": "TestProperty1",             "parentId": "2345",             "restUrl": "",             "systemId": "3",             "value": ""         },         {             "detail": "",             "id": "2",             "label": "TestProperty2",             "name": "TestProperty2",             "parentId": "2345",             "restUrl": "",             "systemId": "2",             "value": ""         }     ],     "restUrl": "",     "serialNumber": "testasset",     "sharedKey": [],     "systemId": "12345",     "timeZone": "GMT" }] This output can be traversed as Javascript object with its nodes accessible using dot (.) notation. For example, if you set the above JSON as the content of variable "json", you can access it in the following way, without any preliminary parsing needed: assert json[0].condition.id == 3 If you use jQuery, a Javascript library, feel free to make use of axeda.js, which contains utility functions to pass data to and from the Axeda Platform.  One function in particular is used in most example custom applications found on this site, the axeda.callScripto function.  It relies on the jQuery ajax function to make the underlying call. /**   * makes a call to the enterprise platform services with the name of a script and passes   * the script any parameters provided.   *   * default is GET if the method is unknown   *   * Notes: Added POST semantics - plombardi @ 2011-09-07   *   * original author: Zack Klink & Philip Lombardi   * added on: 2011/7/23   */ // options - localstoreoff: "yes" for no local storage, contentType: "application/json; charset=utf-8", axeda.callScripto = function (method, scriptName, scriptParams, attempts, callback, options) {   var reqUrl = axeda.host + SERVICES_PATH + 'Scripto/execute/' + scriptName + '?sessionid=' + SESSION_ID   var contentType = options.contentType ? options.contentType : "application/json; charset=utf-8"   var local   var daystring = keygen()   if (options.localstoreoff == null) {   if (localStorage) {   local = localStorage.getItem(scriptName + JSON.stringify(scriptParams))   }   if (local != null && local == daystring) {   return dfdgen(reqUrl + JSON.stringify(scriptParams))   } else {   localStorage.setItem(scriptName + JSON.stringify(scriptParams), daystring)   }   }   return $.ajax({   type: method,   url: reqUrl,   data: scriptParams,   contentType: contentType,   dataType: "text",   error: function () {   if (attempts) {   expiredSessionLogin();   setTimeout(function () {   axeda.callScripto('POST', scriptName, scriptParams, attempts - 1, callback, options)   }, 1500);   }   },   success: function (data) {   if (options.localstoreoff == null) {   localStorage.setItem(reqUrl + JSON.stringify(scriptParams), JSON.stringify([data]))   }   if (contentType.match("json")) {   callback(unwrapResponse(data))   } else {   callback(data)   }   }   }) }; Using the axeda.callScripto function: var postToPlatform = function (scriptname, callback, map) {         var options = {             localstoreoff: "yes",             contentType: "application/json; charset=utf-8"         }        // Javascript object "map" has to be stringified to post to Axeda Platform         axeda.callScripto("POST", scriptname, JSON.stringify(map), 2, function (json) {             // callback gets the JSON object output by the Groovy script             callback(json)         }, options)     } The JSON object is discussed in more detail here. Back to Top XML XML is the preferred language of integration with external applications and services. Groovy provides utilities to make XML serialization a trivial exercise. import groovy.xml.MarkupBuilder import static com.axeda.sdk.v2.dsl.Bridges.* def writer = new StringWriter() def xml = new MarkupBuilder(writer) def findAssetResult = assetBridge.find(new AssetCriteria(modelNumber: parameters.modelName)) // find operation returns AssetReference class. Contains asset id only def assets = findAssetResult.assets      xml.Response() {   Assets() {   assets.each { AssetReference assetRef ->   def asset = assetBridge.findById(assetRef.id)               // asset contains a ModelReference object instead of a Model.  ModelReference has a detail property, not a name property   Asset() {   id(asset.id)   name(asset.name)   serial_number(asset.serialNumber)   model_id(asset.model.id)   model_name(asset.model.detail)   }   }   }   } return ['Content-Type': 'text/xml', 'Content': writer.toString()] Output: <Assets>   <Asset>   <id>98765</id>   <name>testasset</name>   <serial_number>testasset</serial_number>   <model_id>4321</model_id>   <model_name>testmodel</model_name>   </Asset> </Assets Although XML is not a native Javascript object as is JSON, Javascript libraries and utilities are available for parsing XML into an object traversable in Javascript. For more information on parsing XML in Javascript, see W3 Schools XML Parser.  For those using jQuery, check out the jQuery.parseXML function. Back to Top Outputting Files (Binary content types) CSV CSV comes in handy for spreadsheet generation as it is compatible with Microsoft Excel. The following example is suitable for Axeda version 6.1.6+ as it makes use of the Data Accumulator feature to create a downloadable file. import com.axeda.drm.sdk.device.ModelFinder import com.axeda.drm.sdk.Context import com.axeda.drm.sdk.scripto.Request import com.axeda.common.sdk.id.Identifier import com.axeda.drm.sdk.device.Model import com.axeda.drm.sdk.device.DataItem import com.axeda.drm.sdk.device.DataItemValue import com.axeda.drm.sdk.data.DataValue import com.axeda.drm.sdk.device.DeviceFinder import com.axeda.drm.sdk.device.Device import com.axeda.drm.sdk.mobilelocation.MobileLocation import com.axeda.drm.sdk.data.DataValueList import com.axeda.drm.sdk.data.CurrentDataFinder import com.axeda.drm.sdk.mobilelocation.CurrentMobileLocationFinder import groovy.xml.MarkupBuilder import com.axeda.platform.sdk.v1.services.ServiceFactory /* * ExportObjectToCSV.groovy * * Creates a csv file from either all assets of a model of a single asset that can then be used to import them back into another system. * * @param model        -   (REQ):Str model name. * @param serial        -   (OPT):Str serial number. * * @author Sara Streeter <sstreeter@axeda.com> */ def writer = new StringWriter() def xml = new MarkupBuilder(writer) InputStream is try {    Context CONTEXT = Context.getSDKContext()    ModelFinder modelFinder = new ModelFinder(CONTEXT)     modelFinder.setName(Request.parameters.model)    Model model = modelFinder.find()    DeviceFinder deviceFinder = new DeviceFinder(CONTEXT)    deviceFinder.setModel(model)    List<Device> devices = [] def exportkey = model.name Device founddevice if (Request.parameters.serial){     deviceFinder.setSerialNumber(Request.parameters.serial)    founddevice = deviceFinder.find()    logger.info(founddevice?.serialNumber)    if (founddevice != null){    devices.add(founddevice)    }    else throw new Exception("Device ${Request.parameters.serial} cannot be found.")    exportkey += "${founddevice.serialNumber}" } else {     devices = deviceFinder.findAll()     exportkey += "all" } // use a Data Accumulator to store the information def dataStoreIdentifier = "FILE-CSV-export_____" + exportkey def daSvc = new ServiceFactory().dataAccumulatorService if (daSvc.doesAccumulationExist(dataStoreIdentifier, devices[0].id.value)) {   daSvc.deleteAccumulation(dataStoreIdentifier, devices[0].id.value) } List<DataItem> dataItemList = devices[0].model.dataItems def firstrow = [ "model", "serial", "devicename", "conditionname", "currentlat","currentlng" ]                     def tempfirstrow = dataItemList.inject([]){list, dataItem ->             list << dataItem.name;             list         }         firstrow += tempfirstrow            firstrow = firstrow.join(',')         firstrow += '\n'         daSvc.writeChunk(dataStoreIdentifier, devices[0].id.value, firstrow);     CurrentMobileLocationFinder currentMobileLocationFinder = new CurrentMobileLocationFinder(CONTEXT) devices.each{ device ->                 CurrentDataFinder currentDataFinder = new CurrentDataFinder(CONTEXT, device)                 currentMobileLocationFinder.deviceId = device.id.value                 MobileLocation mobileLocation = currentMobileLocationFinder.find()                 def lat = 0                 def lng = 0                 if (mobileLocation){                     lat = mobileLocation?.lat                     lng = mobileLocation?.lng                 }                 def row =                 [                     device.model.name,                     device.serialNumber,                     device.name,                     device.condition?.name,                     lat,                     lng                     ]                                     def temprow = dataItemList.inject([]){ subList,dataItem ->                         DataValue value = currentDataFinder.find(dataItem.name)                                             def val = "NULL"                         val = value?.asString() != "?" ? value?.asString() : val                         subList <<  val                         subList                     }                 row += temprow                 row = row.join(',')                 row += '\n'                 daSvc.writeChunk(dataStoreIdentifier, devices[0].id.value, row);             }    // stream the data accumulator to create the file is = daSvc.streamAccumulation(dataStoreIdentifier, devices[0].id.value) def disposition = 'attachment; filename=CSVFile' + exportkey + '.csv' return ['Content-Type': 'text/csv', 'Content-Disposition':disposition, 'Content': is.text] } catch (def ex) {    xml.Response() {        Fault {            Code('Groovy Exception')            Message(ex.getMessage())            StringWriter sw = new StringWriter();            PrintWriter pw = new PrintWriter(sw);            ex.printStackTrace(pw);            Detail(sw.toString())        }    } logger.info(writer.toString()) return ['Content-Type': 'text/xml', 'Content': writer.toString()] } return ['Content-Type': 'text/xml', 'Content': writer.toString()] Back to Top Image Files (6.5+) The FileStore in Axeda version 6.5+ allows fine-grained control of uploaded and downloaded files. As Groovy scripts can return binary data via Scripto, this allows use cases such as embedding a Groovy script url as the source for an image. The following example uses the FileStore API to create an Image out of a valid image file, scales it to a smaller size and stores this smaller file. import com.axeda.drm.sdk.Context import com.axeda.drm.sdk.data.* import com.axeda.drm.sdk.device.* import com.axeda.drm.sdk.mobilelocation.CurrentMobileLocationFinder import com.axeda.drm.sdk.mobilelocation.MobileLocation import com.axeda.drm.sdk.mobilelocation.MobileLocationFinder import com.axeda.sdk.v2.bridge.FileInfoBridge import static com.axeda.sdk.v2.dsl.Bridges.* import com.axeda.services.v2.ExecutionResult import com.axeda.services.v2.FileInfo import com.axeda.services.v2.FileInfoReference import com.axeda.services.v2.FileUploadSession import net.sf.json.JSONObject import groovy.json.JsonBuilder import net.sf.json.JSONArray import com.axeda.drm.sdk.scripto.Request import org.apache.commons.io.IOUtils import org.apache.commons.lang.exception.ExceptionUtils import com.axeda.common.sdk.id.Identifier import groovy.json.* import javax.imageio.ImageIO; import java.awt.RenderingHints import java.awt.image.BufferedImage import java.io.ByteArrayOutputStream; import java.awt.* import java.awt.geom.* import javax.imageio.* import java.awt.image.* import java.awt.Graphics2D import javax.imageio.stream.ImageInputStream /*    Image-specific FileStore entry point to post and store files */ def contentType = "application/json" final def serviceName = "StoreScaledImage" // Create a JSON Builder def json = new JsonBuilder() // Global try/catch. Gotta have it, you never know when your code will be exceptional! try {       Context CONTEXT = Context.getSDKContext()     def filesList = []     def datestring = new Date().time     InputStream inputStream = Request.inputStream       def reqbody = Request.body     // all of our Request Parameters are available here     def params = Request.parameters     def filename = Request?.headers?.'Content-Disposition' ?     Request?.headers?.'Content-Disposition' : "file___" + datestring + ".txt"     def filelabel = Request.parameters.filelabel ?: filename     def description = Request.parameters.description ?: filename     def contType = Request.headers?."content-type" ?: "image/jpeg"     def tag = Request.parameters.tag ?: "cappimg"     def encoded = Request.parameters.encoded?.toBoolean()   def dimlimit = params.dimlimit ? params.dimlimit : 280     // host is available in the headers when the script is called with AJAX     def domain = Request.headers?.host     byte[] bytes = IOUtils.toByteArray(inputStream);     def fileext = filename.substring(filename.indexOf(".") + 1,filename.size())     def outerMap = [:]     // check that file extension matches an image type     if (fileext ==~ /([^\s]+(\.(?i)(jpg|jpeg|png|gif|bmp))$)/){         if (inputStream.available() > 0) {                 def scaledImg                               try {                     def img = ImageIO.read(inputStream)                     def width = img?.width                              def height = img?.height                     def ratio = 1.0                     def newBytes                                       if (img){                                               if (width > dimlimit || height > dimlimit){                             // shrink by the smaller side so it can still be over the limit                             def dimtochange = width > height ? height : width                             ratio = dimlimit / dimtochange                                                       width = Math.floor(width * ratio).toInteger()                             height = Math.floor(height * ratio).toInteger()                         }                                             newBytes = doScale(img, width, height, ratio, fileext)                      if (newBytes?.size() > 0){                         bytes = newBytes                      }                     }                 }                 catch(Exception e){                     logger.info(e.localizedMessage)                                   }                                           outerMap.byteCount = bytes.size()                    FileInfoBridge fib = fileInfoBridge                 FileInfo myImageFile = new FileInfo(filelabel: filelabel,                                                     filename: filename,                                                     filesize: bytes?.size(),                                                     description: description,                                                     tags: tag                                                     )                    myImageFile.contentType = contType                    FileUploadSession fus = new FileUploadSession();                 fus.files = [myImageFile]                    ExecutionResult fer = fileUploadSessionBridge.create(fus);                 myImageFile.sessionId = fer.succeeded.getAt(0)?.id                               ExecutionResult fileInfoResult = fib.create(myImageFile)                               if (fileInfoResult.successful) {                     outerMap.fileInfoSave = "File Info Saved"                     outerMap.sessionId = "File Upload SessionID: "+fer.succeeded.getAt(0)?.id                     outerMap.fileInfoId = "FileInfo ID: "+fileInfoResult?.succeeded.getAt(0)?.id                     ExecutionResult er = fib.saveOrUpdate(fileInfoResult.succeeded.getAt(0).id,new ByteArrayInputStream(bytes))                     def fileInfoId = fileInfoResult?.succeeded.getAt(0)?.id                     String url = "${domain}/services/v1/rest/Scripto/execute/DownloadFile?fileId=${fileInfoId}"                     if (er.successful) {                         outerMap.url = url                     } else {                         outerMap.save = "false"                         logger.info(logFailure(er,outerMap))                     }                 } else {                     logger.info(logFailure(fileInfoResult, outerMap))                 }                } else {                 outerMap.bytesAvail = "No bytes found to upload"             }         } else {             outerMap.imagetype = "Extension $fileext is not a supported image file type."         }     filesList << outerMap     // return the JSONBuilder contents     // we specify the content type, and any object as the return (even an outputstream!)     return ["Content-Type": contentType,"Content":JSONArray.fromObject(filesList).toString(2)]     // alternately you may just want to serial an Object as JSON:     // return ["Content-Type": contentType,"Content":JSONArray.fromObject(invertedMessages).toString(2)] } catch (Exception e) {     // I knew you were exceptional!     // we'll capture the output of the stack trace and return it in JSON     json.Exception(             description: "Execution Failed!!! An Exception was caught...",             stack: ExceptionUtils.getFullStackTrace(e)     )     // return the output     return ["Content-Type": contentType, "Content": json.toPrettyString()] } def doScale(image, width, height, ratio, fileext){     if (image){     ByteArrayOutputStream baos = new ByteArrayOutputStream();     def bytes      def scaledImg = new BufferedImage( width, height, BufferedImage.TYPE_INT_RGB )        Graphics2D g = scaledImg.createGraphics();         g.setRenderingHint(RenderingHints.KEY_INTERPOLATION, RenderingHints.VALUE_INTERPOLATION_BILINEAR);         g.scale(ratio,ratio)         g.drawImage(image, null, null);         g.dispose();              ImageIO.write( scaledImg, fileext, baos )       baos.flush()       bytes = baos.toByteArray()       baos.close()     }     else {         logger.info("image to be scaled is null")         return false     }   return bytes   } private void logFailure(ExecutionResult fileInfoResult, LinkedHashMap outerMap) {     outerMap.message = fileInfoResult.failures.getAt(0)?.message     outerMap.source = fileInfoResult.failures.getAt(0)?.sourceOfFailure     outerMap.details = fileInfoResult.failures.getAt(0)?.details?.toString()     outerMap.fileInfoSave = "false" } The next example makes use of the jQuery framework to upload an image to this script via an http POST. Note: This snippet is available as a jsFiddle at http://jsfiddle.net/LrxWF/18/ With HTML5 button: <input type="file" id="fileinput" value="Upload" /> var PLATFORM_HOST = document.URL.split('/apps/')[0]; // this is how you would retrieve the host on an Axeda instance var SESSION_ID = null // usually retrieved from login function included below /*** * Depends on jQuery 1.7+ and HTML5, assumes an HTML5 element such as the following: * <input type="file" id="fileinput" value="Upload" /> * **/ $("#fileinput").off("click.filein").on("click.filein", function () {     fileUpload() }) var fileUpload = function () {     $("#fileinput").off('change.fileinput')     $("#fileinput").on('change.fileinput', function (event) {         if (this.files && this.files.length > 0) {             handleFiles("http://" + PLATFORM_HOST, this.files)         }     }) } var handleFiles = function (host, files) {     $.each(files, function (index, file) {         var formData = new FormData();         var filename = file.name         formData.append(filename, file)         var url = host + '/services/v1/rest/Scripto/execute/StoreScaledImage?filelabel=' + filename + "&tag=myimg"         url = setSessionId(url)         jQuery.ajax(url, {             beforeSend: function (xhr) {                 xhr.setRequestHeader('Content-Disposition', filename);             },             cache: false,             cache: false,             processData: false,             type: 'POST',             contentType: false,             data: formData,             success: function (json) {                 refreshPage(json)                 console.log(json)             }         });     }) } var setSessionId = function (url) {     // you would already have this from logging in     return url + "&sessionid=" + SESSION_ID } var refreshPage = function (json) {     // here you would refresh your page with the returned JSON     return } /*** *  The following functions are not used in this demonstration, however they are necessary for a complete app and are found in axeda.js  http://gist.github.com/axeda/4340789 ***/     function login(username, password, success, failure) {         var reqUrl = host + SERVICES_PATH + 'Auth/login';         localStorage.clear()         return $.get(reqUrl, {             'principal.username': username,                 'password': password         }, function (xml) {             var sessionId = $(xml).find("ns1\\:sessionId, sessionId").text()             // var sessionId = $(xml).find("[nodeName='ns1:sessionId']").text(); - no longer works past jquery 1.7             if (sessionId) {                 // set the username and password vars for future logins.                         storeSession(sessionId);                 success(SESSION_ID); // return the freshly stored contents of SESSION_ID             } else {                 failure($(xml).find("faultstring").text());             }         }).error(function () {             $('#loginerror').html('Login Failed, please try again')         });     }; function storeSession(sessionId) {     var date = new Date();     date.setTime(date.getTime() + SESSION_EXPIRATION);     SESSION_ID = sessionId     document.cookie = APP_NAME + '_sessionId=' + SESSION_ID + '; expires=' + date.toGMTString() + '; path=/';     return true; }; The return JSON includes a URL that you can use as the source for images: [{   "byteCount": 14863,   "fileInfoSave": "File Info Saved",   "sessionId": "File Upload SessionID: 01234",   "fileInfoId": "FileInfo ID: 12345",   "url": "http://yourdomain.axeda.com/services/v1/rest/Scripto/execute/DownloadFile?fileId=12345" }] The DownloadFile Custom Object looks like the following: import static com.axeda.sdk.v2.dsl.Bridges.* import javax.activation.MimetypesFileTypeMap import com.axeda.services.v2.* import com.axeda.sdk.v2.exception.* import com.axeda.drm.sdk.scripto.Request def knowntypes = [          [png: 'image/png']         ,[gif: 'image/gif']         ,[jpg: 'image/jpeg']     ] def params = Request.parameters.size() > 0 ? Request.parameters : parameters def response = fileInfoBridge.getFileData(params.fileId) def fileinfo = fileInfoBridge.findById(params.fileId) def type = fileinfo.filename.substring(fileinfo.filename.indexOf('.') + 1,fileinfo.filename.size()) type = returnType(knowntypes, type) def contentType = params.type ?: (type ?: 'image/jpg') return ['Content': response, 'Content-Disposition': contentType, 'Content-Type':contentType] def returnType(knowntypes, ext){     return knowntypes.find{ it.containsKey(ext) }?."$ext" } Make sure to append a valid session id to the end of the URL when using it as the source for an image. The techniques discussed above can be applied to any type of binary file output with consideration for the type of file being processed. A Word on Streaming Content streaming such as streaming of video or audio files over UDP is not currently supported by the Axeda Platform.
View full tip
Data Model Implementation Guide Part 2   Step 4: SystemConnector Thing Template   After grouping our second set of common functionality and information, we came up with the list below for the second Thing Template to create, SystemConnector with 3 Properties. The breakdown for the SystemConnector Thing Template is as follows:   Follow the below instruction to create this Entity and get the implementation phase of your development cycle going.   System Connector Properties   Let's jump right in. In the ThingWorx Composer, click the + New at the top of the screen.        2. Select Thing Template in the dropdown. 3. In the name field, enter SystemConnector and select a Project (ie, PTCDefaultProject). 4. For the Base Thing Template field, select GenericThing. 5. Click Save. 6. Switch to the Properties and Alerts tab. 7. Click the plus button to add a new Property.   The Properties for the SystemConnector Thing Template are as follows: Name Base Type Aspects Data Change Type EndPointConfig String Persistent and Logged VALUE OperatorCredentials PASSWORD Persistent VALUE ProdManagerCredentials PASSWORD Persistent VALUE Follow the next steps for all the Properties shown in our template property table. Click Add. Enter the name of the property (ie, EndPointConfig). Select the Base Type of the proprty from the dropdown. Check the checkboxes for the property Aspects. Select the Data Change Type from the dropdown.   Click Done when finished creating the property. Your Properties should match the below configurations.            Step 5: HazardousAsset Thing Template     After another round of prioritizing and grouping common functionality and information, we came up with the third Thing Template to create, HazardousAsset. It is a child of the LineAsset Thing Template with one added Service. The breakdown for the HazardousAsset Thing Template is as follows:   Hazardous Asset Service   In the ThingWorx Composer, click the + New at the top of the screen. 2. Select Thing Template in the dropdown. 3. For the Base Thing Template field, select LineAsset and select a Project (PTCDefaultProject). 4. In the name field, enter HazardousAsset. 5.  Click Save then edit to store all changes now. 6.  Switch to the Services tab. 7.  Click Add. 8.  Enter EmergencyShutdown as the name of the service. 9. Switch to the Me/Entities tab. 10. Expand Properties. 11. Click the arrow next to the State property. 12. Modify the generated code to match the following:       me.State = "Danger!! Emergency Shutdown";       Your first Service is complete! 13. Click Done. 14. Click Save to save your changes. Your Service should match the below configurations.     Step 6: InventoryManager Thing Shape   This time around, we will create our first ThingShape, InventoryManager with 1 Property. The breakdown for the InventoryManager Thing Shape is as follows:   Follow the below instruction to create this Entity and get the implementation phase of your development cycle going. System Connector Properties The properties for the InventoryManager Thing Shape are as follows: Name Base Type Aspects Data Change Type ProductCount INTEGER Min Value:0 Persistent and Logged ALWAYS In the ThingWorx Composer, click the + New at the top of the screen. Select Thing Shape in the dropdown. In the name field, enter InventoryManager and select a Project (ie, PTCDefaultProject).       4. Click Save then Edit to store all changes now.         5. Switch to the Properties tab.        6. Click Add.       7. Enter ProductCount as the name of the property.       8. Select the Base Type of the proprty from the dropdown (ie, INTEGER).       9. Check the checkboxes for the property Aspects.      10. Select the Data Change Type from the dropdown.            11. Click Done when finished creating the property. Your Properties should match the below configurations.   Add Thing Shape to Template   We can see that there is some overlap in the components of our HazardousAsset and LineAsset ThingTemplates. In particular, both want information about the product count. Because HazardousAsset inherits from LineAsset, would only need to change LineAsset. Follow the steps below to perform this change: Open the LineAsset Thing Template. In the Implemented Shapes field, enter and select InventoryManager. Save changes.         Click here to view Part 3 of this guide.   
View full tip
    Go beyond functional application development and learn how you can dress up your UI to enhance the user experience. In this webinar, we'll show you how to implement common design elements throughout your UI including custom logos, color schemes, and styles.   In this video, UI expert Tsveta Saul will demonstrate valuable tips and tricks for making a sophisticated IoT application with ThingWorx, including: Masters and Menus - enhance your app framework with personalized menu titles, backgrounds, and custom headers Layout and Labels - create consistency in your application by combining commonly used widgets State and Style Definitions - define widget styles to illustrate your brand Images - integrate visuals to describe thousands of words' worth of design and development specifications Watch the recording above, and download this sample Mashup containing all the data and entities shared in the video.   Q&A   We didn’t have time to get to all of the questions during the live webcast, but we’ve answered them here on our blog. Have any additional questions? Please leave us a comment. WHERE ELSE CAN STATE DEFINITIONS BE APPLIED? State Definitions can be applied to the Map Widget. Not only can you add color-coded pins, but also images that describe certain types of assets, for example. You can also add State Definitions to your Time Series Chart. For instance, you can color-code for values that exceed a certain threshold.   ARE THERE ANY IMPORTANT OR HIDDEN PROPERTIES THAT I SHOULD KNOW ABOUT? One feature to take note of is the Z-index, which helps you control the position of a widget in relation to another widget. This option can control whether users see the specific widget or not. ThingWorx has a robust a system that handles permissions – from users and groups to organizations. There’s a lot of control as to who can see what either through Model, or through specific services and conditions inside the Mashup.   HOW CAN I DISABLE A USER FROM SEEING SOMETHING OR DOING A CERTAIN ACTION? Again, that is handled through the security system of ThingWorx. There are multiple ways of authenticating users from other systems. You can create services that are related to your Things or user session parameters, and define whether a user can see those parameters or not.   HOW CAN WE CHANGE DATE FORMAT FOR X-AXIS IN TIME SERIES CHART? This property is available within the Time Series Chart Widget. It uses standard programming language – you can add or delete in the property.   CAN LAYOUT SPACING BE A PERCENTAGE? The spacing within the layout (none, 5px, 10px, 15px, or 20px).
View full tip
ThingWorx Manufacturing Apps Setup and Configuration Guide 8.2 ThingWorx Manufacturing and Service Apps Customization Guide 8.2
View full tip
Announcements