cancel
Showing results for 
Search instead for 
Did you mean: 
cancel
Showing results for 
Search instead for 
Did you mean: 

ThingWorx Navigate is now Windchill Navigate Learn More

IoT & Connectivity Tips

Sort by:
This expert session focuses on overviewing the patch and upgrade process of the Thingworx platform. It provides information on how to perform a patch upgrade for the platform as well as extensions upgrade, and when an in-place upgrade is applicable. It can be viewed as a quick reference note for upgrading your system.     For full-sized viewing, click on the YouTube link in the player controls.   Visit the Online Success Guide to access our Expert Session videos at any time as well as additional information about ThingWorx training and services.
View full tip
This expert session goes over some basic backup and recovery principles, and provides details on how these principles can be applied to backing up a ThingWorx Server. Backup methods for the ThingWorx PostgreSQL, Neo4J and H2 releases are discussed.     For full-sized viewing, click on the YouTube link in the player controls.   Visit the Online Success Guide to access our Expert Session videos at any time as well as additional information about ThingWorx training and services.
View full tip
Presentation for MFG Apps Tips & Tricks Session #3 - PTC IoT Starter Kit, Presented by Serge Romano 1DEC2017
View full tip
Introduction to the ThingWorx Composer and a demonstration of how you go about building out the design plan.   For full-sized viewing, click on the YouTube link in the player controls.   Visit the Online Success Guide to access our Expert Session videos at any time as well as additional information about ThingWorx training and services.
View full tip
Presentation associated with the November 10, 2107 Tips & Tricks Webinar.
View full tip
Presentation associated with Recording of the Friday, November 17, 2017 ThingWorx Manufacturing Tips & Tricks Web Session. Agenda: - Overview & Application Demo - Aron Semle - Architecture Overview - Varathan Ranganathan - Q&A
View full tip
Recording of the Friday, November 17, 2017 ThingWorx Manufacturing Tips & Tricks Web Session. Agenda: - Overview & Application Demo - Aron Semle - Architecture Overview - Varathan Ranganathan - Q&A
View full tip
Slides used during the What's New in ThingWorx Manufacturing Apps 8.1 update training webinar held Nov. 15, 2017
View full tip
Aron Semle, Manufacturing Apps Solution Manager discusses and demonstrates new capabilities in the ThingWorx Manufacturing Apps 8.1 release.
View full tip
…to ENTERPRISE Increase company profit and revenue along with customer value Achieve sustainable competitive advantage …to SERVICE ORGANIZATION Understand your equipment performance and condition through remote monitoring Improve first-time fix rates by incorporating connected product data Reduce onsite service visits Increase service profitability …to CUSTOMER Improve product and service outcomes Increase equipment uptime Increased customer satisfaction 20% Improvement in equipment uptime 15-25% Reduction in onsite service visits 5-20% Improvement on first time fix rate
View full tip
Insight into Performance Ensure asset availability by managing asset condition Identify potential equipment failure through rule-based alerts Faster notification providing more time to respond Access to real-time performance data enables time-sensitive decision making Review performance history of equipment to improve troubleshooting Key indicators/signals of future failures View asset information and sensor history to understand context of alert View multiple sensor data and trends to understand any correlations across sensors Diagnose and Understand Accelerate diagnostic processes to understand the root cause of issues more quickly prior to the customer reporting the issue Improve interactive diagnostics processes by incorporating connected machine data View detailed sensor information for speedy issue identification Automate service issue notifications Machine created events to alert of potential problems Notifications to service technicians or service dispatch systems about potential problems Resolve Service Issues Increase equipment uptime by remotely resolving equipment issues before they occur to improve customer retention and reduce service cost Leverage remote access to connected equipment Dashboard to view alerts and summary across all customers and assets Identify common issues across multiple assets Prevent unnecessary onsite service visits with remote service capabilities Capture logs and diagnostic information for speedy issue resolution Remote access equipment to perform diagnostics and resolve issues through configuration changes
View full tip
Introduction to the platform extensibility structures and options. Includes overview of setting up the eclipse plugin and build process, as well as install considerations and best practices.     For full-sized viewing, click on the YouTube link in the player controls.   Visit the Online Success Guide to access our Expert Session videos at any time as well as additional information about ThingWorx training and services.
View full tip
This design session introduces a real-world product scenario along with requirements for developing a related IoT-based application. You will also be introduced to core ThingWorx terminology and concepts that will help to map out an efficient design plan for the model hierarchy.     For full-sized viewing, click on the YouTube link in the player controls.   Visit the Online Success Guide to access our Expert Session videos at any time as well as additional information about ThingWorx training and services.
View full tip
This Expert Session consists of the general overview for the multitenancy and platform security. It  discusses the available security levels, necessary basic resources, as well as provides information on the system user, and also includes several examples on how-to. It’s assumed that the audience is familiar with the Composer and its navigation.     For full-sized viewing, click on the YouTube link in the player controls.   Visit the Online Success Guide to access our Expert Session videos at any time as well as additional information about ThingWorx training and services.
View full tip
This Expert Session consists of the general overview for platform export and import. It discusses the available options for safely exporting and importing entities, data, and extensions. It also provides information on the use of exported entities during the system upgrading and/or moving from QA to production server.  It’s assumed that the audience is familiar with the Composer and its navigation.     For full-sized viewing, click on the YouTube link in the player controls.   Visit the Online Success Guide to access our Expert Session videos at any time as well as additional information about ThingWorx training and services.
View full tip
The following Expert Session videos are now available for viewing within the ThingWorx Community: ThingWorx Analytics Installation - This Expert Session will walk you through the complete installation of ThingWorx Analytics from the Prerequisites to Confirming the Installation is successful and all steps in between. The first half of the video gives a breakdown of the components and the process of the installation with the second half being an actual Demo of the Installation.     ThingWorx Analytics API Overview - This Expert Session is designed to help beginners get up and running with ThingWorx Analytics. It covers basic concepts like: What are APIs, how to configure the metadata file, and a live Demo that shows you how to interact and use ThingWorx Analytics in real time. This Expert Session would also be useful for experienced users who need a refresher course.   Decision Tree, ThingWorx Analytics Builder - This Expert Session reviews the concept of “Decision Trees” and the functionality that is available in ThingWorx Analytics Builder. First, you will learn how to create and upload a dataset in ThingWorx Analytics Builder.  After that, it shows you how to train a model and score on the model that was just generated. It then goes into detail on how the prediction learner "Decision Tree" operates and classifies inputs.   Use Case Identification - This Expert Session goes over ways to identify and develop a successful use case for ThingWorx Analytics. The example use case presented here is on employee retention in a fictional company with the goal of maximizing employee retention . This presentation will provide you with all the fundamentals you need to develop your own ThingWorx Analytics use cases from the ground up.   ThingWorx Analytics Signals - This Expert Session will provide you with an in depth explanation behind how Signals are calculated in ThingWorx Analytics, what purpose they serve, and why we use them.  Some basic mathematical concepts are discussed so viewers will have a better idea of how ThingWorx Analytics operates behind the scenes.   Related Links For more information, you can visit a new space dedicated to these helpful technical videos.   Additional Expert Sessions will be highlighted here in the ThingWorx Community every few weeks. Visit the Online Success Guide to access additional information about ThingWorx training and services.
View full tip
ThingWorx's JDBC extensions - Relational Database Management System and the JDBC Extensions allow ThingWorx to connect to variety of different databases. With that comes a natural question how and what sort of SQL statements could be executed via these extensions? Note: ​​Importing the JDBC extensions i.e. the RDBMS and JDBC Extensions, creates a Database Template for that particular database. If you are working with RDBMS extension then Template of corresponding Database will be created with similar name e.g. importing the RDBMS Extension for Oracle 12 will create Template named OracleDBServer12. While importing the JDBC driver using the JDBC extension will create Template name based on the JDBC driver used or a custom name could be given. Following examples and SQL statements are adhering to Oracle's SQL*Plus standard, however these can be easily adapted to the type of RDBMS you intend to work with. Topics How to create SQL Service in ThingWorx entity Types of SQL Statements Examples on SQL Service usage and some extended use cases / examples How to create SQL Service in ThingWorx Navigate to the Thing implementing the Database Template, e.g. OracleDBServer12         2. Click on the Services section under the Entity Information and click on Add My Service         3. A new service creation section will come up, change the Service type of JavaScript (this is default selection) to either SQL (Query) or SQL (Command) depending on the type of SQL you are to create under this particular service                       4. Here's quick example on creating SQL (Query) service which takes name as input for a select *  sql … Statement, i.e. it returns complete set of rows and columns from any given table on which the user has the access to perform Select                   Note: BaseType defaults to Infotable when creating SQL (Query) service and the returned number of rows are restricted to 500. Therefore, if table contains rows more than 500, ensure to change the Max Rows parameters         5. Example on creating SQL (Command) service that delete all the rows from the database table               Note: The Base Type defaults to Number when using SQL (Command)     Additional information:     When creating a SQL service, apart from providing changing the Service Info and  Inputs /Outputs, 3rd section Tables/Columns allows users to explore the Tables and their respective columns as part of that particular user's schema - meaning the objects on which the user has select rights in his schema in the database.     Types of SQLs This is not an exhaustive list, rather contains most commonly used types of SQL statements     1. Data Definition Language (DDL)           a. Create, Alter and drop schema objects           b. Grant and Revoke privileges and roles     2. Data Manipulation Language (DML)           a. Insert           b. Delete           c. Select Examples for SQL Service usage and some extended use cases / examples     1. Data Definition Language (DDL)           a. Create statement                       b. Alter statements                         c. Drop statement                         d. Flashback statements (Oracle specific)                         e. Grant statement                     f. Rename statement                 2. Data Manipulation Language (DML)           a. Insert statement                     b. Delete statement                     c. Select statements           Use cases - Case 1 : Backing up DataTable DataTable objects in ThingWorx are for quick lookup of data and they are most performant till ~100K rows. Exceeding rows over 100K in a DataTable makes it highly susceptible to performance issues in terms of querying or writing to it. Unless, there's sharding​ on the persistence provider or multiple persistence providers used - JDBC connectivity to external data stores like RDBMS systems could help in keeping up with growing number of rows in DataTables. RDBMS tables are more than capable of storing very large amount of rows without being taxed over the performance. JDBC extension could be used to do just that in a use case requiring backing up DataTable or any Data Storage objects from ThingWorx for that matter. Here's one quick example using one of the Insert SQL service shown above to back up the entire DataTable to the Oracle's DB table. Following ThingWorx JavaScript service wraps the InsertIntoBULKDATAINSERTDT SQL service: // result: INTEGER // getting total row count in the DataTable var totalCount = Things["BulkInsertDT"].GetDataTableEntryCount(); var params = { maxItems: totalCount /* NUMBER */ }; // result: INFOTABLE // DataTable service to fetch all the rows from it var allData = Things["BulkInsertDT"].GetDataTableEntries(params); // looping over the result fetched above to get all the rows for insertion     for (var i = 0; i<totalCount; i++) {         var result = allData.getRow(i); // mapping the data for insert     var params = {         LongCol3: result.LongCol3 /* LONG */,         numcol1: result.NumCol1 /* NUMBER */,         StringCol2: result.StringCol2 /* STRING */,         IntCol4: result.IntCol4 /* INTEGER */     }; try { // result: NUMBER // calling the SQL Service InsertIntoBULKDATAINSERTDT created under a DB Thing called OracleDBThingNew     var result = Things["OracleDBThingNew"].InsertIntoBULKDATAINSERTDT(params); } catch (err) {      Logger.info ("Failed to insert the values" + err) }     }
View full tip
We are pleased to announce that the Expert Sessions video series is now available in the ThingWorx Community. We are kicking off this availability with a new space dedicated to these helpful technical videos. In the first round of videos, we are highlighting two ThingWorx Foundation videos that are designed to provide foundational knowledge to get you up and running on the ThingWorx IoT platform. New Expert Sessions Available Now ThingWorx Foundation - Installation is an introduction to installing the ThingWorx platform. The video includes information on the environment, prerequisites, and configuration steps when installing ThingWorx, and includes walkthroughs of installing with H2 and PostgreSQL databases, an introduction and demonstration of the Linux installation script, solutions to common installation problems and more. ThingWorx Foundation - Scalability talks about platform sizing with dependency on the type of environment and correlated scalability options. The video educates you about federation and high availability as well as provides visual diagrams to understand the architecture of different ThingWorx solutions. What is an Expert Session? Expert Sessions are focused, technical webcasts (both recorded and live) where PTC subject matter experts share knowledge and best practices on topics related to the design, development, deployment and operation of PTC software. Expert Sessions are designed using five categories: Get Started, Design, Develop, Deploy, and Operate. Additional Expert Sessions will be highlighted here in the ThingWorx Community every few weeks. Visit the Online Success Guide to access our Expert Session videos at any time as well as additional information about ThingWorx training and services.
View full tip
First we need to Understand below terms: Quantitative Variable: A quantitative variable is naturally measured as a number for which meaningful arithmetic operations make sense. Examples: Height, age, crop yield, GPA, salary, temperature, area, air pollution index (measured in parts per million), etc. Categorical variable: Any variable that is not quantitative is categorical. Categorical variables take a value that is one of several possible categories. As naturally measured, categorical variables have no numerical meaning. Examples: Hair color, gender, field of study, college attended, political affiliation, status of disease infection. Ordinal Variables: An ordinal variable is a categorical variable for which the possible values are ordered. Ordinal variables can be considered “in between” categorical and quantitative variables. Example: Educational level might be categorized as     1: Elementary school education     2: High school graduate     3: Some college     4: College graduate     5: Graduate degree •    In this example (and for many ordinal variables), the quantitative differences between the categories are uneven, even though the differences between the labels are the same. (e.g., the difference between 1 and 2 is four years, whereas the difference between 2 and 3 could be anything from part of a year to several years) •    Thus it does not make sense to take a mean of the values. •    Common mistake: Treating ordinal variables like quantitative variables without thinking about whether this is appropriate in the particular situation at hand. Ordinal regression: In statistics, ordinal regression (also called "ordinal classification") is a type of regression analysis used for predicting an ordinal variable. The Ordinal Regression procedure allows you to build models, generate predictions, and evaluate the importance of various predictor variables in cases where the dependent (target) variable is ordinal in nature. Ordinal dependents and linear regression: When you are trying to predict ordinal responses, the usual linear regression models don't work very well. Those methods can work only by assuming that the outcome (dependent) variable is measured on an interval scale. Because this is not true for ordinal outcome variables, the simplifying assumptions on which linear regression relies are not satisfied, and thus the regression model may not accurately reflect the relationships in the data. In particular, linear regression is sensitive to the way you define categories of the target variable. With an ordinal variable, the important thing is the ordering of categories. So, if you collapse two adjacent categories into one larger category, you are making only a small change, and models built using the old and new categorizations should be very similar. Unfortunately, because linear regression is sensitive to the categorization used, a model built before merging categories could be quite different from one built after. Below are some examples pf ordered logistic regression: Example 1: A marketing research firm wants to investigate what factors influence the size of soda (small, medium, large or extra large) that people order at a fast-food chain. These factors may include what type of sandwich is ordered (burger or chicken), whether or not fries are also ordered, and age of the consumer. While the outcome variable, size of soda, is obviously ordered, the difference between the various sizes is not consistent. The difference between small and medium is 10 ounces, between medium and large 8, and between large and extra large 12. Example 2: A researcher is interested in what factors influence modaling in Olympic swimming. Relevant predictors include at training hours, diet, age, and popularity of swimming in the athlete’s home country. The researcher believes that the distance between gold and silver is larger than the distance between silver and bronze. Example 3: A study looks at factors that influence the decision of whether to apply to graduate school. College juniors are asked if they are unlikely, somewhat likely, or very likely to apply to graduate school. Hence, our outcome variable has three categories. Data on parental educational status, whether the undergraduate institution is public or private, and current GPA is also collected. The researchers have reason to believe that the “distances” between these three points are not equal. For example, the “distance” between “unlikely” and “somewhat likely” may be shorter than the distance between “somewhat likely” and “very likely”. How to use and get result by Ordinal Regression: Clink this link for PDF                                                                                                                                                                                                                                                                                                                        PDF source: http://www.norusis.com
View full tip
Excited to announce ThingWorx 8.1 is officially available in our Support Portal. Please find the release notes below. The following feature enhancements and bug fixes exist in ThingWorx 8.1.0: Enhancements Platform: • Metrics Reporting is enabled by default, which allows usage, performance, and diagnostics data to be sent to a PTC server daily. For more information about this setting, see Platform Subsystem. • You can add and configure Notifications in New Composer. For more information, see Adding Notifications. • License files are now instance specific.. • Security for application keys has been enhanced. The defualt expiration date has been changed to 24 hours if it is not explictly set. • Additional capability has been added to New Composer. • Improvements to anomaly detection accuracy have been added. As a result, data collection restart is no longer necessary after a long gap and the H2 database that installs with the Training Microservice is stored in memory, not as a persisted file. For more information, see Anomaly Detection. • You can now load configuration/project files from KEPServerEX instances Bug Fixes Platform • Fixed an issue where Tomcat failed to start when using SAP HANA. TW-22191 • Fixed an issue that was preventing ThingWorx from starting after the File Transfer Subsystem was disabled. TW-22177 • Fixed an issue where the change history of a Mashup was automatically updated even if no changes were made. TW-22114 • Fixed an issue that was preventing the ServiceInvokeCompleted event from working after performing an in-place upgrade. TW-21784 • Fixed an issue where alert notifications were not being sent to recipients after removing a recipient. TW-21585 • Fixed an issue where the Add button in the Services page did not display after creating a Data Table. TW-21518 • Fixed an issue with alert notifications for entities containing periods in the name. TW-21347 • Fixed an issue that was causing connected assets to display as disconnected in ThingWorx Utilities. UTL-4698 • Fixed an issue where data bind was lost after changing Read-Only settings to Read/Write in Composer. TW-23506 • Fixed an issue that was causing a MetricsReportingTask error after enabling ThingWorx Performance Advisor. TW-21141 • Fixed an issue with the ThingWorx authentication window when specifying the site while using FF and IE. TW-21271 Mashup Builder • Fixed an issue with the List widget that was causing incorrect tooltips to display. TW-24012 TW-23961 TW-23038 • Fixed an issue where Chrome was automatically retrying Remote Service calls when a timeout occurred. TW-23828 • Fixed an issue after restarting the ThingWorx web app where the Runtime or Composer’s index.html were missing. TW-23984 • Fixed an issue where closing a modal dialogue did not remove the disabled state from an element. TW-11217 • Fixed an issue when creating a popup with the Navigation widget. The tab sequence of the popup was dependent on the original mashup. TW-11151 • Fixed an issue with localized values of data columns when using the Data Filter widget. TW-11059 Extensions  • Fixed an issue where CSV parser extension import failed if the text file that was being imported did not include a new line character at the end of the last line of text. TW-21863 • Fixed an issue with the Advanced Grid widget where the Reset button was not localized. TW-21457 • Fixed an issue with the jQuery library used by the WebSocketTunnel_ExtensionPackage widget. Note If you are using the WebSocketTunnel_ ExtensionPackage, you will need to upgrade to version 3.0.2 if you are upgrading to ThingWorx 8.1.0. To upgrade the extension, go to the Web Sockets Tunnel Widget and Library page of the ThingWorx Marketplace. TW-24465 End of Life Information SQUEAL functionality has been discontinued in 8.1. System requirements: http://support.ptc.com/WCMS/files/173583/en/ThingWorx_Core_8.1_System_Requirements_1.0.pdf Installation guide: http://support.ptc.com/WCMS/files/173600/en/Installing_ThingWorx_8.1_1.0_.pdf ThingWorx 8.1 Cross Platform Highlights: Security ThingWorx 8.1 Cross Platform Highlights and Q&amp;A: Licensing
View full tip
The accuracy of a predictive model can be boosted in two ways: Either by embracing Feature engineering or by applying boosting algorithms straight away. There are multiple boosting algorithms like Gradient Boosting, XGBoost, AdaBoost, Gentle Boost etc. Every algorithm has its own underlying mathematics and a slight variation is observed while applying them. While working with boosting algorithms, we have come across two frequently occurring buzzwords: Bagging and Boosting. Bagging: It is an approach where you take random samples of data, build learning algorithms and take simple means to find bagging probabilities. Boosting: Boosting is similar, however the selection of sample is made more intelligently. We subsequently give more and more weight to hard to classify observations. Below are Default Algorithms used in Predictive Models generated in ThingWorx Analytics: Decision Tree Gradient Boost Linear regression Neural Net Random Forrest Logistic Regression Gradient boosting is a machine learning technique for regression and classification problems, which produces a prediction model in the form of an ensemble of weak prediction models, typically decision trees. It builds the model in a stage-wise fashion like other boosting methods do, and it generalizes them by allowing optimization of an arbitrary differential loss function. Let’s begin with an easy example: Assume, you are given a previous model M to improve on. Currently you observe that the model has an accuracy of 80% (any metric). How do you go further about it? One simple way is to build an entirely different model using new set of input variables and trying better ensemble learners. On the contrary, we have a much simpler way to suggest. It goes like this: Y = M(x) + error What if we are able to see that error is not a white noise but have same correlation with outcome(Y) value. What if we can develop a model on this error term? Like:error = G(x) + error2 Probably, we will see error rate will improve to a higher number, say 84%. Let’s take another step and regress against error2: error2 = H(x) + error3 Now we combine all these together: Y = M(x) + G(x) + H(x) + error3 This probably will have a accuracy of even more than 84%. What if we can find an optimal weights for each of the three learners: Y = alpha * M(x) + beta * G(x) + gamma * H(x) + error4 How Gradient Boosting Works: 1. Loss Function: The loss function used depends on the type of problem being solved. It must be differential, but many standard loss functions are supported and you can define your own. A benefit of the gradient boosting framework is that a new boosting algorithm does not have to be derived for each loss function that may want to be used, instead, it is a generic enough framework that any differential loss function can be used. 2. Weak Learner: Decision trees are used as the weak learner in gradient boosting. Specifically regression trees are used that output real values for splits and whose output can be added together, allowing subsequent models outputs to be added and “correct” the residuals in the predictions. Trees are constructed in a greedy manner, choosing the best split points based on purity scores like Gini or to minimize the loss. 3. Additive Model: Trees are added one at a time, and existing trees in the model are not changed. A gradient descent procedure is used to minimize the loss when adding trees. we have weak learner sub-models or more specifically decision trees. After calculating the loss, to perform the gradient descent procedure, we must add a tree to the model that reduces the loss. Improvements to Basic Gradient Boosting: 1. Tree Constraints: It is important that the weak learners have skill but remain weak. Below are some constraints that can be imposed on the construction of decision trees: Number of trees: ​Generally adding more trees to the model can be very slow to over fit. The advice is to keep adding trees until no further improvement is observed. Tree depth: Deeper trees are more complex trees and shorter trees are preferred. Generally, better results are seen with 4-8 levels. Number of nodes or number of leaves: like depth, this can constrain the size of the tree, but is not constrained to a symmetrical structure if other constraints are used. Number of observations per split: Imposes a minimum constraint on the amount of training data at a training node before a split can be considered Minimum improvement to loss: Is a constraint on the improvement of any split added to a tree. 2. Weighted Updates: The contribution of each tree to this sum can be weighted to slow down the learning by the algorithm. This weighting is called a shrinkage or a learning rate. "Each update is simply scaled by the value of the “learning rate parameter v". 3. Stochastic Gradient Boosting: At each iteration a sub sample of the training data is drawn at random (without replacement) from the full training data set. The randomly selected sub sample is then used, instead of the full sample, to fit the base learner. 4. Penalized Gradient Boosting: The additional regularization term helps to smooth the final learnt weights to avoid over-fitting. Intuitively, the regularized objective will tend to select a model employing simple and predictive functions.
View full tip
Announcements