cancel
Showing results for 
Search instead for 
Did you mean: 
cancel
Showing results for 
Search instead for 
Did you mean: 

ThingWorx Navigate is now Windchill Navigate Learn More

IoT & Connectivity Tips

Sort by:
  Step 5: Launch the EMS   1. Navigate to the microserver directory. cd .. 2. Ensure that you have ownership to the executable wsems and executable privileges. To check ownership. Ls -la -rwxrwxr-x 1 pi pi 769058 Jun 9 17:46 wsems NOTE: The account that owns the wsems executable should be used to log into the Raspberry Pi.   3. Confirm that you have executable privileges by run the following command: sudo chmod 775 wsems 4. Run the EMS. sudo ./wsems 5. Validate that your EMS successfully connected.   Depending on your logger level, your wsems execution should indicate Websocket connected in the log and the following INFO message: [INFO ] 2016-10-11 14:22:54,770 Main: Succesfully connected. Saving .booted config file   Troubleshoot Connectivity Issues   If the websocket does not connect successfully, check the following:    Issue                                               Solution WEBSOCKET CLOSED - Warning seen immediately after Websocket gets connected. Ensure that the host IP address, port and appKey of the ThingWorx composer instance are accurately set. If in the config.json you have selected the option to validate certification, then make sure the path to the certificate file is correctly set. twWs_Connect - Error trying to connect. Ensure that the host IP address, port running the ThingWorx Composer is accurately set. Check if the certification parameter is set or not. By default the WS EMS validates certificates. To ensure that the validation is performed correctly without errors, ensure that the certificates configuration parameters are set accurately with the correct path to the certificate file. If you do not wish to validate the certificate, you may explicitly set the validate parameter in certificates parameter set to false. twTlsClient_Connect - Error intializing TLS connection. Invalid certificate. Check if the ws_encryption parameter is present in your config.json file. By default, WS EMS enables TLS connection to ThingWorx platform. Ensure that the certificate file mentioned in the config.json is valid and stored in the path specified in the config.json. For debugging purposes, you can set the ssl parameter to none in ws_encryption configuration parameter. [WARN ] ... Main - Unable to connect to server. Trying .booted config file. Ensure that the host is up and running at the IP address and port number mentioned in the config.json file. Ensure that ThingWorx is running on the host address at the correct port number. Ensure that all appropriate networking ports are open and available.     Step 6: Configure Lua Script Resource (LSR)   The Lua Script Resource (LSR) is used to implement Things on the Edge device. Using the Lua Script Resource, you can define for your Raspberry Pi: Data Shapes Properties Services Tasks NOTE: The steps in this guide install the LSR on the same server (Raspberry Pi) as the EMS but it could also be installed on another server.   Launch a new terminal session that will be used to configure and launch the LSR. Navigate to etc folder. cd microserver/etc Create the config.lua file. sudo nano config.lua Set the logger level. scripts.log_level = "INFO" Turn off encryption for connection to EMS. This should only be used for testing. scripts.script_resource_ssl = false scripts.script_resource_authenticate = false Create the Edge RemoteThing. scripts.PiThing = { file = "thing.lua", template = "PiTemplate", scanRate = 1000, taskRate = 30000 }   NOTE: This configuration tells the Lua Script Resource to create a Thing called PiThing whose template definition is in PiTemplate.lua file in the path etc/customs/templates/PiTemplate.lua. You will create the template file PiTemplate.lua in the next section.   Property    Description scanRate Controls how frequently (milliseconds) properties are evaluated and pushed to the server. In our example, the Pi will check every 1 second if the values have changed. If so, the values will be pushed to the server. taskRate Controls how frequently the tasks specified in the Thing's template should be executed. In our example, the task will run every 30 seconds.   7.  Set the IP and port address of the LSR host server. scripts.rap_host = "127.0.0.1" scripts.rap_port = 8080   Sample config.lua File   Here is an example of a complete config.lua that can be used to configure the Lua Script Resource.   scripts.log_level = "INFO" scripts.script_resource_ssl = false scripts.script_resource_authenticate = false scripts.PiThing = { file = "thing.lua", template = "PiTemplate", scanRate = 1000, taskRate = 30000 } scripts.rap_host = "127.0.0.1" scripts.rap_port = 8080     Step 7: Configure Template File (Properties)   The template file is located in the microserver/etc/custom/templates directory. The template file provides a base configuration for defining Properties, Services, tasks, etc. This section will focus on defining the template file and adding Properties.   Navigate from the installation directory to the templates folder at microserver/etc/custom/templates . cd microserver/etc/custom/templates Create the file PiTemplate.lua. sudo nano PiTemplate.lua NOTE: This is the same template filename used in config.lua in the previous section. 3. Define the template. The module statement is used to define the template containing the configuration for the software component of the edge device. module ("templates.PiTemplate", thingworx.template.extend)   Parameter                                   Description templates.PiTemplate refers to the name of the template file: PiTemplate.lua thingworx.template.extend identifies the file as a template and provides base Thingworx template implementation   4. Define the Properties. For this guide, we are going to use the Raspberry Pi’s system properties like CPU temperature, clock frequency and internal voltage as sensor readings for the Remote Thing. Add the properties for these in your PiTemplate.lua file. properties.cpu_temperature={baseType="NUMBER", pushType="ALWAYS", value=0} properties.cpu_freq={baseType="NUMBER", pushType="ALWAYS", value=0} properties.cpu_volt={baseType="NUMBER", pushType="ALWAYS", value=0} NOTE: This code defines the properties cpu_temperature, cpu_freq and cpu_volt with a baseType of NUMBER. Additionally, it sets each default value to null as well as sets the pushType to ALWAYS which means that the property is always pushed to the Thingworx Server from the Raspberry Pi. The pushType can be set to ALWAYS, ON, OFF, NEVER or VALUE.   Sample PiTemplate.lua File   Here is an example of a complete PiTemplate.lua that can be used to configure the Lua Script Resource. module ("templates.PiTemplate", thingworx.template.extend) properties.cpu_temperature={baseType="NUMBER", pushType="ALWAYS", value=0} properties.cpu_freq={baseType="NUMBER", pushType="ALWAYS", value=0} properties.cpu_volt={baseType="NUMBER", pushType="ALWAYS", value=0}     Click here to view Part 3 of this guide. 
View full tip
  Step 11: Users   Access to functions and information on the ThingWorx Foundation server is controlled by Users. The REST API can be used to create, list, and delete Users.   Get Usernames of all Users   The REST API exposes the ability to retrieve collections of Entities so that a UI can be dynamically updated with current data.   Required Parameters   AppKey created by your Foundation server Request   Construct the URL. Include the hostname and authentication credentials for your specific ThingWorx server as described below. The Usernames of all Users can be returned by making a GET request to this endpoint: 〈Server IP:port〉/Thingworx/Users Authenticate Request. All API requests to the ThingWorx server must be authenticated either with a username and password or with an appKey. For this example we will authenticate by passing the appKey as a URL query string parameter. The parameter appKey is recognized by the ThingWorx server as an authentication credential in requests, it can be passed either as a URL query string parameter .../CreateThing?appKey=64b87... , or as request header appKey: 64b87... Send request parameters. Other than authentication, no other parameters are used in this GET request. Response   It is possible for the content to be returned in four different formats by sending an Accept header with the request.   Desired Response Type  Accept Header Values JSON application/json XML text/xml HTML text/html (or omit Accept Header) CSV text/csv   HTTPie example:   http -v -j http://52.201.57.6/Thingworx/Users appKey==64b879ae-2455-4d8d-b840-5f5541a799ae Accept:text/csv       Step 12: Troubleshooting   You should expect to get back the status code of 200 - OK either with or without content. In the case of an error, you will receive an error message. You can use the following table to diagnose the issue.   Response Code Definition  401 - Unauthorized appKey is incorrect or missing 403 - Forbidden Content-Type request header is not set to application/json Sometimes returned instead of a 404 A Property with that name already exists on the platform 404 - Not Found Incorrect URL or API endpoint Thing or Property has not been created Incorrect ThingTemplate name Required parameter missing from request 405 - Invalid Request Incorrect request verb; for example a GET was used instead of PUT or POST 406 - Not Acceptable Invalid JSON in PUT or POST request Thing [ Thing name ] already exists: A Thing with that name already exists on the platform 500 - Internal Server Error Content-Type request header is not set for a service execution POST, required even without a POST body Content-Type request header is not set for DELETE request, required despite the fact that DELETE does not send any content 503 - Service Unavailable Thing [] is not running RestartThing endpoint must be called Thing [] is not enabled EnableThing endpoint must be called       Step 13: Authentication Tags   There are different ways to authorize requests.   AppKey in HTTP Request Header   We recommend you place the appKey in the HTTP request header rather than passing the appKey as a URL parameter. This prevents the appKey from being written into server log files that may be seen by someone who is not authorized to modify the ThingWorx server.   HTTPie example:   http -v -j http://iotboston.com:8887/Thingworx/Things/aTestThing/Properties/CurrentTemp appKey:d0a68eff-2cb4-4327-81ea-7e71e26 Full request headers:   GET /Thingworx/Things/AllenTestThingFour/Properties/CurrentTemp HTTP/1.1 Accept: application/json, */* Accept-Encoding: gzip, deflate Connection: keep-alive Content-Type: application/json Host: iotboston.com:8887 appKey: d0a68eff-2cb4-4327-81ea-7e71e26bb   AppKey In URL as Parameter   To send an appkey in a URL request string parameter, check the Allow Application Key as URL Parameter checkbox in the PlatformSubsystem Configuration. If the ThingWorx server is using HTTPS, the parameter will be encrypted in transit, however the appKey may be comprised because full request URLs are often written to server log files.   HTTPie example:   http -v -j http://iotboston.com:8887/Thingworx/Things/AllenTestThingFour/Properties/CurrentTemp appKey==d0a68eff-2cb4-4327-81ea-7e71e26bb645 Full request headers:   GET /Thingworx/Things/aTestThing/Properties/CurrentTemp?appKey=d0a68eff-2cb4-4327-81ea-7e71e26 HTTP/1.1 Accept: application/json, */* Accept-Encoding: gzip, deflate Connection: keep-alive Content-Type: application/json Host: iotboston.com:8887   HTTP Basic Auth   We do not recommend Basic Auth, because the username and password used are NOT encrypted and could be used to log into the ThingWorx platform. To demonstrate that username and password are not encrypted, copy the string in the Authorization line after Basic to Base64 Decode then click DECODE.   HTTPie example:   http -v -j http://iotboston.com:8887/Thingworx/Things/aTestThing/Properties/CurrentTemp -a Administrator:password1 Full request headers:   GET /Thingworx/Things/AllenTestThingFour/Properties/CurrentTemp HTTP/1.1 Accept: application/json, */* Accept-Encoding: gzip, deflate Authorization: Basic QWRtaW5pc3RyYXRvcjpwYXNzd29yZDE= Connection: keep-alive Content-Type: application/json Host: iotboston.com:8887     Step 14: Next Steps   Congratulations! You've successfully completed the Use REST API to Access ThingWorx guide. You learned how to use the REST API to:   Create new Things on a ThingWorx Foundation Server Add Properties to Things Access Property values Execute custom Services   The next guide in the Connect and Configure Industrial Devices and Systems learning path is Java SDK Tutorial.   Learn More   We recommend the following resources to continue your learning experience:      Capability Guide Build Data Model Introduction   Additional Resources   If you have questions, issues, or need additional information, refer to:   Resource    Link Community Developer Community Forum Support REST API Help Center    
View full tip
  Step 8: Call Custom Service   In order to execute a Service of a specific Thing with the REST API, you can use the POST verb.   Required Parameters:   AppKey created by your ThingWorx server Name of the Thing that implements a custom Service Name of the custom Service Names of inputs, if any, required by the Service Request   Construct the URL. To call a custom Service of an existing Thing, make an HTTP POST to this endpoint: <server_ip:port>/Thingworx/Things/<name of Thing>/Services/<name of Service> Substitute <name of Thing> with the actual name of a Thing that exists on the ThingWorx server, and <name of Service> with an existing Service. Send request parameters The names of the inputs along with their values are sent in the body of the POST as a JSON object. For example, the JSON object below will send a parameter named 'firstNumber' with a value of 35 and a parameter named secondNumber with a value of 711. { "firstNumber": "35", "secondNumber": "711" } NOTE: The full request must include a header with the appKey for your specific ThingWorx server.   Response   A successful call to a Service will return a JSON object in the body of the response containing both a DataShape object and an array named rows. Inside the array, an object named result will have the value returned by the custom Service. Here is an example response:   { "dataShape": { "fieldDefinitions": { "result": { "aspects": {}, "baseType": "NUMBER", "description": "", "name": "result", "ordinal": 0 } } }, "rows": [ { "result": 746.0 } ] } WARNING for other HTTP clients: Most HTTP clients do not set a Content-Type header by default, without this header set the server will return an error message. The POST request to the Service endpoint has a JSON body so the header must be set to match the format of the request body.   Step 9: Import and Export Entities   Collections of Entities that perform a function can be grouped then shared by exporting from a server. These entity collections are called Extensions and can be uploaded using the REST API. You can create custom Extensions or download Extensions created by other developers. You can use the REST API to automate the process of uploading an Extension to a ThingWorx server.   Required Parameters   AppKey created by your Foundation server Path to properly formatted zip file containing extension Entities Request   Construct the URL. Upload an Extension by making an HTTP POST to the endpoint: <Server IP:port〉Thingworx/ExtensionPackageUploader Send request parameters. The zip file that contains the extension entities is uploaded as a multi-part POST. The name of the file parameter is upload. Use a library to properly format the multi-part POST request You must also send this header: X-XSRF-TOKEN:TWX-XSRF-TOKEN-VALUE Authenticate the Request. All API requests to the ThingWorx server must be authenticated either with a username and password or with an appKey. For this example we will authenticate by passing the appKey as a URL query string parameter. The parameter appKey is recognized by the ThingWorx server as an authentication credential in requests, it can be passed either as a URL query string parameter .../CreateThing?appKey=64b87... , or as request header appKey: 64b87...   Response   A successful call to upload an Extension will return a description of the Entities that were successfully uploaded in the body of the response.   HTTPie example: http -f POST iotboston.com:8887/Thingworx/ExtensionPackageUploader upload@/home/ec2-user/extension.zip X-XSRF-TOKEN:TWX-XSRF-TOKEN-VALUE appKey:d0a68eff-2cb4-4327-81ea-7e71e26bb645 cURL example: curl -v --header X-XSRF-TOKEN:TWX-XSRF-TOKEN-VALUE --header appKey:d0a68eff-2cb4-4327-81ea-7e71e26bb645 -F upload=@extension.zip iotboston.com:8887/Thingworx/ExtensionPackageUploader?purpose=import&validate=false     Download Things By Name   The REST API can be used to export a file representation of Things on a ThingWorx Foundation server. The downloaded file can be imported to another ThingWorx server making the Thing available for use.   Required Parameters   AppKey created by your Foundation server Name of the Thing Request   Construct the URL. Retrieve the components of a Thing by making an HTTP GET to the endpoint. Substitute <name of Thing> with the actual name of a Thing that exists on the ThingWorx server that wil be downloaded. <Server IP:port>/Thingworx/Exporter/Things/<name of Thing> Send request parameters. No parameters are sent. Authenticate the Request. All API requests to the ThingWorx server must be authenticated either with a username and password or with an appKey. For this example we will authenticate by passing the appKey as a URL query string parameter. The parameter appKey is recognized by the ThingWorx server as an authentication credential in requests, it can be passed either as a URL query string parameter .../CreateThing?appKey=64b87... , or as request header appKey: 64b87...   Response   It is possible for the content to be returned in two different formats by sending an Accept header with the request.   Desired Response Type  Accept Header Values JSON application/json XML text/xml HTML text/html (or omit Accept Header) CSV text/csv   A successful call to download a Thing will return a file in the body of the response suitable for importing into a ThingWorx Foundation server.   HTTPie example:   http -v GET iotboston.com:8081/Thingworx/Exporter/Things/PiThing appKey==d0a68eff-2cb4-4327-81ea-7e71e26bb645 Accept:text/xml     Download Things By Tag   The REST API can be used to export a file representation of Things on a ThingWorx Foundation server. This file can be imported to another ThingWorx server making the Thing available for use.   Required Parameters   AppKey created by your Foundation server Name of the Tag Request   Construct the URL. Retrieve the components of a Thing by making an HTTP GET to the endpoint <Server IP:port〉/Thingworx/Exporter/Things Send request parameters. The Tag name is sent as a request parameter named: searchTags Authenticate the Request. All API requests to the ThingWorx server must be authenticated either with a username and password or with an appKey. For this example we will authenticate by passing the appKey as a URL query string parameter. The parameter appKey is recognized by the ThingWorx server as an authentication credential in requests, it can be passed either as a URL query string parameter .../CreateThing?appKey=64b87... , or as request header appKey: 64b87...   Response   It is possible for the content to be returned in two different formats by sending an Accept header with the request.   Desired Response Type  Accept Header Values JSON application/json XML text/xml HTML text/html (or omit Accept Header) CSV text/csv   A successful call to download a Thing will return a file in the body of the response suitable for importing into a ThingWorx Foundation server   HTTPie example:   http -v GET iotboston.com:8081/Thingworx/Exporter/Things searchTags==Applications:Raspberry_light appKey==d0a68eff-2cb4-4327-81ea-7e71e26bb645 Accept:text/xml     Step 10: Authentication Tags   A Tag is composed of two parts: a Vocabulary, and a specific vocabulary term. A Tag is shown as Vocabulary:VocabularyTerm. Almost every ThingWorx entity can be tagged. Tags can be used to create a relationship between many different ThingWorx Entities.   Create New Tag   You can use the REST API to create a new dynamic Tag vocabulary.   Required Parameters   AppKey created by your Foundation server Name of Tag Vocabulary   Request   Construct the URL. Create a new Tag Vocabulary by making an HTTP PUT to this endpoint: 〈Server IP:port〉/Thingworx/ModelTags Send Request Parameters. The name of the new DataShape and the name of the base DataShape that the new DataShape extends are sent in the body of the POST as a JSON object. For example, the JSON object below will create a new DataShape named SomeTestDataShape using the system template GenericThing. { "name": "SecondTest", "isDynamic": "true" } Authenticate Request. All API requests to the ThingWorx server must be authenticated either with a username and password or with an appKey. For this example we will authenticate by passing the appKey as a URL query string parameter. The parameter appKey is recognized by the ThingWorx server as an authentication credential in requests, it can be passed either as a URL query string parameter .../CreateThing?appKey=64b87... , or as request header appKey: 64b87...   Response   A successful call to the ModelTag Service does not return any content in the body of the response, only an HTTP 200 is returned.   HTTPie example:   http -v -j PUT http://52.201.57.6/Thingworx/ModelTags name=SecondTest isDynamic=true appKey==64b879ae-2455-4d8d-b840-5f5541a799ae     Warning for other HTTP clients: Most HTTP clients do not set a Content-Type header by default, without this header set the server will return an error message. The PUT request to the ModelTags endpoint has a JSON body so the header must be set to match the format of the request body. The Content-Type header does not appear in the sample HTTPie call because HTTPie sets the Accept and Content-type request headers to application/json by default. Below is an example cURL call that explicitly sets the Content-Type header to application/json.   curl -v -H "Content-Type: application/json" -X PUT -d '{"name": "SecondTest", "isDynamic":"true"}' http://52.201.57.6/Thingworx/ModelTags?appKey=d0a68eff-2cb4-4327-81ea-7e71e26bb645   Add Tag to Thing   You can use the REST API to add a Tag to a Thing. There must be a Thing and a Dynamic Tag Vocabulary already created on your Foundation Server before you can add a Tag.   Required Parameters   AppKey created by your Foundation server Name of the Thing to be tagged Name of Dynamic Tag Vocabulary Name of for Tag to be assigned to Thing Request   Construct the URL. Substitute 〈name of Thing〉 with the actual name of a Thing that exists on the ThingWorx server that will have the Tag added. Add a new Tag to an existing Thing by making an HTTP POST to this endpoint: 〈Server IP:port〉/Thingworx/Things/〈name of Thing〉/Services/AddTags Send request parameters. The name of the new field to be added and type of the field are sent in the body of the POST as a JSON object. For example, the JSON object below will create a new field named SomeNumber using the ThingWorx base type NUMBER. Some other commonly used types are STRING, INTEGER, and BOOLEAN. Include a header in the full request with the appKey for your specific ThingWorx server. { "tags" : "SecondlightTest:RaspberryTest", }   Response   A successful call to the AddTags Service does not return any content in the body of the response. Only an HTTP 200 is returned.   HTTPie example:   http -v -j http://52.201.57.6/Thingworx/Things/SomeTestThing/Services/AddTags appKey==64b879ae-2455-4d8d-b840-5f5541a799ae tags=SecondTest:RaspberryTest curl -v -H "Content-Type: application/json" -X POST -d '{"tags": "SecondlightTest:RaspberryTest"}' http://52.201.57.6/Thingworx/Things/PiThing/Services/AddTags?appKey=d0a68eff-2cb4-4327-81ea-7e71e26bb645 Warning for other HTTP clients: Most HTTP clients do not set a Content-Type header by default, without this header set the server will return an error message. The POST request to the AddPropertyDefinition endpoint has a JSON body so the header must be set to match the format of the request body. The Content-Type header does not appear in the sample HTTPie call because HTTPie sets the Accept and Content-type request headers to application/json by default. Below is an example cURL call that explicitly sets the Content-Type header to application/json.   curl -v -H "Content-Type: application/json" -X POST -d '{"tags": "SecondlightTest:RaspberryTest"}' http://52.201.57.6/Thingworx/Things/PiThing/Services/AddTags?appKey=d0a68eff-2cb4-4327-81ea-7e71e26bb645      Click here to view Part 4 of this guide.  
View full tip
  Step 5: Add Property to Thing   Property values are associated with a specific Thing, and are used to store data that changes over time. Required Parameters   AppKey created by your ThingWorx server Name of the Thing to which the Property will be added Name for the new Property and data type of the Property's value   Request   Construct the URL. A new Property can be added to an existing Thing by making an HTTP POST to this endpoint. Substitute <name of Thing> with the actual name of a Thing that exists on the ThingWorx server that will have the Property added. <server_ip:port>/Thingworx/Things/<name of Thing>/Services/AddPropertyDefinition       2. Send request parameters. The name of the new Property to be added and type of the Property are sent in the body of the POST as a JSON object. For example, the JSON object below will create a new Property named SomeNumber using the ThingWorx base type NUMBER. Some other commonly used types are STRING, INTEGER, and BOOLEAN. { "name" : "SomeNumber", "type" : "NUMBER" }   NOTE: The full request must include a header with the appKey for your specific ThingWorx server.   Response   A successful call to the AddPropertyDefinitionservice does not return any content in the body of the response. Only an HTTP 200 is returned.   HTTPie example:   http -v -j http://52.201.57.6/Thingworx/Things/SomeTestThing/Services/AddPropertyDefinition appKey==64b879ae-2455-4d8d-b840-5f5541a799ae name=SomeNumber type=NUMBER   WARNING for other HTTP clients: Most HTTP clients do not set a Content-Type header by default, without this header set the server will return an error message. The POST request to the AddPropertyDefinition endpoint has a JSON body so the header must be set to match the format of the request body.   The Content-Type header does not appear in the sample HTTPie call because HTTPie sets the Accept and Content-type request headers to application/json by default. Below is an example cURL call that explicitly sets the Content-Type header to application/json.   curl -v -H "Content-Type: application/json" -X POST -d '{"name": "SomeNumber","type": "NUMBER"}' http://52.201.57.6/Thingworx/Things/SomeTestThing/Services/AddPropertyDefinition?appKey=d0a68eff-2cb4-4327-81ea-7e71e26b     Validate   View new Property on Server. The Property you just added is now available in the ThingWorx Composer. Before anything else can be done with your new Property through the REST API, the Thing must be restarted. To confirm your Property was added to your Thing, open Composer and click Things, select the name of the Thing you just created, then click Properties and Alerts. You will see the new Property listed. You may need to refresh to see the changes.             2. Execute RestartThing Service. Restart your Thing with the added Property by making a HTTP POST to the endpoint below. Substitute <name of Thing> with the actual name of the Thing you created. No body is required in the POST, however, the Content-Type header of a POST that executes a Service must always be set to application/json or text/xml even if the service does not take any parameters and no content is being sent. No body is returned upon success, only an HTTP 200 response code. <server_ip:port>/Thingworx/Things/<name of Thing>/Services/RestartThing   HTTPie example:   http -v -j POST http://52.201.57.6/Thingworx/Things/SomeTestThing/Services/RestartThing appKey==64b879ae-2455-4d8d-b840-5f5541a799ae      Step 6: Set Property Value   You can set the value of a specific Property with the REST API using the PUT verb. Required Parameters:   AppKey created by your Foundation server A Name of valid Thing and name of Property New Property value   Request   Construct the URL. A Property value can be set by making an HTTP PUT call to this endpoint: <server_ip:port>/Thingworx/Things/<name of Thing>/Properties/<name of Property> Substitute <name of Thing> with the actual name of a Thing that exists on the ThingWorx server and <name of Property> with the name of a Property that has been added to the Thing.       2. Send request parameters.   The name of the Property to be set is duplicated in the body of the PUT and is sent along with the value as a JSON object. The example below will set the Property SomeNumber to 34.4 { "SomeNumber" : 34.4 } NOTE: The full request must include authentication credentials for your specific ThingWorx server.   Response   A successful call to set a Property does not return any content in the body of the response. Only an HTTP 200 is returned.   HTTPie example   http -v -j PUT http://52.201.57.6/Thingworx/Things/SomeTestThing/Properties/SomeNumber appKey==64b879ae-2455-4d8d-b840-5f5541a799ae SomeNumber=34.4   WARNING for other HTTP clients: By default HTTPie sets the Accept and Content-type request headers to application/json. A PUT request to the Properties endpoint has a JSON body so the Content-Type header must be set to match the format of the request body.   Most HTTP clients do not set the correct header by default and it must be set explicitly. Below is an example cURL call that sets the Content-Type header to application/json   curl -v -H "Content-Type: application/json" -X PUT -d '{"SomeNumber":12.34}' http://52.201.57.6/Thingworx/Things/SomeTestThing/Properties/SomeNumber?appKey=d0a68eff-2cb4-4327-81ea-7e71e26b     Validate   To confirm your Property was changed for your Thing, go to Composer and click Things. Select the name of the Thing you just created, then click Properties and Alerts tab. Click on the circular arrow Refresh to see the updated Property value.       Step 7: Get Latest Property Value   You can retrieve Property values of a specific Thing with the REST API using the GET verb.   Required Parameters:   AppKey created by your ThingWorx server Name of Thing and name of Property   Request   Construct the URL. To get the current value for a property, make a GET request to this endpoint: <server_ip:port>/Thingworx/Things/<name of Thing>/Properties/<name of property> Substitute <name of thing> with the actual name of a Thing that exists on the ThingWorx server and <name of Property> with the name of a Property that has been added to the Thing.   NOTE: The full request will also need to include the hostname and authentication credentials for your specific ThingWorx server.         2. Send request parameters. Other than authentication, no other parameters are used in  this GET request.   Response   The content can be returned in four different formats by sending an Accept header with the request.   Desired Response Type Accept Header Values JSON application/json XML text/xml HTML text/html (or omit Accept Header) CSV text/csv   HTTPie example:   http -v -j http://52.201.57.6/Thingworx/Things/SomeTestThing/Properties/SomeNumber appKey==64b879ae-2455-4d8d-b840-5f5541a799ae     Click here to view Part 3 of this guide.
View full tip
  Leverage the REST API to create Things, modify Properties, execute Services and more.   GUIDE CONCEPT   This project will introduce you to the REST API utilized by the ThingWorx platform.   Following the steps in this guide, you will be able to connect to the ThingWorx platform and make REST calls to call Services, update Properties, and perform a number of actions for your IoT applications.   We will teach you how to use the ThingWorx REST API to create a more robust application. With the REST API you can leverage the full power of the ThingWorx Foundation server with simple HTTP requests. The REST API can easily be explored using a command line tool such as curl, a browser plugin like Postman, or any preferred programming language.   YOU'LL LEARN HOW TO   Create new Things on a ThingWorx Foundation Server Add Properties to Things Access Property values Execute custom Services   NOTE: The estimated time to complete ALL 4  parts of this guide is 30 minutes.      Step 1: REST API Design   Almost every Entity and Service of ThingWorx can be accessed through the REST API. This step will review some points that are common to all ThingWorx REST API calls.   REST API Syntax   The endpoint URLs used by the REST API follow the consistent pattern shown in the diagram below.   The following table describes the individual pieces of the URL for the REST API calls.   Term Description Optional/Required? http method GET, PUT, DELETE, POST required scheme http, https required host server IP address where ThingWorx is running required port port on which the Web Server is listening for requests (default is 80) optional entity collection One of the built-in entity collection types proprietary to ThingWorx required entity name that identifies a specific characteristic required characteristic collection Names such as Property Definition, Properties VTQ, ThingName, and Service Definition optional characteristic name of the Service or Property on which to execute optional accept header format of HTTP content being requested; must be application/json or text/xml or text/html optional content type header format of HTTP content being provided; must be application/json, text/csv or text/html required content   optional query parameters   optional   Requests   The ThingWorx REST API uses HTTP request verbs in ways common to many REST APIs:   GET to retrieve information POST for both creating a new entity and executing a service DELETE to remove a Thing or Property PUT to change the value of an existing entity When a REST API request requires parameters to be sent, the Content-Type header must be set to match the format of the request body.   Discovering and using Services requires using a dedicated URL. To list available Services and see their definitions, issue a GET to   ``` <server_ip:port>/Thingworx/Things/<name of thing>/ServiceDefinitions ``` In order to execute a listed Service issue a POST to   ``` <server_ip:port>/Thingworx/Things/<name of thing>/Services/<service name> ```   NOTE: The Content-Type header of a POST that executes a Service must always be set to application/json or text/xmleven if the service does not take any parameters and no content is being sent.   Responses   The following tables describe the valid Accept and Content-Type header values when making a REST API calls.   Accept Headers   If the request sends either an invalid Accept header, or no Accept header is supplied, the default response will be in text/html format.   Value Syntax JSON application/json XML text/xml HTML text/html (or omit Accept header) CSV text/csv   Content Type Headers   A Content-Type header indicating the format of data sent to ThingWorx, is required. Some POST requests require a content type header even when no data is being sent.   Value Syntax JSON application/json XML text/xml     Step 2: REST Client   In order to make calls to any REST API you need a client software. A web browser can be used to make some GET calls, but you must install extensions to modify headers or to make POST or PUT calls.   Client software options include:   cURL is a venerable command line tool and library that is a Swiss Army Knife of dealing with web requests. And like an old Swiss Army Knife you can make it work but you might wind up hurting yourself.   Httpie is a modern command line tool with easy to use, intuitive options. Server responses are shown in color with easy to read formatting. The examples will be given as HTTPie commands.   NOTE: The following steps in this guide use Httpie as the client software.     Step 3: Create Application Key   In this Quickstart, you will use ThingWorx Composer to generate an Application Key. A device must be authenticated to send data to, or recieve data from ThingWorx. One of the most common authentication methods used with ThingWorx is by using a security token called an Application Key or appKey. These tokens are associated with a particular user and have the same permissions as that user.   Create an Application Key   On the Home screen of Composer click + New. In the dropdown list, click Applications Key.   Give your Application Key a name (ie, MyAppKey). Set the User Name Reference to a User you created. Update the Expiration Date field, otherwise it will default to 1 day. Click Save.   A Key ID has been generated and can be used to make secure connections.   BEST PRACTICE: We recommend you create separate keys for every connected device, User or system. This allows better security in case of situations where you may need to revoke access from one of them.     Step 4: Create New Thing   A Thing is a basic building block used to model applications in the ThingWorx Foundation Server. All Things are based on a Thing Template, either a built-in system template or a custom Template that was previously created. With the REST API, you can create, modify, list, and delete Things. After a Thing has been created by using an API call, it must be enabled and restarted with additional API calls before it can be used.   Required Parameters   AppKey created by your ThingWorx server A name for the new Thing The name of a valid ThingTemplate that will be used to create the new Thing Request   An HTTP POST request to ThingWorx is assembled from 3 components: a URL A POST body Authentication credentials A request to ThingWorx can be made only after these 3 components are properly configured.         1.  Construct the URL.   Create a new Thing by making an HTTP POST to the endpoint.   <server_ip:port>/Thingworx/Resources/EntityServices/Services/CreateThing NOTE: The server_ip is the ip address of your ThingWorx Core server.        2. Required POST body parameters.   Send the name of the Thing and the name of the ThingTemplate that will define the new thing in the body of the POST as a JSON object. For example, the JSON object below will create a new Thing named SomeTestThing using the system template GenericThing. { "name": "SomeTestThing", "thingTemplateName": "GenericThing" }   TIP: When creating Things that will be used with the REST API, use the GenericThing ThingTemplate or a ThingTemplate based GenericThing. A RemoteThing should only be used with devices that make an AlwaysOn™ connection to a ThingWorx server using the Edge MicroServer or one of the AlwaysOn™ SDKs.        3. Authenticate the Request.   All API requests to the ThingWorx server must be authenticated either with a username and password or with an appKey. For this example we will authenticate by passing the appKey as a URL query string parameter. The parameter appKey is recognized by the ThingWorx server as an authentication credential in requests, it can be passed either as a URL query string parameter. .../CreateThing?appKey=64b87... , or as request header appKey: 64b87... Refer to Step 13: Authentication Tags for an overview of different authentication methods. Response   A successful call to the CreateThing service does not return any content in the body of the response, only an HTTP 200 is returned.   Examples HTTPie example:   http -v http://52.201.57.6/Thingworx/Resources/EntityServices/Services/CreateThing appKey==64b879ae-2455-4d8d-b840-5f5541a799ae name=SomeTestThing thingTemplateName=GenericThing   The Content-Type header does not appear in the sample HTTPie call because HTTPie sets the Accept and Content-type request headers to application/json by default.   WARNING for other HTTP clients: Most HTTP clients do not set a Content-Type header by default, without this header set the server will return an error message. The POST request to the CreateThing endpoint has a JSON body so the header must be set to match the format of the request body.   cURL example   curl -v -H "Content-Type: application/json" -X POST -d '{"name": "SomeTestThing","thingTemplateName": "GenericThing"}' http://52.201.57.6/Thingworx/Resources/EntityServices/Services/CreateThing?appKey=d0a68eff-2cb4-4327-81ea-7e71e26bb645 Note: cURL explicitly sets the Content-Type header to application/json.     Validate   The Thing you just created is now available in the ThingWorx Composer, however before anything else can be done with your new Thing through the REST API it must be enabled and started. Follow these steps to validate that the new Thing has been created and enabled.   From the home page of Composer, click Things, select the name of the Thing you just created, then click General Information.   NOTE: You will see the Active checkbox is not checked indicating this Thing is not Enabled.       2. Execute EnableThing Service.   To enable your newly created Thing, make an HTTP POST to the endpoint below. Substitute <name of Thing> with the actual name of the Thing you created. No body is required in the POST, however, the Content-Type header of a POST that executes a Service must always be set to application/json or text/xml even if the service does not take any parameters and no content is being sent. No body is returned upon success, only an HTTP 200 response code. <server_ip:port>/Thingworx/Things/<name of Thing>/Services/EnableThing HTTPie example   http -v -j POST http://52.201.57.6/Thingworx/Things/SomeTestThing/Services/EnableThing appKey==64b879ae-2455-4d8d-b840-5f5541a799ae         3.  Confirm new Thing is Enabled.   To update the General Information section of your new Thing and confirm the Active checkbox is now checked, refresh the page with the browser or close and re-open your Thing.         4. Restart your Thing.   After a Thing is created and whenever any changes are made to its structure, the Thing has to be restarted. Start you new Thing by making a HTTP POST to the endpoint below. Substitute <name of Thing> with the actual name of the Thing you created. No body is required in the POST, however, the Content-Type header of a POST that executes a Service must always be set to application/json or text/xml even if the service does not take any parameters and no content is being sent. No body is returned upon success, only an HTTP 200 response code. <server_ip:port>/Thingworx/Things/<name of Thing>/Services/RestartThing HTTPie example:   http -v -j POST http://52.201.57.6/Thingworx/Things/SomeTestThing/Services/RestartThing appKey==64b879ae-2455-4d8d-b840-5f5541a799ae     Click here to view Part 2 of this guide
View full tip
  Connect a Raspberry Pi to ThingWorx using the Edge Micro Server (EMS).   Guide Concept   This project will introduce you to the Edge MicroServer (EMS) and how to connect your ThingWorx server to a Raspberry Pi device.   Following the steps in this guide, you will be able to connect to the ThingWorx platform with your Raspberry Pi. The coding will be simple and the steps will be very straight forward.   We will teach you how to utilize the EMS for your Edge device needs. The EMS comes with the Lua Script Resource, which serves as an optional process manager, enabling you to create Properties, Services, Events, and Subscriptions for a remote device on the ThingWorx platform.   You'll learn how to   Set up Raspberry Pi Install, configure and launch the EMS Connect a remote device to ThingWorx   NOTE: This guide's content aligns with ThingWorx 9.3. The estimated time to complete ALL parts of this guide is 30 minutes.    Step 1: Setup Raspberry Pi   Follow the setup instructions to get your Raspberry Pi up and running with the Raspberry Pi OS operating system. Ensure that your Pi has a valid Ethernet or Wifi connection. If your Pi is connected to a monitor/keyboard, run ifconfig from the Command Line Interface (CLI) to determine the IP address. If you are connecting remotely, probe your local network to find your Pi using one of these methods to determine the IP address. Log into your Raspberry Pi using the userid/password combination pi/raspberry.   Step 2: Install the EMS Download the MED-61060-CD-054_SP10_Microserver-Linux-arm-hwfpu-openssl-5-4-10-1509.zip attached here directly to the Raspberry Pi, or transfer it using a SFTP application such as WinSCP. After downloading the EMS zip file, unzip the archive in a suitable location on the Pi using the command below. Use the Tab key to automatically complete file names. unzip /MED-61060-CD-054_SP9_Microserver-Linux-arm-hwfpu-openssl-5-4-10-1509.zip After unzipping the distribution, a sub-directory named /microserver will be created inside the parent directory. Verify that microserver directory was created with the command ls -l   Switch into the microserver directory with the command cd microserver The microserver directory includes the following files.        File Name                    Description wsems An executable file that runs the Edge MicroServer luaScriptResource The Lua utility that is used to run Lua scripts, configure remote things, and integrate with the host system     Step 3: Create Application Key   In this step, you will be using the ThingWorx Composer to generate an Application Key. The Application Key will be used to identify the Edge Agent. The Application Key is tied to a user and has the same entitlements on the server.   Using the Application Key for the default User (Administrator) is not recommended. If administrative access is absolutely necessary, create a User and place the user as a member of the SecurityAdministrators and Administrators User Groups.   Create the User the Application Key will be assigned to.   On the Home screen of Composer click + New.   In the dropdown list, click Applications Key.   Give your Application Key a name (ie, MyAppKey). Set the User Name Reference to a User you created.   Update the Expiration Date field, otherwise it will default to 1 day. Click Save.   Step 4: Configure the EMS   The EMS consists of two distinct components that do slightly different things and communicate with each other. The first is the EMS which creates an AlwaysOn™ connection to the ThingWorx server. It binds things to the platform and automatically provides features like file transfer and tunneling.   The second is the Lua Script Resource (LSR). It is used as a scripting language so that you can add properties, services, and events to the things that you create in the EMS. The LSR communicates with your sensors or devices. The LSR can be installed on the same device as the EMS or on a separate device. For example, one LSR can be a gateway and send data from several different things to a single EMS.     Open a terminal emulator for the Raspberry Pi. Change directory to microserver/etc. cd microserver/etc Create a config.json file. EMS comes with two sample config files that can be used as a reference for creating your config.json file. The config.json.minimal file provides minimum and basic options for getting started. The config.json.complete provides all of the configuration options.   Create the config.json file in the etc folder. sudo nano config.json Edit the config.json file ws_servers - host and port address of the server hosting the ThingWorx Platform. If you are using a Developer Portal hosted server, your server hostname is listed on the dashboard. {"host":"<TwX Server IP>", "port":443} http_server - host and port address of the machine running the LSR. In this case it will be your localhost running on the raspberry pi. {"host":"127.0.0.1","port":8080, "use_default_certificate": true,"ssl": false, "authenticate": false} appKey - the application key generated from the ThingWorx server. Use the keyId generated in the previous step "Create Application Key". "appKey":"<insert keyId>" logger - sets the logging level for debugging purposes. Set to log at a DEBUG level. ("level":"INFO"} certificates - for establishing a secure websocket connection between the ThingWorx server and the EMS. A valid certificate should be used in a production environment but for debugging purposes you can turn off validation and allow self signed certificates. {"validate":false, "disable_hostname_validation": true} NOTE: To ensure a secure connection, use valid certificates, encryption and HTTPS (port : 443) protocol for establishing a websocket connection between the EMS and the ThingWorx Platform. 5. Exit and Save. ctrl x   Sample config.json File   Replace host and appKey with values from your hosted server.   { "ws_servers": [{ "host": "pp-2007011431nt.devportal.ptc.io", "port": 443 }], "appkey": "2d4e9440-3e51-452f-a057-b55d45289264", "http_server": { "host": "127.0.0.1", "port": 8080, "use_default_certificate": true, "ssl": false, "authenticate": false }, "logger": { "level": "INFO" }, "certificates": { "validate": false, "disable_hostname_validation": true } }     Click here to view Part 2 of this guide. 
View full tip
Key Functional Highlights Add connectivity to National Instruments TestStand Make it easier to edit the apps Easier to find mashups and things in Composer Support for Asset sub-types Open up the tag picker to allow adding any connection types through Composer General App Improvements Enhance tag picker to improve speed of configuration Make it easier to add additional properties to assets Make app configuration more intuitive by centralizing the configuration Controls Advisor Merge the Server and Connection status fields Asset Advisor Performance improvement when displaying pages Add support for CFS/ServiceMax integration Added trial support for Service     Compatibility ThingWorx 8.2.x KEPServerEX 6.2 and later KEPServerEX V6.1 and older as well as different OPC Servers (with Kepware OPC aggregator) National Instruments TestStand 2016 SP1 and later Support upgrade from 8.0.1 and later     Documentation What’s New in ThingWorx Manufacturing Apps ThingWorx Manufacturing Apps Setup and Configuration Guide What’s New in ThingWorx Service Apps ThingWorx Service Apps Setup and Configuration Guide ThingWorx Manufacturing and Service Apps Customization Guide     Download ThingWorx Manufacturing Apps Freemium portal ThingWorx Manufacturing and Service Apps Extensions
View full tip
Video Author:                      Stefan Taka Original Post Date:            June 6, 2016   Description: In part 2 of the ThingWorx REST API tutorial, we will demonstrate various common uses of the ThingWorx REST API.      
View full tip
Video Author:                     Stefan Taka Original Post Date:            June 6, 2016   Description: In part 1 of the ThingWorx REST API tutorial, we will introduce you to the ThingWorx API structure, and also demonstrate how the API can be invoked.    Blog post with text examples found here:  REST API Overview and Examples    
View full tip
Video Author:                     Stefan Tatka Original Post Date:            June 6, 2016   Description: This ThingWorx Tutorial will demonstrate how to configure and initiate remote file transfers using the .NET SDK.      
View full tip
Video Author:                      Asia Garrouj Original Post Date:            June 13, 2017 Applicable Releases:        ThingWorx Analytics 8.0   Description: This video is the first of a 3 part series walking you through how to setup ThingWatcher for Anomaly Detection. In this first video you will learn the basics of how to establish connectivity between KEPServer and the ThingWorx Platform.    
View full tip
Video Author:                     John Greiner Original Post Date:            January 3, 2017 Applicable Releases:        ThingWorx Analytics 52.0 to 8.0   Description: This video walks you through how to access the ThingWorx Analytics Interactive API Guide.       Get the IP address of the ThingWorx Analytics Server Type:  ip a   Put that IP address into the desired web browser Your IP address may be different from the one in the picture above Add the port number of the server to the end of the IP address The Default  port number is 8080 Make sure to put a colon " : " between the end of the IP address and the start of the port number The port number could be different in some cases, depending if it was configured differently during installation Hit Enter and the main page will load.  
View full tip
I have put together a small sample of how to get property values from a Windows Powershell command into Thingworx through an agent using the Java SDK. In order to use this you need to import entities from ExampleExport.xml and then run SteamSensorClient.java passing in the parameters shown in run-configuration.txt (URL, port and AppKey must be adapted for your system). ExampleExport.xml is a sample file distributed with the Java SDK which I’ve also included in the zipfile attached to this post. You need to go in Thingworx Composer to Import/Export … Import from File … Entities … Single File … Choose File … Import. Further instructions / details are given in this short video: Video Link : 2181
View full tip
This is a basic troubleshooting guide for ThingWorx. It goes over the importance, types and levels of logs, getting started on troubleshooting the Composer, Mashup and Remote Connectivity.     For full-sized viewing, click on the YouTube link in the player controls.   Visit the Online Success Guide to access our Expert Session videos at any time as well as additional information about ThingWorx training and services.
View full tip
Key Functional Highlights Patching & Upgrades Supports upgrading from 8.0.1 using the Manufacturing Apps Installer    Streamlined patch support for customer issues Updated the installer technology to align with ThingWorx platform   App Improvements Fixed bugs with acknowledging alerts Added support for collecting feature data from National Instruments InsightCM product   Controls Advisor Added ability to retrieve KEPServerEX connection information in case the connection is lost or deleted Minor UI improvements   Asset Advisor Updated the UI for anomaly status   Production Advisor Improved the status history widget to align with Asset Advisor Added synchronized zooming to the chart widgets     Compatibility ThingWorx 8.1.0 KEPServerEX 6.2, 6.3 KEPServerEX V6.1 and older as well as different OPC Servers (with Kepware OPC aggregator) Support upgrade from 8.0.1     Documentation ThingWorx Manufacturing Apps Get Started     Download ThingWorx Manufacturing Apps Freemium portal PTC Smart Connected Applications
View full tip
Procedure on how to configure Single Sign On (SSO) with Thingworx and Windchill, where users will be able to access Thingworx/Navigate with their  Windchill credentials. This video consist of demo and architecture of how SSO works.     For full-sized viewing, click on the YouTube link in the player controls.   Visit the Online Success Guide to access our Expert Session videos at any time as well as additional information about ThingWorx training and services.
View full tip
Key Functional Highlights ThingWorx Manufacturing Apps enhancements Support for NI InsightCM connected to KEPServerEX as an aggregator Controls Advisor usability improvement to retrieve App Key for a specific KEPServerEX connection Asset Advisor usability improvement for displaying alerts Compatibility ThingWorx 8.1.0 KEPServerEX 6.2, 6.3 KEPServerEX V6.1 and older as well as different OPC Servers (with Kepware OPC aggregator) Documentation ThingWorx Manufacturing Apps Setup and Configuration Guide ThingWorx Manufacturing Apps Customization Guide What’s New in ThingWorx Manufacturing Apps 8.1.0 Download Extensions for ThingWorx Manufacturing Apps and Asset Remoting Note: this release announcement applies to the ThingWorx Manufacturing Apps Extensions 8.1.0. For the ThingWorx Manufacturing Apps Freemium (Express) 8.1.0 release notes, see this page: ThingWorx Manufacturing Apps 8.1 Freemium is Available for Download!
View full tip
Procedure to configure a secure connection between Windchill and Thingworx server. Assuming Windchill and Thingworx are already configured with SSL, this video consists of detailed steps for setting up Thingworx and Windchill to trust each other.     For full-sized viewing, click on the YouTube link in the player controls.   Visit the Online Success Guide to access our Expert Session videos at any time as well as additional information about ThingWorx training and services.
View full tip
Introduction to the base EMS connections and settings, what and how the websocket connections work, security, data transfer and bandwidth.     For full-sized viewing, click on the YouTube link in the player controls.   Visit the Online Success Guide to access our Expert Session videos at any time as well as additional information about ThingWorx training and services.
View full tip
The following Expert Session videos are now available for viewing within the ThingWorx Community: ThingWorx Analytics Installation - This Expert Session will walk you through the complete installation of ThingWorx Analytics from the Prerequisites to Confirming the Installation is successful and all steps in between. The first half of the video gives a breakdown of the components and the process of the installation with the second half being an actual Demo of the Installation.     ThingWorx Analytics API Overview - This Expert Session is designed to help beginners get up and running with ThingWorx Analytics. It covers basic concepts like: What are APIs, how to configure the metadata file, and a live Demo that shows you how to interact and use ThingWorx Analytics in real time. This Expert Session would also be useful for experienced users who need a refresher course.   Decision Tree, ThingWorx Analytics Builder - This Expert Session reviews the concept of “Decision Trees” and the functionality that is available in ThingWorx Analytics Builder. First, you will learn how to create and upload a dataset in ThingWorx Analytics Builder.  After that, it shows you how to train a model and score on the model that was just generated. It then goes into detail on how the prediction learner "Decision Tree" operates and classifies inputs.   Use Case Identification - This Expert Session goes over ways to identify and develop a successful use case for ThingWorx Analytics. The example use case presented here is on employee retention in a fictional company with the goal of maximizing employee retention . This presentation will provide you with all the fundamentals you need to develop your own ThingWorx Analytics use cases from the ground up.   ThingWorx Analytics Signals - This Expert Session will provide you with an in depth explanation behind how Signals are calculated in ThingWorx Analytics, what purpose they serve, and why we use them.  Some basic mathematical concepts are discussed so viewers will have a better idea of how ThingWorx Analytics operates behind the scenes.   Related Links For more information, you can visit a new space dedicated to these helpful technical videos.   Additional Expert Sessions will be highlighted here in the ThingWorx Community every few weeks. Visit the Online Success Guide to access additional information about ThingWorx training and services.
View full tip
This Expert Session is designed to help beginners get up and running with ThingWorx Analytics. It covers basic concepts like: What are APIs, how to configure the metadata file, and a live Demo that shows you how to interact and use ThingWorx Analytics in real time. This Expert Session would also be useful for experienced users who need a refresher course.   For full-sized viewing, click on the YouTube link in the player controls.   Visit the Online Success Guide to access our Expert Session videos at any time as well as additional information about ThingWorx training and services.
View full tip
Announcements