Community Tip - You can subscribe to a forum, label or individual post and receive email notifications when someone posts a new topic or reply. Learn more! X
In 1988, the International Mathematical Olympiad was given the task B3: If for integers x and y the term (x^2+y^2)/(1+x*y) is a natural number N, then N is a square number. The solution does not require advanced mathematics, but is very challenging. I have attached a German language file MC14. I saved myself a translation into English because the solution should be self-explanatory with little translation help. Examples are included at the end of the file.
In the solution, a recursion is constructed based on starting values that have yet to be found. And that's my problem. My programming knowledge is not sufficient to find starting values and apply the recursion described in the solution - I therefore ask for help.
Solved! Go to Solution.
Thank you. The calculation also shows the canceling recursion according to "infinite descent". This is very helpful for understanding the solution.
Die Erstellung der Liste geht natürlich einfacher ohne Verwendung der lokal definierten rekursiven Funktion s(k).
ZB
oder auch
Mit solch effektiven Programmiertechniken bin ich überfordert. Ich kann sie nur halbwegs verstehend lesen. Inzwischen habe ich die ursprüngliche Aufgabe (1) aus der angehängten Datei als quadratische diophantische Gleichung gelöst. Es ergeben sich lineare Rekursionen, die zu einem Bildungsgesetz führen. In derive habe ich dann damit die Langzahlarithmetik erfolgreich angewendet. Schüler und Studenten aus dem Bekanntenbereich werden sich bestimmt freuen. Also nochmals vielen Dank für Ihre Hilfe.