cancel
Showing results for 
Search instead for 
Did you mean: 
cancel
Showing results for 
Search instead for 
Did you mean: 

ThingWorx Navigate is now Windchill Navigate Learn More

IoT & Connectivity Tips

Sort by:
Use Rockwell Automation's Connected Components Workbench to connect an Allen-Bradley PLC for use with the ThingWorx Platform. This Learning Path will guide you through installation of Rockwell Automation and ThingWorx applications, connecting ThingWorx to the Allen-Bradley PLC, and how to configure, monitor, and control the PLC from ThingWorx.   NOTE: Complete the following guides in sequential order. The estimated time to complete this learning path is 240 minutes.   This learning path assumes that ThingWorx has already been installed   1, Install Rockwell Connected Components Workbench 2. Install ThingWorx Kepware Server 3. Connect to an Allen-Bradley PLC 4. Create An Application Key 5. Model an Allen-Bradley PLC 6. Visualize an Allen-Bradley PLC  Part 1 Part 2
View full tip
    Install a Connected Components Workbench to program an Allen-Bradley PLC   Guide Concept   In this guide, you'll install Rockwell Automation's Connected Components Workbench, which facilitates programming of an Allen-Bradley PLC.   You'll learn how to   Create a Rockwell Automation Account Download software from Rockwell Automation's website Install Connected Components Workbench   NOTE: The estimated time to complete this guide is 60 minutes       Step 1: Learning Path Overview   Welcome to the Rockwell Automation Learning Path!   This first guide explains the steps to get up and running with Rockwell's Connected Components Workbench, a software program to facilitate connecting to and configuring Programmable Logic Controllers, i.e. PLCs.   PLCs are commonly used in factories and other automation scenarios to control minor aspects, such as turnning particular devices on or off based on a particular situation.   Note that you don't necessarily have to run through this guide as part of the Learning Path. If you simply want to learn how to install Connected Components Workbench, this guide can still be useful to you.   But assuming you are using this guide as part of the Rockwell Automation Learning Path, then the first elements will be to install your software, i.e.:   Connected Components Workbench ThingWorx Kepware Server ThingWorx Foundation (for Windows)   You'll then connect an Allen-Bradley PLC to Connected Components Workbench and then to ThingWorx Kepware Server.   Next, we'll propogate that information further from ThingWorx Kepware Server into Foundation. Finally, we'll use Foundation's Mashup Builder to construct a GUI which can both receive and send information to the PLC.   We hope you enjoy this Learning Path.       Step 2: Signup   To access Rockwell Automation software, you first have to create an account on the Rockwell Automation website.   Go to the Rockwell Automation site.   In the top-right, click the "person symbol" for Account.   On the right, click Create an Account.   Enter a valid email address which you control and click Continue.   Enter your first and last names, your country, and click Continue.   Enter your job information and click Continue.   Enter and re-enter a password, check the EULA agreement box, and click Create Account.   Rockwell will send a verification email to the address you previously entered.   Locate the email and click Verify My Email Address.   A new browser tab will open with your verification; click Proceed to Sign In.   Sign-in with your verified email address.       Step 3: Download   Now that you have a verified Rockwell account, you will download Connected Components Workbench.   This download is a little different in that it actually has two parts.   You have to download both, and then run a built-in combiner to get access to the actual installation files.   Go to the Connected Components Workbench download site. Click Select Files. On the pop-up, check Connected Components Workbench and click Downloads. On the new pop-up, click DOWNLOAD NOW. On the download Software End-User License Agreement page, click Accept and Download. Move the download into a separate folder. Right-click on the download and select Run as administator. Agree to let the program make changes to your computer.   The download-manager will then begin the download of the actual software. Click Close when the download has completed.   Notice that there is now a new C:\RA\CCW folder.   Right-click on part1.exe and select Run as administator.   On the WinRAR self-extracting archive window, click Extract.   Notice that there is now a new "DVD" folder.   Navigate into the "DVD" folder.   Notice the Setup.exe file, which will be used to install Connected Components Workbench.       Step 4: Install   Now that you have Connected Components Workbench properly downloaded and extracted, you can begin the installation.   Right-click on Setup.exe and select Run as administrator. Click Yes to allow the program to make modifications to your computer.   Click Install now.   On the EULA screen, click Accept all.   Allow the installer to run to completion. This may take ~30 minutes..   Click Restart now to reboot and complete the installation.   After restarting, you may be asked to set your Country/Territory.   Click OK to confirm.   In the Windows "Start" menu, navigate to and expand the Rockwell Automation folder.   Click Connected Components Workbench.       Step 5: Next Steps   Congratulations! You've successfully completed the Connected Components Workbench installation guide.   In this guide, you learned how to:   Create a Rockwell Automation Account Download software from Rockwell's website Install a Connected Components Workbench   The next guide in the Using an Allen-Bradley PLC with ThingWorx learning path is Install ThingWorx Kepware Server.    Learn More    Capability Resource Manage Install ThingWorx Kepware Server   Additional Resources   For additional information on Rockwell:    Resource Link Documentation Rockwell Literature Library Documentation Connected Components Workbench
View full tip
Utilize Foundation and the Edge MicroServer (EMS) to connect and monitor remote Medical Devices for service-applications.   NOTE: Complete the following guides in sequential order. The estimated time to complete this learning path is 180 minutes.   1. Create An Application Key 2. Use the Edge MicroServer (EMS) to Connect to ThingWorx  Part 1 Part 2 Part 3 3. Setup a Raspberry Pi as an IoT Device Part 1 Part 2 Part 3 Part 4 4. Medical Data Storage and Display  Part 1 Part 2 Part 3
View full tip
Build, customize, and deploy IoT applications with ThingWorx.   NOTE: Complete the following guides in sequential order. The estimated time to complete this learning path is 270 minutes.   1. Create Your Application UI  Part 1 Part 2 Part 3 Part 4 Part 5 2. Basic Mashup Widgets  Part 1 Part 2 Part 3 3. Define Your UI Style  Part 1 Part 2 4. Object-Oriented UI Design Tips 5. Deploy an Application 6. How to Display Data in Charts  Part 1 Part 2 Part 3
View full tip
Configure and connect industrial devices and systems in any environment.   NOTE: Complete the following guides in sequential order. The estimated time to complete this learning path is 180 minutes.   1. Configure Permissions  Part 1 Part 2 2. Choose a Connectivity Method 3. Use REST API to Access ThingWorx  Part 1 Part 2 Part 3 Part 4 4. Java SDK Tutorial  Part 1 Part 2 Part 3 Part 4 Part 5 5. C SDK Tutorial  Part 1 Part 2 Part 3 Part 4
View full tip
Send data from MXChip development board to ThingWorx with Azure IoT hub   NOTE: Complete the following guides in sequential order. The estimated time to complete this learning path is 90 minutes.   1. Connect MXChip to Azure IoT 2, Create An Application Key 3. Connect Azure IoT Devices Part 1 Part 2 4. Create A Thing Shape
View full tip
Utilize the power of ThingWorx to secure, connect, log, analyze, and see what is happening in your highly structured and secure system.   NOTE: Complete the following guides in sequential order. The estimated time to complete this learning path is 240 minutes.   1. Securing Resources and Private Data Part 1 Part 2 2. Connecting External Databases and Model  Part 1 Part 2 Part 3 3. Low Level Device Connection Part 1 Part 2 Part 3 4. Tracking Activities and Statistics 
View full tip
Design and implement a full application that runs without human interaction in the food and beverage world   NOTE: Complete the following guides in sequential order. The estimated time to complete this learning path is 3 hours.     1. ThingWorx Solutions in Food Industry Part 1 Part 2 Part 3 2. Factory Line Automation Part 1 Part 2 Part 3 3. Automated Distribution and Logistics  Part 1 Part 2 4. Securing Industry Data 
View full tip
Build robust, secure, full-featured edge integrations and gateways for any platform using C, .NET, Java (supporting Android development).  Tutorials are available for the C and Java SDK's by clicking the relevant link below.     C SDK The C SDK is the basis for ThingWorx Edge SDKs and the Edge MicroServer (EMS). You can compile C SDK applications on any platform and even run it without an operating system. Using the C SDK for your application means least amount of RAM, processing power, and disk space, frequently requiring less than 200 kilobytes. The C SDK is also the only SDK that is distributed as source code.       Java SDK The Java SDK is especially useful if you are integrating with an application that uses a Java-based API. While applications based on the Java SDK tend to use more RAM, processing power, and disk space than a C SDK equivalent application, they typically take less time to develop. To use it, you will need a platform with a supported Java Virtual Machine. The Java SDK support Android development.       .NET SDK Use the Microsoft .NET SDK when integrating with a .net based application or if your team typically works with Microsoft technologies. It may only be used on Windows based machines.  
View full tip
U Term Definition user An account that can be used to access ThingWorx (design time and/or run time). user group A collection of users to provide a common level of security-access. Allows you to categorize users of the ThingWorx system. User groups can contain users and groups. All permission settings and overrides are cumulative. The ThingWorx default security policy is restrictive. When you create a new group or user, the account will not have any rights in ThingWorx until you assign them. user management subsystem Subsystem that manages session and password hash settings. See Subsystem.   V Term Definition value stream processing subsystem Subsystem that manages value stream storage and retrieval. See Subsystem. value stream A storage table for time-series information about a Thing's property values. Querying a Value Stream returns the value of the specified property. virtual Thing A modeled Thing defined in Edge that is represented as a remote Thing in the ThingWorx Platform. visibility A simple form of access control. If an entity is visible to members of an organizational unit, those members have access to the entity, and the underlying granular security model determines what interaction members of that organization unit have with a specific asset. Visibility can be set at the collection level, the individual entity level, or at the visibility level of the Thing Template instance. vocabulary A collection of terms used to create tags.   W Term Definition WebSocket-based Edge MicroServer (WS EMS) Allows edge devices or data stores to connect to the ThingWorx Platform through the internet or a firewall using the AlwaysOn™ binary protocol. WebSocket communications subsystem Subsystem that handles core WebSocket communications. See Subsystem. WebSocket execution processing subsystem Subsystem that handles WebSocket execution processing. See Subsystem. widget The components placed on a Mashup such as grids, charts, text boxes, buttons, and navigation links. Anything that is visible or clickable is a widget. wiki A type of Widget that mimics the functionality of a 'collaborative website', and allows collaborative editing of its content and structure by its users. Wikis may have posts added by both human users and the system itself.
View full tip
Here's a short list of vocabulary terms used throughout the ThingWorx documentation.   A Term Definition alert A declarative way to create an event in ThingWorx that is triggered when a defined value or limit is reached or exceeded. All properties in a Thing shape, Thing template, or Thing can have one or more alert conditions defined. Alert types are specific to the data type of the property; the following base types can be used for alerts: Boolean, Datetime, Infotable, Integer, Location, Number, and String. alert history A comprehensive table that records all information when an alert is triggered. The data is stored until it is removed manually. alert processing subsystem Subsystem that manages the alert history stream. See Subsystem. alert summary Compiles data from the last reset of the server to the current state. You can view, acknowledge, and sort (by acknowledged or unacknowledged) alerts on the Alert Summary page. AlwaysOn Proprietary binary protocol for communication between edge devices and the ThingWorx Platform. application key Security tokens used for authentication in ThingWorx when not using a standard credentials method of authentication. They are associated with a given user and have all of the permissions granted to the user with which they are associated. Application Keys are typically used to assign permission control to remotely-connected edge-devices. Application keys are also known as: appKeys. application log A collection of all of the messages that the ThingWorx application generates while operating. Based on your settings (such as WARN and DEBUG), this log can display system messages. authenticator An entity that allows you to implement user authentication, such as single sign-on or certificates, outside of ThingWorx.   B Term Definition base type Type of data such as DATETIME, HYPERLINK, INFOTABLE, and NUMBER. binding In order for your application to display data collected from your devices, you need to bind a Widget to a Data Source. See mashup binding. blog A type of Widget that mimics the functionality of a 'web log' to provide online journal functionality. Posts may be made both by users and the ThingWorx Platform.   C Term Definition ClientConfigurator A class common to all of the object-oriented Edge SDKs that handles configuration (URI, port, support for proxying, tunneling, file transfer, etc.) of the ConnectedThingClient. It is used by the edge device to control its behavior and connect to the ThingWorx Platform. communication log A record of all communication activity with the ThingWorx platform. These communications can be between the following:a connection server and the platform, WebSocket devices and a Connection Server, WebSocket devices and the platform. Composer Modeling and design environment in ThingWorx where you create the back-end of your IoT application. ThingWorx Composer runs as an HTML5 web application. Composer log Records all activity performed in the Composer and its interaction with the platform layer. configuration log Contains all of the messages that the ThingWorx application generates for create, modify, and delete functions in the ThingWorx Platform. For example, if a Thing or Mashup is created, modified, or deleted, that information is recorded. ConnectedThingClient A class common to all of the object-oriented Edge SDKs that handles communication between Edge and the ThingWorx Platform. connection server A server application that allows the connection of remote devices and handles all message routing to and from the devices.   D Term Definition dashboard A dynamic Mashup constructed from a grouping of Gadgets. A Dashboard may be modified during runtime so that certain Gadgets are displayed, while others are hidden. data Row entries in data tables, streams, value streams, blogs, wikis, and properties. data shape A type of ThingWorx entity made up of field definitions and related metadata that represents the data in your model. Each field in a data shape has a data type. ThingWorx has a defined set of base types, including: Boolean, Datetime, Hyperlink, Image, Infotable, Integer, Number, and String. data table A storage table that has a primary key and optional indexed fields; similar to a standard relational database table. A data table has the following predefined fields: Timestamp, Tag, Source, SourceType, and Location. A Data Table can be connected to external databases in order to import/export records. data tag Mechanism to label data to assist in grouping, filtering, and finding it. A ThingWorx tag is defined by the combination of a ThingWorx vocabulary and a specific vocabulary term; shown as Vocabulary:VocabularyTerm. Tags can be used to create a relationship between many different ThingWorx entities. directory services authentication A system, such as an LDAP service, that provides the ability to securely login through other applications outside of the ThingWorx Platform.   E Term Definition Edge MicroServer (EMS) Allows edge devices or data stores to connect to the ThingWorx Core through either the Internet or a firewall using the AlwaysOn™ binary protocol. See WebSocket-based Edge MicroServer (WS EMS). entity Highest-level objects created and maintained in ThingWorx. For example, Things, Thing Shapes, and Thing Templates. event Represents a change in state or value of a property. Interrupts the ThingWorx Core can subscribe to for purposes of receiving notifications when something happens. event processing subsystem Subsystem that manages event processing for external subscriptions (Things subscribing to other Things) throughout ThingWorx. See Subsystem. export import subsystem Subsystem that manages data export and import file sizes. In a system where many users have import/export permissions, these settings can help to alleviate importing/exporting large amounts of data at the same time. See Subsystem. extension A collection of entities, resources, and widgets used to extend the functionality of the ThingWorx Platform. This collection is packaged into a zip file, which can be uploaded to any ThingWorx Platform and used to serve a specific function.   F Term Definition federation A concept to enable sharing a large solution workload among ThingWorx servers by using local data Things (streams, value streams, data tables, wikis, or blogs) that publish to remote data Things (remote streams, remote value streams, remote data tables, remote wikis, or remote blogs). federation subsystem Subsystem that manages the federation of Things among ThingWorx servers. See Subsystem. field definition Defines a field of a data shape. A field definition defines the base type, name of the field, and whether the field is a primary key. file transfer subsystem Subsystem that maintains file transfer settings between remote Things, file repositories, and federated servers. See Subsystem.   G Term Definition gadget Reusable self-contained mashups that make up dashboards; can display historical or current data. Gadgets contain predefined parameters and additional metadata, which handles the sizing requirements of a dashboard.   I Term Definition infotable The aggregate base type within ThingWorx. InfoTables have a DataShapeDefinition that describes the names, base types, and additional information about each field within the table.   L Term Definition localization table Provides the ability to display run time labels in different languages or in userdefined terminology. You can configure localization tables with tokens, which can be assigned to the labels in the Mashup Builder. Each localization table in ThingWorx represents a different language. logging subsystem Subsystem that manages various logs, such as Application, Script, and Communications. See Subsystem. logs The various monitoring tools that record the activity in your ThingWorx model. The available logs are the application log, communication log, Composer log, configuration log, security log, and script log. Lua Script Resource A utility that is used to run Lua scripts and implement remote Things at the edge device level.   M Term Definition mashup A graphical visualization of the model and data. Mashups have the ability to produce enriched results from the combination of presentation and data aggregation, making the application more useful and effective. mashup binding The process of identifying the data source for widgets to display in the Mashup Builder. mashup builder The tool used to create and configure Mashups. master Visualization entity that provides consistent framing of a mashup's contents. A master is commonly used for items that display throughout the mashup, such as logos, menus, and titles. media Locally-stored media artifacts necessary for your ThingWorx application implementation. In most cases, these include images and icons used for entities such as menus, style definitions, and mashups. menu A hierarchical navigation structure consisting of links to mashups or URLs that is represented by a widget in a mashup. message store subsystem Subsystem that processes outbound queued messages for various remote Things, including federated servers. See Subsystem. model binding The process of attaching properties to entities in a model. There are two types of property bindings: local and remote. Services and events are remote only. model tag Mechanism to label ThingWorx entities to assist in grouping, filtering, and finding ThingWorx data and searching and discovering entities efficiently. A ThingWorx tag is defined by the combination of a ThingWorx vocabulary and a ThingWorx vocabulary term. model The collection of ThingWorx entities created to represent your process, solution, and/or application.   N Term Definition network Defines the relationships between Things and allows you to define a "Thing hierarchy" (parent, child).   O Term Definition organization A hierarchical structure used to allow/deny visibility, access, and functionality to resources within ThingWorx. Users and User Groups are used to populate Organizations.   P Term Definition persistence provider A type of database which stores all collected ThingWorx information. The default database for ThingWorx is Neo4j. Other persistence providers can be created or configured within the platform. A configured instance of a persistence provider package can be utilized in run time data entities (streams, value streams, data tables, blogs, and wikis) to tailor the specifics of their persistence (such as location, run time characteristics, and tuning). platform subsystem Subsystem that provides overall Platform monitoring and configuration. See Subsystem. Project Used to logically group a collection of entities. property Represents a behavior of the actual Thing or process that you are modeling. Can also be thought of as a parameter or variable.   R Term Definition remote Thing A device or data source that is geographically separated from the ThingWorx Platform and is accessed over the network (Intranet/Internet/WAN/LAN). That device is represented as a remote Thing on the Platform. resource Platform-provided services to aid in implementing your applications. RESTAPI Representational state transfer (REST) application program interface (API). The ThingWorx API can be accessed at: host:port>/ Thingworx////characteristic>?. run time data Data represented by streams, value streams, data tables, blogs, wikis, and properties.   S Term Definition script log Contains all of the messages that the ThingWorx application generates while executing JavaScript services. You can use the logger.warn function to write information to the script log from the services you are running. Generally, ThingWorx will only publish errors to this log that are incurred while running a service. security Granular security model available within the ThingWorx Platform. There are two sets of permissions, one for design time and one for run time. The design time permissions are for managing who is allowed to modify the model (create, read, update, and delete entities), while the run time permissions determine who can access data, execute services, and trigger events on a Thing (which includes Data Tables, Streams, and Users). For each permission, you can explicitly permit a User or Group to be able to do something (like edit a Thing) or explicitly deny a Group the ability to do something (e.g. the Users Group is not allowed to edit a Thing). You can apply permissions at the Group level and at the User level. An explicit denial of a privilege always overrides a privilege grant. SecurityClaim A class common to all of the object-oriented Edge SDKs used by a ClientConfigurator to store authentication information for a ConnectedThingClient. security log Contains all of the messages that the ThingWorx application generates regarding users. Depending on the log level, it can include login and page requests information. service A function which a Thing can perform. A service can be defined at the Thing Shape, Thing Template, or Thing level. state definition A collection of style definitions that are applied using data-based rules in a mashup. Evaluating the data to specific ranges or values allows you to perform data-based formatting, such as changing the background color of cells in a grid widget. stream A storage table that is optimized for time-series data. Writes to a stream are done asynchronously. Querying a Stream returns the entire record. style definition A collection of HTML styling elements that can be applied to a widget. All colors, text, and line formats are managed and rendered in the mashup environment using style definition entities. subscription An action that executes when an event occurs. subsystem Configurable ThingWorx Platform functionality that can be adjusted for specific Platform performance requirements. See Subsystem. system user A default user in ThingWorx that manages internal service permissions but allows external API layer permissions to be set for each user.   T Term Definition tag Used to label ThingWorx entities and data to assist with grouping, filtering, and locating ThingWorx entities and data. A ThingWorx tag is defined by the combination of a ThingWorx vocabulary and a ThingWorx vocabulary term. Vocabularies and vocabulary terms are customizable. Thing The digital representation of physical assets and/or processes that have properties and business logic. All ThingWorx Things are based on Thing Templates. Thing Shape An abstract definition that represents the behavior of a concrete Thing or Things. Defines properties, services, events, and subscriptions for Things that implement the Thing shape. Typically, the Thing Shape is implemented by a Thing Template, which is then the basis of actual Things. Thing Template Provides base functionality with properties, services, events, and subscriptions that Thing instances use in their execution. ThingWorx Things are derived from Thing Templates. ThingWorx SDK Software development kit available in several languages, including C, Java, .NET, and iOS. The terms edge application or client application may be used when referring to a custom application built on an SDK. The term edge component may be used to describe a solution that includes multiple edge components (EMS, SDKs, ADO service, OPC service, etc.) tunnel subsystem Subsystem that handles tunneling between remote Things. See Subsystem.     Click here for ThingWorx Glossary U - W
View full tip
    Step 5: Create Event   Events are automatic analysis jobs which are submitted based on a pre-defined condition. In this step, we'll configure an Analysis Event which will execute automatically whenever there is a datachange in our simulated engine.   On the ThingWorx Composer Analytics tab, click ANALYTICS MANAGER > Analysis Events.   Click New....   In Source, search for and select AMQS_Thing. In Event, select DataChange. In Property, select FlipFlop. In Provider Name, select Vibration_Provider. In Model Name, select the published Model.   Click Save.     Map Event Data   Map the Properties of AMQS_Thing, to the fields required to evoke an Analysis Job.   Select the previously-created Event, and click Map Data....   Click Inputs Mapping.   In Source Type, select Thing. In Source, search for and select AMQS_Thing.   On the left, select s1_fb1, one of the sub-fields of AMQS_Thing's InfoTable Property. On the right, select _s1_fb1, the first frequency band required for the Model to make a prediction.   Click the Map button in the center.   Repeat this mapping process for for s1_fb2 through s1_fb5.   Map causalTechnique in the same manner. This is a String Property in AMQS_Thing with a Default Value of FULL_RANGE, the same technique we used in our earlier true/false testing. Map goalName to goalField in the same manner. This is a String Property in AMQS_Thing with a Default Value of low_grease, the same goal we used in our earlier testing.   Click Results Mapping on the left.   Map _low_grease to Result_low_grease.   Map _low_grease_mo to Result_low_grease_mo.   Click Close to close the mapping pop-up.   Enable Event   Now that we've done the mapping from Foundation to Analytics, let's confirm that everything is correct.   If so, we'll then Enable the Analysis Event so that it can automatically generate and process Analysis Jobs.   Select the mapped Analysis Event.   Click View....   Click Inputs Mapping and confirm that all mappings are correct.   Click Results Mapping and confirm that all mappings are correct.   At the top-left, expand the Actions... drop-down.   Select Enable.   Now that you have enabled the Analysis Event, whenever AMQS_Thing's InfoTable Property changes, the new data will be submitted to Analytics Manager.   An Analysis Job will automatically run, with a predictive score sent back and stored in AMQS_Thing's Result_low_grease (Boolean) and Result_low_grease_mo (Number) Properties.       Step 6: Test Model   In this step, we'll confirm that the automatic analysis of information coming from remote devices is operational.   On the ThingWorx Composer Analytics tab, click ANALYTICS MANAGER > Analysis Jobs.   Uncheck Filter Completed Jobs.   Select a Job and click View.... Click Results. NOTE: You will see true or false, just as when you manually tested the Model, so you know that Analytics Manager is now automatically submitting and completing jobs with a resulting prediction. Test Mashup   Follow these steps to confirm that the results are being sent back to ThingWorx Foundation in a way in an actionable way.   Return to the AMQS_Mashup browser tab. Wait at least ~20 seconds to see multiple cycles of good and bad data (which should generate a false or true result from Analytics Manager). Note the Text Field Widgets on the right now have data.   This analytical result is coming from Analytics Manager, and is the exact same output you saw in ANALYSIS JOBS.   Using this technology, you could create a paid customer service, where you offered to monitor remote engines, in return for automatically shutting them down before they experience catastrophic engine failure.   For that example implementation, you would utilize the AMQS_Thing.Result_low_grease BOOLEAN Property to trigger other actions.   For instance, you could create an Alert Event which would be triggered on a true reading.   You could then have a Subscription which paid attention to that Alert Event, and performed an action, such as sending an automatic shutdown command to the engine when it was experiencing a likely low grease event.   NOTE: We recommend that you return to the ThingWorx Composer Analytics > ANALYTICS MANAGER > Analysis Events tab and Disable the Event prior to continuing. Since the simulator generates an Event every ~10 seconds, this can create a large number of Events, which can fill up your log.       Step 7: Next Steps   Congratulations. You've completed the Operationalize an Analytics Model guide. In this guide you learned how to:   Define an Analysis Provider that uses the built-in Analytics Server Connector Publish a Model from Analytics Builder to Manager Create an Analysis Event which takes data from ThingWorx Foundation and decides whether or not a failure is likely   This is the last guide in the Design and Implement Data Models to Enable Predictive Analytics learning path.   Learn More   We recommend the following resources to continue your learning experience:       Capability Guide Build Implement Services, Events, and Subscriptions Guide   Additional Resources   If you have questions, issues, or need additional information, refer to:       Resource Link Community Developer Community Forum Support Analytics Manager Help Center
View full tip
    Configure ThingWorx Advisors to remotely monitor your connected assets.   Guide Concept   This project will introduce ThingWorx Advisors.   Following the steps in this guide, you will learn how to add users, create a model to store data, and configure asset Properties.   We will show you how ThingWorx Advisors let you remotely monitor equipment without writing any code.   You'll learn how to   Configure ThingWorx Advsors Connect ThingWorx Advisors to ThingWorx Kepware Server Create assets in ThingWorx and tie them to data items in Kepware Server   NOTE: The estimated time to complete this guide is 60 minutes       Step 1: Configure Connection   This step shows how to open Controls Advisor, and configure the communication with ThingWorx Kepware Server.   Open Controls Advisor   Click on Hosted Server Info to open your ThingWorx Foundation server. In ThingWorx Foundation Composer, click Browse then Visualization > Master then click PTC.Factory.PlantStatus.Master.   Next click View Mashup button.    Click the App Switcher icon in the upper left.    Create Connection   In the top-left, click the app switcher icon. Click Controls Advisor in the app switcher.     click-controls-advisor     3. Click the + icon to add a new Connection.     click-plus-add-connection     4. Enter my-kepware-connection in the Connection Name field. 5. Click the wand icon in the Application Key User Name dropdown and select Administrator. 6. Click the Application Key Expiration Date date picker and select a date a year in the future.     create-connection     7. Click Done to close the date picker, then click OK. 8. Information that you will enter in Kepware is shown, click Print Instructions to save.     connection-summary     NOTE: If no port is shown, use 80 for an HTTP connection or 443 for an HTTPS connection. 9. Click Close to close the connection inforamtion pop-up. 10. The information is always available by selecting the Key icon in Controls Advisor.     new-connection-saved       Configure Communication with Kepware   Open ThingWorx Kepware Server configuration tool using either the desktop shortcut or the task bar icon.   Right click Project and select Properties to configure the connection with ThingWorx.   kepware-properties     3, Select ThingWorx in left panel. Under Connection Settings, update the Host, Port and Application Key to match your ThingWorx server.     /kepware-thingworx-settings     NOTE: All the required information is available in the "print" browser tab from the previous step. If no port number is shown, use 80 for an HTTP connection or 443 for an HTTPS connection.   4. Set Disable Encryption to No and Trust all Certificates to Yes. 5. Enter my-kepware-connection-GW in Thing name. 6. Click Apply, then OK. 7. Check Connected to ThingWorx is shown in Kepware.   NOTE: The message displayed should say: Connected to ThingWorx.    Troubleshooting   If you are unable to make a connection from KEPServerEX®, try the following:   Verify that the information you entered into the KEPServerEX Project Properties is exactly as displayed in the on-screen set-up instructions. If KEPServerEX is on a different machine than ThingWorx® ensure that your firewall is set to allow incoming connections on the port specified.     Step 2: Add User   In this part of the lesson, you'll create a User and modify permissions.   Click the grid icon located in the upper left to switch to a different utility.   Click the Configuration and Setup utility icon.    Click the Users tab, then click the Plus icon to open the Create User pop-up.   Enter a User Name that is at least 3 characters.   Enter the required First Name and Last Name. Although they will not be used in this guide, enter the required Email and Work Phone. Enter Mobile Phone including + and country code, +1 for US mobile phones. Check the SMS Notification Preference.   Enter a Password of at least 14 characters, then re-enter it in the Confirm Password field.   Create a User for yourself as a Controls Engineer. This role gives access to all of the Advisors installed on the system. The other roles are given a subset of the Advisors, depending on the functionality they need to perform their jobs.         Step 3: Create a Model   In this part of the lesson, you will create a Model to store data.   If Configuration and Setup is not already open, click the Utility Selector grid in the upper left, then click the Configuration and Setup utility icon.    Click on the Equipment tab.   Click on the + icon on the top left to add a new asset.   Set the new resource to Asset and name it Asset1. NOTE: You can also enter a description. Create another resource, this time with the Type set to Line. Name it Station A. After both resources have been created, select Asset1 and then click the pencil icon to configure it. On the Asset Configuration Details page, locate the Related Lines table. Click the + icon to relate line to the asset.   Select Station A, then click Add.   Step 4: Configure Asset Properties   From the Administration and Configuration page for Asset1, click Additional Properties located in the left-hand navigation pane.   Click the + icon to add a new property to the asset. Name the Property Temp.   Click the tag picker icon to associate this property in ThingWorx with a data tag from KEPServerEX. In the Resource Type drop-down, choose KEPServerEX. Select your server name (for this exercise, we use KEPServerEX.Local). NOTE: You will see a hierarchical view of all tags available from your KEPServerEX instance. In the left column, scroll down to Ch1 and click the triangle icon to expand it. Click Ch1.Asset1 to see the available Tags in the right column.   Select Temperature, then click OK. Click Save to save this Property. TIP: For additional practice, try to add a few more assets.   Step 5: Next Steps   Congratulations! You've successfully completed the Configure ThingWorx Advisors guide. In this guide, you learned how to configure ThingWorx Advisors to connect to KEPServerEX and connect an asset.   Additional Resources   If you have questions, issues, or need additional information, refer to:   Resource Link Community ThingWorx Advisors Community Support Kepware Technical Support Asset Advisor for service Home ThingWorx Asset Advisor for service
View full tip
    Select the right database to use with your ThingWorx installation.   Guide Concept   When you develop an application with ThingWorx, you must save the configuration data that defines the data model and the user interface. You also need to store the dynamic data that is generated by devices at runtime (such as temperature or location).   ThingWorx uses the term Persistence Provider to refer to any type of service that saves application data, usually it is a database.   When your application moves into production you must choose and configure a Persistence Provider that meets your requirements.     You'll learn how to   Pros and cons of different databases that can be used as persistence providers for ThingWorx The database best suited to certain applications Where to find detailed information about the Persistence Providers   NOTE: The estimated time to complete this guide is 30 minutes       Step 1: Persistence Provider Options   There are many factors that will influence your decision for which Persistence Provider to use with your ThingWorx instance. On this page we compare and contrast different methods and provide examples for where each one is a natural fit.    Persistence Provider             Typical Use H2 Bundled with ThingWorx server for proof-of-concept trials PostgreSQL Standard production database for use up to 15,000 Property writes per second InfluxDB High volume data ingestion (>25,000 property writes per second) into one database Microsoft SQL Server SQL database available from Microsoft in a dozen different editions Azure SQL Server SQL database managed by Microsoft in Azure   When ThingWorx is installed with default configurations, it uses the embedded H2 database as its Persistence Provider. This configuration is suitable for evaluations and proof-of-concept applications with a limited number of Things. Before an application is used in production, you must provision a more capable persistence provider. The available options for Persistence Provider are summarized below.   H2   Pros                            Cons                     Typical Use Case                                DBA Skills       Required Cost No Database set-up required Not for use in production Start testing ThingWorx with no additional configuration None No additional cost   H2 is an open source, full-featured relational database that is embedded in the ThingWorx Foundation server. No additional database set-up is required before developing a proof-of-concept application with ThingWorx. Using H2 should provide satisfactory performance for applications with less than 1000 Things.   WARNING: Due to the inability to back-up and recover the database, H2 should never be used in production.   PostgreSQL    Pros                    Cons                        Typical Use Case                     DBA Skills               Required Cost Widely used database Requires some configuration Workhorse database appropriate for many applications Basic SQL skills No additional cost   PostgreSQL is the default choice for ThingWorx cloud hosting servers. It complies with many database standards and is open source with no extra license fee required. It can be configured for high availability to minimize the chance of down-time or data loss. It has been tested up to 15,000 property writes per second and depending on other factors may give satisfactory performance up to 25,000 writes per second.   Learn more about using PostgreSQL:   Using PostgreSQL as the Persistence Provider ThingWorx PostgreSQL Administrator's Guide   InfluxDB   Pros                      Cons                            Typical Use Case            DBA Skills Required           License Cost Handle high volume data ingestion InfluxDB is not supported as a Property provider Application requiring >25,000 Property writes/second Professional services likely required Multi-node requires license fee   If your system intensively deals with time series data and your implementation heavily depends on Value Streams or Streams for persistence/retrieval of data, we recommend using InfluxDB as the Persistence Provider in ThingWorx. InfluxDB is a high-performance data store written specifically for time series data and is a good choice when high volume data ingestion of more than 25,000 property writes per second must be saved into one database.   Learn more about InfluxDB:   Using InfluxDB as the Persistence Provider   Microsoft SQL Server   Pros                     Cons                       Typical Use Case                    DBA Skills                      Required Cost Available in multiple editions Only runs on Windows Data stored in Microsoft SQL Server Configure settings License fee required   More than a dozen different versions of Microsoft SQL Server are used by customers for workloads ranging from small single-machine applications to large enterprise applications. Connecting ThingWorx to an existing Microsoft SQL Server can make that data readily available to use in ThingWorx Mashups.   Learn more about using Microsoft SQL Server:   Using Microsoft SQL Server as the Persistence Provider Getting Started with MS SQL and ThingWorx   Azure SQL Server   Pros                                    Cons                        Typical Use Case              DBA Skills         Required Cost Cloud deployment and scaling No on-premise option Data stored in Microsoft SQL Server Configure settings Subscription required   Fully managed database service operated and updated by Microsoft Learn more about using Microsoft SQL Server:   Using Azure SQL Database as the Persistence Provider   Step 2: Next Steps   Congratulations! You've successfully completed the Compare Persistence Providers guide. At this point, you can make an educated decision regarding which Persistence Provider is best suited for your ThingWorx application development environment.   Learn More   We recommend the following resources to continue your learning experience:    Capability    Guide Connect ThingWorx Application Development Reference Build Get Started with ThingWorx for IoT Experience Create Your Application UI   Additional Resources   If you have questions, issues, or need additional information, refer to:   Resource        Link Community Developer Community Forum Support Microsoft SQL Technical Support Support Persistence Provider Help Center
View full tip
    Learn how ThingWorx can be deployed in a clustered environment   Guide Concept   Web applications have increased reliability and performance by using a "pool" of independent servers called a cluster. It is important to understand what benefits the different methods of clustering provide, and what the different methods can mean for your system.   ThingWorx Foundation can be deployed in either an Active-Active clustered architecture or a standard single-server deployment. This guide describes the benefits of an Active-Active clustered architecture over other clustering methods and provides a system administrator with resources to navigate the different architecture options.     You'll learn how to   Overview of different server clustering techniques Pros and cons of the different clustering configurations that can be used with ThingWorx Where to find detailed information about ThingWorx server clustering   NOTE: This guide's content aligns with ThingWorx 9.3. The estimated time to complete this guide is 30 minutes       Step 1: Clustering Overview   Clustering is the most common technique used by web applications to achieve high availability. By provisioning redundant software and hardware, clustering software can automatically handle failures and immediately make the application available on the standby system without requiring administrative intervention.   Depending on the business requirements for High Availability, clusters can be configured in any of the following configurations:    Cluster Configuration           Description                                                                                       Recovery Time Cold Standby Software is installed and configured on a back-up server when the primary system fails. Hours Active-Passive A second server is provisioned with a duplicate of all software components and is started in case of failure of the primary server. Minutes Hot Standby Duplicate software is installed and running on both primary and secondary servers. The secondary server does not process any data when the primary server is functional. Seconds Active-Active Both the primary and one or more secondary servers are active and processing data in parallel. Data is continuously replicated across all running servers. Instantaneous   Cold Standby   ThingWorx installed in a default single-server configuration is not inherently a cold standby system. Periodic system backups can be used to bring the system back online in the event of system failure.   Note: A cold standby configuration does not constitute high availability   Active-Passive   High availability can be achieved with an Active-Passive configuration.     One “active” ThingWorx server performs all processing and maintains the live connections to other systems such as databases and connected assets. Meanwhile, in parallel, there is a second “passive” ThingWorx server that is a mirror image and regularly updated with data but does not maintain active connections to any of the other systems.   If the “active” ThingWorx server fails, the “passive” ThingWorx server is made the primary server, but this can take a few minutes to establish connections to the other systems.   Active-Active   ThingWorx uses Active-Active architecture for achieving high availability.   Active-Active configuration differs from Active-Passive in that all the ThingWorx servers in the cluster are “active.” Not only is data mirrored across all ThingWorx servers, but also all servers maintain live connections with the other systems. This way, if any of the ThingWorx servers fail, the other ThingWorx servers take over instantaneously with no recovery time.   Because all ThingWorx servers are active and processing data in parallel, the cluster can handle higher loads than the single running server in an Active-Passive configuration. An Active-Active deployment leverages the investment made in multiple servers by providing not only greater reliabilility, but also giving the ability to handle demand spikes. When server utilizations exceed 50%, customers can easily scale their deployment by adding more ThingWorx servers to the cluster - horizontally scaling. This also avoids the limitations of vertically scaling - provisioning a single server with more and more CPU cores and RAM.   Benefits of Active-Active Clustering   Higher Availability You can avoid single points of failure and configure the ThingWorx Foundation platform in an Active-Active cluster mode to achieve the highest availability for your IIoT systems and applications. Increased Scalability You can horizontally scale from one to many ThingWorx servers to easily manage large amounts of your IIoT data at scale more smoothly than ever before.     Step 2: ThingWorx Active-Active Architecture   An Active-Active Cluster configuration introduce two software components and two components that are optional in a standard ThingWorx architecture are now required.   The reference architecture diagram below shows ThingWorx deployed with multiple ThingWorx Foundation servers configured in an Active-Active Cluster deployment.   Note: This is an example of a possible ThingWorx deployment. The business requirements of an application will determine the specific configuration in an Active-Active clustered environment.   Load balancer was optional in a single-server deployment, is now a requirement. ThingWorx Connection Server is also now required. Apache ZooKeeper is used to coordinate multiple running servers. Apache Ignite is used to share current state between servers.  Component       Description                                                                                          Provider Load Balancer Distributes network traffic to servers ready to accept it. In Active-Active Cluster configuration, the load balancer is used to direct WebSocket based traffic to the ThingWorx Connection Services while user requests (http/https) traffic is directly distributed to the ThingWorx Foundation servers. Example load balancers: HA Proxy Azure Application Gateway AWS ALB See the ThingWorx High Availability Documentation for details. ThingWorx Connection Server Handles AlwaysOn connections with devices and multiplexes all messages over one connection to ThingWorx Foundation Servers. In an Active-Active configuration, it handles all WebSocket based traffic to and from the ThingWorx Foundation Server. PTC Apache ZooKeeper A centralized service for maintaining configuration information, naming, providing distributed synchronization, and providing group services. It is a coordination service for distributed application that enables synchronization across a cluster. Apache Software Foundation Apache Ignite Used by ThingWorx Foundation Servers to share state. It may be embedded with each ThingWorx instance or can be run as a standalone cluster for larger scale. Apache Software Foundation Data and Model Provider Provides persistent storage of application data. All ThingWorx 9 supported database options: PostgreSQL Microsoft SQL Server Microsoft Azure SQL InfluxDB (only available as a data provider)         Step 3: Next Steps   Congratulations! You've successfully completed the Active-Active Clustering with ThingWorx guide.   At this point, you can make an educated decision regarding which clustering architecture is best suited for your ThingWorx application. Whether you already use ThingWorx or pursuing ThingWorx, its important to understand how Active-Active clustering is achieved and whether it is right for your system.   Learn More   We recommend the following resources to continue your learning experience:       Capability Guide Manage ThingWorx Application Development Reference Build Get Started with ThingWorx for IoT Experience Create Your Application UI   Additional Resources   To learn more about Active-Active Clustering and general ThingWorx deployment guidelines, there are ample resources available through our Help Center and PTC Community:   Resource Link Community Developer Community Forum Support ThingWorx Platform Sizing Guide Support ThingWorx Deployment Architecture Guide Support ThingWorx High Availability Documentation
View full tip
    Automate business processes with Services, Events and Subscriptions.   Guide Concept   This project will introduce Services, Events, and Subscriptions inside of the ThingWorx platform. Following the steps in this guide, you will be able to expand your data model using Services, Events, and Subscriptions.   We will teach you how to make a more robust and enjoyable experience for users simply by using the resources inside of the ThingWorx Composer.   You'll learn how to   Create Events, Services and Subscriptions in Composer Utilize the ThingWorx Edge SDK platforms with Services, Subscriptions, and Events   NOTE:  The estimated time to complete this guide is 60 minutes     Step 1: Completed Example   This guide references the attached EventsServicesSubscription.zip. The sample application is based on a company needing to make deliveries. The rules engine will handle much of the work outside of the transportation workflow.   Unzip and utilize this file to see a finished example and return to it as a reference if you become stuck during this guide and need some extra help or clarification.   Keep in mind, this download uses the exact names for entities used in this tutorial. If you would like to import this example and also create entities on your own, change the names of the entities you create.   What's Inside    Name                                            Type PTCDelivers Thing PTCDeliversBusinessLogic Thing PackageStream Stream OrdersDatabase Database DeliveryDataTable Database PackageDataTable Database MerchantDatabase Database PlaneThingTemplate ThingTemplate MerchantThingTemplate ThingTemplate TruckThingTemplate ThiingTemplate ClientThingShape ThingShape VehicleDeliveryShape ThingShape PackageDataShape DataShape CustomerDataShape DataShape OrderDataShape DataShape PackageDeliveryDataShape DataShape MerchantOrderDataShape DataShape MerchantDataShape DataShape default_user User TestDashboardMashup1 Mashup TestGadget Mashup     Step 2: Functionality   You can combine Services, Subscriptions, and Events to automate business processes or trigger notifications. See the definitions and examples before to gain a better understanding as to the role each plays.    Name                 Function Services Methods and functions to be used within a ThingWorx application. There are Services provided by the system, but custom services need to be made to create the application's functional requirements. All services in the ThingWorx Composer can be accessed by a user with the appropriate permissions. Remote services can be created with the use of the ThingWorx SDKs. Events An Event represent a change in state of a property or changes in a running application. Changes can be handled in different ways based on the method used to fire or queue them. They are a great resource for property value changes and alerts. Subscriptions The implementation for a subscription is the same as that of a service. Subscriptions are activated when the Event they are listened for is triggered.       Step 3: Create Events   Events are used to mark situations that can occur within an application. They can be used for scenarios ranging from a dangerous situation that is imminent and needs to be checked by personnel to just a system notification. Each Event is based on a DataShape that will hold the necessary information about the Event.   For example, it wouldn’t be enough to just know that a rain Event has occurred. It might be helpful to also know the location, the time the rain started and expectations of the amount of rain to fall.   Follow the steps below to create an Event for the TruckThingTemplate Entity.   Open the TruckThingTemplate Entity and click the Events tab. Click Add.   Enter an Event name, such as PackageDelivered. For the DataShape, in the Search Data Shape field, filter and select PackageDataShape.   Events can be queued or fired based on updates done in Composer, property changes of a running application, or programmatically. Triggering or firing an Event can be done in Services utilizing JavaScript.       Step 4: Services Interface   To create Services within ThingWorx, go to the Services tab of the Entity that will house the Service. Our PTCDeliversBusinessLogic Thing will contain several Services for us.   Within the Services tab under the Entity Information section of a Thing, you will see built in functionality for all the ThingTemplates and ThingShapes the Thing inherits from. You will also see the section that allows you to create new Services.   Service Info Tab   This tab is for the general information of the Service. This is where you will add the Service name, description, category, whether the service is asynchronous, and whether the Service can be overridden.     Inputs Tab   This tab is for the parameters for the Service. For input parameters, a parameter can be required and default values are allowed.     Outputs Tab   This tab is for the return type of the Service. The resulting output of the Service can stretch from being nothing to user defined Entities.     Snippets Tab   This tab allows users to pick from reusable JavaScript code that is specific to ThingWorx. These snippets are grouped by resources used, functionality, and type. You are also provided a search bar to look for keywords or titles.   When a snippet is found, click the arrow. This will insert the JavaScript code into the Script section wherever the cursor is located. From here, edit the inserted snippet to work with the rest of your code. This section is often helpful in getting to know how to perform service calls and code for the ThingWorx environment.     Me/Entities Tab   A listing of all Properties, Events, and Services belonging to custom and provided Entities in ThingWorx. As with the Snippets section, clicking the blue and white arrow will insert the reusable code to wherever the cursor is located. After the code is inserted, update the code to your liking. This is often a great resource for buildiung up payload for Service calls.       Click here to view Part 2 of this guide.
View full tip
  Step 5: Additional Services   The Trend, Range, and Threshold Services are some of the Services the Statistical Monitoring ThingShape offers. Below is a table of additional included Services.   Links to guides for using services like these to build complete IoT applications are found in the next step.   Calculation Service Name Description Consecutive Points Based On a Range GetNumberOfConsecutivePointsBasedOnARange Calculate the number of points in the largest group of consecutive points meeting the range criteria. Consecutive Points Based On a Threshold GetNumberOfConsecutivePointsBeyondAThreshold Calculate the number of points in the largest group of consecutive points meeting the threshold criteria. Number of Points with Percentage Change Out of Range GetNumberOfPointsWithChangeRateOutOfRange Monitor for how many pairs of consecutive points in a series have a numerical percentage change outside the defined range. If the first value in a pair is 0, the pair is not considered.       Step 6: Next Steps   Congratulations!   In this guide, you've learned how to:   Create a Value Stream Create a Thing with the Statistical Monitoring Thing Shape Modify a Property to record values to the Value Stream Test built-in Services used in Statistical Monitoring   Learn More   We recommend the following resources to continue your learning experience:   Capability Guide Build Get Started with ThingWorx for IoT Build Build a Predictive Analytics Model Build Operationalize an Analytics Model   Additional Resources   If you have questions, issues, or need additional information, refer to:   Resource Link Community Developer Community Forum Support Descriptive Analytics Help Center    
View full tip
  Use the statistical calculation Thing Shape to execute useful analysis services   GUIDE CONCEPT   This project will introduce the Statistical Monitoring Thing Shape.   This guide demonstrates using Descriptive Analytics from ThingWorx Predictive Analytics to perform common statistical monitoring analysis on time-series data. You will learn to use the Statistical Monitoring ThingShape's built-in services to return the number of values in a data set that are: above or below a threshold, inside or outside a defined range, or following a trend that is: increasing, decreasing, or alternating.       YOU'LL LEARN HOW TO   Create a Thing with the Statistical Monitoring Thing Shape Create a Property and Value Stream to record changes in Property values Use Services that perform Standard Analytical Monitoring   NOTE: The estimated time to complete this guide is 30 minutes.     Step 1: Introduction   Descriptive analytics lets you perform common statistical monitoring calculations on changes in a Property value over time.   Output from monitoring Services can be used in IoT applications built with ThingWorx to provide trend and numerical limits feedback.   This guide introduces the Statistical Monitoring Thing Shape which adds Services to Things and Thing Templates for reporting Property values that are: above or below a threshold, inside or outside a defined range, or following a trend that is: increasing, decreasing, or alternating.     These Services analyze time-series data which is stored in ThingWorx Foundation as changes to a Property value logged to a Value Stream.   To ensure optimum performance, both a time range and a maximum number of value changes must be specified.     Step 2: Create Prerequisites   Statistical monitoring Services operate on Property values that change over time. To create this time series data, Property value changes are logged in a Value Stream. In this step, you will create a Value Stream, then a Thing with a Property that logs changes to that Value Stream.   Create Value Stream   Follow the steps below to create a value stream which you will later tie to a Thing.       1. On the ThingWorx Composer Browse tab, click Data Storage > Value Streams, then click the +New button         2. Select ValueStream and click OK.         3. In the Name field, enter scts_valuestream.         4. If Project is not already set, click the + in the Project text box and select the PTCDefaultProject.       5. At the top, click Save.   Create Thing   Now, you will create a Thing with a property and configure it to use the previously-created value stream. You will also apply the statistical monitoring Thing Shape to the Thing, which makes the built-in analytics services available.       1. On the ThingWorx Composer Browse tab, click MODELING > Things then click the + New button          2. In the Name field, enter scts_thing.       3. If Project is not already set, click the + in the Project text box and select the PTCDefaultProject.       4. In the Base Thing Template field, search for and select GenericThing.       5. In the Implemented Shapes field, search for and select StatisticalMonitoringThingShape.       6. In the Value Stream field, search for and select scts_valuestream.         7. At the top, click Save.    Add Property   You will now add a property to scts_thing.       1. At the top, click Properties and Alerts         2. Click + Add.       3. In the right slide-out's Name field, enter numbers.       4. Change the Base Type to NUMBER.       5. Click Persistent.       6. Click Logged.         7. Click Advanced Settings to open the bottom panel, in the Data Change Type drop-down select Always.         8. At the top-right, click the "check" icon for DONE.         9. At the top, click Save.     Step 3: Enter Sample Data   In this step, you will enter sample data that will illustrate the available Services.   This dataset: 2, 3, 4, 3, 2, 2, 1, 2, 1, 1, 2, 3, 3, 4, 3, 2 is shown graphed.      Enter Data   Perform the steps below to enter the above values into the Numbers Property.       1. Under the Value column and on the Numbers property row, click the "pencil" icon for Set value of property.         2. In the right-side slide-out, enter 2.         3. At the top-right, click the "check" icon for Done.       4. At the top, click Save.       5. Repeat steps 1-4 above, but changing the value each time as per the table below:   Value Change Count Entered Value 2nd 3 3rd 4 4th 3 5th 2 6th 2 7th 1 8th 2 9th 1 10th 1 11th 2 12th 3 13th 3 14th 4 15th 3 16th 2     Step 4: Test Monitoring Services   Now that value changes to the numbers Property have been logged in a Value Stream, you can use the built-in Services of the Statistical Monitoring Thing Shape to return how many of values meet different monitoring criteria.   Trend Service   You will test the built-in GetNumberOfConsecutivePointsFollowingATrend Service. This Service will return how many of points in the largest group of values following one of the three trend types INCREASING, DECREASING, and ALTERNATING.       1. Click the Service tab in the scts_thing Thing.       2. Click the GetNumberOfConsecutivePointsFollowingATrend Service.         3. In the PropertyName field enter numbers.       4. In the NumberOfPoints field enter 16 to check all entered points.       5. In the Trend field enter INCREASING to find the largest number of points with an increasing trend.       6. Click the green Execute button and note the Result property in the Output panel has the value 6         7. Repeat the steps above changing the Trend to DECREASING and note the result is 5.     Range Service   We'll now test the built-in GetNumberOfPointsBasedOnARange Service. This Service will return the number of points INSIDE or OUTSIDE a range of values specified by a MIN and MAX value.       1. Click the Close button in the Services tab in the scts_thing Thing.       2. Click the GetNumberOfPointsBasedOnARange Service.         3. In the PropertyName field enter numbers.       4. In the NumberOfPoints field enter 16 to check all entered points.       5. In the Min field enter 1.5 to set the lower end of the range criteria.       6. In the Max field enter 2.5 to set the upper end of the range criteria.       7. In the RegionOfInterest field enter INSIDE to find the largest number of points with an increasing trend.       8. Keep the default IncludeMin and IncludeMax set to True.       9. Click the green Execute button and note the Result property in the Output panel has the value 6.         10. Repeat the steps above changing the RegionOfInterest to OUTSIDEand note the result is 10.     Threshold Service   You will now test the built-in GetNumberOfPointsBeyondAThreshold Service. This Service will return the number of points ABOVE or BELOW a specified value.       1. Click the Services tab in the scts_thing Thing.       2. Click the GetNumberOfPointsBeyondAThreshold Service.         3. In the PropertyName field enter numbers.       4. In the NumberOfPoints field enter 16 to check all entered points.       5. In the Threshold field enter 3 to set the threshold criteria.       6. In the Direction field enter ABOVE to find the number of points above the threshold value.       7. Keep the default IncludeThreshold set to True.       8. Click the green Execute button and note the Result property in the Output panel has the value 7.       9. Repeat the steps above changing the Direction to BELOWand note the result is 14.       Click here to view Part 2 of this guide.
View full tip
    Step 4: Implement New Features   The SMT Assembly Line Data Model was built around a sample manufacturing facility that tracks critical data points, including diagnostic information for:   motherboards assembly machines assembly line performance   To make informed decisions based on the diagnostic and performance data, you can add features that will increase analytics capabilities.   In this optional step, we'll add a Line Chart to see the performance of any given assembly machine. Once completed, we can create Services that will be used to make calculations on the data we have generated from the assembly line.   For a final challenge, you can create a service that will compare data points to identify what works best in an assembly machine, a larger internal queue, or more placement heads.   Setup New Mashup   Create a Mashup that is Responsive and name it SMTTimeSeriesMashup. Click the Layout tab and add a column to the canvas. Drag and drop a List Widget onto the left column of the layout. Drag-and-drop a Line Chart Widget onto the other column of the layout.   Configure List Widget   Add the GetImplementingThingsWithData Service of the AssemblyMachineTemplate Thing Template as a data source in the Mashup. Ensure the checkbox for Execute on Load is checked. Drag-and-drop GetImplementingThingsWithData > Returned Data > All Data to the List Widget. On the Select Binding Target pop-up, select Data.   With the List widget selected, for the DisplayField property dropdown, select name. In the ValueField property dropdown, select name.   Configure Time Series Data Add the Dynamic QueryPropertyHistory Service of the AssemblyMachineTemplate Thing Template as a data source in the Mashup. Ensure the checkbox for Execute on Load is checked. Drag-and-drop QueryPropertyHistory > Returned Data > All Data to the Time Series Chart Widget. On the Select Binding Target pop-up, select Data. For the XAxisField property dropdown, select timestamp. For the DataField1 property dropdown, select IdleTime OR MotherboardsCompleted.   Connect Widgets   Drag-and-drop the GetImplementingThingsWithData > Returned Data > Selected Row(s) > name property to the EntityName parameter for the Dynamic AssemblyMachineTemplate data source. Select the GetImplementingThingsWithData service, then drag-and-drop the SelectedRowChanged event onto QueryPropertyHistory.   Click Save. After the save is complete, click View Mashup.   You are now able to see what the idle time is for each assemble machine over the span of its use.   Create Service   You can add JavaScript code to calculate the average completion time for the motherboard assembly.   Open the MotherboardTemplate ThingTemplate in Composer. Create a new Service titled CompletionTime. For the Output type, select Number. Enter the following code into the JavaScript window and save: var diff = 1; if(me.EndTime != null && me.StartTime != null){ diff = Math.abs(me.EndTime - me.StartTime); } //Seconds var result = Math.round(diff/1000); //Minutes //var result = Math.round((diff/1000)/60);   You can now calculate the time it takes for an individual motherboard to be completed. Create a service to be used with the GetCompletedMotherboards service (returns a list of all completed Raspberry Pi motherboards) with the SMTAssemblyLineTemplate ThingTemplate to calculate the average time for your assembly line to complete a motherboard. Finish this Service and add configure it to work with your new Mashup.       Step 5: Next Steps   Congratulations! You've successfully completed the ThingWorx Monitor an SMT Assembly Line Guide, learning how to use ThingWorx to create an application that provides real-time insight into connected assets.   Learn More   We recommend the following resources to continue your learning experience:    Capability      Guide Build Design Your Data Model Build Implement Services, Events, and Subscriptions Connect Java SDK Tutorial   Additional Resources   If you have questions, issues, or need additional information, refer to:    Resource       Link Community Developer Community Forum Support Java Edge SDK Help Center
View full tip
    Build a remote monitoring application with our developer toolkit for real-time insight into a simulated SMT assembly line.   Guide Concept   This project will introduce methods to creating your IoT application with the ability to analyze real time information as the goal. Following the steps in this guide, you will create an IoT application with the ThingWorx Java SDK that is based on the functionality of an SMT assembly line. We will teach you how to use the ThingWorx Java SDK, ThingWorx Composer, and the ThingWorx Mashup Builder to connect and build a fully functional IoT application running numerous queues and "moving parts".   You'll learn how to   Use ThingWorx Composer to build an application that uses simulated data Track diagnostics and performance in real-time   NOTE: The estimated time to complete this guide is 60 minutes       Step 1: Completed Example   Download the completed files for this tutorial attached here: ManagementApplication.zip.   In this tutorial, we walk through a real-world scenario for a Raspberry Pi assembly line. The ManagementApplication.zip file provided to you contains a completed example of an SMT application. Utilize this file to see a finished example and return to it as a reference if you become stuck creating your own fully flushed out application. Keep in mind, this download uses the exact names for Entities used in this tutorial. If you would like to import this example and also create Entities on your own, change the names of the Entities you create. The download contains the following Java classes that support this scenario:    Name                          Description Motherboard Abstract representation of a Thing inheriting from a MotherboardTemplate AssemblyLine Abstract representation of a Thing inheriting from a SMTAssemblyLineTemplate AssemblyMachine Abstract representation of a Thing inheriting from a AssemblyMachineTemplate   Once you complete the Java environment setup by installing a Java JDK, import the Entities/ThingWorxEntities.xml file into ThingWorx Composer. This file contains various Data Shapes, Mashups, Value Streams, Things, and Thing Templates necessary to support the application. The more important Entities are as follows:    Feature                                                 Entity Type          Description RaspberryPi 1 - 6 Thing Things that inherit from the motherboard template SolderPasteAssemblyMachine Thing A Thing that inherits from the assembly machine template PickPlaceAssemblyMachine Thing A Thing that inherits from the assembly machine template ReflowSolderAssemblyMachine Thing A Thing that inherits from the assembly machine template InspectionAssemblyMachine Thing A Thing that inherits from the assembly machine template RaspberryPiSMTAssemblyLine Thing A Thing that inherits from the assembly line template MotherboardTemplate ThingTemplate A template used for building motherboard devices AssemblyMachineTemplate ThingTemplate A template used to create the various types of SMT assembly machines SMTAssemblyLineTemplate ThingTemplate A template used to represent the entire assembly line and all devices in it Advisor User User created to be used with the Java SDK examples   NOTE: An Application Key is NOT included in the zip file you downloaded. You will need to create your Application Key and assign it to the Advisor user provided in the ThingWorxEntities.xml file, the Administrator (which is not recommended for production applications), or any user you've created. If you do not know how to create one or just need a refresher, visit the Create An Application Key guide, then come back to this guide.       Step 2: Run Application   The Java code provided in the download is pre-configured to run and connect to the entities in the ThingWorxEntities.xml file. Open the Executable/Script in a text editor, and edit the script with your host and port.  Operating System   File Name Mac/Linux Script.sh Windows Script.bat Update the <HOST> and <PORT> arguments to that of your ThingWorx Composer and update the Application Key argument to the one you have created. Use the examples in the file for assistance. NOTE: If you are using the hosted trial server, follow the HTTPS example and use 443 as the port. After updating the script that pertains to your operating system, double-click or run Script.sh (Linux, Mac) or Script.bat (Windows) to run the Java program. In your browser, proceed to the following URL (replace the host field with your ThingWorx Composer host) in order to see the application work:   <host>/Thingworx/Runtime/index.html#master=AssemblyLineMaster&mashup=RaspberryPiAssemblyLine   You can also open the RaspberryPiAssemblyLine Mashup in the Composer and click View Mashup.   You should be able to see rows of assembly machines with buttons. Click the Start button to start the assembly line. Click the Add Board button to add Raspberry Pi motherboards.   NOTE: The screen will not update and properties cannot be changed until the Java backend starts running. Ensure the connection is made before attempting to start the assembly line.   Functional Breakdown   At runtime, the Mashup executes the following functions:                Mashup Component        Function 1  Assembly Machines Selecting an assembly machine will provide you with information on the diagnostic status of that assembly machine and access to charts highlighting its performance. 2  Start Button Start up the assembly line and all assembly machines. 3  Shutdown Button Stop the assembly line and shutdown all assembly machines. Queues will not be purged. 4  Motherboard Add Dropdown A dropdown that shows the available motherboards that can be added to the assembly line. 5  Add Boards Button If a MotherboardTemplate Entity is selected in the Motherboard Add dropdown, that Raspberry Pi will be added to the assembly line. If no Motherboard is selected, this will add a new Raspberry Pi Thing to the assembly line. 6  Motherboard Image Show all motherboards currently inside the assembly line queue of Raspberry Pi. 7  Motherboard Pick Up Dropdown A dropdown that shows the motherboards in the assembly line that are not in a Complete Stage. 8  Add Pick Up Button If a MotherboardTemplate entity is selected in the Motherboard Pick Up dropdown, that Raspberry Pi will be removed from the assembly line and no longer be available. This can be done if a Raspberry Pi is slowing down the other queues. 9  Box Image Show all motherboards currently in the Complete Stage.         Step 3: Services and Java Implementation   JavaScript using ThingWorx Services   To support and run the application quickly, ThingWorx Services are utilized as much as possible. This ensures the speed and quality of the application are maintained while also ensuring code changes can be made quickly.   Opening and Starting Up   Open the RaspberryPiAssemblyLine Mashup by going to the URL provided in the last section. The machines will all be in a shut-down (RED) state. This is ensured by a call to the Shutdown service within the SMTAssemblyLineTemplate ThingTemplate. This method begins the process of resetting the Motherboards to their default states and AssemblyMachines to a shutdown state.   Click the Start button to call the StartUp Service. This call will notify the Java Code to turn the simulated machines on and begin waiting for any motherboards to be added to the queue.   INFO: The StartUp and Shutdown services call other services, some of which can be overrided. If you would like to make a change to the implementation, make the change in an implementation of the SMTAssemblyLineTemplate ThingTemplate. You can use RaspberryPiSMTAssemblyLine as an example.   New Raspberry Pi Names   The CommonServices Entity provides services that can be reused by other entities easily. The GenerateRandomThingName service is utilized to create a psuedo-random name for a new Motherboard. You can use this service to create names - names may start with “Raspberry,” but not necessarily - they are based on how you set the parameters.   Creating and Adding Boards   Select the Add Board button to make a call to the AddBoard service of the SMTAssemblyLineTemplate ThingTemplate. This service will call the CommonServices Thing to create a new name for the Motherboard, then begin the process of creating, enabling, and adding that Motherboard to the simulated devices in the Java code.   Pickup Boards   Select the Pickup Board button to make a call to the PickUpMotherboard service of the SMTAssemblyLineTemplate ThingTemplate. This service will remove a Motherboard from the assembly line, update the status to having been picked up, and ensure the simulated devices are updated with this new information.   Queue Processing   Add a Motherboard to the available queue of a machine when the Motherboard is ready to be worked on that machine. A machine will NOT know information about a Motherboard until that motherboard is ready for that stage of processing.   The Motherboard is then added to the internal queue of the machine based on the size of the internal queue of that machine. Being in the internal queue of a machine does not mean it is being worked on. The Motherboard is ONLY being worked on when the machine has added the Motherboard to it’s working queue. The size of the working queue is based on the machine’s placement heads. You can play with these values to increase or descrease queue performance.   INFO: The heads, speeds, and queue sizes of the machines are created in the RaspberryPiSMTAssemblyLine Thing. To change these configurations, update the AddStartingMachines service with new values or new machines.   Java Implementation using ThingWorx Java SDK   The Java code we created for the Assembly Line scenario creates a connection to the ThingWorx Composer as any ThingWorx SDK utility would. This code is used to allow extended functionality for the application, and mimics the behavior of devices or machines connected to the ThingWorx Composer.   Motherboard Class   The Motherboard Class contains several methods to ensure the location of the motherboard is known at all times. It also updates the status level from 0 to 100 as the motherboard is being assembled.   AssemblyMachine Class   The fields in the AssemblyMachine class ensure that the queues handled by the machine are working correctly. When an AssemblyMachine is created, it will load both the available queue and the internal queue if the machine will be the first stage in the assembly line (Soldering). If not a solder machine, the queues will be empty, as no device is pending its task. If the machine is on, it will continue to work based on its current status of the motherboards in its queue. When a machine is turned on or the current task is complete, the AssemblyMachine will re-evaluate the queues to optimize timing and decrease idle time.   Challenge: Find a way to improve the timing of the queue and reduce the idle time even more. Think of a problem an assembly line might have when machines are waiting on a prior machine to complete a task.   SMTAssemblyLine Class   The SMTAssemblyLine class handles the overall process and controls how motherboards are handled when entering and exiting the assembly line. There are also listeners to start up the assembly machines.   When a board is added to the queue of the assembly line, it will instantly be added to the available queue for a solder machine to begin processing. This is the only machine that will have immediate access to the motherboard. When a board is picked up from the assembly line queue, the status of the board is set to “PICKED UP”. That motherboard will be available later for processing by the assembly line.     Click here to view Part 2 of this guide.  
View full tip
  Learn how to create or update your system to be more secure   GUIDE CONCEPT   ThingWorx allows for a layer of security within your company or organization to be utilized for authentication and user management.   These concepts and steps will allow you to focus on development of your application while still allowing the ability to utilize the power of ThingWorx!   We will teach you how to enable and configure ThingWorx to perform your security needs.   YOU'LL LEARN HOW TO   Securing data and private information Use services, alerts, and subscriptions to handle processes without human interaction Handling group and organization permissions   NOTE:  The estimated time to complete this guide is 60 minutes.     Step 1: Examples and Strategy   Download the attached FoodIndustry.zip users and extract/import the contents. These are to be used as you work through this learning path. For the completed example, download FoodIndustryComplete.zip.   In this tutorial we continue with our real-world scenario for the Fizos food company. We already have our factory data, automated cooking processed for our sausage product lines, and an automated process for picking up and delivering goods. What we need now is to ensure our organization, security groups, and data is truly secure. Having security permissions at each level and each type of entity involved with our company enables us to have full control over every aspect.   Setting Up Organizations   Organizations are hierarchical structures that allow the user to assign visibility to entities in the ThingWorx Model. This model provides the top down structure from the highest level in an organization or department, to the lower levels of said entity. Each level within this structure also allows for users and groups to be added. This provides a greater level of customization to resources within the ThingWorx Composer.   We will not only create an organization that represents Fizos, but we will have membership in the organization to represent partners, external users, guests, etc. With this level of granularity, we have more control over what is happening at each level.   In the ThingWorx Composer, click the + New at the top of the screen.   Select Organization in the dropdown. Name your Organization Fizos.  Set the Project field (ie, PTCDefaultProject). Click Save   Select the Organization tab to see the hierarchy. Select Unit 1 in the middle of the canvas. Update the Name field to Company and save your changes.   Create Additional Organization Units   Now let's add a node for Employees, Interfaces(APIs), Partners, Customers, Guests, and other groups we might consider important.   Click the green + under the structure you would like to expand. Name your Organization unit Employees. Click Save. We won't add groups as yet. We will do that in the following sections.   Repeat the steps to create the full top level units. It should look similar to the following: We now have the starting structures for Fizos. Next, we will need to add security groups and more units.       Step 2: Creating Security Groups   In many IoT solutions there will be a large scale of users using the system. Because of this it doesn’t make sense to manually set the permissions of every user added to the system. This is why we created User Groups. User Groups provide a role-based approach to permissions and exist to give similar users the same permissions across multiple entities on the platform. User groups set permissions exactly the same way as users do (see next section), but you can simply add a user to a user group in order to set permissions at scale.   Creating a user group such as Fizos.External.SecurityGroup would allow you to have a group with no design time permissions, but allow run time permissions for specific aspects of your solution such as reading product pricing from a service. Similarly you could create a user group called Fizos.Developers.SecurityGroup (under the Employees unit) who would have design time and run time permissions to work on your solution.   Create Security Groups   In the ThingWorx Composer, click the + New at the top of the screen.   Select User Group in the dropdown. Name your group Fizos.Partners.SecurityGroup. Set the Project field with an existing Project (ie, PTCDefaultProject). Click Save.   Repeat these steps to create more user groups for each of the top level units we created in the last section (Customers, External, Interfaces, Employees). We can also add in some groups from the companies we listed as customers and partners earlier in this learning path. Below is an example of all the groups I created for this example:   NOTE: Individual user permissions will override group user permissions. In other words, if you initially add a user to a group so they inherit the permissions of the group, you will still be able to customize permissions for an individual user in that group as needed.   Default User Groups   The platform has a few user groups included in the platform by default. These are used to set up common roles that are often associated with using the platform and have built in permissions. These groups are not meant to be used when creating new applications or general permissions.   Step 3: Configuring Permissions   These permissions can be accessed on any entity created on the platform. All entities have permission control for both design time and run time. Permission Time Control Design time Controls what users are able to do with entities themselves while building the solution. Run time Controls what the users are able to do with the data for an entity when they use the solution. Permission Type Description Property Read Read property values Property Write Update property values Service Execute Execute Services in this Entity Event Execute Queue or fire Events in this Entity Event Subscribe Ability to subscribe to Events in this Entity Access Type Description Allow Allow the user's access to this feature. Deny Deny the user's access to this feature. Inherit Set the user's access to this feature based on permissions in Entities this Entity is based on or the configurations at a higher level.   Add Permissions for an Entity   Once an entity has been selected for editing, select the Permissions tab. Based on what you would like to edit, select the Design Time or Run Time tab.   The All Properties, Services, and Events section provides blanket security to all of these features for a group or user. The Property, Service, or Event Overrides section is used for any overrides that need to be made for specific features.   In the example blow, the User a.jones has the ability to read properties, fire events, and subscribe to events. The User does not have the ability to update a property or execute a Service. In the second section, a.jones is allowed to call the GetConfigurationTable Service (even though he was restricted from doing so in the other section).   To set a permission, filter and select a User/User Group. When their name is in the table, click the Permission Type you would like for this Entity. Default permissions are added to the User or User Group you filtered and selected. This will be full access permissions unless you've changed one of the fields.   Bulk Permissions Handling   When you would like to set the permissions to an entity in bulk, ie permissions for all Things, you can use the Collections option.   On the left hand side, click the lock. Click the Collections option under Permissions. Select the checkbox next to Things. Click Edit Permissions button. Now you will see the same interface you used above, except this time, it will be for all Things instead of a singular entity. You can use these permission settings to stop access to all of the entities you would not want an external user being able to see.   Bulk Permissions Reporting   When you would like to verify the permissions to an entity, ie permissions for all Fizos.Logistics, you can use the Access Report option.   On the left hand side, click the lock. Click the Access Report option under Permissions. Set the User or User Group. (in this case Fizos.VizosMeatMarket.SecurityGroup) Set the Entity (in this case Fizos.Logistics) Click Apply.     You will be able to see what this User Group has access to as it pertains to the Fizos.Logistics Entity. Try other Entities and User Groups.   Step 4: Next Steps   Congratulations! You've successfully completed the Securing Industry Data guide. In this guide, you learned how to:   Securing data and private information Use services, alerts, and subscriptions to handle processes without human interaction Handling group and organization permissions   If you wish to return to the learning path, click Complex and Automatic Food and Beverage Systems Learning Path   Learn More   We recommend the following resources to continue your learning experience: Capability Guide Build ThingWorx Solutions in Food Industry Build Design Your Data Model Build Implement Services, Events, and Subscriptions   Additional Resources   If you have questions, issues, or need additional information, refer to: Resource Link Community Developer Community Forum  
View full tip
Announcements