cancel
Showing results for 
Search instead for 
Did you mean: 
cancel
Showing results for 
Search instead for 
Did you mean: 

Community Tip - Help us improve the PTC Community by taking this short Community Survey! X

Optics

mzeftel
12-Amethyst

Optics

Optics

Learning by Computing, with Examples Using Maple, MathCad®, Matlab®, Mathematica®, and Maple®

by Karl Dieter Moeller

Springer, 2007, ISBN 978-0-387-26168-3, Hardcover

optics.jpg

  • Includes dynamic and interactive computer files
  • Matlab, Mathematica and Maple files have been added to the Mathcad files of the first edition
  • The three fold arrangement of text, applications and files makes the book suitable for "self-learning"
  • May be used in optical laboratories with faculty-student interaction

This new edition is intended for a one semester course in optics for juniors and seniors in science and engineering; it uses scripts from Maple, MathCad, Mathematica, and MATLAB provide a simulated laboratory where students can learn by exploration and discovery instead of passive absorption.

The text covers all the standard topics of a traditional optics course, including: geometrical optics and aberration, interference and diffraction, coherence, Maxwell's equations, wave guides and propagating modes, blackbody radiation, atomic emission and lasers, optical properties of materials, Fourier transforms and FT spectroscopy, image formation, and holography. It contains step by step derivations of all basic formulas in geometrical, wave and Fourier optics.

The basic text is supplemented by over 170 files in Maple, MathCad, Mathematica, and MATLAB (many of which are in the text; al scripts are included on the CD), each suggesting programs to solve a particular problem, and each linked to a topic in or application of optics. The computer files are dynamic, allowing the reader to see instantly the effects of changing parameters in the equations. Students are thus encouraged to ask "What if?" questions to asses the physical implications of the formulas. The discussion of Fourier transforms in particular is enhanced by the availability of numerical methods.

The book is written for the study of particular projects but can easily be adapted to other situations. The threefold arrangement of text, applications, and files makes the book suitable for "self-learning" by scientists or engineers who would like to refresh their knowledge of optics.In the classroom, the Maple, MathCad, Mathematica, and MATLAB scripts can serve as starting points for homework; outside, they can help find solutions to complex problems in engineering applications.

1 REPLY 1
VladimirN
24-Ruby II
(To:mzeftel)

Files for the following books can be found by ISBN number on the "Springer Extra Materials" website (http://extras.springer.com/ 😞

1. "Optics. Learning by Computing, with Examples Using Mathcad, Matlab, Mathematica, and Maple", by K. D. Möller, 2007, ISBN 978-0-387-26168-3: http://extras.springer.com/Zip/2007/978-0-387-26168-3.zip

Pic_1.png

2. "Optics. Learning by Computing, with Examples Using Mathcad", by K. D. Möller, 2003, ISBN 978-1-4684-9276-7: http://extras.springer.com/Zip/2003/978-1-4684-9276-7.zip

Pic_2.png

3. "Cours d’optique. Simulations et exercices résolus avec Maple, Matlab, Mathematica, Mathcad", by Karl D. Möller, Claude Bélorgoet, 2007, ISBN 978-2-287-25199-3: http://extras.springer.com/Zip/2007/978-2-287-25199-3.zip

Announcements

Top Tags