cancel
Showing results for 
Search instead for 
Did you mean: 
cancel
Showing results for 
Search instead for 
Did you mean: 

Community Tip - Learn all about the Community Ranking System, a fun gamification element of the PTC Community. X

IoT Tips

Sort by:
This video continues Module 6: Predictive Models & Model Validation of the ThingWorx Analytics Training videos. It describes the remaining machine learning algorithms used by ThingWorx Analytics to build predictive models that weren't covered in Part 1. In addition, this video describes the different kinds of ensembles you can build that utilize multiple algorithms. 
View full tip
This video begins Module 6: Predictive Models & Model Validation of the ThingWorx Analytics Training videos. It gives examples of different types of goal variables. It also discusses data considerations in predictive modeling, It begins describing the machine learning algorithms used by ThingWorx Analytics to build predictive models. 
View full tip
This video concludes Module 5: Descriptive Analytics of the ThingWorx Analytics Training videos. It covers signals, profiles, and clusters, and how these forms of descriptive analytics provide crucial insight into your data.
View full tip
This video begins Module 5: Descriptive Analytics of the ThingWorx Analytics Training videos. It covers signals, profiles, and clusters, and how these forms of descriptive analytics provide crucial insight into your data.
View full tip
This video concludes Module 4: Data Transformation & Feature Engineering of the ThingWorx Analytics Training videos. It covers Descriptive Services and Derived Properties, and how they can be leveraged to create helpful alerts and make data transformation easier. 
View full tip
This video begins Module 4: Data Transformation & Feature Engineering of the ThingWorx Analytics Training videos. It describes what data transformation is, and how feature engineering can improve machine learning models. You will learn about independent and dependent variables in your data, and how an "analytics ready view" looks for use with ThingWorx Analytics.
View full tip
This video concludes Module 3: Data Profiling of the ThingWorx Analytics Training videos. It shows you a few examples of questions that should be asked of a subject-matter expert (SME) to better understand the information contained in a dataset. Using answers to these questions, you will  use a tool such as Microsoft Excel to modify a given dataset, and prepare it for future exercises in this course.
View full tip
This video continues Module 3: Data Profiling of the ThingWorx Analytics Training videos. It describes metadata, and how it is used to ensure that your data is handled appropriately when running Signals, Profiles, Training, Scoring, and other jobs inside ThingWorx Analytics.
View full tip
This video begins Module 3: Data Profiling of the ThingWorx Analytics Training videos. It describes the process of examining your data to make sure that it is suitable for the use case you would like to explore.
View full tip
This video is Module 2: Use Case Discussion of the ThingWorx Analytics Training videos. It covers what a use case is, and what a successful use case requires. It details a few examples that have been explored using ThingWorx Analytics. 
View full tip
This video continues Module 1: ThingWorx Analytics Overview of the ThingWorx Analytics Training videos. It covers some of the functionality of the ThingWorx platform, as well as ThingWorx Analytics capabilities.
View full tip
This video begins Module 1: ThingWorx Analytics Overview of the ThingWorx Analytics Training videos. It covers some of the functionality of the ThingWorx platform, as well as ThingWorx Analytics capabilities.
View full tip
  Connect   Connect Your Data to ThingWorx In the world of IoT application development, connectivity refers to the infrastructure and protocols which connect devices to the cloud or network. Edge devices handle the interface between the physical world and the cloud. ThingWorx provides you with several different tools for connecting to the ThingWorx platform. Your decision on which connectivity method to pick will be dependent on your individual use case.   Learning Paths Connect and Configure Industrial Devices and Systems   Featured Guides Install ThingWorx Kepware Server Connect to an Azure OPC UA Server   REST API Use the REST API to Connect Low-Capability Devices to ThingWorx   Using the ThingWorx REST API is an easy way for low-capability devices to connect with the ThingWorx platform and push data to the platform. Any edge device that can make an HTTP POST can read and update properties or execute services on the ThingWorx platform.   Choose a Connectivity Method Use REST API to Access ThingWorx Connect an Arduino Developer Board   Edge SDKs Connect natively to ThingWorx using an AlwaysOn protocol SDK.  Secure, embeddable, and easily deployable communications designed for connecting sensors, devices and equipment across any network topology and any communication scenario.   SDKs are available for Java, C, .net and allow you to connect your devices to ThingWorx with the AlwaysOn protocol. Using the Edge SDKs will give you all the flexibility you need to meet your application's requirements and build robust, secure, full-featured edge integrations and gateways for any platform.   ThingWorx Edge SDKs SDK Reference C SDK Tutorial Java SDK Tutorial   Edge Microserver The Edge Microserver proxies connections via AlwaysOn   Connect your devices to the ThingWorx platform with the Edge MicroServer, a pre-built application that enables devices incapable of making TLS connections to securely interact with the platform.   Connect Raspberry Pi to ThingWorx Choose a Connectivity Method   Kepware Server Access data from industrial machine controllers   ThingWorx Kepware Server with 150+ industrial protocol drivers allows you to easily connect to different types of industrial equipment. The interface provides real-time, bi-directional industrial controls data to the ThingWorx Platform via the AlwaysOn protocol.   Install ThingWorx Kepware Server   Device Cloud Connectors Connect devices with the adapter of your choice and integrate with ThingWorx to build scalable IoT applications.   Connect Azure IoT Devices     Analyze   Analyze and Visualize IoT Data The AI and Machine Learning technologies used in ThingWorx Analytics automate much of the complex analytical processes involved in creating data-driven insights for your IIoT application. Simulate behavior of physical products in the digital world, use predictive analytic algorithms to find patterns in your business data and generate a prediction model, or build a real-time anomaly detection model by monitoring for data points that fall outside of an expected range.   Learning Paths Monitor Factory Supplies and Consumables Design and Implement Data Models to Enable Predictive Analytics   Featured Guides Operationalize an Analytics Model Build a Predictive Analytics Model   Perform Analytical Calculations Embed analytics capabilities into your industrial IoT applications in order to monitor real-time data, predict future events and conditions, and optimize performance of devices and organizations.   Operationalize an Analytics Model Build a Predictive Analytics Model Monitor an SMT Assembly Line Statistical Monitoring with Descriptive Analytics Perform Statistical Calculations with Descriptive Analytics     Build   Rapid, Model-based Application Development Build your industrial IoT application using ThingWorx’s drag-and-drop GUI development environment, model-based development platform. Using the ThingModel to describe assets, processes, and organizational elements and how they relate to each other. Define the functional behavior, add business logic, and extend your application with pre-built plugins. With a properly-constructed framework, your application will be scalable, flexible and more secure.   Learning Paths Medical Device Service Design and Implement Data Models to Enable Predictive Analytics   Featured Guides Get Started with ThingWorx for IoT Data Model Introduction   Build the Data Model Define the properties, services, and events of Things you want to expose to your application developers. The ThingWorx Data Model is a logical representation of the physical devices, systems, and people that interact with your application.   Data Model Introduction Monitor an SMT Assembly Line Data Model Implementation Design Your Data Model   Leverage the Data Model Leverage your data model using events subscriptions, and custom business logic.   Monitor an SMT Assembly Line Methods for Data Storage Bind Data to Widgets Implement Services, Events, and Subscriptions Create Custom Business Logic Application Development Tips & Tricks Create Session Parameters   Extend the Platform Capabilities Take advantage of extensions from partners and third-parties to add new functionality into your system in a seamless manner. Extensions can be service (function/method) libraries, connector templates, widgets, and more.   Create An Extension Create A Mashup Widget Extension Create An Authentication Extension     Manage   ThingWorx Platform Management Efficiently manage your assets with visibility and control over your IoT solution. Install, configure and troubleshoot your application, while monitoring performance and communication with devices. Offering a comprehensive set of tools and features, ThingWorx enables remote access, file transfers, software upgrades, logging, debugging, and more.   Learning Paths Getting Started on the ThingWorx Platform Using an Allen-Bradley PLC with ThingWorx   Featured Guides Deploy an Application   Manage Your Platform Compare Persistence Providers   Manage Your Applications Operationalize application updates, OS upgrades, patches and documentation.   Deploy an Application Compare Persistence Providers     Experience   Design Engaging Experiences Use the industry’s first purpose built IoT application development environment to design engaging experiences for web and mobile applications. Designed to reduce the time, cost, and risk required to build new innovative IoT applications, this layer has two distinct functions: build-time and run-time. Build-time encompasses the technology to create the things in your Industrial IoT solution while Run-time includes the operational permissions to execute and manage those things.   Learning Paths Getting Started on the ThingWorx Platform Customize UI and Display Options to Deploy Applications   Features Guides Create Your Application UI   Application Layout (UI)  Utilize the ThingWorx Mashup Builder tools to design and create engaging IoT applications.   Define Your UI Style Add Style to Your UI with CSS Effective UI Implementation   Charts & Graphs Bring your IoT data to life with dynamic charts and graphs.   How to Display Data in Charts   Reusable Components Leverage the ThingWorx widget library to create a robust user experience and enhance your application capabilities.   Object-Oriented UI Design Tips Display Geolocation Data Using Google Maps Organize Your UI with the Collection Widget     Secure   Securely Collect and Process Data ThingWorx is secure by design and offers multiple authentication options to increase the security of your IoT application. From TLS-encrypted communication and role-based access controls to the distribution of security patches, ThingWorx integrates a range of security features that you can leverage in your development process.   Learning Paths Getting Started on the ThingWorx Platform   Featured Guides Configure Permissions   IoT Application Security Authenticate devices on our platform. ThingWorx handles data transformation, data persistence, and business logic so you can focus on developing your application.   Configure Permissions Enabling LDAP Authentication in ThingWorx Create An Authentication Extension Create An Application Key
View full tip
    Step 4: Use Collection Widget   At this point, you have created the following Entities:   A Thing with data stored in an Info Table Property (columns defined by a Data Shape)   A base Mashup (containing Gauge, LED Display, and Text Field Widgets) that displays an individual row of data from the table   Now, you need to use the Collection Widget to display this Mashup for every row of data in the table.   On the ThingWorx Composer Browse tab, click Visualization > Mashups, + New              2. Keep the default of Responsive with no Templates chosen, and click OK.        3. In the Name field, enter cwht_collection_mashup              4. If Project is not already set, search for and select PTCDefaultProject.        5, Click Save.        6. Click Design               7.  On the top-left Layout tab, ensure that the default of Positioning > Responsive is selected.  You want the "base" Mashup to generally be Static, while the "collection" Mashup should be Responsive to allow it to grow to an appropriate size.         8. From the top-left Widgets tab, drag-and-drop a Collection Widget onto the central Canvas area.       Access Mashup Data Service   Click the + icon at the top-right to open the Add Data pop-up menu.               2. In the Entity Filter field, search for and select cwht_thing.         3. In the Services Filter field, enter getproperties.         4. Click the right arrow beside GetProperties to add the GetProperties Service to the right-side of the pop-up menu.         5. Click the Execute on Load checkbox             6. Click Done to close the pop-up menu. The GetProperties Service of the cwht_thing is now shown on the right under the Data tab.         7. On the top-right, expand GetProperties.           8. Drag-and-drop GetProperties > infotable_property onto the Collection Widget            9. On the Select Binding Target pop-up, click Data     Configure Properties   In the Collection Widget's Filter Properties field in the bottom-left, enter mashup. This will limit the displayed Properties of the Collection Widget (in the bottom-left section) to only those containing the word "mashup".            2.  For the Mashup Property, search for and select cwht_base_mashup.  Choosing "cwht_base_mashup" lets the Collection Widget know which base Mashup to repeat in every Cell               3. In the MashupHeight field, enter 250 and hit the Tab keyboard key to apply the change. This Property changes the height of each Cell of the Collection Widget. Ensure the height is large enough to fit all of the Widgets.          4. In the MashupWidth field, enter 500 and hit the Tab keyboard key.  This Property changes the width of each Cell of the Collection Widget. Ensure the is large enough to fit all of the Widgets.            5. In the Filter Properties field, enter uidfield.          6. In the UIDField drop-down, select first_number.  The UIDField sets the unique identifier for the Collection Widget.            7. In the Filter Properties field, enter sort.          8. In the SortField drop-down, select first_number.  SortField determines which sub-section of the Infotable to use for sorting purposes.          9. Check the SortAscending checkbox            10. n the Filter Properties field, enter mashupprop           11. Click Add, copy-and-paste the following JSON into the MashupPropertyBinding Property, replacing the existing curly braces {}, then click Done.   The point of this JSON is to relate the columns of the Infotable Property to the Mashup Parameters that we previously defined in the base Mashup. { "first_number" : "first_number", "second_number" : "second_number", "third_number" : "third_number" }                12. Click Save, then View Mashup.     Notice that the base Mashup we previously created has been replicated multiple times, corresponding to each row of the Info Table Property.   As an extension exercise, go back into cwht_thing and add another row of data. Refresh the Collection Widget Mashup to see another instantiation of the base Mashup automatically added to display that new row.   A Mashup utilizing the Collection Widget dynamically expands to accommodate both the user and the available data.   Step 5: Next Steps   Congratulations! You've successfully completed the Organize Your UI guide, and learned how to: Create a Datashape to define columns of a table Create a Thing with an Info Table Property Create a base Mashup to display data Utilize a Collection Widget to display data from multiple rows of a table Learn More   We recommend the following resources to continue your learning experience: Capability Guide Build Application Development Tips & Tricks Experience ThingWorx Application Development Reference   Additional Resources   If you have questions, issues, or need additional information, refer to:   Resource  Link Community Developer Community Forum Support Collection Widget Help Center  
View full tip
    Select the right database to use with your ThingWorx installation.   Guide Concept   When you develop an application with ThingWorx, you must save the configuration data that defines the data model and the user interface. You also need to store the dynamic data that is generated by devices at runtime (such as temperature or location).   ThingWorx uses the term Persistence Provider to refer to any type of service that saves application data, usually it is a database.   When your application moves into production you must choose and configure a Persistence Provider that meets your requirements.     You'll learn how to   Pros and cons of different databases that can be used as persistence providers for ThingWorx The database best suited to certain applications Where to find detailed information about the Persistence Providers   NOTE: The estimated time to complete this guide is 30 minutes       Step 1: Persistence Provider Options   There are many factors that will influence your decision for which Persistence Provider to use with your ThingWorx instance. On this page we compare and contrast different methods and provide examples for where each one is a natural fit.    Persistence Provider             Typical Use H2 Bundled with ThingWorx server for proof-of-concept trials PostgreSQL Standard production database for use up to 15,000 Property writes per second InfluxDB High volume data ingestion (>25,000 property writes per second) into one database Microsoft SQL Server SQL database available from Microsoft in a dozen different editions Azure SQL Server SQL database managed by Microsoft in Azure   When ThingWorx is installed with default configurations, it uses the embedded H2 database as its Persistence Provider. This configuration is suitable for evaluations and proof-of-concept applications with a limited number of Things. Before an application is used in production, you must provision a more capable persistence provider. The available options for Persistence Provider are summarized below.   H2   Pros                            Cons                     Typical Use Case                                DBA Skills       Required Cost No Database set-up required Not for use in production Start testing ThingWorx with no additional configuration None No additional cost   H2 is an open source, full-featured relational database that is embedded in the ThingWorx Foundation server. No additional database set-up is required before developing a proof-of-concept application with ThingWorx. Using H2 should provide satisfactory performance for applications with less than 1000 Things.   WARNING: Due to the inability to back-up and recover the database, H2 should never be used in production.   PostgreSQL    Pros                    Cons                        Typical Use Case                     DBA Skills               Required Cost Widely used database Requires some configuration Workhorse database appropriate for many applications Basic SQL skills No additional cost   PostgreSQL is the default choice for ThingWorx cloud hosting servers. It complies with many database standards and is open source with no extra license fee required. It can be configured for high availability to minimize the chance of down-time or data loss. It has been tested up to 15,000 property writes per second and depending on other factors may give satisfactory performance up to 25,000 writes per second.   Learn more about using PostgreSQL:   Using PostgreSQL as the Persistence Provider ThingWorx PostgreSQL Administrator's Guide   InfluxDB   Pros                      Cons                            Typical Use Case            DBA Skills Required           License Cost Handle high volume data ingestion InfluxDB is not supported as a Property provider Application requiring >25,000 Property writes/second Professional services likely required Multi-node requires license fee   If your system intensively deals with time series data and your implementation heavily depends on Value Streams or Streams for persistence/retrieval of data, we recommend using InfluxDB as the Persistence Provider in ThingWorx. InfluxDB is a high-performance data store written specifically for time series data and is a good choice when high volume data ingestion of more than 25,000 property writes per second must be saved into one database.   Learn more about InfluxDB:   Using InfluxDB as the Persistence Provider   Microsoft SQL Server   Pros                     Cons                       Typical Use Case                    DBA Skills                      Required Cost Available in multiple editions Only runs on Windows Data stored in Microsoft SQL Server Configure settings License fee required   More than a dozen different versions of Microsoft SQL Server are used by customers for workloads ranging from small single-machine applications to large enterprise applications. Connecting ThingWorx to an existing Microsoft SQL Server can make that data readily available to use in ThingWorx Mashups.   Learn more about using Microsoft SQL Server:   Using Microsoft SQL Server as the Persistence Provider Getting Started with MS SQL and ThingWorx   Azure SQL Server   Pros                                    Cons                        Typical Use Case              DBA Skills         Required Cost Cloud deployment and scaling No on-premise option Data stored in Microsoft SQL Server Configure settings Subscription required   Fully managed database service operated and updated by Microsoft Learn more about using Microsoft SQL Server:   Using Azure SQL Database as the Persistence Provider   Step 2: Next Steps   Congratulations! You've successfully completed the Compare Persistence Providers guide. At this point, you can make an educated decision regarding which Persistence Provider is best suited for your ThingWorx application development environment.   Learn More   We recommend the following resources to continue your learning experience:    Capability    Guide Connect ThingWorx Application Development Reference Build Get Started with ThingWorx for IoT Experience Create Your Application UI   Additional Resources   If you have questions, issues, or need additional information, refer to:   Resource        Link Community Developer Community Forum Support Microsoft SQL Technical Support Support Persistence Provider Help Center
View full tip
  Step 8: Troubleshooting   Issue                                       Resolution CSS does not seem to be applied to the Mashup. Verify your CSS is included in the runtime TWX CSS. Clear Browser cache if your CSS is not merged to the combined TWX CSS. (under debug mode: Hold refresh button->Clear Cache). TWX fails to import the extension. If the extension is already installed, but you made recent changes, you need to bump the Version number in the metadata.xml. Recent CSS changes are ignored. Clear browser cache if your CSS file has changed recently.     Step 9: Next Steps   Congratulations! You've successfully completed the Add Style to Your UI with CSS guide, and learned how to:   Create custom CSS classes using the integrated CSS editor Bind CSS classes to a Mashup and to individual Widgets Use Media queries to dynamically apply styling   Learn More   We recommend the following resources to continue your learning experience:    Capability     Guide Build Application Development Tips & Tricks Experience ThingWorx Application Development Reference   Additional Resources   If you have questions, issues, or need additional information, refer to:  Resource       Link Community Developer Community Forum Support Help Center
View full tip
    Learn how ThingWorx can be deployed in a clustered environment   Guide Concept   Web applications have increased reliability and performance by using a "pool" of independent servers called a cluster. It is important to understand what benefits the different methods of clustering provide, and what the different methods can mean for your system.   ThingWorx Foundation can be deployed in either an Active-Active clustered architecture or a standard single-server deployment. This guide describes the benefits of an Active-Active clustered architecture over other clustering methods and provides a system administrator with resources to navigate the different architecture options.     You'll learn how to   Overview of different server clustering techniques Pros and cons of the different clustering configurations that can be used with ThingWorx Where to find detailed information about ThingWorx server clustering   NOTE: This guide's content aligns with ThingWorx 9.3. The estimated time to complete this guide is 30 minutes       Step 1: Clustering Overview   Clustering is the most common technique used by web applications to achieve high availability. By provisioning redundant software and hardware, clustering software can automatically handle failures and immediately make the application available on the standby system without requiring administrative intervention.   Depending on the business requirements for High Availability, clusters can be configured in any of the following configurations:    Cluster Configuration           Description                                                                                       Recovery Time Cold Standby Software is installed and configured on a back-up server when the primary system fails. Hours Active-Passive A second server is provisioned with a duplicate of all software components and is started in case of failure of the primary server. Minutes Hot Standby Duplicate software is installed and running on both primary and secondary servers. The secondary server does not process any data when the primary server is functional. Seconds Active-Active Both the primary and one or more secondary servers are active and processing data in parallel. Data is continuously replicated across all running servers. Instantaneous   Cold Standby   ThingWorx installed in a default single-server configuration is not inherently a cold standby system. Periodic system backups can be used to bring the system back online in the event of system failure.   Note: A cold standby configuration does not constitute high availability   Active-Passive   High availability can be achieved with an Active-Passive configuration.     One “active” ThingWorx server performs all processing and maintains the live connections to other systems such as databases and connected assets. Meanwhile, in parallel, there is a second “passive” ThingWorx server that is a mirror image and regularly updated with data but does not maintain active connections to any of the other systems.   If the “active” ThingWorx server fails, the “passive” ThingWorx server is made the primary server, but this can take a few minutes to establish connections to the other systems.   Active-Active   ThingWorx uses Active-Active architecture for achieving high availability.   Active-Active configuration differs from Active-Passive in that all the ThingWorx servers in the cluster are “active.” Not only is data mirrored across all ThingWorx servers, but also all servers maintain live connections with the other systems. This way, if any of the ThingWorx servers fail, the other ThingWorx servers take over instantaneously with no recovery time.   Because all ThingWorx servers are active and processing data in parallel, the cluster can handle higher loads than the single running server in an Active-Passive configuration. An Active-Active deployment leverages the investment made in multiple servers by providing not only greater reliabilility, but also giving the ability to handle demand spikes. When server utilizations exceed 50%, customers can easily scale their deployment by adding more ThingWorx servers to the cluster - horizontally scaling. This also avoids the limitations of vertically scaling - provisioning a single server with more and more CPU cores and RAM.   Benefits of Active-Active Clustering   Higher Availability You can avoid single points of failure and configure the ThingWorx Foundation platform in an Active-Active cluster mode to achieve the highest availability for your IIoT systems and applications. Increased Scalability You can horizontally scale from one to many ThingWorx servers to easily manage large amounts of your IIoT data at scale more smoothly than ever before.     Step 2: ThingWorx Active-Active Architecture   An Active-Active Cluster configuration introduce two software components and two components that are optional in a standard ThingWorx architecture are now required.   The reference architecture diagram below shows ThingWorx deployed with multiple ThingWorx Foundation servers configured in an Active-Active Cluster deployment.   Note: This is an example of a possible ThingWorx deployment. The business requirements of an application will determine the specific configuration in an Active-Active clustered environment.   Load balancer was optional in a single-server deployment, is now a requirement. ThingWorx Connection Server is also now required. Apache ZooKeeper is used to coordinate multiple running servers. Apache Ignite is used to share current state between servers.  Component       Description                                                                                          Provider Load Balancer Distributes network traffic to servers ready to accept it. In Active-Active Cluster configuration, the load balancer is used to direct WebSocket based traffic to the ThingWorx Connection Services while user requests (http/https) traffic is directly distributed to the ThingWorx Foundation servers. Example load balancers: HA Proxy Azure Application Gateway AWS ALB See the ThingWorx High Availability Documentation for details. ThingWorx Connection Server Handles AlwaysOn connections with devices and multiplexes all messages over one connection to ThingWorx Foundation Servers. In an Active-Active configuration, it handles all WebSocket based traffic to and from the ThingWorx Foundation Server. PTC Apache ZooKeeper A centralized service for maintaining configuration information, naming, providing distributed synchronization, and providing group services. It is a coordination service for distributed application that enables synchronization across a cluster. Apache Software Foundation Apache Ignite Used by ThingWorx Foundation Servers to share state. It may be embedded with each ThingWorx instance or can be run as a standalone cluster for larger scale. Apache Software Foundation Data and Model Provider Provides persistent storage of application data. All ThingWorx 9 supported database options: PostgreSQL Microsoft SQL Server Microsoft Azure SQL InfluxDB (only available as a data provider)         Step 3: Next Steps   Congratulations! You've successfully completed the Active-Active Clustering with ThingWorx guide.   At this point, you can make an educated decision regarding which clustering architecture is best suited for your ThingWorx application. Whether you already use ThingWorx or pursuing ThingWorx, its important to understand how Active-Active clustering is achieved and whether it is right for your system.   Learn More   We recommend the following resources to continue your learning experience:       Capability Guide Manage ThingWorx Application Development Reference Build Get Started with ThingWorx for IoT Experience Create Your Application UI   Additional Resources   To learn more about Active-Active Clustering and general ThingWorx deployment guidelines, there are ample resources available through our Help Center and PTC Community:   Resource Link Community Developer Community Forum Support ThingWorx Platform Sizing Guide Support ThingWorx Deployment Architecture Guide Support ThingWorx High Availability Documentation
View full tip
  Basic Mashup Widgets Guide Part 3   Step 5: Gauge   A Gauge is best for displaying a quickly readable approximate value. Select the Widgets tab in the uppper panel of the left dock, then enter gauge inside the Filter field in the top left. Drag-and-drop the Gauge widget onto the bottom-center container. We will now bind the Slider to the Gauge. Click the Slider Widget in the top-right Container. Click the drop-down arrow on the left side of the Slider widget. Click and drag the Value property listed in the Slider drop-down onto the Gauge widget.   Click the # Data property that is available from the Select Binding Target pop-up.   Click Save to save your Mashup. Click View Mashup then adjust the slider to the left to see the changing value shown on the widget. Many properties are available that give control over how the Gauge widget will be displayed. Many properties can be changed both statically when designing the mashup, and dynamically in response to changes in property values.   Bindable Name Type Default Direction Description Data Number None Input Value displayed by gauge indicator MinValue Number 0 Input Value used for lowest gauge display MaxValue Number 100 Input Value used for highest gauge display Legend String None Input Text Shown under Gauge ToolTipField String None Input Text shown when mouse hovers over gauge Visible Boolean True Input Widget is visible if set to true   Static Name Type Default Description DisplayName String None Name used for widget in user-facing interactions Description String None Description used for widget in user-facing interactions MinorTicks Number 4 Number of minor ticks per interval TickLength Number 8 Tick mark length MinorTickLength Number 4 Minor tick length ValueDisplayMode None/Top/Bottom/Inside None Location on gauge where numeric value is shown. LabelDigits Number 3 Number of digits for label display LabelDecimals Number 0 Number of decimals for label display ValueDigits Number 3 Number of digits for value display ValueDecimals Number 0 Number of decimals for value display LegendDisplayMode None/Top/Bottom None Location on gauge where Legend is displayed ReferenceAngle Number 225 Angle that controls the gauge orientation (degrees) Aperture Number 270 Angle that controls the gauge size (degrees) NeedleDiameter Number 10 Diameter of the gauge needle (pixels) CenterDiameter Number 20 Diameter of the gauge center (pixels) GaugeBorder Number 20 Width of the outside gauge border (pixels)     Step 6: Grid Advanced   A Grid Advanced widget is used to display data to a mashup user in a table Select the Widgets tab in the uppper panel of the left dock, then enter grid inside the Filter field in the top-left. Drag-and-drop the Grid Advanced widget onto the top-left container on your Mashup that already has the Button Widget. Add Data Source   Before you can customize the Grid display, you must first bind an Infotable to the Grid's Data property. In this example we will use the QueryImplementingThingsWithData Service to bind a group of Things created with the same Template. We have created a file with sample entities for this exercise. Download the attached demoTractors.xml. Click Import/Export in the lower left of Composer, then select Import   Click From File in the drop down, then Browse. Browse to the demoTractors.xml file and click Open. Click Import, then Close after entities are successfully imported. Click the green + button in the Data tab on the right side of the Mashup Builder window. In the Select Entity panel click Thing Templates from the drop down.   Scroll through the available Thing Templates and select the Connected Tractors Template that was imported. Enter query into the filter text box then click the arrow to the right of QueryImplementingThingsWithData. Click the Execute on Load check box, this option will execute the QueryImplementingThingsWithData Service when the Mashup is loaded.   Click Done. Click the arrow icon to expand QueryImplementingThingsWithDate, and Returned Data. Click and drag All Data onto the Grid widget.   Click Data in the Select Binding Target pop-up.   NOTE: The Grid widget now shows Property names in the column headers.  15. Click the drop down in the upper left of the Grid widget, then click Configure Grid Columns to show the Configure Grid Columns pop-up. 16. Uncheck the check box next to the property names in the left-hand panel that you don't want shown in the Grid. NOTE: You can drag and drop the property names to change the display order. You can customize Column names and formatting by making changes in this window. 17. Click Done when you are satisfied with the column formatting options. 18. Click Save to save your Mashup. 19. Click View Mashup.         In addition to properties that give control over how a Grid widget will be displayed, the scroll position of a Grid can be read in the CurrentScrollTop property and can be set with the ScrollTop property.   Bindable Name Type Default Direction Description Data Infotable None Input The data that is displayed in the Grid EditedTable Infotable None Output The data that is in the Grid after a user edit CurrentScrollTop Number 0 Output How far down (in pixels from the top of the full data list) the Grid is currently scrolled ScrollTop Number 0 Input How far down (in pixels from the top of the full data list) the Grid will be scrolled. Visible boolean true Input Widget is visible if set to true   Static Name Type Default Description DisplayName String None Name used for widget in user facing interactions Description String None Description used for widget in user facing interactions RowFormat StateDefinition None Specify a State Formatter to control display of the data in each grid row AlignHeader Boolean False When enabled, align column headers with their data MultiSelect Boolean False allow multiple items to be selected IsEditable Boolean False Allow grid value editing in Configure Grid Columns pop-up AutoSelectFirstRow Boolean False Automatically select the first row upon initial loading of data. CellTextWrapping Boolean False Enable or disable text wrapping within the grid cells. TabSequence Number 0 Tab sequence index   Widget Events Name Description DoubleClicked Fired when user double clicks on the grid   Step 7: Next Steps   Congratulations on completing the guide!   The next guide in the Customize UI and Display Options to Deploy Applications learning path is Define Your UI Style.    If you have questions, issues, or need additional information, refer to: Resource Link Experience ThingWorx Application Development Reference Community Developer Community Forum Support Button Widget Help Center Support Slider Widget Help Center Support Gauge Widget Help Center Support Advanced Grids (Themable) Help Center    
View full tip
  Guidelines for selecting the optimal method for connecting to ThingWorx   GUIDE CONCEPT   In the world of IoT application development, connectivity refers to the infrastructure and protocols which connect devices to the cloud or network. Edge devices handle the interface between the physical world and the cloud.   ThingWorx provides you with several different tools for connecting to the Thingworx platform.   This guide is designed as an introduction to these tools, and will help you determine which to choose based on your specific requirements.   YOU'LL LEARN HOW TO   Pros and cons of different connection methods The connection method best suited for some typical applications Where to find detailed information about any connection method   NOTE: This guide's content aligns with ThingWorx 9.3. The estimated time to complete this guide is 30 minutes   Step 1: Connectivity Method Options   There are many factors that will influence your decision about the ideal mechanism to connect to ThingWorx. On this page we compare and contrast different methods and give examples for where each one is a natural fit.   Connectivity Method Developer Benefit REST API Integrate seamlessly using dynamically-generated API calls Azure IoT Hub Connector Connect devices that use Azure IoT Hub Edge SDKs Build full-featured integrations for any platform ThingWorx Kepware Server Connect out-of-the-box with over 150 protocol drivers for industrial equipment Edge MicroServer Establish bi-directional connectivity with this complete, ready-to-run agent   REST API   Pros Cons Typical use case Skills Required Connection Type  Web developer can easily create integration ThingWorx cannot trigger action on the edge Push data from small devices to ThingWorx REST API development Request/Response   Using the ThingWorx REST API is an easy way for low-capability devices to connect with a ThingWorx platform. Any edge device that can make an HTTP POST can read and update properties or execute services on a ThingWorx platform. The disadvantage of this method is that it is one way from edge to platform. There is no way for the platform to initiate a service on the remote device and properties are only updated when the edge device initiates a connection with ThingWorx.   Learn more about the ThingWorx REST API:   Use REST API to Access ThingWorx Using the Connect an Arduino Developer Board tutorial REST API Documentation   Azure IoT Hub Connector   Pros Cons Typical use Case Skills Required Connection Type  Easily connect devices that use Azure IoT Hub Adds dependency and cost to application Add ThingWorx for devices connected with the Azure cloud Azure edge development AlwaysOn™   The diagram illustrates device-to-cloud integration with the Azure IoT Hub.   The ThingWorx Azure IoT Hub Connector establishes network connections to both ThingWorx Foundation and the Azure IoT Hub. Data flows in from devices, through the Azure IoT Hub hosted in the cloud, to the ThingWorx Azure IoT Hub Connector configured for a specific ThingWorx instance. The ThingWorx Azure IoT Hub Connector translates messages from the Azure IoT Hub format, to the native ThingWorx format and uses an established AlwaysOn connection to forward the information to ThingWorx Foundation.   Azure IoT Hub   Connect Azure IoT Devices   Edge SDKs   Pros Cons Typical Use case Skill Required Connection Type  Fully integrate device or remote system with ThingWorx platform Most developer flexibility All functionality must be developed by programmer Full customization or tight integration required Application development in Java, C, or .Net AlwaysOn™   These SDKs are developer tools that wrap the protocol used to connect to the ThingWorx Platform. There are SDK's available for Java, C, and .Net languages. The Edge MicroServer uses the C SDK internally. All SDKs use the ThingWorx AlwaysOn binary protocol together with the HTTP WebSocket protocol for transport. WebSocket connections can operate through a firewall allowing two-way, low latency communication between the device and server. The SDKs support the following key concepts that allow a Thing developed with an SDK to be a full-fledged entity in the ThingWorx environment:   Remote properties — Entities that define the types, identities, and values from a device or remote system Services — Actions that can be performed on demand by a device or remote system Events — Data that is sent to a subscribed device or remote system whenever the Event is triggered   You can choose from any of the SDK's to create a custom application that meets their exact requirements.   C SDK   The C SDK is the most lightweight of all the SDKs and will result in an application that uses the least amount of RAM, frequently requiring less than 200kB. It is the only SDK that is distributed as source code, allowing compilation of C SDK applications on any platform even those without an operating system.   Learn more about the C SDK:   C SDK Tutorial C SDK Documentation   Java SDK   The Java SDK is designed for portability and simplicity to ease connecting any Java-enabled device or system to ThingWorx. The Java SDK is provided as .jar files and sample Java source code. Any system that can run Java 1.7.51 or later should be able to build and run the example applications.   Learn more about the Java SDK:   Java SDK Tutorial Java SDK Documentation   .Net SDK   The .Net SDK is provided as .dll files with sample Visual C# project files and source code. Any system that can run Microsoft NET 3.5 SP1 Framework development environment should be able to build and run the example applications.   Learn more about the .Net SDK:   .Net SDK Documentation   ThingWorx Kepware Server   Pros Cons Typical Use case Skill Required Connection Type  Easily connect to hundreds of different types of industrial equipment Requires computer running Windows physically connected to device Adding ThingWorx to an industrial setting Configure settings AlwaysOn™   The ThingWorx Kepware Server Windows client lets users quickly and easily connect real-time, bi-directional industrial controls data to the ThingWorx IoT Platform via the ThingWorx AlwaysOn protocol. ThingWorx services enable users to browse, read, write, and interact with ThingWorx Kepware Server, and includes intuitive tools that simplify the modeling of industrial things.   Learn more about the ThingWorx Kepware Server:   Connect Industrial Devices and Systems ThingWorx Kepware Server Documentation ThingWorx Kepware Server Manual   Edge MicroServer   Pros Cons Typical Use case Skill Required Connection Type  Easily connect with simple scripting Requires a device running Windows or Linux Customization with Lua scripting Connecting gateway router to ThingWorx Configure settings AlwaysOn™   The ThingWorx Edge MicroServer is a binary executable available for Windows and Linux running on either ARM or x86 processors. The EMS establishes an AlwaysOn, bi-directional connection to a destination ThingWorx platform when it is started. The EMS is configured by editing a json text file to specify the target platform and credentials. The EMS uses the always on connection to provide a local HTTP server that is a reflection of the platform REST API. This local copy of the platform API allows devices that are not capable of making encrypted connections across the open internet to securely interact with the platform. The EMS package also includes the Lua Script Resource application. This application extends the ThingWorx Foundation server by connecting through the EMS HTTP server and provides a Lua interpreter that can be used to connect local resources to the ThingWorx server.   Learn more about the ThingWorx Edge MicroServer:   Connect a Raspberry Pi to ThingWorx using the Edge MicroServer Edge MicroServer Documentation   Step 2: Next Steps   Congratulations! You've successfully completed the Choose a Connectivity Method guide.   At this point, you can make an educated decision regarding which connection methods are best suited for your application and infrastructure.   The next guide in the Connect and Configure Industrial Devices and Systems learning path is Use REST API to Access ThingWorx   Learn More   We recommend the following resources to continue your learning experience:   Capability Guide Connect ThingWorx Application Development Reference Build Get Started with ThingWorx for IoT Experience Create Your Application UI   Additional Resources   If you have questions, issues, or need additional information, refer to:   Resource Link Community Developer Community Forum Support ThingWorx Connectors Help Center
View full tip
Pre-built apps for manufacturing operations that rapidly deliver value.   Overview   Think Big, Start Small, Scale Fast   Getting started on an industrial IoT project can be daunting, especially deciding where and how to begin. After collecting the experiences gained by working with over 1500 companies on IIoT applications, PTC has made the process to get up and running easier. By grouping IIoT capabilities together in functionally oriented programs, PTC built out-of-the-box applications that rapidly deploy and scale across new or existing system infrastructure. Instead of starting from scratch, you can use ThingWorx ready-to-configure apps to quickly lay the foundation for industrial transformation and implement IIoT solutions in as little as 90 days. ThingWorx Apps offer a comprehensive, basic IIoT scheme to connect to your equipment, collect real-time data, create notification work flows, deliver role based dashboards, and more. Need something more tailored to your operation? No problem. You can iteratively extend and customize ThingWorx Apps into additional use cases for continuous innovation.     Manufacturing Apps   Manufacturers are under constant pressure to minimize downtime, improve quality, and respond faster to individual customer requirements, all while lowering costs. The ThingWorx Manufacturing Apps are pre-built solutions that can be tried in less than 60 minutes without disrupting production. These apps provide manufacturers with real-time visibility into factory floor operations, from individual PLCs to assets to plants to enterprise-wide operations.   ThingWorx Connected Work Cell   Connected Work Cell streamlines how information is delivered to frontline workers by aggregating critical data from multiple data siloes into a simplified visual application. It presents step-by-step work instructions with accurate, up-to-date information to drive efficiency, links instructions to work orders, assigns resources, and validates proper execution to ensure quality. Capabilities Lite work instruction authoring with multiple step types and versioning Workpiece routes editor and work order scheduling Step-by-Step tracking of operator execution  Smart tool configuration Work station dashboard display File storage and document management Benefits Present accurate, up-to-date work instructions using 3D models Aggregate work requirements from multiple sources into one simplified display at the work station Increase workforce flexibility by reducing upfront training before being assigned to a new work cell Improve quality by collecting actual tool use data Rapid implementation and fast time to value   ThingWorx Real-Time Production and Performance Monitoring   Real-Time Production and Performance Monitoring provides manufacturing executives and plant managers with top-down, real-time visibility into consistent KPIs such as overall equipment effectiveness, mean time between failure, and mean time to repair.   Capabilities Connect existing assets and gather real-time data View overall equipment effectiveness (OEE), mean time between failure (MTBF), and mean time to repair (MTTR) in real-time  Compare geographically separated assets, lines, or products based on date, time, shift or crew Benefits Improve operational performance of existing assets by increasing throughput and decreasing waste Balance labor vs. capital expenditures to meet production needs Determine true overall equipment effectiveness for multiple facilities   ThingWorx Asset Monitoring and Utilization   Asset Monitoring and Utilization helps manufacturers connect to existing assets, remotely monitor them in real-time, generate alerts based on abnormal conditions, and deliver critical insights with data trending and analysis tools.   Capabilities Performance Dashboards with real-time access to open alarms Email and SMS distribution rules for messaging and alarm acknowledgment Integration to maintenance systems Detailed screens showing asset health, configuration parameters, and sensor trends  Benefits Quickly identify anomalous data trends and perform Root Cause Analysis Maximize asset uptime and availability with alerts on critical issues before they impact performance Rapidly connect to and catalog existing assets Quickly Identify Anomalous Data Trends and perform Root Cause Analysis  
View full tip
Build an Equipment Dashboard Guide Part 1   Overview   This project will introduce you to the principles of ThingWorx Foundation by creating an eqipment dashboard. Following the steps in this guide, you will create the building blocks of your first IoT application, including Things and Streams. We introduce the basics for creating an IoT application. NOTE: This guide's content aligns with ThingWorx 9.3. The estimated time to complete ALL 2 parts of this guide is 30 minutes.    Step 1: Learning Path Overview   This guide explains the steps to create an Industrial Eqipment Dashboard, and is part of the Connect and Monitor Industrial Plant Equipment Learning Path. You can use this guide independently from the full Learning Path. If you want to learn the basics of creating an eqipment dashboard with ThingWorx, this guide will be useful to you.When used as part of the Industrial Plant Learning Path, you should already have ThingWorx Kepware Server installed, and it should be sending data to ThingWorx Foundation. You also need to have previously created the Thing Shape and Thing Template used for this dashboard. We hope you enjoy this Learning Path.   Step 2: Create Thing   A Thing is used to digitally represent a specific component of your application in ThingWorx. In Java programming terms, a Thing is similar to an instance of a class. In this step, you will create a Thing that represents an individual Pump using the Thing Template we created in the previous guide. Using a Thing Template allows you to increase development velocity by creating multiple Things without re-entering the same information each time. In ThingWorx Foundation, navigate to Browse > Modeling > Things. Click + New. In the Name field, type MyPump. NOTE: This name, with matching capitalization, is required for the data display created in a later step.       4. If Project is not already set, click the + in the Project text box and select the PTCDefaultProject.       5. In the Base Thing Template field, search for and select the previously-created PumpTemplate.       6. At the top, click Save.          Manage Property Bindings At the top, click Properties and Alerts. At the top, click Manage Bindings. In the top-left Local > Search Things field, search for and select IndConn_Tag1. Drag-and-drop Simulation_Examples_Functions_Random3's + symbol onto the watts Property on the right. At the bottom-right of the pop-up, click Done. Note how the Tag from ThingWorx Kepware Server is now bound to the the watts Property. Click Save. Click Refresh repeatedly to confirm the watts Property value is changing.     Step 3: Store Data in Value Stream   Now that you have created the MyPump Thing to model your application in ThingWorx, you need a storage Entity to record changing Property values. This step shows how to save time-series data in a Value Stream already created in a previous guide. To learn more, refer to the Methods for Data Storage guide. Navigate to Browse > Modeling > Thing Templates. Click the previously-created PumpTemplate Thing Template to open it. Confirm you are on the General Information tab. If necessary, click Edit to allow changes. In the Value Stream field, search for and select IndConn_ValueStream. Click Save.   Step 4: Create Application UI   ThingWorx Foundation is used to create customized web applications that can display and interact with data from multiple sources. These web applications are called Mashups and are created using the Mashup Builder. The Mashup Builder is where you create your web application by dragging and dropping Widgets such as Grids, Charts, Maps, and Buttons onto a Canvas. All of the user interface elements in your application are Widgets. We will build a web application with three Widgets: Image showing a picture of the pump Value Display showing the pump serial number Line Chart showing the value of watts Property trend over time.   Create New Mashup   Navigate to Browse > Visualization > Mashups.   Click + New.   Keep the defaults and click OK.   In the Name field, type pump-dashboard. If Project is not already set, click the + in the Project text box and select the PTCDefaultProject. Click Save.   At the top, click Design.   Define Mashup Areas   At the top-left, ensure the Layout tab is selected. Click Add Bottom to split your UI into two halves.   Click the newly-created bottom-half to select it. Click Add Left.   Click the bottom-left container to select it. In the top-left Layout section, scroll down and select Fixed Size.   Type 200 in the Width text box that appeared, then press your keyboard’s Tab key to record your entry.   Add Widgets   In the top-left, click the Widgets tab.   In the Filter field, type image.   Drag-and-drop an Image Widget onto the lower-left area of the central Canvas. This Widget will show an image of the pump in use. 4. In a similar manner to what was just done with the Image Widget, drag-and-drop a Value Display Widget onto the top area. 5. Likewise, drag-and-drop a Line Chart Widget onto the lower-right area.   6. Click Save.          Click here to view Part 2 of this guide. 
View full tip