cancel
Showing results for 
Search instead for 
Did you mean: 
cancel
Showing results for 
Search instead for 
Did you mean: 

Community Tip - Want the oppurtunity to discuss enhancements to PTC products? Join a working group! X

IoT Tips

Sort by:
  Step 8: C - Properties   In the ThingWorx environment, a Property represents a data point, which has a:   Name Value Timestamp Quality (optional)   Define Properties   You can define attributes, base types and other aspects of ThingWorx properties.   Attributes   The table below provides information on the different attributes that are used to define a property.   Attribute Details name Specifies the name of the property that will appear in ThingWorx when users browse to bind the related Thing. description Provides additional information for the property. baseType Specifies the type of the property. For a list of base types supported by the SDK, refer to the BaseTypes chart below.   BaseTypes   The table below provides information on the different types of properties that can be created in ThingWorx.   BaseType  Description TW_NOTHING An empty value. TW_STRING A modified UTF8 encoded string. Data and length are stored in val.bytes and val.len, respectively. The twPrimitive owns the data pointer and will free it when deleted. TW_STRING types are null terminated. TW_NUMBER A C double value, stored in val.double. TW_BOOLEAN Represented as a single char, stored in val.boolean. TW_DATETIME A DATETIME value, which is an unsigned 64 bit value representing milliseconds since the epoch 1/1/1970. Data is stored in val.datetime. TW_INFOTABLE A pointer to a complex structure (defined in the next section) and stored in val.infotable. The twPrimitive owns this pointer and will free up the memory pointed to when the twPrimitive is deleted. TW_LOCATION A structure consisting of three double floating point values – longitude, latitude, and elevation. Stored as val.location. TW_BLOB A pointer to a character array. Data and length are stored in val.bytes and val.len, respectively. Differs from TW_STRING in that the array may contain nulls. The twPrimitive owns the data pointer and will free it when deleted. TW_IMAGE Identical to TW_BLOB except for the type difference. TW_INTEGER Assigned 4 by integral value. Stored as val.integer. TW_VARIANT Pointer to a structure that contain a type enum and a twPrimitive value. The pointer is stored as val.variant. The twPrimitive owns the pointer and will free the structure when deleted.   The following base types are all of the TW_STRING family and are stored similarly:   TW_XML,TW_JSON TW_QUERY TW_HYPERLINK TW_IMAGELINK TW_PASSWORD TW_HTML TW_TEXT TW_TAGS TW_GUID TW_THINGNAME TW_THINGSHAPENAME TW_THINGTEMPLATENAME TW_DATASHAPENAME TW_MASHUPNAME TW_MENUNAME TW_BASETYPENAME TW_USERNAME TW_GROUPNAME TW_CATEGORYNAME TW_STATEDEFINITIONNAME TW_STYLEDEFINITIONNAME TW_MODELTAGVOCABULARYNAME TW_DATATAGVOCABULARYNAME TW_NETWORKNAME TW_MEDIAENTITYNAME TW_APPLICATIONKEYNAME TW_LOCALIZATIONTABLENAME TW_ORGANIZATIONNAME   Aspects   Aspects define the ways to interact with a property. The table below provides information on details that make up the Aspects attribute of a property.   Attribute Macro Description isPersistent TW_ASPECT_ISPERSISTENT Set to TRUE for the ThingWorx server to persist the value even if it restarts. It is extremely expensive to have persistent values, so it is recommended to set this value to FALSE unless absolutely necessary. isReadOnly TW_ASPECT_ISREADONLY Set to TRUE to inform the ThingWorx server that this value is only readable and cannot be changed by a request from the server. dataChangeType TW_ASPECT_DATACHANGETYPE Describes how the ThingWorx server responds when the value changes in the client application. Subscriptions to these value changes can be modeled in ThingWorx Platform. If nothing needs to react to the property change, set this value to NEVER. dataChangeThreshold TW_ASPECT_DATACHANGETHRESHOLD Defines how much the value must change to trigger a change event. For example 0 (zero) indicates that any change triggers an event. A value of 10 (ten) for example would not trigger an update unless the value changed by an amount greater than or equal to 10. defaultValue TW_ASPECT_DEFAULT_VALUE The default value is the value that ThingWorx Platform uses when the RemoteThing connected to the device first starts up and has not received an update from the device. The value is different based on the different value for each base type. cacheTime N/A The amount of time that ThingWorx Platform caches the value before reading it again. A value of -1 informs the server that the client application always sends its value and the server should never go and get it. A value of 0 (zero) indicates that every time the server uses the value, it should go and get it from the client application. Any other positive value indicates that the server caches the value for that many seconds and then retrieves it from the client application only after that time expired. pushType TW_ASPECT_PUSHTYPE Informs ThingWorx Platform how the client application pushes its values to the server.   NOTE: cacheTime and dataChangeThreshold are for subscribed (bound) properties ONLY.   DataChangeType Values   This field acts as the default value for the data change type field of the property when it is added to the remote Thing. The possible dataChangeType values are below:   Value Description ALWAYS Always notify of the value change even if the new value is the same as the last reported value. VALUE Only notify of a change when a newly reported value is different than its previous value. ON For BOOLEAN types, notify only when the value is true. OFF For BOOLEAN types only, notify when the value is false. NEVER Ignore all changes to this value.   PushType Values   This aspect works in conjunction with cacheTime. The possible pushType values are below:   Value Description ALWAYS Send updates even if the value has not changed. It is common to use a cacheTime setting of -1 in this case. VALUE Send updates only when the value changes. It is common to use a cacheTime setting of -1 in this case. NEVER Never send the value, which indicates that ThingWorx server only writes to this value.It is common to use a cacheTime setting of 0 or greater in this case. DEADBAND Added to support KEPServer, this push type is an absolute deadband (no percentages). It provides a cumulative threshold, such that the Edge device should send an update if its current data point exceeds Threshold compared to the last value sent to ThingWorx Platform. It follows existing threshold fields limits.   With Macros   The C SDK provides a list of macros to help make development easier and faster.   The macros TW_PROPERTY and TW_PROPERTY_LONG define a property of a Thing. This macro must be preceeded by either TW_DECLARE_SHAPE,TW_DECLARE_TEMPLATE or TW_MAKE_THING macros because these macros declare variables used by the property that follow them. The functions return TW_OK on success, {TW_NULL_OR_INVALID_API_SINGLETON,TW_ERROR_ALLOCATING_MEMORY,TW_INVALID_PARAM,TW_ERROR_ITEM_EXISTS} on failure.   NOTE: The macros are defined in the file, twMacros.h.   This example shows how to utilize these functions:   TW_MAKE_THING(thingName,TW_THING_TEMPLATE_GENERIC); TW_PROPERTY("Pressure", TW_NO_DESCRIPTION, TW_NUMBER); TW_ADD_BOOLEAN_ASPECT("Pressure", TW_ASPECT_ISREADONLY,TRUE); TW_ADD_BOOLEAN_ASPECT("Pressure", TW_ASPECT_ISLOGGED,TRUE); TW_PROPERTY("Temperature", TW_NO_DESCRIPTION, TW_NUMBER); TW_ADD_BOOLEAN_ASPECT("Temperature", TW_ASPECT_ISREADONLY,TRUE); TW_ADD_BOOLEAN_ASPECT("Pressure", TW_ASPECT_ISLOGGED,TRUE); TW_PROPERTY("TemperatureLimit", TW_NO_DESCRIPTION, TW_NUMBER); TW_ADD_NUMBER_ASPECT("TemperatureLimit", TW_ASPECT_DEFAULT_VALUE,320.0); TW_PROPERTY("Location", TW_NO_DESCRIPTION, TW_LOCATION); TW_ADD_BOOLEAN_ASPECT("Location", TW_ASPECT_ISREADONLY,TRUE); TW_PROPERTY("Logfile", TW_NO_DESCRIPTION, TW_STRING); TW_ADD_BOOLEAN_ASPECT("Logfile", TW_ASPECT_ISREADONLY,TRUE);   NOTE: TW_PROPERTY_LONG performs the same actions as TW_PROPERTY, except that it offers more options. When using TW_PROPERTY to declare a property you are accepting the use of the default property handler. This property handler will allocate and manage the storage used for this property automatically.   Without Macros   Property values can be set with defaults using the aspects setting. Setting a default value in the client will affect the property in the ThingWorx platform after binding. It will not set a local value in the client application. Two types of structures are used by the C SDK to define properties.   Structure Notes Code Property Definitions Describes the basic information for the properties that are going to be available to ThingWorx and can be added to a client application. twPropertyDef *property1 = twPropertyDef_Create(property, TW_BOOLEAN, "Description for Property1", "NEVER", 0); cJSON_AddStringToObject(tmp->aspects,"isReadOnly", "FALSE"); cJSON_AddStringToObject(tmp->aspects,"isPersistent", "FALSE"); cJSON_AddStringToObject(tmp->aspects,"isPersistent", "FALSE"); Property Values Associates the property name with a value, timestamp, and quality. twPrimitive * value = twPrimitive_CreateFromNumber(properties.TempProp); twProperty * tempProp = twProperty_Create("TempProperty", value, NULL);       Click here to view Part 7 of this guide
View full tip
  Step 4: Add Data   We've added a Waterfall Chart Widget to the Mashup, but we still need to bring in backend data.   Ensure the top-right Data tab is active.   Click the green + button.   In the Entity field, search for and select TPWC_Thing. In the Services field, type getprop. Click the right arrow beside GetProperties. On the right, check Execute on Load.   In the bottom-right of the pop-up, click Done.   Under the Data tab on the right, expand GetProperties.   Drag-and-drop Things_TPWC_Thing > GetProperties > InfoTable_Property onto the Waterfall Chart.   On the Select Binding Target pop-up, click Data.     Widget Properties   With the Waterfall Chart bound to data, we now just need to configure a few of the chart's Properties. With the Waterfall Chart selected in the central Canvas area, ensure the Properties tab is active in the bottom-left.   In the Filter field, type xaxis.   In the XAxisField, search for and select month.   In the Filter field, clear the xaxis search and then start a new filter with usetrend.   Check the UseTrendColors box.   At the top, click Save.     Step 5: View Mashup   Up to this point, we've created a Data Shape to format the columns of an Info Table Property. You then created a Thing, as well as an Info Table Property formatted by the Data Shape. As a test, you added some manually-entered data to the Info Table. After creating a Mashup, you added a Waterfall Chart Widget and tied it to that backend data.   The only thing left to do is to visualize your GUI.    Ensure that you're on the Design tab of the TPWC_Mashup.   At the top, click View Mashup. The end result is a visualization of burn up/down as the project is first defined and then implemented.     Step 6: Next Steps   Congratulations! You've successfully completed the Track Progress with Waterfall Chart guide, and learned how to: Create a Data Shape Create a Thing Create an Info Table Property Populate an Info Table with appropriate data for a Waterfall Chart Create a Mashup Utilize a Waterfall Chart to display project progress  Learn More   We recommend the following resources to continue your learning experience: Capability Guide Manage How to Display Data in Charts Additional Resources   If you have questions, issues, or need additional information, refer to: Resource Link Community Developer Community Forum Support Waterfall Chart Help  
View full tip
  Step 6: Create OPC UA Tag in ThingWorx   We will now create a Device in Kepware with a Tag whose value will be shown in ThingWorx.   Right-click on Channel1 that was just created, then click Next to accept the default name Device1       Click Next six times to accept the default settings, Then click the Select import items button.     Expand the remote OPC UA server URL, then expand OpcPlc and Telemetry.     Click SlowUint1 to select it, then click Add items >>. Click OK, Next, Finish. Return to ThingWorx Composer. Under Browse > Modeling > Industrial Connections, open IndConn_Server. Expand Channel1 > Device1 > OpcPlc, then click Telemetry.     Click the check-box next to SlowUint1. Click Bind to New Entity.     Select RemoteThing, then click OK. Enter azure-opcua-plc in the Name field, then click Save.     Click Properties and Alerts, then Click Refresh to see the property value changing every 10 seconds.     Step 7: Next Steps   Congratulations! You've successfully completed the Connect to an Azure OPC UA Server guide, and learned how to:   Create an OPC UA Server in Azure Configure Kepware as on OPC UA Client Connect Kepware to ThingWorx Foundation Monitor OPC UA data in ThingWorx Composer   Learn More   We recommend the following resources to continue your learning experience: Capability Guide Experience Create Your Application UI   Additional Resources   If you have questions, issues, or need additional information, refer to:   Resource Link Community Developer Community Forum Support Getting Started with ThingWorx Documentation Kepware documentation Support Kepware Support site
View full tip
    Step 4: Launch IoT Hub Connector   Open a shell or a command prompt window. On a Windows machine, open the command prompt as Administrator. The AZURE_IOT_OPTS environment variable must be set before starting the Azure IoT Hub Connector. Below are sample commands using the default installation directory. On Windows: set AZURE_IOT_OPTS=-Dconfig.file=C:\ThingWorx-Azure-IoT-Connector-<version>\azure-iot-<version>-application\conf\azure-iot.conf -Dlogback.configurationFile=C:\ThingWorx-Azure-IoT-Connector-<version>\azure-iot-<version>-application\conf\logback.xml On Linux: export AZURE_IOT_OPTS="-Dconfig.file=/var/opt/ThingWorx-Azure-IoT-Connector-<version>/azure-iot-<version>-application/conf/azure-iot.conf -Dlogback.configurationFile=/var/opt/ThingWorx-Azure-IoT-Connector-<version>/azure-iot-<version>-application/conf/logback.xml" NOTE: You must run the export command each time you open a shell or command prompt window. Change directories to the bin subdirectory of the Azure IoT Hub Connector installation. Start the Azure IoT Hub Connector with the appropriate command for your operating system. On Windows: azure-iot.bat On Linux: /azureiot   NOTE: On Windows you may have to shorten the installation directory name or move the bin directory closer to the root directory of your system to prevent exceeding the Windows limit on the classpath length. The Connection Server should start with no errors or stack traces displayed. If the program ends, check the following: Java version is 1.8.0, update 92 or greater and is Java(TM) not OpenJDK Open azure-iot.conf and confirm ThingWorx Foundation is set to the correct URL and port. Confirm the platform scheme is ws if http is used to access ThingWorx. Confirm all Azure credentials are correct for your Azure account. In ThingWorx Foundation click the Monitoring tab then click Connection Servers. You should see a server named azure-iot-cxserver-{server-uuid}, where {server-uuid} is a unique identifier that is assigned automatically to the server.     Step 5: Import Device from Azure   With the ThingWorx Azure IoT Connector, you can import into ThingWorx any existing devices that are currently provisioned to the Azure IoT Hub.   Add Device Azure IoT Hub If you have not provisioned any devices to your Azure IoT Hub you can learn more about Azure IoT Hub device identity before following the steps below to create a test device. In your Azure Portal, click All Resources, then select the name of your IoT Hub. Under Explorers click IoT devices, then click + Add. Enter a name for your device, then click Save When the device name appears in the list it is ready to us     Import Device into ThingWorx We will manually execute a service in ThingWorx that will import Azure IoT Hub devices into ThingWorx. In ThingWorx Composer, navigate to the ConnectionServicesHub Thing. Click Services tab and scroll to the ImportAzureIotDevices service and click the execute Arrow.   NOTE: The * in the pattern field will act as a wildcard and import all devices, you can enter a string to match that will only import a subset of all available devices.     Click Execute to import the devices then click Done. Click Things in the left column to see the Things that were created.     Step 6: Set-up and Run Demo   The ThingWorx Azure IoT Connector download includes a Java application that simulates a device connecting to your Azure IoT Hub. A ThingTemplate is also included and can be imported into ThingWorx.   Import Demo Templates In ThingWorx Composer, click Import/Export menu, then click From File and browse to ../demo/edgedevice- demo/platform/entities/CPUDemo_AllEntities.xml     Click Import then click Close when the import successful message is displayed. Create a new Thing using the imported template azureDemo1, enter a name for your Thing and click Save. NOTE: You will enter this name in the demo config file in the next step.   Configure Demo Application In the ../demo/edge-device-demo/conf subdirectory, open the edge-device.conf file with a text editor. Edit the deviceId to be the name of the Thing you created in step 3. Edit the iotHubHostName to use the name of your hub plus the domain: azure-devices.net. For example, sample-iot-hub.azuredevices.net. Edit the registryPolicyKey property to use the Primary Key for the registryReadWrite policy in the Azure IoT Hub. Below is an example configuration: // Azure Edge Device Demo configuration azure-edge-device { // Name of the remote thing on the ThingWorx platform, which should match the Azure Device ID deviceId = "alstestedgething" // Name of the hub host in Azure iotHubHostname = "alsiot.azure-devices.net" // Policy name used by this thing (could require services as well in future) registryPolicyName = "registryReadWrite" // The Key related to the policy above registryPolicyKey = "pzXAi2nonYWsr3R7KVX9WuzV/1234567NZVTuScl/Kg=" } Run Demo Script   Open a shell or Command Prompt, set the EDGE_DEVICE_DEMO_OPTS environment variable to refer to the file you just edited: Linux - export EDGE_DEVICE_DEMO_OPTS="-Dconfig.file=../conf/edge-device.conf" Windows - set EDGE_DEVICE_DEMO_OPTS="-Dconfig.file=../conf/edge-device.conf" Launch the demo from the ../demo/edge-device-demo/bin subdirectory, using the edge-device-demo command. Return to the ThingWorx Composer and open the Properties page of the Azure Thing that you created previously. Click the refresh button to see the properties change every five seconds. Open the azure-iot-demo Mashup and view the Load Average and CPU gauges, and the increases in the values of the Cycle and Uptime fields. NOTE: If the edgedevice-demo is running on Windows, the Load Average does not register. Step 7: Next Steps   Congratulations! You've successfully completed the Connect Azure IoT Hub to ThingWorx Quickstart. By following the steps in this lesson, you imported a device created in Azure into ThingWorx and saw how data from an Azure device could be used in a ThingWorx Mashup. Learn More We recommend the following resources to continue your learning experience: Capability Guide Connect Choose a Connectivity Method Build Design Your Data Model Experience Create Your Application UI   Additional Resources   If you have questions, issues, or need additional information, refer to:   Resource Link Community Developer Community Forum Support Getting Started with ThingWorx  
View full tip
  Step 5: Add Data   We've added a Pareto Chart Widget to the Mashup, but we still need to bring in backend data.   Ensure the top-right Data tab is active.   Click the green + button.   In the Entity field, search for and select TIPC_Thing. In the Services field, type getprop. Click the right arrow beside GetProperties. On the right, check Execute on Load.   In the bottom-right of the pop-up, click Done.   Under the Data tab on the right, expand GetProperties.   Drag-and-drop Things_TIPC_Thing> GetProperties > InfoTable_Property onto the Pareto Chart.   On the Select Binding Target pop-up, click Data.   With the Pareto Chart selected in the central Canvas area, ensure the Properties tab is active in the bottom-left.   In the Filter field, type xaxis.   In the XAxisField, search for and select month.   At the top, click Save.     Step 6: View Mashup   Up to this point, we've created a Data Shape to format the columns of an Info Table Property. You then created a Thing, as well as an Info Table Property formatted by the Data Shape. As a test, you added some manually-entered data to the Info Table. After creating a Mashup, you added a Pareto Chart Widget and tied it to that backend data.   The only thing left to do is to visualize your GUI.    Ensure that you're on the Design tab of the TIPC_Mashup.   At the top, click View Mashup.   The end result is a visualization of how each of your main issues contribute to your overall downtime.   In particular, this test data shows that excess_temperature is the primary cause of issues, regardless of month.    You could now connect the backend data-storage to live-data from the robotic welding arm to begin an actual determination of your issues.       Step 7: Next Steps   Congratulations! You've successfully completed the Track Issues with Pareto Chart guide, and learned how to:   Create a Data Shape Create a Thing Create an Info Table Property Populate an Info Table with appropriate data for a Pareto Chart Create a Mashup Utilize a Pareto Chart to display issue-aggregation    Learn More   We recommend the following resources to continue your learning experience: Capability  Guide Manage How to Display Data in Charts Additional Resources   If you have questions, issues, or need additional information, refer to: Resource Link Community Developer Community Forum Support Pareto Chart Help  
View full tip
Announcements