cancel
Showing results for 
Search instead for 
Did you mean: 
cancel
Showing results for 
Search instead for 
Did you mean: 

Community Tip - Your Friends List is a way to easily have access to the community members that you interact with the most! X

IoT Tips

Sort by:
There are now three new places where you can get and/or share ThingWorx code examples in the ThingWorx Community: ThingWorx Platform Services ThingWorx Extensions and Widgets ThingWorx Edge and Edge SDKs We encourage you to share your own relevant code examples in the appropriate space. Be sure to read the how-to and guidelines for posting to the Code Examples Libraries before you create your document. Any official code from ThingWorx Support Services will be marked with an official designation at the top of the document, which looks like this: Keep an eye out for more code examples as we ramp up these libraries and don’t forget to share your own examples!
View full tip
If you ever tested mashup rendering on mobile phones, you probably experienced that the mashup was not sizing to fit your mobile display. This "MobileHeader" extension enables to auto adapt the mashup to mobile displays.   It adds the following parameters to the HTML header: <meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=0"> <meta name="apple-mobile-web-app-capable" content="yes"> <meta name="apple-mobile-web-app-status-bar-style" content="black-translucent">   In the composer just drop the "MobileHeader" extension into a section of the mashup.   This extension was tested until version 7.4.
View full tip
This is going to cover one way of configuring an SSL passthrough using HAProxy.  This guide is intended to be a reference document, and administrators looking to configure an SSL passthrough should make sure the end solution meets both their company's business and security needs.   Why use SSL Passthrough instead of SSL Termination? The main reason for ThingWorx would be if a company requires encrypted communication internally, as well as externally.  With SSL Termination, the request between the load balancer and the client is encrypted.  But the load balancer takes on the role to decrypt and passes that back to the server.  With SSL Passthrough, the request goes through the load balancer as is, and the decryption happens on the ThingWorx Application server.   What you will need to continue with this guide:   HAProxy installed A working ThingWorx application server (Guide to getting one setup can be found here) Tomcat configured for ssl NOTE : Always contact your Security team and make sure you have a certificate that meets your business policy For this tutorial, I created a self-signed certificate following along with the below guide.  If you have already obtained a valid certificate, then you can just skip over the step of creating it, and follow along with the Tomcat portion https://www.ptc.com/en/support/article?n=CS193947 Once configured, restart Tomcat and verify it is working by navigating to https://<yourServer>:<port>/Thingworx   With ThingWorx running as SSL and HAProxy installed, we just need to make sure the HAProxy configuration is setup to allow SSL traffic through.  We use 'mode tcp' to accomplish this.   On your HAProxy machine, open /etc/haproxy/haproxy.cfg for editing.  While most of this can be customized to fit your business needs, some variation of the highlighted portions below need to be included in your final configuration:   global         log /dev/log    local0         log /dev/log    local1 notice         chroot /var/lib/haproxy         stats socket /run/haproxy/admin.sock mode 660 level admin         stats timeout 30s         user haproxy         group haproxy         daemon           # Default SSL material locations         ca-base /etc/ssl/certs         crt-base /etc/ssl/private           # Default ciphers to use on SSL-enabled listening sockets.         # For more information, see ciphers(1SSL). This list is from:         #  https://hynek.me/articles/hardening-your-web-servers-ssl-ciphers/         # An alternative list with additional directives can be obtained from         #  https://mozilla.github.io/server-side-tls/ssl-config-generator/?server=haproxy         ssl-default-bind-ciphers ECDH+AESGCM:DH+AESGCM:ECDH+AES256:DH+AES256:ECDH+AES128:DH+AES:RSA+AESGCM:RSA+AES:!aNULL:!MD5:!DSS         ssl-default-bind-options no-sslv3   defaults         log global          option tcplog          mode tcp          option http-server-close          timeout connect 1s          timeout client  20s          timeout server  20s          timeout client-fin 20s          timeout tunnel 1h          errorfile 400 /etc/haproxy/errors/400.http          errorfile 403 /etc/haproxy/errors/403.http          errorfile 408 /etc/haproxy/errors/408.http          errorfile 500 /etc/haproxy/errors/500.http          errorfile 502 /etc/haproxy/errors/502.http          errorfile 503 /etc/haproxy/errors/503.http          errorfile 504 /etc/haproxy/errors/504.http         frontend https          bind *:443          mode tcp          default_backend bk_app           backend bk_app          mode tcp          server TWXAPP01  <twxapp01IP>:<port>         In this example, the user would connect to https://<loadbalancer>/Thingworx and the load balancer would forward the requests to https://<twxapp01IP>:<port>/Thingworx   That’s it!   A couple of side notes:   The load balancer port the clients connect to does not need to be the same as the ThingWorx port the load balancer will forward to If working in a Highly Available configuration, each ThingWorx Application server needs to have its own certificate configured If HAProxy seems unstable, try updating to the latest release If it is on the latest release according to the Unix repository, check https://www.haproxy.org/ and see if there is a later stable release.  There have been some issues where Ubuntu's latest update in the repository is actually a few years old
View full tip
Attached (as PDF) are some steps to quickly get started with the Thingworx MQTT Extension so that you can subscribe / publish topics.
View full tip
To help explain some of the different ways in which a prediction can be triggered from a Thingworx Analytics Model, I've built a mashup which allows you to easily trigger these types of prediction:   - API Realtime Prediction - Analytics Manager: Event - API Batch Prediction   For information on setting up this environment to use the mashup with some sample data, please see the attached instructions document: Prediction-Methods-Mashup.pdf. The referenced resource files can be found inside resources.zip   For more information on prediction scoring please see this related post: How to score new data with ThingWorx Analytics 8.3.x
View full tip
Overview REST stands for representational state transfer and is a software architectural style common in the World Wide Web. Anything with a RESTful interface can be communicated with using standard REST syntax. ThingWorx has such an interface built-in to make viewing and updating Thing properties as well as executing services easy to do independently of the Web UI.   How to Use REST API The ThingWorx REST API is entirely accessible via URL using the following syntax:    (Precision LMS. Getting Started With ThingWorx 5.4 (Part 1 of Introduction to ThingWorx 5.4). PTC University. https://precisionlms.ptc.com/viewer/course/en/21332822/page/21332905.)   The above example shows how to access a service called “GetBlogEntriesWithComments” found on the “ThingWorxTrainingMaintenanceBlog” Thing. Notice that even though this service gets XML formatted data, the method is type “POST” and “GET” will not work in this scenario (Further reading: https://support.ptc.com/appserver/cs/view/solution.jsp?n=CS214689&lang=en_US).   In order to be able to run REST API calls from the browser, one must allow request method switching. This can be enabled by checking the box “Allow Request Method Switch” in PlatformSubsystem (Further reading: https://support.ptc.com/appserver/cs/view/solution.jsp?n=CS224211&lang=en_US).   Access REST API from Postman Postman is a commonly used REST client which can ping servers via REST API in a manner which mimics third party software. It is free and easy-to-use, with a full tutorial located here: https://www.getpostman.com/docs/   In order to make a request, populate the URL field with a properly formatted REST API call (see previous section). Parameters will not automatically be URL-encoded, but right-clicking on a highlighted portion of the URL and selecting EncodeURIComponent encodes the section.   Next click the headers tab. Here is where the content-type, accept, and authorization are set for the REST call. Accept refers to which response format the REST call is expecting while content-type refers to the format of the request being sent to the server. Authhorization is required for accessing ThingWorx, even via REST API (see previous section for examples authenticating using an app key, but in Postman you can also use Basic Auth using a username and password)   In Postman, there is also ample opportunity to modify the request body under the Body tab. There are several options here for setting parameters. Form-data and x-www-form-urlencoded both allow for setting key value pairs easily and cleanly, and in the latter case, encoding occurs automatically (e.g. “Hello World” becomes %22Hello%20World%22). Raw request types can contain anything and Postman will not touch anything entered except to replace environment variables. Whatever is placed in the text area under raw will get sent with the request (normally XML or JSON, as specified by content-type). Finally, binary allows for sending things which cannot normally be entered into Postman, e.g. image, text, or audio files.     REST API Examples For introductory level examples, see the previous Blog document found here: https://community.thingworx.com/docs/DOC-3315   Retrieving property values from “MyThing” using GET, the default method type (notice how no “method=GET” is required here, though it would still work with that as well): http://localhost/Thingworx/Things/MyThing/Properties/   Updating “MyProperty “with the value “hello” on “MyThing” using PUT: http://localhost/Thingworx/Things/MyThing/Properties/MyProperty?method=PUT&value=hello In Postman, you can send multiple property updates at once via query body (in this case updating all of the properties, the string “Prop1” and the number “Prop2” on MyThing) § Query: http://localhost/Thingworx/Things/MyThing/Properties/* § Query Type: PUT § Query Headers: Content-Type: application/json Authorization: Basic Auth (input username and password on Authorization tab and this will auto-populate) § Body JSON: {"Prop1":"hello world","Prop2":10} Note: you can also specify multiple properties as shown, but only update one at a time in Postman by utilizing the browser syntax given above   Calling “MyService” (a service on “TestThing)” with a String input parameter (“InputString”): http://localhost/Thingworx/Things/TestThing/Services/MyService?method=post&InputString=input   It is easier to pass things like XML and JSON into services using Postman. This query calls “MyJSONService” on “MyThing” with a JSON input parameter § Query: http://localhost/Thingworx/Things/MyThing/Services/MyJSONService § Query Type: § Queries Headers: Accept should match service output (text/html for String) Content-Type: application/json or Authorization: Basic Auth (input username and password on Authorization tab and this will auto-populate) Body JSON: {"InputJSON":"{\"JSONInput\":{\"PropertyName\":\"TestingProp\",\"PropertyValue\":\"Test\"}}"} Body XML:{"xmlInput": "<xml><name>User1</name></xml"}   Viewing “BasicMashup” using AppKey authentication (so no login is required because this Application Key is set-up to login as a user who has permissions to view the Mashup): http://localhost/Thingworx/Mashups/BasicMashup?appKey=b101903d-af6f-43ae-9ad8-0e8c604141af&x-thingworx-session=true Read more here: https://support.ptc.com/appserver/cs/view/solution.jsp?n=CS227935   Downloading Log Information from “ApplicationLog” (or other log types): http://localhost/Thingworx/Logs/ApplicationLog/Services/QueryLogEntries?method=POST   In Postman, more information can be passed into some queries via query body § Query: http://localhost/Thingworx/Logs/ApplicationLog/Services/QueryLogEntries Query Type: POST Query Headers: Accept: application/octet-stream or Content-Type: application/json Authorization: Basic Auth (input username and password on Authorization tab and this will auto-populate) Body: {\"searchExpression\":\"\",\"origin\":\"\",\"instance\":\"\",\"thread\":\"\", \"startDate\":1462457344702,\"endDate\":1462543744702,\"maxItems\":100}   Downloading “MyFile.txt” from “MyRepo” FileRepository (here, “/” refers to the home folder of this FileRepository and the full path would be something like “C:\ThingworxStorage\repository\MyRepo\MyFolder\MyFile.txt”): http://localhost/Thingworx/FileRepositoryDownloader?download-repository=MyRepo&download-path=/MyFolder/MyFile.txt   Uploading files to FileRepository type Things is a bit tricky as anything uploaded must be Base64 encoded prior to making the service call. In Postman, this is the configuration to used to send a file called “HelloWorld.txt”, containing the string “Hello World!”, to a folder called “FolderInRepo” on a FileRepository named “MyRepo”:   Query: http://localhost/Thingworx/Things/MyRepo/Services/SaveBinary Query Type: POST Query Headers: Accept: application/json Content-Type: application/json Authorization: Basic Auth (input username and password on Authorization tab and this will auto-populate) Body: {"path" : "/FolderInRepo/HelloWorld.txt", "content" : "SGVsbG8gV29ybGQh"} Notice here that the content has been encoded to Base64 using a free online service. In most cases, this step can be handled by programming language code more easily and for more challenging file content   Resources and other built-in Things can be accessed in similar fashion to user-created Things. This query searches for Things with the “GenericThing” ThingTemplate implemented: http://localhost/Thingworx/Resources/SearchFunctions/Services/SearchThingsByTemplate?method=POST&thingTemplate=GenericThing   Deleting “MyThing” (try using services for this instead when possible since they are likely safer): http://localhost/Thingworx/Things/MyThing1?method=DELETE&content-type=application/JSON   Exporting all data within ThingWorx using the DataExporter functionality: http://localhost/Thingworx/DataExporter?Accept=application/octet-stream   Exporting all entities which have the Model Tag “Application.TestTerm” within ThingWorx using the Exporter functionality: http://localhost/Thingworx/Exporter?Accept=text/xml&searchTags=Applications:TestTerm
View full tip
Here is a tutorial to explain the process of uploading a PMML file from an external system to Thingworx Analytics. The tutorial steps are explained in the attached PDF and all referenced files can be found in the attached ZIP.  
View full tip
Getting Started on the ThingWorx Platform Learning Path   Learn hands-on how ThingWorx simplifies the end-to-end process of implementing IoT solutions.   NOTE: Complete the following guides in sequential order. The estimated time to complete this learning path is 210 minutes.   Get Started with ThingWorx for IoT   Part 1 Part 2 Part 3 Part 4 Part 5 Data Model Introduction Configure Permissions Part 1 Part 2 Build a Predictive Analytics Model  Part 1 Part 2
View full tip
Large files could cause slow response times. In some cases large queries might cause extensively large response files, e.g. calling a ThingWorx service that returns an extensively large result set as JSON file.   Those massive files have to be transferred over the network and require additional bandwidth - for each and every call. The more bandwidth is used, the more time is taken on the network, the more the impact on performance could be. Imagine transferring tens or hundreds of MB for service calls for each and every call - over and over again.   To reduce the bandwidth compression can be activated. Instead of transferring MBs per service call, the server only has to transfer a couple of KB per call (best case scenario). This needs to be configured on Tomcat level. There is some information availabe in the offical Tomcat documation at https://tomcat.apache.org/tomcat-8.5-doc/config/http.html Search for the "compression" attribute.   Gzip compression   Usually Tomcat is compressing content in gzip. To verify if a certain response is in fact compressed or not, the Development Tools or Fiddler can be used. The Response Headers usually mention the compression type if the content is compressed:     Left: no compression Right: compression on Tomcat level   Not so straight forward - network vs. compression time trade-off   There's however a pitfall with compression on Tomcat side. Each response will add additional strain on time and resources (like CPU) to compress on the server and decompress the content on the client. Especially for small files this might be an unnecessary overhead as the time and resources to compress might take longer than just transferring a couple of uncompressed KB.   In the end it's a trade-off between network speed and the speed of compressing, decompressing response files on server and client. With the compressionMinSize attribute a compromise size can be set to find the best balance between compression and bandwith.   This trade-off can be clearly seen (for small content) here:     While the Size of the content shrinks, the Time increases. For larger content files however the Time will slightly increase as well due to the compression overhead, whereas the Size can be potentially dropped by a massive factor - especially for text based files.   Above test has been performed on a local virtual machine which basically neglegts most of the network related traffic problems resulting in performance issues - therefore the overhead in Time are a couple of milliseconds for the compression / decompression.   The default for the compressionMinSize is 2048 byte.   High potential performance improvement   Looking at the Combined.js the content size can be reduced significantly from 4.3 MB to only 886 KB. For my simple Mashup showing a chart with Temperature and Humidity this also decreases total load time from 32 to 2 seconds - also decreasing the content size from 6.1 MB to 1.2 MB!     This decreases load time and size by a factor of 16x and 5x - the total time until finished rendering the page has been decreased by a factor of almost 22x! (for this particular use case)   Configuration   To configure compression, open Tomcat's server.xml   In the <Connector> definitions add the following:   compression="on" compressibleMimeType="text/html,text/xml,text/plain,text/css,text/javascript,application/javascript,application/json"     This will use the default compressionMinSize of 2048 bytes. In addition to the default Mime Types I've also added application/json to compress ThingWorx service call results.   This needs to be configured for all Connectors that users should access - e.g. for HTTP and HTTPS connectors. For testing purposes I have a HTTPS connector with compression while HTTP is running without it.   Conclusion   If possible, enable compression to speed up content download for the client.   However there are some scenarios where compression is actually not a good idea - e.g. when using a WAN Accelerator or other network components that usually bring their own content compression. This not only adds unnecessary overhead but is compressing twice which might lead to errors on client side when decompressing the content.   Especially dealing with large responses can help decreasing impact on performance. As compressing and decompressing adds some overhead, the min size limit can be experimented with to find the optimal compromise between a network and compression time trade-off.
View full tip
Here is a spreadsheet that I created which helps to estimate data transfer volumes for the purpose of estimating egress costs when transferring data out of region.   You find that there are a number of input parameters like numbers of assets, properties, file sizes, compression ratio, as well as a page with the cost elements which can be updated from the Interweb.    
View full tip
Javascript, everyone knows it, at least a little bit. What if I told you that you could do serious data acquisition with just a little bit of Javascript and you may already have the tools to do it, right now on your "Off the Shelf" device. Node.js is a command line implementation of Javascript that can be run on common, credit card sized devices like the Raspberry PI or the Intel Edison. I suspect that if you already know about Node.js, you may have encountered its non-blocking asynchronous, "Call back", style of programming which can be a little different that most other languages which block or wait for commands to complete. While this can be a benefit for increasing performance, it can also be a barrier to entry for new users. This is the problem that Node Red really solves. Node Red is a web based Integrated Development Environment (IDE) that turns the "Call Back" style Javascript programming of Node.js into a series of interconnected Nodes, each Node of which represents a Javascript function which is connected by a callback to another node/function. A simple hello world program in Node Red would look something like this ( with annotations in red) : You can re-create this program using the Node Red IDE yourself. Here is a brief video (with no sound) which should familiarize you with how to create your own hello world flow. Video Link : 1333 How can you install Node Red on your own system to try it out? The good news is, if you have a Raspberry PI 2 with a NOOBS installed on it, Node.js and Node Red come pre-installed. If you do not already have it installed, or want to install it on your own system it is still pretty simple. Here are the steps: 1. Download and install Node.js (https://nodejs.org/en/download/) 2. Run the command:  sudo npm install -g --unsafe-perm node-red     Omit the sudo on windows (see http://nodered.org/docs/getting-started/installation.html  for more info) 3. You now have Node Red. To run it, just type: node-red  on your command line. 4. Using your web browser goto http://localhost:1880 and the Node Red IDE will appear in your browser. How about a real hardware integration example? Node Red comes with many built in Nodes and many more nodes you can add to connect to specific peripherals you may have on your device. Rather than provide a complete tutorial on Node Red, I will focus on discussing using this IDE to re-create a hardware integration that I created in the past using the Java SDK, The Raspberry PI, AM2302 Weather Station (see Weather Applications with Raspberry Pi | ThingWorx)​. This example contains detailed specifics on the attachment of the AM2302 Temperature/Humidity sensor to your Raspberry PI. I am going to assume you have the hardware already attached to your Raspberry PI as described in this tutorial ( https://learn.adafruit.com/dht-humidity-sensing-on-raspberry-pi-with-gdocs-logging/overview ). I am also assuming that you have installed the python based sample program described in this tutorial as well and you now have a python script called "AdafruitDHT.py" installed on your PI that produces the following output when it is run. pi@raspberrypi:~/projects/Adafruit_Python_DHT/examples $ sudo ./AdafruitDHT.py 2302 4 Temp=22.3*  Humidity=30.6% pi@raspberrypi:~/projects/Adafruit_Python_DHT/examples $ If you don't have any of this hardware installed, you can still proceed with this example and just create your own temperature and humidity values manually. We are going to connect the output of this python script directly to ThingWorx and sample its output value every 5 seconds. I will start assuming you do not have the Am2302 hardware and create simulated values. I will then replace them with the actual output of the python script as a final step. Polling versus Interrupt Driven Data Collection In the Java SDK version of this example, we are polling for changes in data. Every so many seconds our device will wake up and take a reading. How do we recreate the same effect in Node Red without having to push an inject button every 5 seconds. No. We need an input node that activates on its own every 5 seconds. The Inject Node will do this. Drag out an inject node and configure it as shown below. This is an input node so it will be starting a new flow. It will fire off every 5 seconds from the minute this sheet is deployed. Simulate Data Collection Lets generate a random humidity and temperature value before getting the actual data. For this node we will use a Function node. Drag one out and configure it as shown below. Here is the Javascript for this node so you can cut and paste it into this dialog. var tempF = Math.random() * 40 + 60; var tempC = (tempF-32)/1.8; var humidity = Math.random() * 80 + 20; msg.payload = {     "tempF":tempF,     "tempC":tempC,     "humidity":humidity     }; return msg;                                    Remember that the returned message is the message that the next node will receive. The payload property is the standard or default property of a message that most nodes use to pass data between each other. Here, our payload is an object with all of our simulated data in it. Lets Test it Out Connect the two nodes together and add a debug output node and deploy your sheet. The completed flow will look like this. As soon as you deploy you should see the following output in your debug tab and every five seconds another data sample will be generated. So how does this data get to ThingWorx? What we need to do is take this data and deliver it to ThingWorx in the form of a REST web service call. This is easier to do than it sounds. First off, lets create a Thing on your ThingWorx server that looks like this. Now give it these properties. Next, create an Application Key in the application keys section of the composer. Assign it to the "Administrator" user. Your keyId will of course be different. This key will be the credential you need to post your data. Installing the ThingRest Node Red Node To simplify the process of posting the data to ThingWorx, I have created my own custom node to post data. To install a custom node into your Node Red installation you have to find the directory Node Red is using to store your sheets in. By default this is a directory called ".node-red" in your home directory. On a Raspberry PI this directory would be /home/pi/.node-red. If you are running Node Red now, quit it by hitting control-c and cd into the .node-red directory. Below is the sequence of commands you would issue on your PI to install the ThingRest node. cd ~/.node-red npm install git+https://git@github.com/obiwan314/node-red-node-thingrest.git node-red                     The node package manager (npm) will install this new node automatically into your .node-red directory. Now re-run node-red and go back to your browser and refresh your Node Red IDE. You should now have a "REST Thing" node. Adding a REST Thing node to your flow Drag a REST Thing output node into your flow and configure it as shown below. Remember, your Application Key will be different than the one shown here. Also, your ThingWorx server URL may be different if your server is not on the same machine you are working on. Now connect it as shown below. When you deploy this sheet, you will be posting data to ThingWorx. Go back to your WeatherStation1 Thing in ThingWorx and use the Refresh button shown below to see your data changing. Wait, that is? Thats the whole data collection program? Yes. The flow above is the equivalent of the Java SDK code from the Java weather station example. Now for Some Real Data As promised, we will now replace the simulated data in the Generate Data node with real data obtained from the "~/projects/Adafruit_Python_DHT/examples/AdafruitDHT.py 2302 4" python command on your Raspberry PI using an Exec node. The exec node can be found at the very bottom of your node palette. It executes a command and returns the results as msg.payload to the next node in the flow. You may have noticed it has three outputs instead of one. In order these outputs are your Standard output, Standard Error and the integer return code of the process. Use the first output node to get the results of this command. Now Connect this in place of the Generate Data Node as shown below. At this point, we can't connect the collected data to the WeatherStation1 Thing because it is in the wrong format. It is console output and we need it in the form of a Javascript object. We are going to need a function to parse the console output into a Javascript object. Add the function node shown below. Here is the Javascript for cut and paste convenience. var temphumidArray=msg.payload.split(" "); var tempC = parseFloat(temphumidArray[0].replace("*","").split('=')[1]); var tempF = tempC *1.8 + 32; var humidity = parseFloat(temphumidArray[2].replace("%","").replace("\n","").split('=')[1]); msg.payload = {     "humidity":humidity,     "tempF":tempF,     "tempC":tempC   }; return msg;   Now msg.payload contains a javascript object identical to the one we were generating at random but now it is using real data. Connect up your nodes so they appear as shown below but when you deploy, don't expect it to work yet because there is still one problem you will have to get around. This python script expects to be run as the root user. How to run Node Red as Root You can start Node Red as root with the following command sudo node-red -u /home/pi/.node-red   Note that the -u argument is required to make sure you keep using the pi user's .node-red directory. If you loose your REST Thing node, you are not using the pi user's .node-red directory, but root's instead. If you see any error messages in your debug window, try re-attaching the the debug node to the Collect Data node and see what is being produced by the exec node. Don't forget to verify that your tempC,tempF and humidity properties are updating in ThingWorx. Lets Add a GPS Location You may have noticed that there is a stationLocation property on the WeatherStation1 Thing. Lets set that to a fixed location to complete this example of 40.0568764,-75.6720953,18. Below is the modified Javascript to update in the Parse Data node to add this location. var temphumidArray=msg.payload.split(" "); var tempC = parseFloat(temphumidArray[0].replace("*","").split('=')[1]); var tempF = tempC *1.8 + 32; var humidity = parseFloat(temphumidArray[2].replace("%","").replace("\n","").split('=')[1]); msg.payload = {     "humidity":humidity,     "tempF":tempF,     "tempC":tempC,     "stationLocation":"40.0568764,-75.6720953,18" }; return msg; What's Next? Node Red has many more nodes that you can add to your project through the use of the npm command. There is a GPIO node library you can install at https://github.com/monteslu/node-red-contrib-gpio which will give you input and output nodes for the GPIO pins on your PI as well, This library also supports accessing Arduino's attached to the PI over a USB cable which expand the possibilities for data collection and peripheral control.Hopefully this article has exposed you to the many other possibilities for connecting devices to your ThingWorx Server. The Rest Thing node is using the HTTP REST protocol to talk to ThingWorx. In the near future, with the Introduction of the ThingWorx Javascript SDK, a Node Red library can be created that uses ThingWorx AlwaysOn WebSockets protocol to communicate with your ThingWorx server which will offer even more capabilities and better performance.
View full tip
This Best Practices document should offer some guidelines and tips & tricks on how to work with Timers and Schedulers in ThingWorx. After exploring the configuration and creation of Timers and Schedulers via the UI or JavaScript Services, this document will also highlight some of the most common performance issues and troubleshooting techniques.   Timers and Schedulers can be used to run jobs or fire events on a regular basis. Both are implemented as Thing Templates in ThingWorx. New Timer and Scheduler Things can be created based on these Templates to introduce time based actions. Timers can be used to fire events in a certain interval, defined in the Timer's Update Rate (default is 60000 milliseconds = 1 minute). Schedulers can be used to run jobs based on a cron pattern (such as once a day or once an hour). Schedulers will also allow for a more detailed time based setup, e.g. based on seconds, hours, days of week or days months etc. Events fired by both Timers and Schedulers can be subscribed to with Subscriptions which can be utilized to execute custom service scripts, e.g. to generate "fake" or random demo data to update Remote Things in a test environment. In general subscriptions and scripts can be used to e.g. run regular maintenance tasks or periodically required functions (e.g. for data aggregation) For more information about setting up Timers and Schedulers it's recommended to also have a look at the following content:   How to set up and configure Timers How to set up and configure Schedulers How to create and configure Timers and Schedulers via JavaScript Services Events and Subscriptions for Timers and Schedulers   Example   The following example will illustrate on how to create a Timer Thing updating a Remote Thing using random values. To avoid any conflicts with permissions and visibility, use the Administrator user to create Things.   Remote Thing   Create a new Thing based on the Remote Thing Template, called myRemoteThing. Add two properties, numberA and numberB - both Integers and marked as persistent. Save myRemoteThing. Timer Thing   Create a new Thing based on the Timer Template, called myTimerThing. In the Configuration, change the Update Rate to 5000, to fire the Event every 5 seconds. User Context to Administrator. This will run the related services with the Administrator's user visibility and permissions. Save myTimerThing. Subscriptions   To update the myRemoteThing properties when the Timer Event fires, there are two options: Configure a Subscription on myRemoteThing and listen to Timer Events on the myTimerThing. Configure a Subscription on myTimerThing and listen to Timer Events on itself as a source. In this example, let's go with the first option and Edit myRemoteThing. Create a new Subscription pointing to myTimerThing as a Source. Select the Timer Event Note that if no source is selected, the Timer Event is not availabe, as myRemoteThing is based on the Remote Thing Template and not the Timer Template Enable the Subscription. In the Script area use the following code to assign two random numbers to the Thing's custom properties: me.numberA = Math.floor(Math.random() * 100); me.numberB = Math.floor(Math.random() * 100); Save myRemoteThing. Validation   The Subscription will be enabled and active on saving it. Switch to the myRemoteThing Properties Refreshing the Values will show updates with random numbers between 0 and 99 every 5 seconds (Timer Update Rate).   Performance considerations   Timers and Schedulers are handled via the Event Processing Subsystem. Metrics that impact current performance can be seen in Monitoring > Subsystems > Event Processing Implementing Timers and Schedulers on a Thing Template level might flood the system with services executions originating from Subscriptions to Timer / Scheduler triggered Events. Subscribing to another Thing's Events will be handled via the Event Processing Subsystem. Subscribing to an Event on the same Thing will not be handled via the Event Processing Subsystem, but rather execute on the already open in memory Thing. If Timers and Schedulers are not necessarily needed, the Services can be triggered e.g. via Data Change Events, UI Interactions etc. Recursion can be a hidden performance contributer where a Subscription to a certain Event executes a service, triggering another Event with recursive dependencies. Ensure there are no circular dependencies and service calls across Entities. If possible, reads for each and every action from disk should be avoided. Performance can be increased by storing relevant information in memory and using Streams or Datatables or for persistence. If possible, call other Services from within the Subscription instead of handling all code within the Subscription itself. For full details, see also Timers and Schedulers - Best Practice   How to identify and troubleshoot technical issues   Check the Event Processing Subsystem for any spikes in queued Events (tasks submitted) while the total number of tasks completed is not or only slowly increasing. For a historical overview, search the ApplicationLog for "Thingworx System Metrics" to get system metrics since the server has been (re-) started. In the ApplicationLog the message "Subsystem EventProcessingSubsystem is started" indicates that the Subsystem is indeed started and available. Use custom loggers in Services to get more context around errors and execution in the ScriptLog Custom Loggers can be used to identify if Events have fired and Subscriptions are actually triggered Example: logger.debug("myThing: executing subscribed service") For issues with Service execution, see also CS268218 Infinite loops in Services could render the server unresponsive and might flood the system with various Events To change the timing for a Timer, restarting the Thing is not enough. The Timer must be disabled and enabled at the desired start time. Schedulers will allow for a much more flexible timing and setting / changing execution times in advance. For further analysis it's recommended to generate Thread Dumps to get more information about the current state of Threads in the JVM. The ThingWorx Support Tools Extension can help in generating those. See also CS245547 for more information and usage.
View full tip
In this blog I will be testing the SAPODataConnector using the SAP Gateway - Demo Consumption System.   Overview   The SAPODataConnector enables the connection to the SAP Netweaver Gateway through the ODdata specification. It is a specialized implementation of the ODataConnector. See Integration Connectors for documentation.   It relies on three components : Integration Runtime : microservice that runs outside of ThingWorx and has to be deployed separately, it uses Web Socket to communicate with the ThingWorx platform (similar to EMS). Integration Subsystem : available by default since 7.4 (not extension needed) Integration Connector : SAPODataConnector available by default in 8.0 (not extension needed)   ThingWorx can use OAuth to access SAP, but in this blog I will just use basic authentication.   SAP Netweaver Gateway Demo system registration   1. Create an account on the Gateway Demo system (credentials to be used on the connector are sent by email) 2. Verify that the account has access to the basic OData sample service : https://sapes4.sapdevcenter.com/sap/opu/odata/IWBEP/GWSAMPLE_BASIC/   Integration Runtime microservice setup   1. Follow WindchillSwaggerConnector hands-on (7.4) - Integration Runtime microservice setup Note: Only one Integration Runtime instance is required for all your Integration Connectors (Multiple instances are supported for High Availability and scale).   SAPODataConnector setup   Use the New Composer UI (some setting, such as API maps, are not available in the ThingWorx legacy composer)     1. Create a DataShape that is used to map the attributes being retrieved from SAP SAPObjectDS : Id (STRING), Name (STRING), Price (NUMBER) 2. Create a Thing named TestSAPConnector that uses SAPODataConnector as thing template 3. Setup the SAP Netweaver Gateway connection under TestSAPConnector > Configuration Generic Connector Connection Settings Authentication Type = fixed HTTP Connector Connection Settings Username = <SAP Gateway user> Password = < SAP Gateway pwd> Base URL : https://sapes4.sapdevcenter.com/sap Relative URL : /opu/odata/IWBEP/GWSAMPLE_BASIC/ Connection URL : /opu/odata/IWBEP/GWSAMPLE_BASIC/$metadata 4. Create the API maps and service under TestSAPConnector > API Maps (New Composer only) Mapping ID : sap EndPoint : getProductSet Select DataShape : SAPObjectDS (created at step 1) and map the following attributes : Name <- Name Id <- ProductID Price <- Price Pick "Create a Service from this mapping"     Testing our Connector   Test the TestSAPConnector::getProductSet service (keep all the input parameters blank)
View full tip
Installing an Open Source Time Series Platform For testing InfluxDB and its graphical user interface, Chronograf I'm using Docker images for easy deployment. For this post I assume you have worked with Docker before.   In this setup, InfluxDB and Chronograf will share an internal docker network to exchange data.   InfluxDB can be accessed e.g. by ThingWorx via its exposed port 8086. Chronograf can be accessed to administrative purposes via its port 8888. The following commands can be used to create a InfluxDB environment.   Pull images   sudo docker pull influxdb:latest sudo docker pull chronograf:latest   Create a virtual network   sudo docker network create influxdb   Start the containers   sudo docker run -d --name=influxdb -p 8086:8086 --net=influxdb --restart=always influxdb sudo docker run -d --name=chronograf -p 8888:8888 --net=influxdb --restart=always chronograf --influxdb-url=http://influxdb:8086     InfluxDB should now be reachable and will also restart automatically when Docker (or the Operating System) are restarted.
View full tip
The following code is best practice when creating any "entity" in Thingworx service script.  When a new entity is created (like a Thing) it will be loaded into the JVM memory immediately, but is not committed to disk until a transaction (service) successfully completes.  For this reason ALL code in a service must be in a try/catch block to handle exceptions.  In order to rollback the create call the catch must call a delete for any entity created.  In line comments give further detail.     try {     var params = {         name: "NewThingName",         description: "This Is A New Thing",         thingTemplateName: "GenericThing"     };     Resources["EntityServices"].CreateThing(params);    // Always enable and restart a new thing to make it active on the Platform     Things["NewThingName"].Enable();     Things["NewThingName"].Restart();       //Now Create an Organization for the new Thing     var params = {         topOUName: "NewOrgName",         name: "NewOrgName",         description: "New Orgianization for new Thing",         topOUDescription: "New Org Main"     };     Resources["EntityServices"].CreateOrganization(params);       // Any code that could potentially cause an exception should     // also be included in the try-catch block. } catch (err) {     // If an exception is caught, we need to attempt to delete everything     // that was created to roll back the entire transaction.     // If we do not do this a "ghost" entity will remain in memory     // We must do this in reverse order of creation so there are no dependency conflicts     // We also do not know where it failed so we must attempt to remove all of them,     // but also handle exceptions in case they were not created       try {         var params = {name: "NewOrgName"};         Resources["EntityServices"].DeleteOrganization(params);     }     catch(ex2) {//Org was not created     }       try {         var params = {name: "NewThingName"};         Resources["EntityServices"].DeleteThing(params);     }     catch(ex2) {//Thing was not created     } }
View full tip
I have created a mashup which allows you to easily use and test the Prescriptions functionality in Thingworx Analytics (TWA). This is where you choose 1 or more fields for optimization, and TWA tells you how to adjust those fields to get an optimal outcome.   The functionality is based on a public sample dataset for concrete mixtures, full details are included in the attached documentation.  
View full tip
This is using the simplest structure to do a look through an infotable.  It's simple but it avoids having to use row indexes and cleans up the code for readability as well.   //Assume incoming Infotable parameter names "thingList" for each (row in thingList.rows) {      // Now each row is already assigned to the row variable in the loop      var thingName = row.name; }   You can also nest these loops (just use a different variable from "row").  Also important to note to not add or remove row entries of the Infotable inside the loop.  In this case you may end up skipping or repeating rows in the loop since the indexes will be changed.
View full tip
Create a new Thing using the Scheduler Thing Template. The Scheduler Thing will fire a ScheduledEvent Event when the configured schedule is fired. The event is automatically present and does not need to be added manually. Configuration   The Scheduler Configuration is quite straightforward and allows for an exact setup of schedule based on units of time, e.g. seconds, minutes, hours, days of week etc. It can be accessed via the Thing's Entity Configuration   Configuration allows for Changing the runAsUser context - in which the Events will be handled. The user will need visibility and permission on e.g. executing Services or depending Things, which are required to run the Service triggered by the Event. Changing the Schedule - in which time the Events will be fired (by default every minute). The schedule is displayed in CRON String notation and can be changed and viewed in detail by clicking on "More". The CRON String will be generated automatically based on the inputs. Schedules can be configured in Manual mode - allowing for full configuration of each and every time based attribute. Schedules can be configured for a specific time Type - allowing for configuration only based on seconds, minutes, hours, days, weeks, months or years. Below screenshots show schedules running every minute and every Saturday / Sunday at 12:00 ("Every Weekend Day").     Services   Scheduler Things inherit two Services by default from the Thing Template DisableScheduler EnableScheduler These will activate / de-activate the Scheduler and allow / disallow firing Events once a scheduled time is reached If a Scheduler is currenty enabled or disabled can be seen in its properites  
View full tip
Welcome to the ThingWorx Manufacturing Apps Community! The ThingWorx Manufacturing Apps are easy to deploy, pre-configured role-based starter apps that are built on PTC’s industry-leading IoT platform, ThingWorx. These Apps provide manufacturers with real-time visibility into operational information, improved decision making, accelerated time to value, and unmatched flexibility to drive factory performance.   This Community page is open to all users-- including licensed ThingWorx users, Express (“freemium”) users, or anyone interested in trying the Apps. Tech Support community advocates serve users on this site, and are here to answer your questions about downloading, installing, and configuring the ThingWorx Manufacturing Apps.     A. Sign up: ThingWorx Manufacturing Apps Community: PTC account credentials are needed to participate in the ThingWorx Community. If you have not yet registered a PTC eSupport account, start with the Basic Account Creation page.   Manufacturing Apps Web portal: Register a login for the ThingWorx Manufacturing Apps web portal, where you can download the free trial and navigate to the additional resources discussed below.     B. Download: Choose a download/packaging option to get started.   i. Express/Freemium Installer (best for users who are new to ThingWorx): If you want to quickly install ThingWorx Manufacturing Apps (including ThingWorx) use the following installer: Download the Express/Freemium Installer   ii. 30-day Developer Kit trial: To experience the capabilities of the ThingWorx Platform with the Manufacturing Apps and create your own Apps: Download the 30-day Developer Kit trial   iii. Import as a ThingWorx Extension (for users with a Manufacturing Apps entitlement-- including ThingWorx commercial customers, PTC employees, and PTC Partners): ThingWorx Manufacturing apps can be imported as ThingWorx extensions into an existing ThingWorx Platform install (v8.1.0). To locate the download, open the PTC Software Download Page and expand the following folders:   ThingWorx Platform | Release 8.x | ThingWorx Manufacturing Apps Extension | Most Recent Datacode     C. Learn After downloading the installer or extensions, begin with Installation and Configuration.   Follow the steps laid out in the ThingWorx Manufacturing Apps Setup and Configuration Guide 8.2   Find helpful getting-started guides and videos available within the 'Get Started' section of the ThingWorx Manufacturing Apps Portal.     D. Customize Once you have successfully downloaded, installed, and configured the Manufacturing Apps, begin to explore the deeper potential of the Apps and the ThingWorx Platform.   Follow along with the discussion and steps contained in the ThingWorx Manufacturing Apps and Service Apps Customization Guide  8.2   Also contained within the the 'Get Started' page of the ThingWorx Manufacturing Apps Portal, find the "Evolve and Expand" section, featuring: -Custom Plant Layout application -Custom Asset Advisor application -Global Plant View application -Thingworx Manufacturing Apps Technical Lab with Sigma Tile (Raspberry Pi application) -Configuring the Apps with demo data set and simulator -Additional Advanced Documentation     E. Get help / give feedback / interact Use the ThingWorx Manufacturing Apps Community page as a resource to find documentation, peruse past forum threads, or post a question to start a discussion! For advanced troubleshooting, licensed users are encouraged to submit support tickets to the PTC My eSupport portal.
View full tip
In this post, I show how you can downsample time-series data on server side using the LTTB algorithm. The export comes with a service to setup sample data and a mashup which shows the data with weak to strong downsampling.   Motivation: Users displaying time series data on mashups and dashboards (usually by a service using a QueryPropertyHistory-flavor in the background) might request large amounts of data by selecting large date ranges to be visualized, or data being recorded in high resolution. The newer chart widgets in Thingworx can work much better with a higher number of data points to display. Some also provide their own downsampling so only the „necessary“ points are drawn (e.g. no need to paint beyond the screen‘s resolution). See discussion here. However, as this is done in the widgets, this means the data reduction happens on client site, so data is sent over the network only to be discarded. It would be beneficial to reduce the number of points delivered to the client beforehand. This would also improve the behavior of older widgets which don’t have support for downsampling. Many methods for downsampling are available. One option is partitioning the data and averaging out each partition, as described here. A disadvantage is that this creates and displays points which are not in the original data. This approach here uses Largest-Triangle-Three-Buckets (LTTB) for two reasons: resulting data points exist in the original data set and the algorithm preserves the shape of the original curve very well, i.e. outliers are displayed and not averaged out. It also seems computationally not too hard on the server. Setting it up: Import Entities from LTTB_Entities.xml Navigate to thing LTTB.TestThing in project LTTB, run service downsampleSetup to setup some sample data Open mashup LTTB.Sampling_MU: Initially, there are 8000 rows sent back. The chart widget decides how many of them are displayed. You can see the rowcount in the debug info. Using the button bar, you determine to how many points the result will be downsampled and sent to the client. Notice how the curve get rougher, but the shape is preserved. How it works: The potentially large result of QueryPropertyHistory is downsampled by running it through LTTB. The resulting Infotable is sent to the widget (see service LTTB.TestThing.getData). LTTB implementation itself is in service downsampleTimeseries     Debug mode allows you to see how much data is sent over the network, and how much the number decreases proportionally with the downsampling.   LTTB.TestThing.getData;   The export and the widget is done with TWX  9 but it's only the widget that really needs TWX 9. I guess the code would need some more error-checking for robustness, but it's a good starting point.  
View full tip
The AddStreamEntries​ snippet does not offer too much information, except that it needs an InfoTable as input. It is however based on the InfoTable for the AddStreamEntity service.     To use the AddStreamEntries table, an InfoTable based on sourceType, values, location, source, timestamp​ and ​tags​ must be used.   In this example, I started with a new Thing based on a ​Stream​ template and the following DataShape:     This DataShape must be converted into an InfoTable with is used as the ​values​ parameter. It's important that the ​timestamp​ parameter has distinct values! Otherwise values matching the same timestamp will be overwritten!   We don't really need the sourceType​ as ThingWorx will automatically determine the type by knowing the source and which kind of Entity Type it is.   I created a new ​MyStreamThing​ with a new service, filling the InfoTable and the Stream. The result is the following code which will add 5 rows to the Stream:     // *** SET UP META DATA FOR INFO TABLE ***   // create a new InfoTable based on AddStreamEntries parameters (timestamp, location, source, sourceType, tags, values)   var myInfoTable = { dataShape: { fieldDefinitions : {} }, rows: [] };   myInfoTable.dataShape.fieldDefinitions['timestamp']  = { name: 'timestamp', baseType: 'DATETIME' }; myInfoTable.dataShape.fieldDefinitions['location']  = { name: 'location', baseType: 'LOCATION' }; myInfoTable.dataShape.fieldDefinitions['source']    = { name: 'source', baseType: 'STRING' }; myInfoTable.dataShape.fieldDefinitions['sourceType'] = { name: 'sourceType', baseType: 'STRING' }; myInfoTable.dataShape.fieldDefinitions['tags']      = { name: 'tags', baseType: 'TAGS' }; myInfoTable.dataShape.fieldDefinitions['values']    = { name: 'values', baseType: 'INFOTABLE' };   // *** SET UP ACTUAL VALUES FOR INFO TABLE ***   // create new meta data   var tags = new Array(); var timestamp = new Date(); var location = new Object(); location.latitude = 0; location.longitude = 0; location.elevation = 0; location.units = "WGS84";   // add rows to InfoTable (~5 times)   for (i=0; i<5; i++) {       // create new values based on Stream DataShape       var params = {           infoTableName : "InfoTable",           dataShapeName : "Cxx-DS"     };       var values = Resources["InfoTableFunctions"].CreateInfoTableFromDataShape(params);       // add something to the values to make them unique       // create and add new row based on Stream DataShape     // only a single line allowed!       var newValues = new Object();     newValues.a = "aaa" + i; // STRING - isPrimaryKey = true     newValues.b = "bbb" + i; // STRING     newValues.c = "ccc" + i; // STRING       values.AddRow(newValues);       // create new InfoTable row based on meta data & values     // add 10 ms to each object, to make it's timestamp unique     // otherwise entries with the same timestamp will be overwritten       var newEntry = new Object();     newEntry.timestamp = new Date(Date.now() + (i * 10));     newEntry.location = location;     newEntry.source = me.name;     newEntry.tags = tags;     newEntry.values = values;       // add new Info Table row to Info Table           myInfoTable.rows = newEntry;       }       // *** ADD myInfoTable (HOLDING MULITPLE STREAM ENTRIES) TO STREAM       // add stream entries in the InfoTable       var params = {           values: myInfoTable /* INFOTABLE */     };       // no return       Things["MyStreamThing"].AddStreamEntries(params);   To verify the values have been added correctly, call the ​GetStreamEntriesWithData​ service on the ​MyStreamThing​
View full tip
Announcements