cancel
Showing results for 
Search instead for 
Did you mean: 
cancel
Showing results for 
Search instead for 
Did you mean: 

Community Tip - Visit the PTCooler (the community lounge) to get to know your fellow community members and check out some of Dale's Friday Humor posts! X

IoT Tips

Sort by:
Video Author:                     Asia Garrouj Original Post Date:            March 31, 2017 Applicable Releases:        ThingWorx Analytics 7.4 to 8.1   Description: This video is the second part of a two part video series walking thru the configuration of Analysis Event which is applied for Real-Time Scoring.  This second video will walk you thru the configuration of Analysis Event for Real Time Scoring and validating that a predictions job has been executed based on new input data.    
View full tip
Video Author:                     Asia Garrouj Original Post Date:            June 13, 2017 Applicable Releases:        ThingWorx Analytics 8.0   Description: This video is the third of a 3 part series walking you through how to setup ThingWatcher for Anomaly Detection. In this second video you will learn how to use the the Anomaly Mashup to visualize data received from a remote device.    
View full tip
The Axeda Platform provides a few mechanisms for putting user-defined pages or UI modules into the dashboards, or allowing end-users to host AJAX based applications from the same instance their data is retrieved from.  This simple application illustrates the use of jQuery to call Scripto and return a JSON formatted array of current data for an Axeda asset. Prerequisites: First steps taken with Axeda Artisan Basic understanding of HTML, JavaScript and jQuery Axeda Platform v6.5 or greater (Axeda Customers and Partners) Artisan project attached to this article Features: Authentication from a Web app Use of CurrentDataFinder API Scripto from jQuery Files of Note ​(Locations are from the root of Artisan project) index.html – main HTML index page ..\artisan-starter-html\src\main\webapp\index.html app.js – JavaScript code to build application and call Scripto ..\artisan-starter-html\src\main\webapp\scripts\app.js axeda.js – axeda web services JavaScript code ..\artisan-starter-html\src\main\webapp\scripts\axeda.js DataItemsWithScripto.groovy – custom object on Axeda platform ..\artisan-starter-scripts\src\main\groovy\DataItemsWithScripto.groovy Screenshots: Further Reading Developing with Axeda Artisan Extending the Axeda Platform UI - Custom Tabs and Modules
View full tip
In the recent times, one of the frequent questions regarding PostgreSQL is which tools are good with PostgreSQL. With the growing functionality of PostgreSQL, the number of vendors are willing to produce tools for PostgreSQL. There are lot of tools for management, development, data visualization and the list if growing. Here, I'm listing a few tools that might be of interest to Thingworx users. psql terminal: The psql client is a command-line client distributed with PostgreSQL, often called as interactive terminal. psql is a simple yet powerful tool with which you can directly interface with the PostgreSQL server. The psql client comes default with the PostgreSQL database. Key features: Issue queries either through commands or from a file. Provides shell-like features to automate tasks. For more information, refer http://www.postgresql.org/docs/9.5/static/app-psql.html pgAdmin III: pgAdmin III is a GUI based administration and development tool for PostgreSQL database. It delivers the needs of both admin and normal users from writing simple SQL queries to developing complex databases. Key features: Open source and cross-platform support. No additional drivers are required. Supports more than 30 different languages. Note: pgAdmin III comes default with postgreSQL9.4 installer. For more information, refer http://www.pgadmin.org/download/ phpPgAdmin: phpPgAdmin is a web-based client for managing PostgreSQL databases. It provides the user with a convenient way to create databases, create tables, alter tables and query the data using SQL. Key features: Open source and supports PostgreSQL 9.x. Requires webserver. Administer multiple servers. Supports the slony master-slave replication engine. For phpPgAdmin download: http://phppgadmin.sourceforge.net/doku.php?id=download TeamPostgreSQL: TeamPostgreSQL is a browser-based tool for PostgreSQL administration. Using TeamPostgreSQL, database objects can be accessed from anywhere in the web browser. Key features: Open source and cross-platform support. Supports SSH for both the web interface and the database connections. GUI with tabbed SQL editors. For TeamPostgreSQL download: http://www.teampostgresql.com/download.jsp   Monitoring Tools pgBadger: pgBadger is a PostgreSQL log analyzer for generating reports from the PostgreSQL log files. It is built in Perl language and uses a javascript and bootstrap libraries. Often seen as a replacement for pgfouine log analyzer. Key features: Open source community project. Autodetects postgreSQL log file formats (stderr, syslog or csvlog). Provides SQL queries related reports and statistics. Can also set limits to only report errors. Generates Pie charts and Time based charts. For more information, refer http://dalibo.github.io/pgbadger/. Git download: https://github.com/dalibo/pgbadger/releases PostgreStats: Postgrestats is a software that has automated scripts to easily view statistics such as commits, rollbacks, user inserts, updates and deletes in a time-based intervals. Postgrestats gets installed and executes on the database server, it customizes the main conf file. Postgrestats also provides an enterprise application for Replication mode and High Availability. Key features: Open source and easy-to-setup installation.  Take a snapshot report based on time intervals. Optional email-on-update. Text file Data storage. Also provides enterprise application, PostgreStats Enterprise. For more information, refer: http://www.postgrestats.com/subs/docs.html    Slemma: Slemma is a collaborative, data visualization tool for PostgreSQL database. Slemma allows database connections with a near to one-click integration and can generate a dashboard from files. Slemma comes with a commercial license with a $29 per user per month pricing. Key features: Create charts and interactive dashboards by selecting tables. Non-developers can easily create visualizations (with no coding). Email dashboards automatically to clients or your entire team. For more information, refer https://slemma.com/ Ubiq: Ubiq is a web-based buisness intelligence and reporting tool for PostgreSQL server. Ubiq creates reports and online dashboards, providing the feature to export in multiple formats. Ubiq is distributed with a commercial license. Key features: Drag & drop interface to create interactive charts, dashboards and reports. Apply powerful filters and functions to the data. Share your work and schedule email reports. For more information, refer http://ubiq.co/tour
View full tip
Video Author:                     Asia Garrouj Original Post Date:            December 9, 2016 Applicable Releases:        ThingWorx Analytics 52.0 to 8.1   Description: This video walks you through how to upload data and shows the configuration settings.   Please Note: In this video, the shown configuration settings page is different for ThingWorx Analytics 8.1.  
View full tip
ThingWorx Analytics Builder - Upload Data   This video walks you through how to upload data and shows the configuration settings. Please be aware that shown configuration settings page is different for version 8.1.   Updated Link for access to this video:  ThingWorx Analytics Builder: Upload Data
View full tip
The following script takes a parameter of a model name, a device serial number and a data item name, finds the asset location and uses that longitude to determine the current TimeZone.  It then converts the Timezone of the data item timestamp to an Eastern Standard Timezone timestamp. import groovy.xml.MarkupBuilder import com.axeda.drm.sdk.Context import java.util.TimeZone import com.axeda.drm.sdk.data.* import com.axeda.drm.sdk.device.* import com.axeda.common.sdk.jdbc.*; import net.sf.json.JSONObject import net.sf.json.JSONArray import com.axeda.drm.sdk.mobilelocation.MobileLocationFinder import com.axeda.drm.sdk.mobilelocation.MobileLocation import com.axeda.drm.sdk.mobilelocation.CurrentMobileLocationFinder def response try {     Context ctx = Context.getUserContext()     ModelFinder mfinder = new ModelFinder(ctx)     mfinder.setName(parameters.model_name)     Model m = mfinder.find()     DeviceFinder dfinder = new DeviceFinder(ctx)     dfinder.setModel(m);     dfinder.setSerialNumber(parameters.device)     Device d = dfinder.find()     CurrentMobileLocationFinder cmlFinder = new CurrentMobileLocationFinder(ctx);     cmlFinder.setDeviceId(d.id.getValue());     MobileLocation ml = cmlFinder.find();     def lng = -72.158203125     if (ml?.lng){         lng = ml?.lng     }     // set boundaries for timezones - longitudes     def est = setUSTimeZone(-157.95415000000003)     def tz = setUSTimeZone(lng)     CurrentDataFinder cdfinder = new CurrentDataFinder(ctx, d)     DataValue dvalue = cdfinder.find(parameters.data_item_name)     def adjtime = convertToNewTimeZone(dvalue.getTimestamp(),tz,est)     def results = JSONObject.fromObject(lat: ml?.lat, lng: ml?.lng, current: [name: dvalue.dataItem.name, time: adjtime.format("MM/dd/yyyy HH:mm"), value: dvalue.asString()]).toString(2)     response = results } catch (Exception e) {     response = [                 message: "Error: " + e.message             ]     response =  JSONObject.fromObject(response).toString(2) } return ['Content-Type': 'application/json', 'Cache-Control':'no-cache', 'Content': response] def setUSTimeZone(lng){     TimeZone tz     // set boundaries for US timezones by longitude     if (lng <= -67.1484375 && lng > -85.517578125){         tz = TimeZone.getTimeZone("EST");     }     else if (lng <= -85.517578125 && lng > -96.591796875){         tz = TimeZone.getTimeZone("CST");     }     else if (lng <= -96.591796875 && lng > -113.90625){         tz = TimeZone.getTimeZone("MST");     }     else if (lng <= -113.90625){         tz = TimeZone.getTimeZone("PST");     }     logger.info(tz)     return tz } public Date convertToNewTimeZone(Date date, TimeZone oldTimeZone, TimeZone newTimeZone){     long oldDateinMilliSeconds=date.time - oldTimeZone.rawOffset     // oldtimeZone.rawOffset returns the difference(in milliSeconds) of time in that timezone with the time in GMT     // date.time returns the milliseconds of the date     Date dateInGMT=new Date(oldDateinMilliSeconds)     long convertedDateInMilliSeconds = dateInGMT.time + newTimeZone.rawOffset     Date convertedDate = new Date(convertedDateInMilliSeconds)     return convertedDate }
View full tip
This Expert Session consists of the general overview for the multitenancy and platform security. It  discusses the available security levels, necessary basic resources, as well as provides information on the system user, and also includes several examples on how-to. It’s assumed that the audience is familiar with the Composer and its navigation.     For full-sized viewing, click on the YouTube link in the player controls.   Visit the Online Success Guide to access our Expert Session videos at any time as well as additional information about ThingWorx training and services.
View full tip
This video is the 2nd part, of a series of two videos, walking you through the configuration of Analysis Event which is applied for Real-Time Scoring. This part 2 video will walk you through the configuration of Analysis Event for Real-Time Scoring, and validate that a predictions job has been executed based on new input data.   Updated Link for access to this video:  Analytics Manger 7.4: Configure Analysis Event & Real Time Scoring Part 2 of 2
View full tip
Design Your Data Model Guide Part 2   Step 4: Data Sources – Component Breakout   Component Breakout     Once you have a full list of Things in your system (as well as requirements for each user), the next step is to identify the information needed from each Thing (based on the user's requirements). This involves evaluating the available data and functionality for each Thing. You then align the data and functionality with the user's requirements to determine exactly what you need, while eliminating that which you do not. This is important, as there can be cost and security benefits to only collecting data you need, and leaving what you don't. NOTE: Remember from the Data Model Introduction that a Thing's Components include Properties, Services, Events, and Subscriptions.   Factory Example   Using the Smart Factory example, let’s go through the different Things and break down each Thing's components that are needed for each of our users.   Conveyor Belts   The conveyor belt is simple in operation but could potentially have a lot of available data. Maintenance Engineer - needs to know granular data for the belt and if it has any alerts emergency shutdown (service) machine state (on/off) (property) serial number (property) last maintenance date (property) next scheduled maintenance date(property) power consumption (property) belt speed (property) belt motor temp (property) belt motor rpm (property) error notification (event) auto-generated maintenance requests (subscription) Operator - needs to know if the belt is working as intended belt speed (property) alert status (event) Production Manager - wants access to the data the Operator can see but otherwise has no new requirements   Robotic Arm   The robotic arm has 3 axes of rotation as well as a clamp hand. Maintenance Engineer - needs to know granular data for the arm and if it has any alerts time since last pickup (property): how long it has been since the last part was picked up by this hand? product count (property): how many products the hand has completed emergency shutdown (service) machine state (on/off) (property) serial number (property) last maintenance date (property) next scheduled maintenance date (property) power consumption (property) arm rotation axis 1 (property) arm rotation axis 2 (property) arm rotation axis 3 (property) clamp pressure (property) clamp status (open/closed) (property) error notification (event) 15.auto-generated maintenance requests (subscription) Operator - needs to know if the robotic arm is working as intended clamp status (open/closed) (property) error notification (event) product count (property): How many products has the hand completed? Production Manager - wants access to the data the Operator can see but otherwise has no new requirements   Pneumatic Gate   The pneumatic gate has two states, open and closed. Maintenance Engineer - needs to know granular data for the gate and if it has any alerts emergency shutdown (service) machine state (on/off) (property) serial number (property) last maintenance date (property) next scheduled maintenance date (property) power consumption (property) gate status (open/closed) (property) error notification (event) auto-generated maintenance requests (subscription) Operator - needs to know if the pneumatic gate is working as intended. gate status (open/closed) (property) error notification (event) The Production Manager wants access to the data the Operator can see but otherwise has no new requirements   Quality Control Camera   The QC camera uses visual checks to make sure a product has been constructed properly. Maintenance Engineer - needs to know granular data for the camera and if it has any alerts machine state (property): on/off serial number (property) last maintenance date (property) next scheduled maintenance date (property) power consumption (property) current product quality reading (property) images being read (property) settings for production quality assessment (property) error notification (event) auto-generated maintenance requests (subscription) product count (property): how many products the camera has seen Operator - needs to keep track of the quality check results and if there are any problems with the camera setup settings for production quality assessment (property) error notification (event) bad quality flag (event) product count (property): how many products the camera has seen Production Manager - wants access to the data the Operator can see but otherwise has no new requirements   Maintenance Request System Connector   Determining the data needed from the Maintenance Request System is more complex than from the physical components, as it will be much more actively used by all of our users. It is important to note that the required functionality already exists in our system as is, but it needs bridges created to connect it to a centralized system. Maintenance Engineer - needs to receive and update maintenance requests maintenance engineer credentials (property): authentication with the maintenance system endpoint configuration for connecting to the system (property) get unfiltered list of maintenance requests (service) update description of maintenance request (service) close maintenance request (service) Operator - needs to create and track maintenance requests operator credentials (property): authentication with the maintenance system endpoint configuration for connecting to the system (property) create maintenance request (service) get filtered list of maintenance requests for this operator (service) Production Manager - needs to monitor the entire system - both the creation and tracking of maintenance requests; needs to prioritize maintenance requests to keep operations flowing smoothly production manager credentials (property): authentication with the maintenance system endpoint configuration for connecting to the system (property) create maintenance request (service) get unfiltered list of maintenance requests (service) update priority of maintenance request (service)   Production Order System Connector   Working with the Production Order System is also more complex than the physical components of the lines, as it will be more actively used by two of the three users. It is important to note that the required functionality already exists in our existing production order system as is, but it needs bridges created to connect to a centralized system. Maintenance Engineer - will not need to know anything about production orders, as it is outside the scope of their job needs Operator - needs to know which production orders have been set up for the line, and needs to mark orders as started or completed operator credentials (property): authentication with the production order system endpoint configuration for connecting to the system (property) mark themselves as working a specific production line (service) get a list of filtered production orders for their line (service) update production orders as started/completed (service) Production Manager - needs to view the status of all production orders and who is working on which line production manager credentials (property): authentication with the production order system endpoint configuration for connecting to the system (property) get a list of production lines with who is working them (service) get the list of production orders with filtering options (service) create new production orders (service) update existing production orders for quantity, and priority (service) assign a production order to a production line (service) delete production orders (service)   Step 5: Data Sources – Thing-Component Matrix     Now that you have identified the Components necessary to build your solution (as well as the Things involved in enabling said Components), you are almost ready to create your Data Model design. Before moving onto the design, however, it is very helpful to get a good picture of how these Components interact with different parts of your solution. To do that, we recommend using a Thing-Component Matrix. A Thing-Component Matrix is a grid in which you will list Things in rows and Components in columns. This allows you to identify where there are overlaps between Components. From there, you can break those Components down into reusable Groups. Really, all you're doing in this step is taking the list of individual Things and their corresponding Components and organizing them. Instead of thinking of each item's individually-required functionality, you are now thinking of how those Components might interact and/or be reused across multiple Things.   Sample Thing-Component Matrix   As a generic example, look at the chart presented here.   You have a series of Things down the rows, while there are a series of Components (i.e. Properties, Services, Events, and Subscriptions) in the columns. This allows you to logically visually identify how some of those Components are common across multiple Things (which is very important in determining our recommendations for when to use Thing Templates vs. Thing Shapes vs. directly-instantiated Things). If we were to apply this idea to our Smart Factory example, we would create two sections of our Thing-Component Matrix, i.e. the Overlapping versus Unique Components. NOTE: It is not necessary to divide your Thing Component Matrix between Overlapping vs Unique if you don't wish to do so. It is done here largely for the sake of readability.   Overlapping Matrix   This matrix represents all the overlapping Components that are shared by multiple types of Things in our system:   Unique Matrix   This matrix represents the Components unique to each type of Thing:     Step 6: Model Breakdown         Breaking down your use case into a Data Model is the most important part of the design process for ThingWorx. It creates the basis for which every other aspect of your solution is overlaid. To do it effectively, we will use a multi-step approach. This will allow us to identify parts we can group and separate, leading to a more modular design.   Entity Relationship Diagram   To standardize the represention of Data Models, it is important to have a unified view of what a representation might look like. For this example, we have developed an Entity Relationship Diagram schematic used for Data Model representation. We will use this representation to examine how to build a Data Model.   Breakdown Process   ThingWorx recommends following an orderly system when building the specifics of your Data Model. You've examined your users and their needs. You've determined the real-world objects and systems you want to model. You've broken down those real-world items by their Component functionality. Now, you will follow these steps to build a specific Data Model for your application. Step Description 1 Prioritize the Groups of Components from your Thing-Component Matrix by each Group's Component quantity. 2 Create a base Thing Template for the largest group. 3 Iterate over each Group deciding which entity type to create. 4 Validate the design through instantiation. In the next several pages, we'll examine each of these steps in-depth.   Click here to view Part 3 of this guide.   
View full tip
Build an Equipment Dashboard Guide Part 1   Overview   This project will introduce you to the principles of ThingWorx Foundation by creating an eqipment dashboard. Following the steps in this guide, you will create the building blocks of your first IoT application, including Things and Streams. We introduce the basics for creating an IoT application. NOTE: This guide's content aligns with ThingWorx 9.3. The estimated time to complete ALL 2 parts of this guide is 30 minutes.    Step 1: Learning Path Overview   This guide explains the steps to create an Industrial Eqipment Dashboard, and is part of the Connect and Monitor Industrial Plant Equipment Learning Path. You can use this guide independently from the full Learning Path. If you want to learn the basics of creating an eqipment dashboard with ThingWorx, this guide will be useful to you.When used as part of the Industrial Plant Learning Path, you should already have ThingWorx Kepware Server installed, and it should be sending data to ThingWorx Foundation. You also need to have previously created the Thing Shape and Thing Template used for this dashboard. We hope you enjoy this Learning Path.   Step 2: Create Thing   A Thing is used to digitally represent a specific component of your application in ThingWorx. In Java programming terms, a Thing is similar to an instance of a class. In this step, you will create a Thing that represents an individual Pump using the Thing Template we created in the previous guide. Using a Thing Template allows you to increase development velocity by creating multiple Things without re-entering the same information each time. In ThingWorx Foundation, navigate to Browse > Modeling > Things. Click + New. In the Name field, type MyPump. NOTE: This name, with matching capitalization, is required for the data display created in a later step.       4. If Project is not already set, click the + in the Project text box and select the PTCDefaultProject.       5. In the Base Thing Template field, search for and select the previously-created PumpTemplate.       6. At the top, click Save.          Manage Property Bindings At the top, click Properties and Alerts. At the top, click Manage Bindings. In the top-left Local > Search Things field, search for and select IndConn_Tag1. Drag-and-drop Simulation_Examples_Functions_Random3's + symbol onto the watts Property on the right. At the bottom-right of the pop-up, click Done. Note how the Tag from ThingWorx Kepware Server is now bound to the the watts Property. Click Save. Click Refresh repeatedly to confirm the watts Property value is changing.     Step 3: Store Data in Value Stream   Now that you have created the MyPump Thing to model your application in ThingWorx, you need a storage Entity to record changing Property values. This step shows how to save time-series data in a Value Stream already created in a previous guide. To learn more, refer to the Methods for Data Storage guide. Navigate to Browse > Modeling > Thing Templates. Click the previously-created PumpTemplate Thing Template to open it. Confirm you are on the General Information tab. If necessary, click Edit to allow changes. In the Value Stream field, search for and select IndConn_ValueStream. Click Save.   Step 4: Create Application UI   ThingWorx Foundation is used to create customized web applications that can display and interact with data from multiple sources. These web applications are called Mashups and are created using the Mashup Builder. The Mashup Builder is where you create your web application by dragging and dropping Widgets such as Grids, Charts, Maps, and Buttons onto a Canvas. All of the user interface elements in your application are Widgets. We will build a web application with three Widgets: Image showing a picture of the pump Value Display showing the pump serial number Line Chart showing the value of watts Property trend over time.   Create New Mashup   Navigate to Browse > Visualization > Mashups.   Click + New.   Keep the defaults and click OK.   In the Name field, type pump-dashboard. If Project is not already set, click the + in the Project text box and select the PTCDefaultProject. Click Save.   At the top, click Design.   Define Mashup Areas   At the top-left, ensure the Layout tab is selected. Click Add Bottom to split your UI into two halves.   Click the newly-created bottom-half to select it. Click Add Left.   Click the bottom-left container to select it. In the top-left Layout section, scroll down and select Fixed Size.   Type 200 in the Width text box that appeared, then press your keyboard’s Tab key to record your entry.   Add Widgets   In the top-left, click the Widgets tab.   In the Filter field, type image.   Drag-and-drop an Image Widget onto the lower-left area of the central Canvas. This Widget will show an image of the pump in use. 4. In a similar manner to what was just done with the Image Widget, drag-and-drop a Value Display Widget onto the top area. 5. Likewise, drag-and-drop a Line Chart Widget onto the lower-right area.   6. Click Save.          Click here to view Part 2 of this guide. 
View full tip
This is a follow-up post on my initial document about Edge Microserver (EMS) and Lua Script Resource (LSR) security. While the first part deals with fundamentals on secure configurations, this second part will give some more practical tips and tricks on how to implement these security measurements.   For more information it's also recommended to read through the Setting Up Secure Communications for WS EMS and LSR chapter in the ThingWorx Help Center. See also Trust & Encryption Theory and Hands On for more information and examples - especially around the concept of the Chain of Trust, which will be an important factor for this post as well.   In this post I will only reference the High Security options for both, the EMS and the LSR. Note that all commands and directories are Linux based - Windows equivalents might slightly differ.   Note - some of the configuration options are color coded for easy recognition: LSR resources / EMS resources   Password Encryption   It's recommended to encrypt all passwords and keys, so that they are not stored as cleartext in the config.lua / config.json files.   And of course it's also recommended, to use a more meaningful password than what I use as an example - which also means: do not use any password I mentioned here for your systems, they might too easy to guess now 🙂   The luaScriptResource script can be used for encryption:   ./luaScriptResource -encrypt "pword123" ############ Encrypted String AES:A26fBYKHJq+eMu0Fm2FlDw== ############   The wsems script can be used for encryption:   ./wsems -encrypt "pword123" ############ Encrypted String AES:A26fBYKHJq+eMu0Fm2FlDw== ############   Note that the encryption for both scripts will result in the same encrypted string. This means, either the wsems or luaScriptResource scripts can be used to retrieve the same results.   The string to encrypt can be provided with or without quotation marks. It is however recommended to quote the string, especially when the string contains blanks or spaces. Otherwise unexpected results might occur as blanks will be considered as delimiter symbols.   LSR Configuration   In the config.lua there are two sections to be configured:   scripts.script_resource which deals with the configuration of the LSR itself scripts.rap which deals with the connection to the EMS   HTTP Server Authentication   HTTP Server Authentication will require a username and password for accessing the LSR REST API.     scripts.script_resource_authenticate = true scripts.script_resource_userid = "luauser" scripts.script_resource_password = "pword123"     The password should be encrypted (see above) and the configuration should then be updated to   scripts.script_resource_password = "AES:A26fBYKHJq+eMu0Fm2FlDw=="   HTTP Server TLS Configuration   Configuration   HTTP Server TLS configuration will enable TLS and https for secure and encrypted communication channels from and to the LSR. To enable TLS and https, the following configuration is required:     scripts.script_resource_ssl = true scripts.script_resource_certificate_chain = "/pathToLSR/lsrcertificate.pem" scripts.script_resource_private_key = "/pathToLSR/key.pem" scripts.script_resource_passphrase = "keyForLSR"     It's also encouraged to not use the default certificate, but custom certificates instead. To explicitly set this, the following configuration can be added:     scripts.script_resource_use_default_certificate = false     Certificates, keys and encryption   The passphrase for the private key should be encrypted (see above) and the configuration should then be updated to     scripts.script_resource_passphrase = "AES:A+Uv/xvRWENWUzourErTZQ=="     The private_key should be available as .pem file and starts and ends with the following lines:     -----BEGIN ENCRYPTED PRIVATE KEY----- -----END ENCRYPTED PRIVATE KEY-----     As it's highly recommended to encrypt the private_key, the LSR needs to know the password for how to encrypt and use the key. This is done via the passphrase configuration. Naturally the passphrase should be encrypted in the config.lua to not allow spoofing the actual cleartext passphrase.   The certificate_chain holds the Chain of Trust of the LSR Server Certificate in a .pem file. It holds multiple entries for the the Root, Intermediate and Server Specific certificate starting and ending with the following line for each individual certificate and Certificate Authority (CA):     -----BEGIN CERTIFICATE----- -----END CERTIFICATE-----     After configuring TLS and https, the LSR REST API has to be called via https://lsrserver:8001 (instead of http).   Connection to the EMS   Authentication   To secure the connection to the EMS, the LSR must know the certificates and authentication details for the EMS:     scripts.rap_server_authenticate = true scripts.rap_userid = "emsuser" scripts.rap_password = "AES:A26fBYKHJq+eMu0Fm2FlDw=="     Supply the authentication credentials as defined in the EMS's config.json - as for any other configuration the password can be used in cleartext or encrypted. It's recommended to encrypt it here as well.   HTTPS and TLS   Use the following configuration establish the https connection and using certificates     scripts.rap_ssl = true scripts.rap_cert_file = "/pathToLSR/emscertificate.pem" scripts.rap_deny_selfsigned = true scripts.rap_validate = true     This forces the certificate to be validated and also denies selfsigned certificates. In case selfsigned certificates are used, you might want to adjust above values.   The cert_file is the full Chain of Trust as configured in the EMS' config.json http_server.certificate options. It needs to match exactly, so that the LSR can actually verify and trust the connections from and to the EMS.   EMS Configuration   In the config.lua there are two sections to be configured:   http_server which enables the HTTP Server capabilities for the EMS certificates which holds all certificates that the EMS must verify in order to communicate with other servers (ThingWorx Platform, LSR)   HTTP Server Authentication and TLS Configuration   HTTP Server Authentication will require a username and password for accessing the EMS REST API. HTTP Server TLS configuration will enable TLS and https for secure and encrypted communication channels from and to the EMS.   To enable both the following configuration can be used:   "http_server": { "host": "<emsHostName>", "port": 8000, "ssl": true, "certificate": "/pathToEMS/emscertificate.pem", "private_key": "/pathToEMS/key.pem", "passphrase": "keyForEMS", "authenticate": true, "user": "emsuser", "password": "pword123" }   The passphrase as well as the password should be encrypted (see above) and the configuration should then be updated to   "passphrase": "AES:D6sgxAEwWWdD5ZCcDwq4eg==", "password": "AES:A26fBYKHJq+eMu0Fm2FlDw=="   See LSR configuration for comments on the certificate and the private_key. The same principals apply here. Note that the certificate must hold the full Chain of Trust in a .pem file for the server hosting the EMS.   After configuring TLS and https, the EMS REST API has to be called via https://emsserver:8000 (instead of http).   Certificates Configuration   The certificates configuration hold all certificates that the EMS will need to validate. If ThingWorx is configured for HTTPS and the ws_connection.encryption is set to "ssl" the Chain of Trust for the ThingWorx Platform Server Certificate must be present in the .pem file. If the LSR is configured for HTTPS the Chain of Trust for the LSR Server Certificate must be present in the .pem file.   "certificates": { "validate": true, "allow_self_signed": false, "cert_chain" : "/pathToEMS/listOfCertificates.pem" } The listOfCertificates.pem is basicially a copy of the lsrcertificate.pem with the added ThingWorx certificates and CAs.   Note that all certificates to be validated as well as their full Chain of Trust must be present in this one .pem file. Multiple files cannot be configured.   Binding to the LSR   When binding to the LSR via the auto_bind configuration, the following settings must be configured:   "auto_bind": [{ "name": "<ThingName>", "host": "<lsrHostName>", "port": 8001, "protocol": "https", "user": "luauser", "password": "AES:A26fBYKHJq+eMu0Fm2FlDw==" }]   This will ensure that the EMS connects to the LSR via https and proper authentication.   Tips   Do not use quotation marks (") as part of the strings to be encrypted. This could result in unexpected behavior when running the encryption script. Do not use a semicolon (:) as part of any username. Authentication tokens are passed from browsers as "username:password" and a semicolon in a username could result in unexpected authentication behavior leading to failed authentication requests. In the Server Specific certificates, the CN must match the actual server name and also must match the name of the http_server.host (EMS) or script_resource_host (LSR) In the .pem files first store Server Specific certificates, then all required Intermediate CAs and finally all required Root CAs - any other order could affect the consistency of the files and the certificate might not be fully readable by the scripts and processes. If the EMS is configured with certifcates, the LSR must connect via a secure channel as well and needs to be configured to do so. If the LSR is configured with certifcates, the EMS must connect via a secure channel as well and needs to be configured to do so. For testing REST API calls with resources that require encryptions and authentcation, see also How to run REST API calls with Postman on the Edge Microserver (EMS) and Lua Script Resource (LSR)   Export PEM data from KeyStore Explorer   To generate a .pem file I usually use the KeyStore Explorer for Windows - in which I have created my certificates and manage my keystores. In the keystore, select a certificate and view its details Each certificate and CA in the chain can be viewed: Root, Intermediate and Server Specific Select each certificate and CA and use the "PEM" button on the bottom of the interface to view the actual PEM content Copy to clipboard and paste into .pem file To generate a .pem file for the private key, Right-click the certificate > Export > Export Private Key Choose "PKCS #8" Check "Encrypted" and use the default algorithm; define an "Encryption Password"; check the "PEM" checkbox and export it as .pkcs8 file The .pkcs8 file can then be renamed and used as .pem file The password set during the export process will be the scripts.script_resource_passphrase (LSR) or the http_server.passphrase (EMS) After generating the .pem files I copy them over to my Linux systems where they will need 644 permissions (-rw-r--r--)
View full tip
One of the signature features of the Axeda Platform is our alarm notification, signalling and auditing capabilities.   Our dashboard offers a simplified view into assets that are in an alarm state, and provides interaction between devices and operators.  For some customers the dashboard may be too extensive for their application needs.  The Axeda Platform from versions 6.6 onward provide a number of ways of interacting with Alarms to allow you to present this data to remote clients (Android, iOS, etc.) or to build extended business logic around alarm processing. If one were to create a remote management application for Android, for example, there are the REST APIs available to interact with Assets and Alarms.  For aggregate operations where network traffic and round-trip time can be a concern, we have our Scripto API also available that allows you to use the Custom Object functionality to deliver information on many different aggregating criteria, and allow developers to get the data needed to build the applications to solve their business requirements. Shown below is a REST API call you might make to retrieve all alarms between a certain time and date. POST:   https://INSTANCENAME/services/v2/rest/alarm/find <v2:AlarmCriteria xmlns:v2="http://www.axeda.com/services/v2" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">    <v2:date xsi:type="v2:BetweenDateQuery">     <v2:start>2015-01-01T00:00:00.000Z</v2:start>     <v2:end>2015-01-31T23:59:59.000Z</v2:end>   </v2:date>   <v2:states/> </v2:AlarmCriteria>   In a custom object, this would like like the following: import static com.axeda.sdk.v2.dsl.Bridges.* import com.axeda.services.v2.* import com.axeda.sdk.v2.exception.* def q = new com.axeda.services.v2.BetweenDateQuery() q.start = new Date() q.end = new Date() ac = new AlarmCriteria(date:q) aresults = alarmBridge.find(ac)   Using the same API endpoint, here's how you would retrieve data by severity: <v2:AlarmCriteria xmlns:v2="http://www.axeda.com/services/v2" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">    <v2:severity xsi:type="v2:GreaterThanEqualToNumericQuery">     <v2:value>900</v2:value>   </v2:severity>   <v2:states/> </v2:AlarmCriteria>   Or in a custom object: import static com.axeda.sdk.v2.dsl.Bridges.* import com.axeda.services.v2.* import com.axeda.sdk.v2.exception.*   def q = new com.axeda.services.v2.GreaterThanEqualToNumericQuery() q.value = 900 ac = new AlarmCriteria(severity:q) aresults = alarmBridge.find(ac)   Currently the Query Types do not map properly in JSON objects - use XML to perform these types of queries via the REST APIs. References: Axeda v2 API/Services Developer's Reference Guide 6.6 Axeda Platform Web Services Developer Reference v2 REST 6.6 Axeda v2 API/Services Developer's Reference Guide 6.8 Axeda Platform Web Services Developer Reference v2 REST 6.8
View full tip
The purpose of this document is to see how you can setup an MXChip IoT DevKit and also how send the readings of this microprocessor to ThingWorx through an Azure cloud server. You will also learn how to view the values that are being sent.
View full tip
Video Author:                     Asia Garrouj Original Post Date:            March 31, 2017 Applicable Releases:        ThingWorx Analytics 7.4 to 8.1   Description: This video will walk you through the first steps on how to set-up Analytics Manager for Real-Time Scoring and demonstrate how to create an Analysis Provider and start the ThingPredictor Agent.     Please Note: In this video, the startup command for the Agent has changed in Release 8.1.  Please refer to the PTC Help center  
View full tip
Video Author:                     Christophe Morfin Original Post Date:            September 13, 2016 Applicable Releases:        ThingWorx Analytics 52.1 to 8.1 ​ Description: A short introduction to ThingWorx Analytics Builder The import of the ThingWorx Analytics Builder Extension  
View full tip
This Expert Session goes over ways to identify and develop a successful use case for ThingWorx Analytics. The example use case presented here is on employee retention in a fictional company with the goal of maximizing employee retention . This presentation will provide you with all the fundamentals you need to develop your own ThingWorx Analytics use cases from the ground up.     For full-sized viewing, click on the YouTube link in the player controls.   Visit the Online Success Guide to access our Expert Session videos at any time as well as additional information about ThingWorx training and services.
View full tip
Overview This document is targeted towards covering basic PostgreSQL monitoring and health check related system objects like tables, views, etc. This allows simple monitoring of PostgreSQL database via some custom services, which I'll attach at the end of this document, from the ThingWorx Composer itself. I'll also try to cover short detail on some of the services that are included with the Thing: PostgreSQLHealthCheck which implements Database ThingTemplate   Pre-requisite The document assumes that the user already has ThingWorx running with PostgreSQL as a Persistence Provider.   How to install Usage for this is fairly straight forward, import the Entities.twx and it will create required Thing which implements Database ThingTemplate and some DataShapes. Each Service under the Thing: PostgreSQLHealthCheck has its own DataShape. Feel free edit these services / DataShapes if you are looking to use output of these services  as part of your mashup(s).   Make sure to edit the PostgeSQL's JDBC Connection String, Username & password under the configuration section in order to connect to your PostgreSQL instance under the Thing PostgreSQLHealthCheck which will be created when Entities.twx is imported (attached with this blog)   Note : Users can use these services to query non-ThingWorx related database created with PostgreSQL as part of the external JDBC connection.   Reviewing Services from Thing: PostgreSQLHealthCheck   1. DescribeTableStructure - Takes two inputs **Table Name** and the **Schema Name** in which the ThingWorx database tables exists both inputs have default values that can be modified to match your PostgreSQL schema setup and required table name - It provides information on a Table's structure, see below     2. GetAllPSQLConfig - Provides runtime details on all the configurations done in the postgresql.conf which are in-effect - For detail on pg_settings see Postgresql 9.4 Doc     3. GetAllPSQLConfigLimited Similar to GetAllPSQLConfig, however with limited information   4. GetAllPSQLRoles - Lists all the database roles/users - Also lists their access rights permissions together with OID - Helpful in identifying if the role is active/inactive or carries any limitation on the DB connections     5. GetPG_Stat_Activity - Part of the Statistics Collector subsystem for the PostgreSQL DB - Shows current state of the schema e.g. connections, queries, etc. - For more detail on the output refer to the PostgreSQL 9.4 doc   6. GetPSQLDBLocksInformation - Shows the kind of locks in effect on which database and on which relation (table) - Particularly useful in identifying the relations and what lock mode is enabled on them     7. GetPSQLDBStat - Shows database wide statistics - Like Commits, reads, block reads, tupples (rows) fetched, inserted, deadlocks, etc - For more detail refer to PostgreSQL 9.4 doc   8. GetPSQLLogDesitnation - Checks where the PostgreSQL server logs are directed to - I.e. stderr, csvlog or syslog - Default is stderr   9. GetPSQLLogFileName - Fetches the log PostgreSQL log file name and the filename format - E.g. postgresql-%Y-%m-%d_%H%M%S.log    10. GetPSQLLoggingLocation - Fetches the location where the logs are stored for PostgreSQL - e.g. pg_log, which is also the default location - Desired location for the logs can be done in the postgresql.conf file   11. GetPSQLRelationIndexes - Gets information on the Indexes - Information like index size, number of rows, table names on which the index is created   12. GetPSQLReplicationStat - Shows information related to the Replication on PostgreSQL DB - Applicable to the PostgreSQL DBs where replication is enabled   13. GetPSQLTablespaceInfo - Takes tablespace name as input (String DataType), service defaults to 'thingworx' - modify if needed - Fetches information like owner oid, tablespace ACL     14. GetPSQLUserIndexIO - Fetches index that are created only on the User created DB objects - Shows relations (table) vs index relations ids (index on table), together with their names - Also shows additional info like number of disk blocks read from this index & number of buffer hits in this index     15. GetPSQLUserSequencesIOStats - Fetches informtion on Sequence objects used on user defined relations (tables) - Number of disk blocks read from this sequence & buffer hits in this sequence     16. GetPSQLUserTableIOStat - Fetches disk I/O information on the user created tables     17. GetPSQLUserTables - Fetches all the user created tables, together with their name, OID Disk I/O Last auto vacuum , vacuum Also lists the amount of rows each relation (table) has   Finally The attached entity has some additional service not yet covered in this blog, as they are minor services. Therefore for brevity of this blog I've left them out for now, feel free to explore or enhance this. I will continue to look for any additional services and will enhance this document and the entities belong to this.    If you are looking to enhance this feel free to fork from twxPostgreSqlHealthCheck over Github.
View full tip
Announcements