cancel
Showing results for 
Search instead for 
Did you mean: 
cancel
Showing results for 
Search instead for 
Did you mean: 

Community Tip - Your Friends List is a way to easily have access to the community members that you interact with the most! X

IoT Tips

Sort by:
  Remotely administer Windows Edge IoT Devices without coding.   GUIDE CONCEPT   Learn how to download, install, and configure the Edge Microserver (EMS) to create an AlwaysOn (TM) connection between Edge IoT Devices and ThingWorx Foundation.       YOU'LL LEARN HOW TO   Install the Edge MicroServer (EMS) Configure the EMS Connect the EMS to ThingWorx Foundation   NOTE: The estimated time to complete all parts of this guide is 30 minutes.     Step 1: Description   The Web Socket Edge MicroServer (WSEMS... or just EMS for short) is a pre-compiled application based on the C SDK.     Typically, the EMS is used on devices "smart" enough to have their own operating system, such as a Raspberry Pi or personal computer.   Rather than editing code and compiling into a custom binary (as with the SDKs), the EMS allows you to simply edit some configuration files to point the Edge IoT device towards the appropriate ThingWorx Foundation instance.   In addition, the EMS utilizes the PTC-proprietary AlwaysOn protocol to "phone-home", rather than having Foundation reach out to it. As such, the EMS will typically not require port forwarding/opening, and can easily communicate from a more-secure Edge environment to the Foundation server.     Step 2: Install EMS   In this step, you'll download and extract the EMS onto your personal Windows computer.   Versions of the EMS are available for Linux running on both x86 and ARM processors. Those are outside the scope of this guide, but require only minor modifications versus the instructions presented here.   Download the EMS.   Navigate to the directory where you downloaded the .zip file.     Extract the .zip file and explore into the extracted folder.     Navigate into and Copy all contents inside the \microserver directory.     Navigate to the C:\ root directory.     Create a C:\CDEMO_EMS folder. Note that this directory is not mandatory, but will be used throughout the rest of this guide.      Paste the contents of the extracted \microserver directory into C:\CDEMO_EMS.       Create Additional Directories   New folders may be added to the \CDEMO_EMS directory for various purposes.   Some of these will be utilized within this guide, while others may be utilized in future guides using the EMS.   Note that these particular names are not mandatory, and are simply the names used within this guide.    Create a C:\CDEMO_EMS\other directory. Create a C:\CDEMO_EMS\tw directory. Create a C:\CDEMO_EMS\updates directory.         Create Test Files   It can also be helpful during testing to have some small files in these folders to further demonstrate connectivity.   As these files were custom-created for the guide, seeing them within ThingWorx Foundation ensures that the connection between Foundation and the EMS is real and current.   In the C:\CDEMO_EMS\tw directory, create a text file named tw_test_01.txt. In the C:\CDEMO_EMS\other directory, create a text file named other_test_01.txt.     Click here to view Part 2 of this guide.
View full tip
  Step 8: Call Custom Service   In order to execute a Service of a specific Thing with the REST API, you can use the POST verb.   Required Parameters:   AppKey created by your ThingWorx server Name of the Thing that implements a custom Service Name of the custom Service Names of inputs, if any, required by the Service Request   Construct the URL. To call a custom Service of an existing Thing, make an HTTP POST to this endpoint: <server_ip:port>/Thingworx/Things/<name of Thing>/Services/<name of Service> Substitute <name of Thing> with the actual name of a Thing that exists on the ThingWorx server, and <name of Service> with an existing Service. Send request parameters The names of the inputs along with their values are sent in the body of the POST as a JSON object. For example, the JSON object below will send a parameter named 'firstNumber' with a value of 35 and a parameter named secondNumber with a value of 711. { "firstNumber": "35", "secondNumber": "711" } NOTE: The full request must include a header with the appKey for your specific ThingWorx server.   Response   A successful call to a Service will return a JSON object in the body of the response containing both a DataShape object and an array named rows. Inside the array, an object named result will have the value returned by the custom Service. Here is an example response:   { "dataShape": { "fieldDefinitions": { "result": { "aspects": {}, "baseType": "NUMBER", "description": "", "name": "result", "ordinal": 0 } } }, "rows": [ { "result": 746.0 } ] } WARNING for other HTTP clients: Most HTTP clients do not set a Content-Type header by default, without this header set the server will return an error message. The POST request to the Service endpoint has a JSON body so the header must be set to match the format of the request body.   Step 9: Import and Export Entities   Collections of Entities that perform a function can be grouped then shared by exporting from a server. These entity collections are called Extensions and can be uploaded using the REST API. You can create custom Extensions or download Extensions created by other developers. You can use the REST API to automate the process of uploading an Extension to a ThingWorx server.   Required Parameters   AppKey created by your Foundation server Path to properly formatted zip file containing extension Entities Request   Construct the URL. Upload an Extension by making an HTTP POST to the endpoint: <Server IP:port〉Thingworx/ExtensionPackageUploader Send request parameters. The zip file that contains the extension entities is uploaded as a multi-part POST. The name of the file parameter is upload. Use a library to properly format the multi-part POST request You must also send this header: X-XSRF-TOKEN:TWX-XSRF-TOKEN-VALUE Authenticate the Request. All API requests to the ThingWorx server must be authenticated either with a username and password or with an appKey. For this example we will authenticate by passing the appKey as a URL query string parameter. The parameter appKey is recognized by the ThingWorx server as an authentication credential in requests, it can be passed either as a URL query string parameter .../CreateThing?appKey=64b87... , or as request header appKey: 64b87...   Response   A successful call to upload an Extension will return a description of the Entities that were successfully uploaded in the body of the response.   HTTPie example: http -f POST iotboston.com:8887/Thingworx/ExtensionPackageUploader upload@/home/ec2-user/extension.zip X-XSRF-TOKEN:TWX-XSRF-TOKEN-VALUE appKey:d0a68eff-2cb4-4327-81ea-7e71e26bb645 cURL example: curl -v --header X-XSRF-TOKEN:TWX-XSRF-TOKEN-VALUE --header appKey:d0a68eff-2cb4-4327-81ea-7e71e26bb645 -F upload=@extension.zip iotboston.com:8887/Thingworx/ExtensionPackageUploader?purpose=import&validate=false     Download Things By Name   The REST API can be used to export a file representation of Things on a ThingWorx Foundation server. The downloaded file can be imported to another ThingWorx server making the Thing available for use.   Required Parameters   AppKey created by your Foundation server Name of the Thing Request   Construct the URL. Retrieve the components of a Thing by making an HTTP GET to the endpoint. Substitute <name of Thing> with the actual name of a Thing that exists on the ThingWorx server that wil be downloaded. <Server IP:port>/Thingworx/Exporter/Things/<name of Thing> Send request parameters. No parameters are sent. Authenticate the Request. All API requests to the ThingWorx server must be authenticated either with a username and password or with an appKey. For this example we will authenticate by passing the appKey as a URL query string parameter. The parameter appKey is recognized by the ThingWorx server as an authentication credential in requests, it can be passed either as a URL query string parameter .../CreateThing?appKey=64b87... , or as request header appKey: 64b87...   Response   It is possible for the content to be returned in two different formats by sending an Accept header with the request.   Desired Response Type  Accept Header Values JSON application/json XML text/xml HTML text/html (or omit Accept Header) CSV text/csv   A successful call to download a Thing will return a file in the body of the response suitable for importing into a ThingWorx Foundation server.   HTTPie example:   http -v GET iotboston.com:8081/Thingworx/Exporter/Things/PiThing appKey==d0a68eff-2cb4-4327-81ea-7e71e26bb645 Accept:text/xml     Download Things By Tag   The REST API can be used to export a file representation of Things on a ThingWorx Foundation server. This file can be imported to another ThingWorx server making the Thing available for use.   Required Parameters   AppKey created by your Foundation server Name of the Tag Request   Construct the URL. Retrieve the components of a Thing by making an HTTP GET to the endpoint <Server IP:port〉/Thingworx/Exporter/Things Send request parameters. The Tag name is sent as a request parameter named: searchTags Authenticate the Request. All API requests to the ThingWorx server must be authenticated either with a username and password or with an appKey. For this example we will authenticate by passing the appKey as a URL query string parameter. The parameter appKey is recognized by the ThingWorx server as an authentication credential in requests, it can be passed either as a URL query string parameter .../CreateThing?appKey=64b87... , or as request header appKey: 64b87...   Response   It is possible for the content to be returned in two different formats by sending an Accept header with the request.   Desired Response Type  Accept Header Values JSON application/json XML text/xml HTML text/html (or omit Accept Header) CSV text/csv   A successful call to download a Thing will return a file in the body of the response suitable for importing into a ThingWorx Foundation server   HTTPie example:   http -v GET iotboston.com:8081/Thingworx/Exporter/Things searchTags==Applications:Raspberry_light appKey==d0a68eff-2cb4-4327-81ea-7e71e26bb645 Accept:text/xml     Step 10: Authentication Tags   A Tag is composed of two parts: a Vocabulary, and a specific vocabulary term. A Tag is shown as Vocabulary:VocabularyTerm. Almost every ThingWorx entity can be tagged. Tags can be used to create a relationship between many different ThingWorx Entities.   Create New Tag   You can use the REST API to create a new dynamic Tag vocabulary.   Required Parameters   AppKey created by your Foundation server Name of Tag Vocabulary   Request   Construct the URL. Create a new Tag Vocabulary by making an HTTP PUT to this endpoint: 〈Server IP:port〉/Thingworx/ModelTags Send Request Parameters. The name of the new DataShape and the name of the base DataShape that the new DataShape extends are sent in the body of the POST as a JSON object. For example, the JSON object below will create a new DataShape named SomeTestDataShape using the system template GenericThing. { "name": "SecondTest", "isDynamic": "true" } Authenticate Request. All API requests to the ThingWorx server must be authenticated either with a username and password or with an appKey. For this example we will authenticate by passing the appKey as a URL query string parameter. The parameter appKey is recognized by the ThingWorx server as an authentication credential in requests, it can be passed either as a URL query string parameter .../CreateThing?appKey=64b87... , or as request header appKey: 64b87...   Response   A successful call to the ModelTag Service does not return any content in the body of the response, only an HTTP 200 is returned.   HTTPie example:   http -v -j PUT http://52.201.57.6/Thingworx/ModelTags name=SecondTest isDynamic=true appKey==64b879ae-2455-4d8d-b840-5f5541a799ae     Warning for other HTTP clients: Most HTTP clients do not set a Content-Type header by default, without this header set the server will return an error message. The PUT request to the ModelTags endpoint has a JSON body so the header must be set to match the format of the request body. The Content-Type header does not appear in the sample HTTPie call because HTTPie sets the Accept and Content-type request headers to application/json by default. Below is an example cURL call that explicitly sets the Content-Type header to application/json.   curl -v -H "Content-Type: application/json" -X PUT -d '{"name": "SecondTest", "isDynamic":"true"}' http://52.201.57.6/Thingworx/ModelTags?appKey=d0a68eff-2cb4-4327-81ea-7e71e26bb645   Add Tag to Thing   You can use the REST API to add a Tag to a Thing. There must be a Thing and a Dynamic Tag Vocabulary already created on your Foundation Server before you can add a Tag.   Required Parameters   AppKey created by your Foundation server Name of the Thing to be tagged Name of Dynamic Tag Vocabulary Name of for Tag to be assigned to Thing Request   Construct the URL. Substitute 〈name of Thing〉 with the actual name of a Thing that exists on the ThingWorx server that will have the Tag added. Add a new Tag to an existing Thing by making an HTTP POST to this endpoint: 〈Server IP:port〉/Thingworx/Things/〈name of Thing〉/Services/AddTags Send request parameters. The name of the new field to be added and type of the field are sent in the body of the POST as a JSON object. For example, the JSON object below will create a new field named SomeNumber using the ThingWorx base type NUMBER. Some other commonly used types are STRING, INTEGER, and BOOLEAN. Include a header in the full request with the appKey for your specific ThingWorx server. { "tags" : "SecondlightTest:RaspberryTest", }   Response   A successful call to the AddTags Service does not return any content in the body of the response. Only an HTTP 200 is returned.   HTTPie example:   http -v -j http://52.201.57.6/Thingworx/Things/SomeTestThing/Services/AddTags appKey==64b879ae-2455-4d8d-b840-5f5541a799ae tags=SecondTest:RaspberryTest curl -v -H "Content-Type: application/json" -X POST -d '{"tags": "SecondlightTest:RaspberryTest"}' http://52.201.57.6/Thingworx/Things/PiThing/Services/AddTags?appKey=d0a68eff-2cb4-4327-81ea-7e71e26bb645 Warning for other HTTP clients: Most HTTP clients do not set a Content-Type header by default, without this header set the server will return an error message. The POST request to the AddPropertyDefinition endpoint has a JSON body so the header must be set to match the format of the request body. The Content-Type header does not appear in the sample HTTPie call because HTTPie sets the Accept and Content-type request headers to application/json by default. Below is an example cURL call that explicitly sets the Content-Type header to application/json.   curl -v -H "Content-Type: application/json" -X POST -d '{"tags": "SecondlightTest:RaspberryTest"}' http://52.201.57.6/Thingworx/Things/PiThing/Services/AddTags?appKey=d0a68eff-2cb4-4327-81ea-7e71e26bb645      Click here to view Part 4 of this guide.  
View full tip
Video Author:                    Christophe Morfin Original Post Date:            June 9, 2017 Applicable Releases:        ThingWorx Analytics 8.0   Description: In this video we go through the steps to install ThingWorx Analytics Server 8.0.    
View full tip
It’s critical for us to configure all correct parameters while running your application in Production environment or even in development env. While GUI makes it very user-friendly and easy to set up the right values in the right fields, it's useful to know how to do the same programmatically/without the "Configure Tomcat" utility. One way, if you're using Tomcat as a Windows service, you can adjust the JVM options by going to the bin dir and running: tomcat8 //US//MYSERVICENAME ++JvmOptions=-Dexample.license.directory="C:\Program Files\example" Turn the service off before you do this and restart it when you finish. cd $CATALINA_HOME .\bin\service.bat install tomcat .\bin\tomcat8.exe //US//tomcat8 --JvmMs=512 --JvmMx=1024 --JvmSs=1024 Setting the --JvmXX parameters may not be enough. You may also need to specify the JVM memory values explicitly. From the command line it may look like this: bin\tomcat8w.exe //US//tomcat8 --JavaOptions=-Xmx=1024;-Xms=512;.. Be careful not to override the other JavaOptions. But the best and recommended way is to use setenv.sh/setenv.bat (Linux/Windows respectively). It isn't in the as-downloaded Tomcat. But if you look in catalina.sh/catalina.bat, there's a check for a file called setenv. If it's there, it's run. That's where you set JAVA_OPTS, CATALINA_OPTS, etc. We use it to set JAVA_HOME, JAVA_OPTS, CATALINA_OPTS and JPDA_ADDR. Putting all your environment variables into this file is ideal because then you don't have to change the stock startup scripts. Then when monitoring the log we can see the parameters taken:
View full tip
Build, customize, and deploy IoT applications with ThingWorx.   NOTE: Complete the following guides in sequential order. The estimated time to complete this learning path is 270 minutes.   1. Create Your Application UI  Part 1 Part 2 Part 3 Part 4 Part 5 2. Basic Mashup Widgets  Part 1 Part 2 Part 3 3. Define Your UI Style  Part 1 Part 2 4. Object-Oriented UI Design Tips 5. Deploy an Application 6. How to Display Data in Charts  Part 1 Part 2 Part 3
View full tip
  Step 5: Add Property to Thing   Property values are associated with a specific Thing, and are used to store data that changes over time. Required Parameters   AppKey created by your ThingWorx server Name of the Thing to which the Property will be added Name for the new Property and data type of the Property's value   Request   Construct the URL. A new Property can be added to an existing Thing by making an HTTP POST to this endpoint. Substitute <name of Thing> with the actual name of a Thing that exists on the ThingWorx server that will have the Property added. <server_ip:port>/Thingworx/Things/<name of Thing>/Services/AddPropertyDefinition       2. Send request parameters. The name of the new Property to be added and type of the Property are sent in the body of the POST as a JSON object. For example, the JSON object below will create a new Property named SomeNumber using the ThingWorx base type NUMBER. Some other commonly used types are STRING, INTEGER, and BOOLEAN. { "name" : "SomeNumber", "type" : "NUMBER" }   NOTE: The full request must include a header with the appKey for your specific ThingWorx server.   Response   A successful call to the AddPropertyDefinitionservice does not return any content in the body of the response. Only an HTTP 200 is returned.   HTTPie example:   http -v -j http://52.201.57.6/Thingworx/Things/SomeTestThing/Services/AddPropertyDefinition appKey==64b879ae-2455-4d8d-b840-5f5541a799ae name=SomeNumber type=NUMBER   WARNING for other HTTP clients: Most HTTP clients do not set a Content-Type header by default, without this header set the server will return an error message. The POST request to the AddPropertyDefinition endpoint has a JSON body so the header must be set to match the format of the request body.   The Content-Type header does not appear in the sample HTTPie call because HTTPie sets the Accept and Content-type request headers to application/json by default. Below is an example cURL call that explicitly sets the Content-Type header to application/json.   curl -v -H "Content-Type: application/json" -X POST -d '{"name": "SomeNumber","type": "NUMBER"}' http://52.201.57.6/Thingworx/Things/SomeTestThing/Services/AddPropertyDefinition?appKey=d0a68eff-2cb4-4327-81ea-7e71e26b     Validate   View new Property on Server. The Property you just added is now available in the ThingWorx Composer. Before anything else can be done with your new Property through the REST API, the Thing must be restarted. To confirm your Property was added to your Thing, open Composer and click Things, select the name of the Thing you just created, then click Properties and Alerts. You will see the new Property listed. You may need to refresh to see the changes.             2. Execute RestartThing Service. Restart your Thing with the added Property by making a HTTP POST to the endpoint below. Substitute <name of Thing> with the actual name of the Thing you created. No body is required in the POST, however, the Content-Type header of a POST that executes a Service must always be set to application/json or text/xml even if the service does not take any parameters and no content is being sent. No body is returned upon success, only an HTTP 200 response code. <server_ip:port>/Thingworx/Things/<name of Thing>/Services/RestartThing   HTTPie example:   http -v -j POST http://52.201.57.6/Thingworx/Things/SomeTestThing/Services/RestartThing appKey==64b879ae-2455-4d8d-b840-5f5541a799ae      Step 6: Set Property Value   You can set the value of a specific Property with the REST API using the PUT verb. Required Parameters:   AppKey created by your Foundation server A Name of valid Thing and name of Property New Property value   Request   Construct the URL. A Property value can be set by making an HTTP PUT call to this endpoint: <server_ip:port>/Thingworx/Things/<name of Thing>/Properties/<name of Property> Substitute <name of Thing> with the actual name of a Thing that exists on the ThingWorx server and <name of Property> with the name of a Property that has been added to the Thing.       2. Send request parameters.   The name of the Property to be set is duplicated in the body of the PUT and is sent along with the value as a JSON object. The example below will set the Property SomeNumber to 34.4 { "SomeNumber" : 34.4 } NOTE: The full request must include authentication credentials for your specific ThingWorx server.   Response   A successful call to set a Property does not return any content in the body of the response. Only an HTTP 200 is returned.   HTTPie example   http -v -j PUT http://52.201.57.6/Thingworx/Things/SomeTestThing/Properties/SomeNumber appKey==64b879ae-2455-4d8d-b840-5f5541a799ae SomeNumber=34.4   WARNING for other HTTP clients: By default HTTPie sets the Accept and Content-type request headers to application/json. A PUT request to the Properties endpoint has a JSON body so the Content-Type header must be set to match the format of the request body.   Most HTTP clients do not set the correct header by default and it must be set explicitly. Below is an example cURL call that sets the Content-Type header to application/json   curl -v -H "Content-Type: application/json" -X PUT -d '{"SomeNumber":12.34}' http://52.201.57.6/Thingworx/Things/SomeTestThing/Properties/SomeNumber?appKey=d0a68eff-2cb4-4327-81ea-7e71e26b     Validate   To confirm your Property was changed for your Thing, go to Composer and click Things. Select the name of the Thing you just created, then click Properties and Alerts tab. Click on the circular arrow Refresh to see the updated Property value.       Step 7: Get Latest Property Value   You can retrieve Property values of a specific Thing with the REST API using the GET verb.   Required Parameters:   AppKey created by your ThingWorx server Name of Thing and name of Property   Request   Construct the URL. To get the current value for a property, make a GET request to this endpoint: <server_ip:port>/Thingworx/Things/<name of Thing>/Properties/<name of property> Substitute <name of thing> with the actual name of a Thing that exists on the ThingWorx server and <name of Property> with the name of a Property that has been added to the Thing.   NOTE: The full request will also need to include the hostname and authentication credentials for your specific ThingWorx server.         2. Send request parameters. Other than authentication, no other parameters are used in  this GET request.   Response   The content can be returned in four different formats by sending an Accept header with the request.   Desired Response Type Accept Header Values JSON application/json XML text/xml HTML text/html (or omit Accept Header) CSV text/csv   HTTPie example:   http -v -j http://52.201.57.6/Thingworx/Things/SomeTestThing/Properties/SomeNumber appKey==64b879ae-2455-4d8d-b840-5f5541a799ae     Click here to view Part 3 of this guide.
View full tip
  Use the Collection Widget to organize visual elements of your application.   GUIDE CONCEPT   This project will introduce the Collection Widget.   Following the steps in this guide, you will learn to display different values from a single dataset in real-time.   We will teach you how to utilize the Collection Widget to generate a series of repeated Mashups for every row of data in a table.     YOU'LL LEARN HOW TO   Create a Datashape to define columns of a table Create a Thing with an Infotable Property Create a base Mashup to display data Utilize a Collection Widget to display data from multiple rows of a table   NOTE: This guide's content aligns with ThingWorx 9.3. The estimated time to complete ALL 3 parts of this guide is 60 minutes.      Step 1: Create a Datashape    Create a Datashape   The Collection Widget uses a Service to dynamically define visual content.   The data must be in a tabular format (for example: Data Table, Info Table, or external Database-connection) in order for the Collection Widget to access it.   In this part of the lesson, we'll create a Data Shape to define the columns of the table.   In a subsequent step, we'll create an Info Table Property within a Thing in order to store the information.   In the ThingWorx Composer Browse tab, click Modeling > Data Shapes, + New              2.  In the Name field, enter cwht_datashape.                      3. If Project is not already set, search for and select PTCDefaultProject.         4. At the top, click Field Definitions          First Definition:          1. Click + Add to open the New Field Definition slide-out.          2. In the Name field, enter first_number.          3. Change the Base Type to NUMBER.          4. Check the Is Primary Key box. All Datashapes must have a single Primary Key, and the first Field is as acceptable as any other for our purposes here.                5. At the top-right, click the "Check with a +" button for Done and Add.   Second Definition:   In the Name field, enter second_number.       2. Change the Base Type to NUMBER.               3. At the top-right, click the "Check with a +" button for Done and Add.     Third Definition:   In the Name field, enter third_number.         2. Change the Base Type to NUMBER.               3. At the top-right, click the "Check" button for Done         4. At the top, click Save.                   Step 2: Create a Thing   Create a Thing   In the previous step, we created a Data Shape to define the Info Table Property columns.   Now, we will create a Thing, add an Info Table Property, format the Info Table Property with the Data Shape, and set some default values.   On the ThingWorx Composer Browse tab, click Modeling > Things, + New.           2. In the Name field, enter cwht_thing.         3. If Project is not already set, search for and select PTCDefaultProject.         4. Select GenericThing in the Base Thing Template field       Add InfoTable Property         1. At the top, click Properties and Alerts.        2. Click the + Add button to open the New Property slide-out.        3. In the Name field, enter infotable_property.        4. Change the Base Type to INFOTABLE.        5. In the Data Shape field, select cwht_datashape.        6. Check the Persistent checkbox.       First Default   Check the Has Default Value checkbox. A cwht_datashape icon will appear underneath.            2. Under Has Default Value, click the cwht_datashape button to open the pop-up menu which  sets the default values               3. Click the + Add icon.         4. Enter values in each number field, such as 1, 2, and 3.              5. At the bottom-right, click the green Add button.     Second Default   Click the + Add icon.         2. Enter values in each number field, such as 10, 20, and 30            3. At the bottom-right, click the green Add button       Third Default   Click the + Add icon.       2. Enter values in each number field, such as 100, 200, and 300            3. At the bottom-right, click the greenAddbutton           4.  At the bottom-right, click Save to close the pop-up menu               5. At the top-right, click the "Check" button for Done.       6. At the top, click Save          Click here to view Part 2 of this guide.
View full tip
Original Post Date:     June 6, 2016 Description: This tutorial video will walk you through the installation process for the PostgreSQL-based version of the ThingWorx Platform in a Windows environment.  All required software components will be covered in this video.    
View full tip
In this video we cover the process of installing ThingWorx Analytics Server 52.1. Make sure to have reviewed the part 1 video about pre requisite   Updated Link for access to this video:  Installing ThingWorx Analytics Server: Part 2 of 2
View full tip
ThingWorx Analytics is capable of being assembled in multiple Operating Systems. In this post, we will discuss common issues that have been encountered by other users. Permissions Denied – Read/Write access to Third Party Components This is encountered when executing the desired Shell script to begin the creation process. In MacOS and Linux you may encounter a “Permissions Denied” error on the two required components in the creation, the packer-post-processor-vhd and packer components. Error Message This will result in a Terminal dialog message that will read “Process Completed, No Artifacts Created”. This indicates that the Packer Script has failed to complete the task, and the desired appliance images were not created. To correct this issue, you will have to change the permissions of the packer-post-processor-vhd and packer components to be able to be read and executable by the user account that is attempting to create the appliance. Solution Run the following commands in the Virtual Machine terminal (you may need to run as SUDO or as Root): chmod +x packer-post-processor-vhd ​chmod +x packer After running the above command, run the Shell script of the desired VM Appliance output. This should resolve the issue with “Permission Denied” while executing the build scripts. Error Starting Appliance in VirtualBox Users have experienced this issue at the first run of the Appliance, right after it has been assembled. This issue is unique to VirtualBox versions 5.0 and above. Error Message – Dialog Box If you encounter the error depicted below, please check under settings for the imported OVA for any errors: This issue is the result of invalid settings in the Appliance Configuration. You will need to check for Invalid Settings, by navigating to the Settings Menu for the Appliance: The “Invalid settings detected” indicates that when the Product was assembled, some configuration settings were not applied correctly by the creation tool scripts. Solution Hover your mouse over the settings and it will direct you to cause, in this case it is due to remote monitor setup. Just change the settings in Display (Remote Display Tab) by unchecking the Enable Server button. Press OK after unchecking the “Enable Server” option, and start the Appliance.
View full tip
  Sunshine, beach chairs & ThingWorx 9.2. What more could you need for your summer essentials?   Targeted for June 2021, our next release features intelligent one-click deploy with Solution Central*, new web components, and an enhanced IAM integration!   Let’s dive deeper into each.   Deploy an entire solution in one click with Solution Central’s intelligent one-click deploy. Good news: you followed a modular design pattern and broke up your application into smaller libraries and components. You can now enjoy easier maintenance and re-use of your app. Bad news: your app now has 10 different dependencies, with differing versions, each with a required order to import into ThingWorx. Now, try to share these modules with colleagues, or use them on environments where code may already exist. Not exactly a day at the beach, right? Fear not, one-click deploy has you covered. You click the button, we spin through and find the right dependencies, the right versions, the right order and load them all into the target platform upon a deploy request. Solution Central  one-click deploy means more sun and sand for you! Check out this post to learn more about what’s available in Solution Central 3.0! Intelligent One-Click Deploy with Solution Central Enhance your solutions with our latest web components! Imagine this: you’re a systems developer at a large parts manufacturer and your boss has asked for a detailed analysis of downtime over the last six months. Not to worry! ThingWorx 9.2 features a new waterfall chart that can be leveraged to understand dynamics in defect counts, loss reasons, time bottlenecks and other conditions. Be sure to try it out! And, while you’re at it, try out our new web components that are available now as preview: a toolbar to add key like filtering at the top of your screen or data intensive widgets (e.g., grids), a more flexible grid and a fancy new paradigm for interface developers. These three preview widgets are fully functional and tested in 9.2. Preview widgets will graduate in a future release when we add all planned functionality or address any perceived usability feedback.​ Don’t be afraid—it just means more good things are coming. Surf’s up, you can use these widgets safely now!​ New Waterfall Widget Coming in ThingWorx 9.2 Leverage new integrations with Azure Active Directory for more seamless user management. In prior releases we have offered integration to Azure Active Directory and SSO through Central Authorization Service type products or through custom authenticator extensions to ThingWorx.  With our new Azure AD integration, you can cut the custom extensions and additional software out of the picture.  We now accept direct SAML assertions from Azure AD directly to ThingWorx platform, which makes it that much easier to deploy your app in your organization’s SSO flow.  It’s as smooth as that frosty tropical drink when the sun goes down.   Like what you see? Want to try it out for yourself? ThingWorx 9.2 is targeted for June 2021, so be sure to keep a lookout on the horizon. Bump, set, spike!   Stay cool & connected, Kaya
View full tip
  Hi everyone,   In anticipation of ThingWorx 9.0’s biggest feature, active-active clustering, we’d like to provide an architectural overview of a sample active-active configuration and its underlying components. If you haven’t already seen it, we invite you to read our previous Community tech tip, where we introduce the concept of active-active clustering for ThingWorx Foundation, which enables you to: significantly reduce unplanned downtime for your mission-critical services and apps support horizontal scalability of the ThingWorx Server where you can scale your services up and down based on your requirements easily run, package, deploy, and operate advanced apps and services with the help of intuitive browser-based navigation, interactive monitoring and debugging tools, and more deploy anywhere - public cloud, private datacenter, on-premise, hybrid, or even locally on your laptop with deep optimizations for Azure Now, before we go too deep, we’d like to let you know that you can continue to seamlessly upgrade from previous versions of ThingWorx releases to upcoming ThingWorx 9.0  releases. Previously, you could deploy ThingWorx Foundation in a “single server” mode, and, for a high availability in “active-passive cluster” mode (see here for details). In the ThingWorx 9.0 release and onwards, you’ll be able to continue to deploy ThingWorx Foundation in a “single server” mode and for high availability scenarios via our new “active-active cluster” mode. Please note that active-passive clustering configuration will no longer be supported in ThingWorx 9.0 or onwards.   Let’s start with a quick recap on how the ThingWorx Foundation 9.0 release would look like in single server deployment.   ThingWorx 9.0 Deployed in a "Single-Server" Architecture Below is a high-level diagram depicting the main architectural layers and components of ThingWorx Foundation deployed in a single server mode.   Deployment Components Below is a brief summary of all major architectural components and their purpose in the deployment architecture:   The Client Layer This layer is comprised of everything that connects with, sends data to, and receives content from the ThingWorx platform. It be broken down into two groups: Devices/Things: Things, devices, agents, and other assets. Users/Clients: People and the respective products (primarily web browsers) they use to access ThingWorx.   The Application Layer This layer is where ThingWorx Foundation and other applications deployed with ThingWorx Foundation reside, such as ThingWorx Analytics, ThingWorx Connection Server, ThingWorx Azure IoT Hub Connector and others. This layer provides connectivity to the client layer, performs authentication and authorization checks, ingests/processes/analyzes content, and reacts to conditions by sending alerts. For a specific ThingWorx Foundation deployment that needs basic device data ingestion, processing and storage, you can setup only ThingWorx Foundation server. In some cases, with large number of device connections, you may want to setup ThingWorx Connection Server with ThingWorx Foundation in a single server for further scalable connectivity. ThingWorx Foundation: ThingWorx Foundation is a java-based application that serves as a rapid, model-based application development platform. Shared File Storage: Shared Disk space to contain ThingWorx Storage repositories, store and archive log files accessed by all ThingWorx Foundation servers. A NAS file storage, AWS Elastic File System, or Azure Files and others could be used for this purpose.   The Data Layer ThingWorx Foundation includes several persistence provider implementations that enable you to choose a database option that best fits your use case. A persistence provider enables the connection to a data store and the ability to perform a CRUD operation on that data. See here for more information. Currently, there are two basic variations of persistence providers: Model Provider – Responsible for ThingWorx model metadata and system data. Data Provider – Responsible for runtime data ingested against the model elements, including streams, value streams, data tables, etc. ThingWorx supports H2 (in-memory Database), PostgreSQL, MS SQL Server and AzureSQL as both model and data providers, and InfluxDB as only a data provider. Please see here for model and data best practices.   ThingWorx 9.0 Deployed in an Active-Active Clustering Reference Architecture Below is a reference architecture diagram for ThingWorx 9.0 with multiple ThingWorx Foundation servers configured in an active-active cluster deployment. Please note that this is only one reference example of how ThingWorx 9.0 can be deployed in an active-active clustered environment. There could be other architectural configurations dependent upon the needs of the specific deployment. Deployment Components Once you have developed an understanding of the basic architectural components in a single server mode, below are the additional components required to run ThingWorx in active-active cluster mode.   The Client Layer This will be similar to what has been mentioned in the above single server configuration.   The Application Layer In this layer, if you’re familiar with ThingWorx active-passive cluster configuration, then you may be aware of most of the components used below—with the exception of a new component: Apache Ignite that provides Distributed Caching for the horizontally scalable ThingWorx Foundation servers. Load Balancer: A third-party device that receives network traffic and distributes requests among available servers. In active-active cluster configuration, the load balancer is used to direct WebSocket-based traffic to the ThingWorx Connection Servers while user requests (http/https) traffic is directly distributed to the ThingWorx Foundation servers. Users can continue to use a load balancer with ThingWorx 9.0 that they might already be using for their existing active-passive or single server deployments with ThingWorx 8.X or previous releases.  Some example load balancers include, but are not limited to: HAProxy, Azure Application Gateway, and AWS Application Load Balancer. ThingWorx Connection Services: These services handle all messages routing to and from devices, providing scalable connectivity to the ThingWorx Foundation Server. With the ThingWorx 9.0 release, ThingWorx Connection Services have been upgraded with many additional features to support active-active clustering of the ThingWorx Foundation servers, where now they route all WebSocket traffic in a round robin fashion to the connected ThingWorx Foundation servers. Depending upon the various use cases, one could use multiple ThingWorx Connection Services available, such as ThingWorx Connection Server, ThingWorx Azure IoT Hub Connector, and ThingWorx Protocol Adapter Toolkit. Please see here for further details. Please note that for ThingWorx 9.0 releases, ThingWorx Connection Server would be required in an active-active configuration to support all the WebSocket-based traffic routing, including egress of files and device messages from multiple ThingWorx Foundation servers back to the devices, and it would also serve as WebSocket communication from ThingWorx Mashup-based applications to ThingWorx Composer. ThingWorx Foundation: With ThingWorx 9.0 and onwards, you can set up ThingWorx Foundation servers in an N-active-active cluster model to provide higher availability to your applications and horizontally scale the Foundation server nodes up and down based on your scalability needs. Apache Zookeeper: Apache ZooKeeper is a centralized service for maintaining configuration information and naming as well as providing distributed synchronization and group services. It is a coordination service for distributed applications that enables synchronization across a cluster. Specific to ThingWorx, ZooKeeper is used for distributed locking, selecting a singleton server during the server initialization, service discovery for Apache Ignite, allowing it to find instances of ThingWorx Foundation servers. Apache Ignite: This offers a distributed cache for the active-active cluster setup. It is used by ThingWorx Foundation Servers to share state. It may be embedded with each ThingWorx instance or can be run as a standalone cluster for larger scale. In this configuration, Ignite is set up in a standalone cluster but can be run embedded within the ThingWorx Foundation. Running Ignite in a standalone cluster is more ideal for larger scale, as it supports higher vertical scale of memory in the deployment setup.   The Data Layer ThingWorx is largely database agnostic. You can continue to use officially supported persistence providers that you may already be using in your existing deployments based off of ThingWorx 8.X or previous releases. Please look out for an upcoming ThingWorx update as well as enhanced installation documents to help with your upgrade and migration questions with the general availability of ThingWorx 9.0. Please note that this diagram does not make the distinction between model and data providers; depending on your data ingestion needs, separate model and data providers can be used. As a reminder, all databases should be deployed in a high-availability configuration to help eliminate any single point of failure.   In closing, we can't wait to launch active-active clustering in 9.0 to help you: dramatically further reduce application downtime scale your deployments and more efficiently manage your apps, regardless of where they’re deployed   If you have any questions about active-active clustering or its architecture, please do not hesitate to reach out!   Stay connected! Kaya
View full tip
Background: In the event that a Gateway/Connector Agent is offline or unable to connect to the Axeda Cloud Server, it uses an internal message queue to store information until the connection is restored. The message queue size is configured in the Axeda Builder project. By default, the queue is 200KB in size. Depending on how frequently your Agent sends data or how much data your Agent is collecting and trying to send, 200KB may be too small.  If the queue is too small, the data will “overflow” the queue. The queue is kept in memory only; data is not stored to disk and will be removed in a First-In-First-Out (FIFO) manner when the queue overflows. If you see queue overflow error messages in the Agent log (either EKernel.log and xGate.log), it may be time to change the size of the outbound message queue. The correct size setting for the Agent outbound message queue takes three variables into consideration: How much information you are sending? What is the maximum expected duration for loss of connection to the Internet (Cloud Server)? How much memory is available for your process? The more information the Agent is trying to send, the larger the queue size setting should be. Consider also that if your Agents are offline (disconnected) for a long period of time, they will likely accumulate lots of data, which may overflow the outbound message queue. If this is the case, you’ll need to increase the queue or risk losing data. Recommendation: Consider how the Agent operates (offline/online data collection) and how much data may be queued. When selecting the size of the queue, it’s important to maintain a balance between protecting against data loss and not occupying too much memory. If you do determine that you need to increase the outbound message queue size based, it’s important to note that Axeda recommends a maximum size of the outbound message queue of about 2MB. Need more information? For information about specifying Agent outbound message queue size, see the online help in Axeda® Builder (Enterprise Server Settings). For information about how the Agent delivers data to the Platform (via EEnterpriseProxy/xgEnterpriseProxy), see the Agent user’s guide for your Agent: either Axeda® Platform Axeda® Gateway User’s Guide (PDF) or Axeda® Platform Axeda® Connector User’s Guide (PDF). Axeda Support Site links: Axeda® Gateway User’s Guide, Axeda® Connector User’s Guide.
View full tip
ThingWorx offers Docker based installations utilizing existing PostgreSQL databases. In newer releases ThingWorx Docker installers also offer using other databases.   Personally I'm using a certain method of deployment where I can just easily exchange some files, create new images and have a H2 based environment running for some quick tests.   As H2 is a built-in database, I will not dive into setting up the platform-settings.json for other connectivity. However other databases can be connected to by adjusting the platform-settings.json. This might also require an internal Docker Network structure which I will not elaborate on here.   Note: the following procedure is not fully supported as it's not using the deployment methods provided by the installers!   Create the Directory Structure   My Directory structure looks the following (expanded for the 8.2.x branch):   /home/ts/docker/ twx.8.0.x.h2 twx.8.1.x.h2 twx.8.2.x.h2 Dockerfile settings platform-settings.json <license_file> storage Thingworx.war twx.8.3.x.h2   I have a directory for every version I want to test with.   In each directory there's the Dockerfile - the recipe file I'm using. There's also the version specific Thingworx.war file as well as two directories: settings and storage which I will map to the ThingWorx directories inside the image later.   The Recipe File   FROM tomcat:latest MAINTAINER me@somewhere.com LABEL version = "8.2.0" LABEL database = "H2"  RUN mkdir -p /ThingworxPlatform RUN mkdir -p /ThingworxStorage RUN mkdir -p /ThingworxBackupStorage ENV LANG=C.UTF-8 ENV JAVA_OPTS="-server -d64 -Djava.awt.headless=true -Djava.net.preferIPv4Stack=true -Dfile.encoding=UTF-8 -Duser.timezone=GMT -XX:+UseNUMA -XX:+UseG1GC -Djava.library.path=/usr/local/tomcat/webapps/Thingworx/WEB-INF/extensions COPY Thingworx.war /usr/local/tomcat/webapps VOLUME ["/ThingworxPlatform", "/ThingworxStorage"] EXPOSE 8080   I change the version label to keep track of the versions for each recipe.   Deploying   Build the Docker Image by navigating to the directory where the recipe file is based in   sudo docker build -t twx.8.2.x.h2 .   Create a Docker Container and start it   sudo docker run -d --name=twx.8.2.x.h2 -p 82:8080 -v /home/ts/docker/twx.8.2.x.h2/storage:/ThingworxStorage -v /home/ts/docker/twx.8.2.x.h2/settings:/ThingworxPlatform twx.8.2.x.h2   I change the name of the Image and the Container as well as the external port to distinguish all the different versions. The -v option maps the paths in my Operating System to the paths in the Docker Container, so I can browse the ThingworxStorage and ThingworxPlatform folder without connecting inside the Container. That's quite handy to check the logs, or place the license file.   Starting and Stopping   I can fire up and shut down Containers I need with the following commands:   sudo docker start twx.8.2.x.h2 sudo docker stop twx.8.2.x.h2   What next   That's just my basic setup. Usually I copy & paste a working directory for deploying another version and adjust what needs to be changed. You could use this as a basis for quick and easy deployment where even additional features could be added, i.e. HTTPS configuration or auto-deploying certain ThingWorx Extensions via a REST API call.   To ensure starting with a clean Image, for building new Images I delete the contents of the storage folder and only leave the platform-settings.json in the settings folder (I copy the license later after generating it with my new Device ID).
View full tip
  Create compelling, modern application user interfaces in ThingWorx with the latest enhancements to our Mashup visualization platform - Collection and Custom CSS.   In this webinar with IoT application designer Gabriel Bucur, we'll show how the new Collection widget makes it easy to replicate visual content in your UI for menu systems, dashboards, tables, and more. You'll learn about several of the 60+ configuration properties available for collections, many of which offer input/output bindings for dynamic flexibility.   Gabriel will also demonstrate the styling and UX power of the latest feature in the Next Gen Composer, which allows you to write classes and CSS for your Mashups, masters, and widgets.   Watch the recording above, and download this sample Mashup containing all the data and entities shared in the video.   Q&A   We didn’t have time to get to all of the questions during the live webcast, but we’ve answered them here on our blog. Have any additional questions? Please leave us a comment.   WILL PTC CONTINUE SUPPORT FOR THE REPEATER WIDGET IN THINGWORX 8.2, OR WILL IT BE REMOVED? The Repeater Widget will not removed. However, due to limited performance in various browsers, switching to the Collection is highly recommended.   WHAT’S THE DIFFERENCE BETWEEN REPEATER AND COLLECTION, AND ARE THERE PROS AND CONS FOR EACH WIDGET? The Collection is an advanced widget that allows you to contain a series of repeated Mashups within a collection. Its functionality is similar to the Repeater Widget, but contains more properties that provide additional options and better performance, especially when handling large amounts of data.   IS IT POSSIBLE TO ADD A DRAG AND DROP ACTION TO LISTS OR REPEATERS, E.G. DRAGGING AN ELEMENT FROM ONE CONTAINER TO ANOTHER? Drag and drop functionality is not available in the Collection Widget at this time. It is, however, in consideration for future ThingWorx releases.   IN THE EVENT I HAVE MORE THAN ONE MASHUP (FOR EXAMPLE, MASHUP A AND MASHUP B), CAN I BIND DIFFERENT PROPERTIES TO THE SAME MASHUP PARAMETER ACCORDING TO THE MASHUP NAME? The MashupName row goes to the MashupNameField in the collection, where you’ll  have a dropdown after you populate it with the InfoTable that contains the MashupName. You can put all the bindings there, even if you don't use them in all the Mashups. For example: {"valueA":"MashupA","valueB":"MashupB"}   IS IT POSSIBLE TO ORDER SECTIONS HORIZONTALLY IN THE COLLECTION? Sections can only be ordered vertically at this time.   WHAT IS THE DIFFERENCE BETWEEN GLOBAL PROPERTIES AND SESSION VALUES? Global Properties are only available within the Collection. These properties offer a way to control Things from other widgets with which the Collection is displaying.   IF THERE ARE MULTIPLE COLLECTIONS, DO THEY SHARE THE SAME SET OF GLOBALPARAMETERS? No. If you defined a Boolean on your Collection, when you drag the Boolean output from a checkbox on the Collection you will see that you can bind it to that defined Boolean in the GlobalParameters.   WHEN USING CUSTOM CSS, DO YOU HAVE TO DEFINE STYLING FOR EACH ELEMENT, OR CAN YOU CREATE A STYLE THING WITH CSS? Widgets differ in functionality, so the same class might not apply to the same widget. However, if you define a styling in CSS for a button, for example, you can apply that class on any button you want.   DOES CUSTOM CSS ALWAYS OVERRIDE THE WIDGET STYLES? Yes. That is the essential purpose of custom CSS integration – to rewrite styles.   IF YOU HAVE TWO CONFLICTING STYLES – ONE IN CSS AND THE OTHER IN A STYLE DEFINITION – WHICH ONE TAKES PRECEDENCE? CSS will typically rewrite the ThingWorx styles; however, it depends on the specificity of the CSS target definition. For example: “.button-element" will be overwritten by ".default-button .button-element". Visit https://developer.mozilla.org/en-US/docs/Web/CSS/Specificity for more details regarding this topic.   CAN I RESIZE MY WIDGETS DURING RUNTIME? The size of the widget is determined by the CSS, and how it renders in ThingWorx. While you can bind different sizing classes to the CustomClass property of the widget, resizing with your mouse is not available at Runtime.
View full tip
There are many choices in life and ThingWorx offers some persistence provider options as well. As of ThingWorx release 8.2, five Database options are provided. 1 PostgreSQL  9.4.5 minimum 2 DataStax Enterprise Edition 4.6.3,5 3 SAP HANA  SPS 11, 12 4 Microsoft SQL Server 2014 and later 5 H2 (version info is not available, maybe because it's an embedded?) H2 is for small scale, mainly for testing purpose, PostgreSQL and Microsoft SQL Server are for middle scale and finally DataStax Enterprise Edition is for big scale. I don't have enough information about SAP HANA so would like to leave it untouched in my comment... I don't have a number as to how many customers are using which database but my gut feeling tells me that PostgreSQL is a popular option, especially cost-wise. PostgreSQL offers powerful tools, such as logging and utilities, to troubleshoot issues.   In this post I would like to cover some useful information you can retrieve by using pgstattuple and pgstatindex of contrib module. By default, PostgreSQL takes a good care of fragmentation and reindex by itself. But in some cases, there's a situation that you want to review status of the database to narrow down the cause of your troubleshooting issue. There are many ways to achieve it but contrib module is provided to review stats of tables and indexes. As explained in this article, it is recommended to keep the number of records in value_stream and stream less than 100,000. That means you'll insert and delete many records when running ThingWorx. What happens then? If you delete(/update) a record in a table, PostgreSQL keeps the previous record in a page but mark it as deleted(and inserts a new record when it's update operation) If the number of those logically deleted records increases, PostgreSQL needs to access many pages of the table to obtain records which meets the criteria user might experience slow performance because of this Those logically deleted records will be ultimately removed from pages when vacuum is run   If you have installed contrib module and enabled it, you can review stats of tables by command below; select * from pgstattuple('stream');                             //This returns the stats of stream table select * from pgstatindex('stream_id_time_index');    //This returns the stats of an index on stream table   pgstattuple returns information below (I modified the format to make it more readable in this post) and meaning of each items are explained in the document .   table_len tuple_count tuple_len tuple_percent dead_tuple_count dead_tuple_len dead_tuple_percent free_space free_percent  8192 1 33 0.4 3  97 1.18 8004 97.71   Before obtaining the stat, I Inserted 4 records and Deleted 3 records and therefore it shows that tuple_count (the active record is 1) and dead_tuple_count (the logically deleted records are 3) and dead_tuple_percent is 1.18. If dead_tuple_percent is high, that means the table is not vacuumed or many DML were executed after the last vacuum operation and this could be the cause of the slow ststem performance.   * IMPORTANT: pgstattuple, pgstatindex consumes resources so it's recommended to run them during the maintenance window.   Takaaki
View full tip
DataShape Simply put, it represents the data in your model giving your application an in-built sense on how to represent the data in different scenarios. DataShape is defined with set of field definitions and related metadata e.g. DataType. DataShapes are must have (except for ValueStream) when creating entities that deal with data storage i.e. DataTable & Stream. For more detail on  DataShapes and the DataTypes see DataShapes in ThingWorx Help Center   Note: See ThingShape : Nuances, Tips & Tricks  for ThingShape vs DataShape   Ways to create DataShape   Via the ThingWorx Composer Navigate to ThingWorx Composer click on New > DataShape Provide a unique name to the DataShape entity DataShape creation in ThingWorx Composer Navigate to the Field Definition and add required Field Definition Defining Field for the DataShape Via a custom service in ThingWorx Navigate to an entity under which the service is to be created, e.g. Thing Switch to Services section for the Thing and click Add to create new service OOTB available service CreateDataShape can be used from the Resources > EntityService // snippet creating the infotable with the var params = { infoTableName : "InfoTable", dataShapeName : "DemoDataShape" }; // CreateInfoTableFromDataShape(infoTableName:STRING("InfoTable"), dataShapeName:STRING):INFOTABLE(DemoDataShape) var result = Resources["InfoTableFunctions"].CreateInfoTableFromDataShape(params); // snippet creating the DataShape using the Infotable queried above which returns the field and the metadata on those fields // DSName used below is created as the Resources["EntityServices"].CreateDataShape({ name: DSName /* STRING */, description: "Custom created DataShape" /* STRING */, fields: result /* INFOTABLE */, tags: undefined /* TAGS */ }); Here's how it'd appear in the Service editor :   DataShape creation with JavaScript service in ThingWorx Via the ThingWorx Extension SDK   Following example snippet shows the creation and usage of the DataShape while creating custom extension with the Extension SDK    @ThingworxConfigurationTableDefinitions(tables = { @ThingworxConfigurationTableDefinition(name = "ConfigTableExample1", description = "Example 1 config table", isMultiRow = false, dataShape = @ThingworxDataShapeDefinition(fields = { @ThingworxFieldDefinition(name = "field1", description = "", baseType = "STRING"), @ThingworxFieldDefinition(name = "field2", description = "", baseType = "NUMBER") })) }) Note: Refer to the ThingShape : Nuances, Tips & Tricks for Tips & Tricks   Other related reads How are DataShape used while storing the data in ThingWorx How to pass a DataShape as parameter Can two DataShapes have the same service name if used on the same thing in ThingWorx? DataShape in ThingWorx Help Center
View full tip
Configure Permissions Guide Part 2   Step 5: Permissions   These permissions can be accessed on any Entity created on the platform. All Entities have permission control for both design time and run time. Permission Time Control Design time Controls what Users are able to do with Entities themselves while building the solution. Run time Controls what the Users are able to do with the data for an Entity when they use the solution.   Permission Type Description Property Read Read property values Property Write Update property values Service Execute Execute Services in this Entity Event Execute Queue or fire Events in this Entity Event Subscribe Ability to subscribe to Events in this Entity   Access Type Description Allow Allow the User's access to this feature. Deny Deny the User's access to this feature. Inherit Set the User's access to this feature based on permissions in Entities this Entity is based on or the configurations at a higher level.   Add Permissions for an Entity   Once an Entity has been selected for editing, select the Permissions tab. Based on what you would like to edit, select the Visibility, Design Time or Run Time tab. The All Properties, Services, and Events section provides blanket security to all of these features for a User Group or User. The Property, Service, or Event Overrides section is used for any overrides that need to be made for specific features. In the example blow, the User a.jones has the ability to read properties, fire events, and subscribe to events. The User does not have the ability to update a property or execute a Service. In the second section, a.jones is allowed to call the GetConfigurationTable Service (even though he was restricted from doing so in the other section).   To set a permission, filter and select a User/User Group. When their name is in the table, click the Permission Type you would like for this Entity. Default permissions are added to the User or User Group you filtered and selected. This will be full access permissions unless you've changed one of the fields.   Set Permissions Programmatically   In some cases it will be useful to set permissions using a programmable interface. This can be done through a built-in set of services which can be accessed in many different ways including: Internal service call through an entity’s service Service call using the extension framework, or REST API call to a service on the platform. The following is a list of services built into all entities on the platform. Service Name Description AddDesignTimePermission Adds a new design time permission AddRunTimePermission Adds a new run time permission CheckDesignTimePermission Checks to see if an entity has a specific design time permission for the current User CheckDesignTimePermissionForGroup Checks to see if an entity has a specific design time permission for a given User Group CheckDesignTimePermissionForUser Checks to see if an entity has a specific design time permission for a given User CheckPermission Checks to see if the entity has a specific run time permission for the current User CheckTimePermissionForGroup Checks to see if the entity has a specific run time permission for a given User Group CheckDesignTimePermissionForUser Checks to see if the entity has a specific run time permission for a given User DeleteDesignTimePermission Delete a design time permission DeleteRunTimePermission Delete a run time permission GetDesignTimePermission Get a list of design time permissions in Info Table format GetDesignTimePermissionAsJSON Get a list of design time permissions in JSON format GetPermissionsForCurrentUser Get the run time permissions for the current User GetPermissionsForGroup Get the run time permissions for a given User Group GetPermissionsForUser Get the run time permissions for a given User GetRunTimePermissions Get a list of assigned run time permissions in Info Table format GetRunTimePermissionAsJSON Get a list of assigned run time permissions in JSON form SetDesignTimePermissionAsJSON Sets all of the run time permissions for a given Entity to the given JSON list You may want to apply a set of permissions to a large group of Entities at once. This can be done using either the projects or the tags feature on the platform through the EntityServices resource. The EntityServices resource has many useful services in it, but for the purpose of this section, we will only talk about the run time permission service. This will act on all entities with the provided tags or assigned to the given project. Service Name Description SetEntityPermission Sets run time permissions for a set of Entities   Step 6: Application Keys   Application Keys   Application Keys or appKeys are security tokens used for authentication in ThingWorx when not using a standard credentials method of authentication. They are associated with a given user and have all of the permissions granted to the user to which they are associated.   Create an Application Key   Using the Application Key for the default user (Administrator) is not recommended. If administrative access is absolutely necessary, create a user and place the user as a member of the SecurityAdministrators and Administrators user groups. Create the User the Application Key will be assigned to. On the Home screen of Composer click + New. In the dropdown list, click Applications Keys. Use MyAppKey  for the name your Application Key. Set the User Name Reference to a User you created and set the Project field (ie, PTCDefaultProject). The Expiration Date field will default to 1 day. Click Save. A Key ID has been generated and can be used to make secure connections.   IP Whitelisting for Application Keys   One of the features of an Application Key is the ability to set an IP whitelist. This allows the server to specify that only certain IP addresses should be able to use a given Key ID for access. This is a great way to lock down security on the platform for anything that will maintain a static IP address. For example, connected Web-based business systems may have a static IP from which all calls should be made. Similarly, you can use wildcards to specify a network to narrow the range of IP addresses allowed while still offering some flexibility for devices with dynamic IP addresses. Extremely mobile devices should likely not attempt to implement this however as they will often change networks and IP addresses and may lose the ability to connect when the IP whitelist feature is used.   Interact with Application Keys Programmatically   Service Name Description GetKeyID Returns the ID of this application key GetUserName Get the user name associated with this application key IsExpired Returns if this application key is expired ResetExpirationDateToDefault Resets the expiration date of the application key to the default time based on configuration in the UserManagement subsystem SetClientName Sets the client name for this application key SetExpirationDate Sets the expiration date of this application key to a provided date SetIPWhiteList Sets the values for the IP whitelist for this application key SetUserName Sets the associated user name for this application key TIP: To learn more about Application Keys, refer to the Create an Application Key Guide.   Step 7: Organizations   Organizations are hierarchical structures that allow the user to assign visibility to entities in the ThingWorx Model. This model provides the top down structure from the highest level in an organization or department, to the lower levels of said entity. Each level within this structure also allows for users and groups to be added. This provides a greater level of customization to resources within the ThingWorx Composer.   Create an Organization In the ThingWorx Composer, click the + New at the top of the screen. Select Organization in the dropdown. Name your Organization Constructors. Set the Project field (ie, PTCDefaultProject) and click Save Select the Organization tab to see the hierarchy. With the top organization selected, in the Members search bar, search for the user you have created yourself and add them.   Create Organizational Units   Click the green + under the structure you would like to expand. Name your Organization unit UpperManagement. In the Members search bar, search for the user or user group you created and add it. Click Save. Repeat the steps to create the full heirarchy of the organization and its department/unit members.   Setup Entity Visibility   ThingWorx provides added security checks and access control with Entity visibility. Visibility ensures an entity is accessible to members of an organizational unit. Those members will then have access to the entity and the underlying security model determines what specific interaction any users that are members of that organization unit may have with a specific asset. If a user in the system is not granted visibility, then that asset essentially does not exist within that user’s domain. Select the Permissions tab of any custom Thing in Composer. Filter and select Constructors in the Search Organizations field. Click Save. Login Pages for Organization   Creating an Organization automatically creates a login page for you. If you would like to add more to this login screen and customize it to fit your needs, create a Mashup and set it to the Organization's Home Mashup field. If you plan to use a Login Screen, use the View Mashup URL generated from the Login Mashup you create. To view the login page of your application (whether custom or default), type the following URL: [server]/Thingworx/FormLogin/ (ie, localhost/Thingworx/FormLogin/Constructors).     Step 8: Next Steps   Congratulations! You've successfully completed the Configure Permissions guide, and learned how to: Configure and utilize the user access system Control permissions at design time and run time   The next guide in the Getting Started on the ThingWorx Platform learning path is Build a Predictive Analytics Model.    If you are completing the Connect and Configure Industrial Devices and Systems learning path, the next guide is Choose a Connectivity Method.   Learn More   We recommend the following resources to continue your learning experience: Capability Guide Build Design Your Data Model   Additional Resources   If you have questions, issues, or need additional information, refer to: Resource Link Support Help Center    
View full tip
ThingWorx 8.2 System Requirements ThingWorx 8.2 Helpcenter The following feature enhancements and bug fixes exist in ThingWorx 8.2.0: Due to security updates, a minimum version of Apache Tomcat 8.0.47 or 8.5.23 should be used with ThingWorx. Enhancements Platform • Included information about opting out of metrics reporting. For more information, see the ThingWorx Metrics Reporting Services Configuration section in the Platform Subsystem help topic. • The Script Log Error has been added to improve error logging for scripts. • Added support to allow mashups to be rendered using jQuery 3.x runtime. • Query service optimization. This includes improved performance for the QueryPropertyHistory and QueryPropertyNamedHistory services. Previously, a database call was made for every logged property. With this improvement, one database call is made for all logged properties, resulting in the following improvements: ▪ A ~20% decrease in memory usage for the QueryPropertyHistory and QueryNamedPropertyHistory service queries if no filters are applied (PostgreSQL and MSSQL). ▪ Decreased time to execute query (~10%) for the QueryPropertyHistory and QueryNamedPropertyHistory services. Depends on latency to the database (PostgreSQL and MSSQL). ▪ Additional decrease in memory, based on the filter supplied during the query for QueryPropertyHistory and QueryNamedPropertyHistory services. (PostgreSQL and MSSQL). If a filter is applied that reduces the record count by 50%, then there is an additional 50% decrease in memory usage on top of the other 50% described in the first point. This optimization also results in an approximate 10% decrease in memory for single property queries. The Audit Subsystem has been added. It supports the following capabilities: • Automatically add audit entries to online storage. • Search for audit entries (use the QueryAuditHistory service) stored online. • Archive online audit entries to offline storage (automatically performed daily by default). • Export audit data, using the language selected for the export. • Purge online audit data on the basis of a specified number of days for audit data to remain online and also on the specified number of rows to keep online. • Clean up archived audit data automatically, based on a configured schedule. • The security of the PASSWORD base type has been enhanced and is now encrypted. See Passwords for more information. • Added the Collection Widget, which allows you to replicate/repeat mashups and content by using infotables to dynamically supply visual content and data. Refer to the KCS article for additional information here • Additional capability has been added to New Composer. For more information, refer to the ThingWorx Community blog. • The licensing process has been improved. An activation ID is no longer required to obtain a license and a new license file is not required for minor or major release upgrades. ◦ For connected scenarios, activation IDs are no longer required in the platform-settings.json file. ◦ For disconnected scenarios, go to the enhanced PTC Support site pages, select the product, enter a Device ID, and retrieve a license. • You can enable the Application Key Authenticator when SSO is enabled by editing the sso-settings.json configuration. For more information, see Configure the sso-settings.json File. • The CSS Editor was added to Mashup Builder, which allows developers to create modern experiences with responsiveness, animations, and advanced styling and behaviors. Refer to the KCS article for additional information here. • Added support for "Store and Forward" functionality to the interface between KEPServerEX and the ThingWorx platform. KepServerEX can be configured to store updated property data to disk when disconnected from the ThingWorx platform and will send that data gracefully when the connection is re-established. • In mashups, row and column gadget sizes 1 to 8 are now available. TW-25477 Bug Fixes Platform Related JIRA • Fixed an issue with Thing Shapes when editing subscriptions twice before canceling or closing in which the second edit was not saved. TW-28718 • Fixed an issue that was causing SQL Server apparent deadlock exceptions. TW-28208 • Added useful log information for troubleshooting LDAP and Active Directory errors. TW-23873 • Fixed an issue with exception handling in DSLProcessor in which line numbers were not included in the log. TW-18042 TW-17255 • Fixed an issue in which opening/closing brackets are not highlighted if there were 100 or more lines of code in a JavaScript service. TW-12740 Mashup Builder • Service error notification messages were fixed to display on multiple lines based on line breaks in the message. TW-24738 • Fixed an issue in which a master mashup header image was not fully displayed. PSPT-3365 Extensions Related JIRA • The Google Maps JavaScript API was updated to prevent the use of the library without an api key. If you are using the Google Map extension in your application, verify that the extension's metadata.xml file is updated with the correct URL (https://maps.google.com/maps/api/js?sensor=false&key=YOUR_API_KEY). Re-zip the extension and reimport into ThingWorx after making this change.
View full tip
The Asset Simulator can simulate actual device behavior without having to connect to a physical asset. It does this by replaying data sequences derived from mathematical distributions or actual asset data imported as CSV files. Virtual assets can be configured to reference these data sequences and expose them as asset behavior.   The Asset Simulator communicates with KepServerEX in the same way that a real device does. The simulated asset behavior is controlled through an administration console. If you would like to test with the Asset Simulator 8.2.0, please find attached a guide and the actual files necessary.   Notes: The attached Asset Simulator applies to both Manufacturing and Service Apps If using ThingWorx Manufacturing Apps, import the Manufacturing Apps demo data If using ThingWorx Service Apps, import the Service Apps demo data
View full tip
This example is to achieve to update objects in Windchill thru extensions. It is really hard to find a resource for Windchill extension's services to take an advantage of them. So, I wrote a simple example to update objects in Windchill from Thingworx.   There are three data shapes needed to do this. One is "PTC.PLM.WindchillPartUfids" which has only "value" field (String) in it and another is "PTC.PLM.WindchillPartCheckedOutDS" which has a "ufid" field (String). Last one is "PTC.PLM.WindchillPartPropertyDS" which has a "ufid" field (String) and fields for "attributes". For an instance of the last data shape, there might be three fields as "ufid", "partPrice" and "quantity" to update parts. In this example, this data shape has two fields which are "ufid" and "almProjectId".   In this example, this needs two input parameters. One is ufid (String) and almProjectId (String). If you need to have multiple objects to update at once, you can use InfoTable type as an "ufid" input parameter instead of String type.   Note that this is an example code and need to handle exceptions if needed.     // To var params = {     infoTableName : "InfoTable",     dataShapeName : "PTC.PLM.WindchillPartUfids" };   // CreateInfoTableFromDataShape(infoTableName:STRING("InfoTable"), dataShapeName:STRING):INFOTABLE(PTC.PLM.WindchillPartUfids) var ufids = Resources["InfoTableFunctions"].CreateInfoTableFromDataShape(params);   // PTC.PLM.WindchillPartUfids entry object var newValue = new Object(); newValue.value = ufid; // STRING   ufids.AddRow(newValue);   // Check out var params = {     ufids: ufids /* INFOTABLE */,     comment: undefined /* STRING */,     dataShape: "PTC.PLM.WindchillPartCheckedOutDS" /* DATASHAPENAME */ };   // checkedOutObjs: INFOTABLE dataShape: "undefined" var checkedOutObjsFromService = me.CheckOut(params);   var params = {     infoTableName : "InfoTable",     dataShapeName : "PTC.PLM.WindchillPartUfids" };   // CreateInfoTableFromDataShape(infoTableName:STRING("InfoTable"), dataShapeName:STRING):INFOTABLE(PTC.PLM.WindchillPartUfids) var checkedOutObjs = Resources["InfoTableFunctions"].CreateInfoTableFromDataShape(params);   try {     var tableLength = checkedOutObjsFromService.rows.length;       for (var x = 0; x < tableLength; x++) {         var row = checkedOutObjsFromService.rows;               // PTC.PLM.WindchillPartUfids entry object         var checkedOutObj = new Object();         checkedOutObj.value = row.ufid.substring(0,row.ufid.lastIndexOf(":")); // STRING               //logger.warn("UFID : " + checkedOutObj.value);         checkedOutObjs.AddRow(checkedOutObj);           /* Update Objects in Windchill */         var params = {             infoTableName : "InfoTable",             dataShapeName : "PTC.PLM.WindchillPartPropertyDS"         };           // CreateInfoTableFromDataShape(infoTableName:STRING("InfoTable"), dataShapeName:STRING):INFOTABLE(PTC.ALM.WindchillPartPropertyDS)         var wcInfoTable = Resources["InfoTableFunctions"].CreateInfoTableFromDataShape(params);           // PTC.ALM.WindchillPartPropertyDS entry object         var newEntry = new Object();         newEntry.ufid = checkedOutObj.value; // STRING         newEntry.almProjectId = almProjectId; // STRING           wcInfoTable.AddRow(newEntry);           var params = {             objects: wcInfoTable /* INFOTABLE */,             modification: "REPLACE" /* STRING */,             dataShape: "PTC.PLM.WindchillPartCheckedOutDS" /* DATASHAPENAME */         };           // result: INFOTABLE dataShape: "undefined"         var result = me.Update(params);     }   } catch(err) {     logger.warn("ERROR Catched");     var params = {         ufids: ufids /* INFOTABLE */,         dataShape: "PTC.PLM.WindchillPartCheckedOutDS" /* DATASHAPENAME */     };       // result: INFOTABLE dataShape: "undefined"     var result = me.CancelCheckOut(params);  }   var params = {     ufids: checkedOutObjs /* INFOTABLE */,     comment: undefined /* STRING */,     dataShape: "PTC.PLM.WindchillPartCheckedOutDS" /* DATASHAPENAME */ };   // result: INFOTABLE dataShape: "undefined" var result = me.CheckIn(params);
View full tip
Announcements