cancel
Showing results for 
Search instead for 
Did you mean: 
cancel
Showing results for 
Search instead for 
Did you mean: 

Community Tip - Help us improve the PTC Community by taking this short Community Survey! X

IoT Tips

Sort by:
Everywhere in the Thingworx Platform (even the edge and extensions) you see the data structure called InfoTables.  What are they?  They are used to return data from services, map values in mashup and move information around the platform.  What they are is very simple, how they are setup and used is also simple but there are a lot of ways to manipulate them.  Simply put InfoTables are JSON data, that is all.  However they use a standard structure that the platform can recognize and use. There are two peices to an InfoTable, the DataShape definition and the rows array.  The DataShape is the definition of each row value in the rows array.  This is not accessible directly in service code but there are function and structures to manipulate it in services if needed. Example InfoTable Definitions and Values: { dataShape: {     fieldDefinitions : {           name: "ColOneName", baseType: "STRING"     },     {           name: "ColTwoName", baseType: "NUMBER"     }, rows: [     {ColOneName: "FirstValue", ColTwoName: 13},     {ColOneName: "SecondValue, ColTwoName: 14}     ] } So you can see that the dataShape value is made up of a group of JSON objects that are under the fieldDefinitions element.  Each field is a "name" element, which of course defined the field name, and the "baseType" element which is the Thingworx primitive type of the named field.  Typically this structure is automatically created by using a DataShape object that is defined in the platform.  This is also the reason DataShapes need to be defined, so that fields can be defined not only for InfoTables, but also for DataTables and Streams.  This is how Mashups know what the structure of the data is when creating bindings to widgets and other parts of the platform can display data in a structured format. The other part is the "rows" element which contains an array of of JSON objects which contain the actual data in the InfoTable. Accessing the values in the rows is as simple as using standard JavaScript syntax for JSON.  To access the number in the first row of the InfoTable referenced above (if the name of the InfoTable variable is "MyInfoTable") is done using MyInfoTable.rows[0].ColTowName.  This would return a value of 13.  As you can not the JSON array index starts at zero. Looping through an InfoTable in service script is also very simple.  You can use the index in a standard "for loop" structure, but a little cleaner way is to use a "for each loop" like this... for each (row in MyInfoTable.rows) {     var colOneVal = row.ColOneName;     ... } It is important to note that outputs of many base services in the platform have an output of the InfoTable type and that most of these have system defined datashapes built into the platform (such as QueryDataTableEntries, GetImplimentingThings, QueryNumberPropertyHistory and many, many more).  Also all service results from query services accessing external databases are returned in the structure of an InfoTable. Manipulating an InfoTable in script is easy using various functions built into the platform.  Many of these can be found in the "Snippets" tab of the service editor in Composer in both the InfoTableFunctions Resource and InfoTable Code Snippets. Some of my favorites and most commonly used... Create a blank InfoTable: var params = {   infoTableName: "MyTable" }; var MyInfoTable= Resources["InfoTableFunctions"].CreateInfoTable(params); Add a new field to any InfoTable: MyInfoTable.AddField({name: "ColNameThree", baseType: "BOOLEAN"}); Delete a field: MyInfoTable.RemoveField("ColNameThree"); Add a data row: MyInfoTable.AddRow({ColOneName: "NewRowValue", ColTwoName: 15}); Delete one or more data row matching the values defined (Note you can define multiple field in this statement): //delete all rows that have a value of 13 in ColNameOne MyInfoTable.Delete({ColNameOne: 13}); Create an InfoTable using a predefined DataShape: var params = {   infoTableName: "MyInfoTable",   dataShapeName: "dataShapeName" }; var MyInfoTable = Resources["InfoTableFunctions"].CreateInfoTableFromDataShape(params); There are many more functions built into the platform, including ones to filter, sort and query rows.  These can be extremely useful when tying to return limited or more strictly structured InfoTable data.  Hopefully this gives you a better understanding and use of this critical part of the Thingworx Platform.
View full tip
This document is designed to help troubleshoot some commonly seen issues while installing or upgrading the ThingWorx application, prior or instead of contacting Tech Support. This is not a defined template for a guaranteed solution, but rather a reference guide that provides an opportunity to eliminate some of the possible root causes. While following the installation guide and matching the system requirements is sufficient to get a successfully running instance of ThingWorx, some issues could still occur upon launching the app for the first time. Generally, those issues arise from minor environmental details and can be easily fixed by aligning with the proper installation process. Currently, the majority of the installation hiccups are coming from the postgresql side. That being said, the very first thing to note, whether it's a new user trying out the platform or a returning one switching the database to postgresql, note that: Postgresql database must be installed, configured, and running prior to the further Thingworx installation. ThingWorx 7.0+: Installation errors out with 'failed to succeed more than the maximum number of allowed acquisition attempts' Platform being shut down because System Ownership cannot be acquired error ERROR: relation "system_version" does not exist Resolution: Generally, this type of error point at the security/permission issue. As all of the installation operations should be performed by a root/Administrator role, the following points should be verified: Ensure both Tomcat and ThingworxPlatform folders have relevant read/write permissions The title and contents of the configuration file in the ThingworxPlatform folder has changed from 6.x to 7.x Check if the right configuration file is in the folder Verify if the name and password provided in this configuration file matches the ones set in the Postgres DB Run the Database cleanup script, and then set up the database again. Verufy by checking the thingworx table space (about 53 tables should be created)     Thingworx Application: Blank screen, no errors in the logs, "waiting for <url> " gears running be never actually loading, eventually times out     Resolution: Ensure that Java in tomcat is pointing to the right path, should be something like this: C:\Program Files\Java\jre1.8.0_101\bin\server\jvm.dll 6.5+ Postgres:   Error when executing thingworxpostgresDBSetup.bat psql:./thingworx-database-setup.sql:1: ERROR: could not set permissions on directory "D:/ThingworxPostgresqlStorage": Permission denied     Resolution:     The error means that the postgres user was not able to create a directory in the ‘ThingworxPostgresStorage’ directory. As it's related to the security/permission, the following steps can be taken to clear out the error: Assigning read/write permissions to everyone user group to fix the script execution and then execute the batch file: Right-click on ‘ThingworxPostgresStorage’ directory -> Share with -> specific people. Select drop-down, add everyone group and update the permission level to Read/Write. Click Share. Executing the batch file as admin. 2. Installation error message "relation root_entity_collection does not exist" is displayed with Postgresql version of the ThingWorx platform. Resolution:     Such an error message is displayed only if the schema parameter passed to thingworxPostgresSchemaSetup.sh script  is different than $USER or PUBLIC. To clear out the error: Edit the Postgresql configuration file, postgresql.conf, to add to the SEARCH_PATH item your own schema. Other common errors upon launching the application. Two of the most commonly seen errors are 404 and 401.  While there can be a numerous reasons to see those errors, here are the root causes that fall under the "very likely" category: 404 Application not found during a new install: Ensure Thingworx.war was deployed -- check the hard drive directory of Tomcat/webapps and ensure Thingworx.war and Thingworx folder are present as well as the ThingworxStorage in the root (or custom selected location) Ensure the Thingworx.war is not corrupted (may re-download from the support and compare the size) 401 Application cannot be accessed during a new install or upgrade: For Postgresql, ensure the database is running and is connected to, also see the Basic Troubleshooting points below. Verify the tomcat, java, and database (in case of postgresql) versions are matching the system requirement guide for the appropriate platform version Ensure the updrade was performed according to the guide and the necessary folders were removed (after copying as a preventative measure). Ensure the correct port is specified in platform-settings.json (for Postgresql), by default the connection string is jdbc:postgresql://localhost:5432/thingworx Again, it should be kept in mind that while the symptoms are common and can generally be resolved with the same solution, every system environment is unique and may require an individual approach in a guaranteed resolution. Basic troubleshooting points for: Validating PostgreSQL installation Postgres install troubleshooting java.lang.NullPointerException error during PostgreSQL installation ***CRITICAL ERROR: permission denied for relation root_entity_collection Error while running scripts: Could not set permissions on directory "/ThingworxPostgresqlStorage":Permission Denied Acquisition Attempt Failed error Resolution: Ensure 'ThingworxStorage', 'ThingworxPlatform' and 'ThingworxPostgresqlStorage' folders are created The folders have to be present in the root directory unless specifically changed in any configurations Recommended to grant sufficient privileges (if not all) to the database user (twadmin) Note: While running the script in order to create a database, if a schema name other than 'public' is used, the "search_path" in "postgresql.conf" must be changed to reflect 'NewSchemaName, public' Grant permission to user for access to root folders containing 'ThingworxPostgresqlStorage' and 'ThingworxPlatform' The password set for the default 'twadmin' in the pgAdmin III tool must match the password set in the configuration file under the ThingworxPlatform folder Ensure THINGWORX_PLATFORM_SETTINGS variable is set up Error: psql:./thingworx-database-setup.sql:14: ERROR:  could not create directory "pg_tblspc/16419/PG_9.4_201409291/16420": No such file or directory psql:./thingworx-database-setup.sql:16: ERROR:  database "thingworx" does not exist Resolution: Replacing /ThingworxPostgresqlStorage in the .bat file by C:\ThingworxPostgresqlStorage and omitting the -l option in the command window. Also, note the following error Troubleshooting Syntax Error when running postgresql set up scripts
View full tip
Create a new Thing using the Scheduler Thing Template. The Scheduler Thing will fire a ScheduledEvent Event when the configured schedule is fired. The event is automatically present and does not need to be added manually. Configuration   The Scheduler Configuration is quite straightforward and allows for an exact setup of schedule based on units of time, e.g. seconds, minutes, hours, days of week etc. It can be accessed via the Thing's Entity Configuration   Configuration allows for Changing the runAsUser context - in which the Events will be handled. The user will need visibility and permission on e.g. executing Services or depending Things, which are required to run the Service triggered by the Event. Changing the Schedule - in which time the Events will be fired (by default every minute). The schedule is displayed in CRON String notation and can be changed and viewed in detail by clicking on "More". The CRON String will be generated automatically based on the inputs. Schedules can be configured in Manual mode - allowing for full configuration of each and every time based attribute. Schedules can be configured for a specific time Type - allowing for configuration only based on seconds, minutes, hours, days, weeks, months or years. Below screenshots show schedules running every minute and every Saturday / Sunday at 12:00 ("Every Weekend Day").     Services   Scheduler Things inherit two Services by default from the Thing Template DisableScheduler EnableScheduler These will activate / de-activate the Scheduler and allow / disallow firing Events once a scheduled time is reached If a Scheduler is currenty enabled or disabled can be seen in its properites  
View full tip
Developing Great IoT Solutions Brought to you once again by your EDC team, find attached here a brand-new, comprehensive overview of ThingWorx best practices! This guide was crafted by combining all available feedback, from support cases to PTC Community threads, and tapping all internal resources. Let this guide serve to bridge the knowledge gaps ThingWorx developers most commonly see.    The Developing Great IoT Solutions (DGIS) Guide is a great way to inform both business and technically minded folks about the capabilities of the ThingWorx Platform. Learn how to design good solutions from a high-level, an overview designed specifically with the business audience in mind. Or, learn how to implement good IoT designs through a series of technical examples. Start from very little knowledge of the Platform and end up understanding data structures and aggregation, how to use the collection widget, and how to build a fully functional rules engine for sending and acknowledging alerts in ThingWorx.   For the more advanced among us, check out the Appendix. Find here a handy list of do's and don'ts surrounding ThingWorx best practice in development, with links to KCS, Help Center, and Community content.   Reinforce your understanding of the capabilities of the ThingWorx Platform with this guide, today!   A big thanks to all who were involved on this project! Happy developing!
View full tip
The natively exposed ThingWorx Platform performance metrics can be extremely valuable to understanding overall platform performance and certain of the core subsystem operations, however as a development platform this doesn't give any visibility into what your built solution is or is not doing.   Here is an amazing little trick that you can use to embed custom performance metrics into your application so that they show up automatically in your Prometheus monitoring system. What you do with these metrics is up to your creativity (with some constraints of course). Imaging a request counter for specific services which may be incredibly important or costly to run, or an exception metric that is incremented each time you catch an exception, or a query result size metric that informs you of how much data is being queried from the database.   Refer to Resources > MetricsServices: GetCounterMetric GetGaugeMetric IncrementCounterMetric DecrementCounterMetric SetGaugeMetric You'll need to give your metric a name - identified by key - and this is meant to be dotted notation* which will then be converted to underscores when the metric is exposed on the OpenMetrics endpoint.  Use sections/domains in the dotted notation to structure your metrics in-line with your application design.   COUNTER type metrics are the most commonly used and relate to things happening through time.  They are an index which will get timestamped as they're collected by Prometheus so that you will be able to look back in time and analyse and investigate what happened when and what the scale or impact was.  After the fact functions and queries will need to be applied to make these metrics most useful (delta over time, increase, rate per second).   Common examples of counter type metrics are: requests, executions, bytes transferred, rows queried, seconds elapsed, execution time.     Resources["MetricServices"].IncrementCounterMetric({ basetype: "LONG", value: 1, key: "__PTC_Reported.integration.mes.requests", aggregate: false });     GAUGE type metrics are point-in-time status of some thing being measured.   Common gauge type metrics are: CPU load/utilization, memory utilization, free disk space, used disk space, busy/active threads.     Resources["MetricServices"].SetGaugeMetric({ basetype: "NUMBER", value: 12, key: "__PTC_Reported.Users.ConnectedOperatorCount", aggregate: true });     Be aware of the aggregate flag, as it will make this custom metric cluster level which can have some unintended consequences.  Normally you always want performance metrics for the specific node as you then see what work is happening where and can confirm that it is being properly distributed within the cluster.  There are some situations however where you might want the cluster aggregation however, like with this concurrently connected operators.   Happy Monitoring!  
View full tip
Predictive models: ​ Predictive model is one of the best technique to perform predictive analytics. This is the development of models that are trained on historical data and make predictions on new data. These models are built in order to analyse the current data records in combination with some historical data.   Use of Predictive Analytics in Thingworx Analytics and How to Access Predictive Analysis Functionality via Thingworx Analytics   Bias and variance are the two components of imprecision in predictive models. Bias in predictive models is a measure of model rigidity and inflexibility, and means that your model is not capturing all the signal it could from the data. Bias is also known as under-fitting.  Variance on the other hand is a measure of model inconsistency, high variance models tend to perform very well on some data points and really bad on others. This is also known as over-fitting and means that your model is too flexible for the amount of training data you have and ends up picking up noise in addition to the signal.   If your model is performing really well on the training set, but much poorer on the hold-out set, then it’s suffering from high variance. On the other hand if your model is performing poorly on both training and test data sets, it is suffering from high bias.   Techniques to improve:   Add more data: Having more data is always a good idea. It allows the “data to tell for itself,” instead of relying on assumptions and weak correlations. Presence of more data results in better and accurate models. The question is when we should ask for more data? We cannot quantify more data. It depends on the problem you are working on and the algorithm you are implementing, example when we work with time series data, we should look for at least one-year data, And whenever you are dealing with neural network algorithms, you are advised to get more data for training otherwise model won’t generalize.  Feature Engineering: Adding new feature decreases bias on the expense of variance of the model. New features can help algorithms to explain variance of the model in more effective way. When we do hypothesis generation, there should be enough time spent on features required for the model. Then we should create those features from existing data sets. Feature Selection: This is one of the most important aspects of predictive modelling. It is always advisable to choose important features in the model and build the model again only with important and significant features. e. let’s say we have 100 variables. There will be variables which drive most of the variance of a model. If we just select the number of features only on p-value basis, then we may still have more than 50 variables. In that case, you should look for other measures like contribution of individual variable to the model. If 90% variance of the model is explained by only 15 variables then only choose those 15 variables in the final model. Multiple Algorithms: Hitting at the right machine learning algorithm is the ideal approach to achieve higher accuracy. Some algorithms are better suited to a particular type of data sets than others. Hence, we should apply all relevant models and check the performance. Algorithm Tuning: We know that machine learning algorithms are driven by parameters. These parameters majorly influence the outcome of learning process. The objective of parameter tuning is to find the optimum value for each parameter to improve the accuracy of the model. To tune these parameters, you must have a good understanding of these meaning and their individual impact on model. You can repeat this process with a number of well performing models. For example: In random forest, we have various parameters like max_features, number_trees, random_state, oob_score and others. Intuitive optimization of these parameter values will result in better and more accurate models. Cross Validation: Cross Validation is one of the most important concepts in data modeling. It says, try to leave a sample on which you do not train the model and test the model on this sample before finalizing the model. This method helps us to achieve more generalized relationships. Ensemble Methods: This is the most common approach found majorly in winning solutions of Data science competitions. This technique simply combines the result of multiple weak models and produce better results. This can be achieved through many ways.  Bagging: It uses several versions of the same model trained on slightly different samples of the training data to reduce variance without any noticeable effect on bias. Bagging could be computationally intensive esp. in terms of memory. Boosting: is a slightly more complicated concept and relies on training several models successively each trying to learn from the errors of the models preceding it. Boosting decreases bias and hardly affects variance.     
View full tip
Connectors allow clients to establish a connection to Tomcat via the HTTP / HTTPS protocol. Tomcat allows for configuring multiple connectors so that users or devices can either connect via HTTP or HTTPS.   Usually users like you and me access websites by just typing the URL in the browser's address bar, e.g. "www.google.com". By default browsers assume that the connection should be established with the HTTP protocol. For HTTPS connections, the protocol has to be specified explictily, e.g. "https://www.google.com"   However - Google automatically forwards HTTP connections automatically as a HTTPS connection, so that all connections are using certificates and are via a secure channel and you will end up on "https://www.google.com" anyway.   To configure ThingWorx to only allow secure connections there are two options...   1) Remove HTTP access   If HTTP access is removed, users can no longer connect to the 80 or 8080 port. ThingWorx will only be accessible on port 443 (or 8443).   If connecting to port 8080 clients will not be redirected. The redirectPort in the Connector is only forwarding requests internally in Tomcat, not switching protocols and ports and not requiring a certificate when being used. The redirected port does not reflect in the client's connection but only manages internal port-forwarding in Tomcat.   By removing the HTTP ports for access any connection on port 80 (or 8080) will end up in an error message that the client cannot connect on this port.   To remove the HTTP ports, edit the <Tomcat>\conf\server.xml and comment out sections like       <!-- commented out to disallow connections on port 80 <Connector port="80" protocol="org.apache.coyote.http11.Http11NioProtocol" connectionTimeout="20000" redirectPort="443" /> -->     Save and restart Tomcat. If opening Tomcat (and ThingWorx) in a browser via http://myServer/ the connection will fail with a "This site can’t be reached", "ERR_CONNECTION_REFUSED" error.   2) Forcing insecure connections through secure ports   Alternatively, port 80 and 8080 can be kept open to still allow users and devices to connect. But instead of only internally forwarding the port, Tomcat can be setup to also forward the client to the new secure port. With this, users and devices can still use e.g. old bookmarks and do not have to explicitly set the HTTPS protocol in the address.   To configure this, edit the <Tomcat>\conf\web.xml and add the following section just before the closing </web-app> tag at the end of the file:     <security-constraint>        <web-resource-collection>              <web-resource-name>HTTPSOnly</web-resource-name>              <url-pattern>/*</url-pattern>        </web-resource-collection>        <user-data-constraint>              <transport-guarantee>CONFIDENTIAL</transport-guarantee>        </user-data-constraint> </security-constraint>     In <Tomcat>\conf\web.xml ensure that all HTTP Connectors (port 80 and 8080) have their redirect port set to the secure HTTPS Connector (usually port 443 or port 8443).   Save and restart Tomcat. If opening Tomcat (and ThingWorx) in a browser via http://myServer/ the connection will now be forwarded to the secure port. The browser will now show the connection as https://myServer/ instead and connections are secure and using certificates.   What next?   Configuring Tomcat to force insecure connection to actually secure HTTPS connection just requires a simple configuration change. If you want to read more about certificates, encryption and how to setup ThingWorx for HTTPS in the first place, be sure to also have a look at   Trust & Encryption - Theory Trust & Encryption - Hands On
View full tip
NOTE: Even though I have tried on ODataConnector and SwaggerConnector, these steps below should be working for all the Thingworx Integration Connectors viz. GenericConnector, HTTPConnector, ODataConnector, SAPODataConnector, SwaggerConnector, WindchillSwaggerConnector.   This document guides you to add a custom header in any Thingworx Integration connector. Step 1. Create a Datashape say "CustomHeadersDataShape" and add a string field with Name the same as the header name you want to add. In this case, I want to add a header called "Prefer" so it will look something like              Step 2: Go to the Integration Connector which you want to add this custom header. Navigate to "Services". Under the "Inherited Services", edit/overwrite the "GetCustomHeaderParameters" service by clicking on the edit (pencil) icon. Step 3: In the JavaScript Code sniped section add below code snipped   var params = { infoTableName : "InfoTable", dataShapeName : "CustomHeadersDataShape" }; var result = Resources["InfoTableFunctions"].CreateInfoTableFromDataShape(params); var preferValue = "odata.maxpagesize=50"; var newRow = {"Prefer" : preferValue }; result.AddRow(newRow);   Step 4: Save the service and execute "GetCustomHeaderParameters". You should see something like         Now your custom header "Prefer: odata.maxpagesize=50" is set. further execution of your connector services will consider this header until it is reset.
View full tip
​​​There are four types of Analytics:                                                                 Prescriptive analytics: What should I do about it? Prescriptive analytics is about using data and analytics to improve decisions and therefore the effectiveness of actions.Prescriptive analytics is related to both Descriptive and Predictive analytics. While Descriptive analytics aims to provide insight into what has happened and Predictive analytics helps model and forecast what might happen, Prescriptive analytics seeks to determine the best solution or outcome among various choices, given the known parameters. “Any combination of analytics, math, experiments, simulation, and/or artificial intelligence used to improve the effectiveness of decisions made by humans or by decision logic embedded in applications.”These analytics go beyond descriptive and predictive analytics by recommending one or more possible courses of action. Essentially they predict multiple futures and allow companies to assess a number of possible outcomes based upon their actions. Prescriptive analytics use a combination of techniques and tools such as business rules, algorithms, machine learning and computational modelling procedures. Prescriptive analytics can also suggest decision options for how to take advantage of a future opportunity or mitigate a future risk, and illustrate the implications of each decision option. In practice, prescriptive analytics can continually and automatically process new data to improve the accuracy of predictions and provide better decision options. Prescriptive analytics can be used in two ways: Inform decision logic with analytics: Decision logic needs data as an input to make the decision. The veracity and timeliness of data will insure that the decision logic will operate as expected. It doesn’t matter if the decision logic is that of a person or embedded in an application — in both cases, prescriptive analytics provides the input to the process. Prescriptive analytics can be as simple as aggregate analytics about how much a customer spent on products last month or as sophisticated as a predictive model that predicts the next best offer to a customer. The decision logic may even include an optimization model to determine how much, if any, discount to offer to the customer. Evolve decision logic: Decision logic must evolve to improve or maintain its effectiveness. In some cases, decision logic itself may be flawed or degrade over time. Measuring and analyzing the effectiveness or ineffectiveness of enterprises decisions allows developers to refine or redo decision logic to make it even better. It can be as simple as marketing managers reviewing email conversion rates and adjusting the decision logic to target an additional audience. Alternatively, it can be as sophisticated as embedding a machine learning model in the decision logic for an email marketing campaign to automatically adjust what content is sent to target audiences. Different technologies of Prescriptive analytics to create action: Search and knowledge discovery: Information leads to insights, and insights lead to knowledge. That knowledge enables employees to become smarter about the decisions they make for the benefit of the enterprise. But developers can embed search technology in decision logic to find knowledge used to make decisions in large pools of unstructured big data. Simulation: ​Simulation imitates a real-world process or system over time using a computer model. Because digital simulation relies on a model of the real world, the usefulness and accuracy of simulation to improve decisions depends a lot on the fidelity of the model. Simulation has long been used in multiple industries to test new ideas or how modifications will affect an existing process or system. Mathematical optimization: Mathematical optimization is the process of finding the optimal solution to a problem that has numerically expressed constraints. Machine learning: “Learning” means that the algorithms analyze sets of data to look for patterns and/or correlations that result in insights. Those insights can become deeper and more accurate as the algorithms analyze new data sets. The models created and continuously updated by machine learning can be used as input to decision logic or to improve the decision logic automatically. Paragmetic AI: ​Enterprises can use AI to program machines to continuously learn from new information, build knowledge, and then use that knowledge to make decisions and interact with people and/or other machines.                                               Use of Prescriptive Analytics in ThingWorx Analytics: Thing Optimizer: Thing Optimizer functionality provides the prescriptive scoring and optimization capabilities of ThingWorx Analytics. While predictive scoring allows you to make predictions about future outcomes, prescriptive scoring allows you to see how certain changes might affect future outcomes. After you have generated a prediction model (also called training a model), you can modify the prescriptive attributes in your data (those attributes marked as levers) to alter the predictions. The prescriptive scoring process evaluates each lever attribute, and returns an optimal value for that feature, depending on whether you want to minimize or maximize the goal variable. Prescriptive scoring results include both an original score (the score before any lever attributes are changed) and an optimized score (the score after optimal values are applied to the lever attributes). In addition, for each attribute identified in your data as a lever, original and optimal values are included in the prescriptive scoring results. How to Access Thing Optimizer Functionality: ThingWorx Analytics prescriptive scoring can only be accessed via the REST API Service. Using a REST client, you can access the Scoring service which includes a series of API endpoints to submit scoring requests, retrieve results, list jobs, and more. Requires installation of the ThingWorx Analytics Server. How to avoid mistakes - Below are some common mistakes while doing Prescriptive analytics: Starting digital analytics without a clear goal Ignoring core metrics Choosing overkill analytics tools Creating beautiful reports with little business value Failing to detect tracking errors                                                                                                                                 Image source: Wikipedia, Content: go.forrester.com(Partially)
View full tip
Welcome to the ThingWorx Manufacturing Apps Community! The ThingWorx Manufacturing Apps are easy to deploy, pre-configured role-based starter apps that are built on PTC’s industry-leading IoT platform, ThingWorx. These Apps provide manufacturers with real-time visibility into operational information, improved decision making, accelerated time to value, and unmatched flexibility to drive factory performance.   This Community page is open to all users-- including licensed ThingWorx users, Express (“freemium”) users, or anyone interested in trying the Apps. Tech Support community advocates serve users on this site, and are here to answer your questions about downloading, installing, and configuring the ThingWorx Manufacturing Apps.     A. Sign up: ThingWorx Manufacturing Apps Community: PTC account credentials are needed to participate in the ThingWorx Community. If you have not yet registered a PTC eSupport account, start with the Basic Account Creation page.   Manufacturing Apps Web portal: Register a login for the ThingWorx Manufacturing Apps web portal, where you can download the free trial and navigate to the additional resources discussed below.     B. Download: Choose a download/packaging option to get started.   i. Express/Freemium Installer (best for users who are new to ThingWorx): If you want to quickly install ThingWorx Manufacturing Apps (including ThingWorx) use the following installer: Download the Express/Freemium Installer   ii. 30-day Developer Kit trial: To experience the capabilities of the ThingWorx Platform with the Manufacturing Apps and create your own Apps: Download the 30-day Developer Kit trial   iii. Import as a ThingWorx Extension (for users with a Manufacturing Apps entitlement-- including ThingWorx commercial customers, PTC employees, and PTC Partners): ThingWorx Manufacturing apps can be imported as ThingWorx extensions into an existing ThingWorx Platform install (v8.1.0). To locate the download, open the PTC Software Download Page and expand the following folders:   ThingWorx Platform | Release 8.x | ThingWorx Manufacturing Apps Extension | Most Recent Datacode     C. Learn After downloading the installer or extensions, begin with Installation and Configuration.   Follow the steps laid out in the ThingWorx Manufacturing Apps Setup and Configuration Guide 8.2   Find helpful getting-started guides and videos available within the 'Get Started' section of the ThingWorx Manufacturing Apps Portal.     D. Customize Once you have successfully downloaded, installed, and configured the Manufacturing Apps, begin to explore the deeper potential of the Apps and the ThingWorx Platform.   Follow along with the discussion and steps contained in the ThingWorx Manufacturing Apps and Service Apps Customization Guide  8.2   Also contained within the the 'Get Started' page of the ThingWorx Manufacturing Apps Portal, find the "Evolve and Expand" section, featuring: -Custom Plant Layout application -Custom Asset Advisor application -Global Plant View application -Thingworx Manufacturing Apps Technical Lab with Sigma Tile (Raspberry Pi application) -Configuring the Apps with demo data set and simulator -Additional Advanced Documentation     E. Get help / give feedback / interact Use the ThingWorx Manufacturing Apps Community page as a resource to find documentation, peruse past forum threads, or post a question to start a discussion! For advanced troubleshooting, licensed users are encouraged to submit support tickets to the PTC My eSupport portal.
View full tip
This document attached to this blog entry actually came out of my first exposure to using the C SDK on a Raspberry PI. I took notes on what I had to do to get my own simple edge application working and I think it is a good introduction to using the C SDK to report real, sampled data. It also demonstrates how you can use the C SDK without having to use HTTPS. It demonstrates how to turn off HTTPS support. I would appreciate any feedback on this document and what additions might be useful to anyone else who tries to do this on their own.
View full tip
In this post, I will use an instance of InfluxDB and Chronograf. See this post for installing both using Docker. InfluxDB - Time Series Databases   InfluxDB is a time series database. It allows users to work with and organize time series data. The advantage of such a database system is that it comes with built-in functionality to easily aggregate and operate on data based on time intervals. Other types of databases can do this as well - but time series databases are heavily optimized for this kind of data structures which will show in storage space and performance.   Data is stored in the database with its timestamp, its value and one or more tags.   Time Temperature Humidity Location 2019-01-24T00:00:00 23 42 Home 2019-01-24T00:01:00 22 43 Home 2019-01-24T00:02:00 21 44 Home 2019-01-24T00:03:00 23 45 Home 2019-01-24T00:04:00 24 42 Home 2019-01-24T00:05:00 25 43 Home 2019-01-24T00:06:00 23 44 Home   Values can be aggregated by intervalls, i.e. "give me the temperatur values within the last hour and take the average for 5 minutes". This would result in (60 / 5) = 12 results with a value that represents the average temperature within this 5 minute interval.   Example: Temperature Data averaged by 4 minutes   Time Temperature 2019-01-24T00:00:00 (23 + 22 + 21+ 23) / 4 = 22,25 2019-01-24T00:04:00 (24 + 25 + 23) / 3 = 24   To find out more about InfluxDB see also https://www.influxdata.com/time-series-database/ and https://www.influxdata.com/time-series-platform/   InfluxDB in ThingWorx   The new ThingWorx 8.4 release comes with an option to setup InfluxDB as additional Persistence Provider. Meta Data like Entity Definitons will still be stored in PostgreSQL. Streams, Value Streams and Data Tables however can be stored in InfluxDB.   The InfluxDB Persistence Provider setup is delivered with the PostgreSQL installation package for ThingWorx. Currently ThingWorx does not allow any aggregation of data with its built-in InfluxDB capabilities.   Prepare InfluxDB   InfluxDB will need a user and a database. Connect via Chronograf - the graphical UI to administer InfluxDB and create a new user via   InfluxDB Admin > Users Default username = twadmin Default password = password Permissions = ALL   Create a new database via   InfluxDB Admin > Databases Default database name = thingworx   Configure ThingWorx   Create a new Persistence Provider for InfluxDB in ThingWorx - but don't mark it as active yet!     Switch to the Configuration and change the username / password, database and hostname to match your installation.     Save the configuration, switch back to the General tab and mark the InfluxDB Persistence Provider as Active.   Save again and a "successful" message will be shown. If the save action failed, the connection settings are not correct - check for the correct ports and for any typos.   Creating Entities & Testing   Streams, Value Streams and Data Tables can now be created using the new InfluxDB Persistence Provider.   To test with a Value Stream   Create a new Thing with some NUMBER properties, e.g. 'a', 'b' and 'c' as properties - ensure they are marked as logged as well Name = InfluxValueStreamThing Create a new ValueStream based and change its Persistance Provider to the InfluxDB created above Name = InfluxValueStream Save both Entities Setting values for the properties will now automatically create the entries in InfluxDB - including the Entity name "InfluxValueStreamThing" Running the QueryPropertyHistory service on the Thing will return the results as an InfoTable In Chronograf this will display like this:   ThingWorx 8.4 will be released end of January 2019. Be sure to check out and test the new Persistence Provider features!
View full tip
Hello everyone,   Following a recent  experience, I felt it was important to share my insights with you. The core of this article is to demonstrate how you can format a Flux request in ThingWorx and post it to InfluxDB, with the aim of reporting the need for performance in calculations to InfluxDB. The following context is renewable energy. This article is not about Kepware neither about connecting to InfluxDB. As a prerequisite, you may like to read this article: Using Influx to store Value Stream properties from... - PTC Community     Introduction   The following InfluxDB usage has been developed for an electricity energy provider.   Technical Context Kepware is used as a source of data. A simulation for Wind assets based on excel file is configured, delivering data in realtime. SQL Database also gather the same data than the simulation in Kepware. It is used to load historical data into InfluxDB, addressing cases of temporary data loss. Once back online, SQL help to records the lost data in InfluxDB and computes the KPIs. InfluxDB is used to store data overtime as well as calculated KPIs. Invoicing third party system is simulated to get electricity price according time of the day.   Orchestration of InfluxDB operations with ThingWorx ThingWorx v9.4.4 Set the numeric property to log Maintain control over execution logic Format Flux request with dynamic inputs to send to Influx DB  InfluxDB Cloud v2 Store logged property Enable quick data read Execute calculation Note: Free InfluxDB version is slower in write and read, and only 30 days data retention max.     ThingWorx model and services   ThingWorx context Due to the fact relevant numeric properties are logged overtime, new KPIs are calculated based on the logged data. In the following example, each Wind asset triggered each minute a calculation to get the monetary gain based on current power produced and current electricity price. The request is formated in ThingWorx, pushed and executed in InfluxDB. Thus, ThingWorx server memory is not used for this calculation.   Services breakdown CalculateMonetaryKPIs Entry point service to calculate monetary KPIs. Use the two following services: Trigger the FormatFlux service then inject it in Post service. Inputs: No input Output: NOTHING FormatFlux _CalculateMonetaryKPI Format the request in Flux format for monetary KPI calculation. Respect the Flux synthax used by InfluxDB. Inputs: bucketName (STRING) thingName (STRING) Output: TEXT PostTextToInflux Generic service to post the request to InfluxDB, whatever the request is Inputs: FluxQuery (TEXT) influxToken (STRING) influxUrl (STRING) influxOrgName (STRING) influxBucket (STRING) thingName (STRING) Output: INFOTABLE   Highlights - CalculateMonetaryKPIs Find in attachments the full script in "CalculateMonetaryKPIs script.docx". Url, token, organization and bucket are configured in the Persitence Provider used by the ValueStream. We dynamically get it from the ValueStream attached to this thing. From here, we can reuse it to set the inputs of two other services using “MyConfig”.   Highlights - FormatFlux_CalculateMonetaryKPI Find in attachments the full script in "FormatFlux_CalculateMonetaryKPI script.docx". The major part of this script is a text, in Flux synthax, where we inject dynamic values. The service get the last values of ElectricityPrice, Power and Capacity to calculate ImmediateMonetaryGain, PotentialMaxMonetaryGain and PotentialMonetaryLoss.   Flux logic might not be easy for beginners, so let's break down the intermediate variables created on the fly in the Flux request. Let’s take the example of the existing data in the bucket (with only two minutes of values): _time _measurement _field _value 2024-07-03T14:00:00Z WindAsset1 ElectricityPrice 0.12 2024-07-03T14:00:00Z WindAsset1 Power 100 2024-07-03T14:00:00Z WindAsset1 Capacity 150 2024-07-03T15:00:00Z WindAsset1 ElectricityPrice 0.15 2024-07-03T15:00:00Z WindAsset1 Power 120 2024-07-03T15:00:00Z WindAsset1 Capacity 160   The request articulates with the following steps: Get source value Get last price, store it in priceData _time ElectricityPrice 2024-07-03T15:00:00Z 0,15 Get last power, store it in powerData _time Power 2024-07-03T15:00:00Z 120 Get last capacity, store it in capacityData _time Capacity 2024-07-03T15:00:00Z 160 Join the three tables *Data on the same time. Last values of price, power and capacity maybe not set at the same time, so final joinedData may be empty. _time ElectricityPrice Power Capacity 2024-07-03T14:00:00Z 0,15 120 160 Perform calculations gainData store the result: ElectricityPrice * Power _time _measurement _field _value 2024-07-03T15:00:00Z WindAsset1 ImmediateMonetaryGain 18 maxGainData store the result: ElectricityPrice * Capacity lossData store the result: ElectricityPrice * (Capacity – Power) Add the result to original bucket   Highlights - PostTextToInflux Find in attachments the full script in "PostTextToInflux script.docx". Pretty straightforward script, the idea is to have a generic script to post a request. The header is quite original with the vnd.flux content type Url needs to be formatted according InfluxDB API     Well done!   Thanks to these steps, calculated values are stored in InfluxDB. Other services can be created to retrieve relevant InfluxDB data and visualize it in a mashup.     Last comment It was the first time I was in touch with Flux script, so I wasn't comfortable, and I am still far to be proficient. After spending more than a week browsing through InfluxDB documentation and running multiple tests, I achieved limited success but nothing substantial for a final outcome. As a last resort, I turned to ChatGPT. Through a few interactions, I quickly obtained convincing results. Within a day, I had a satisfactory outcome, which I fine-tuned for relevant use.   Here is two examples of two consecutive ChatGPT prompts and answers. It might need to be fine-tuned after first answer.   Right after, I asked to convert it to a ThingWorx script format:   In this last picture, the script won’t work. The fluxQuery is not well formatted for TWX. Please, refer to the provided script "FormatFlux_CalculateMonetaryKPI script.docx" to see how to format the Flux query and insert variables inside. Despite mistakes, ChatGPT still mainly provides relevant code structure for beginners in Flux and is an undeniable boost for writing code.  
View full tip
Create a new Thing using the Timer Thing Template. The Timer Thing will fire a Timer Event when the Timer's Update Rate has expired. The event is automatically present and does not need to be added manually. Configuration   The Timer Configuration is quite straightforward. It can be accessed via the Thing's Entity Configuration. Configuration allows for Enabling the Timer on Thing-Startup - whenever the Thing is started, e.g. when restarting ThingWorx or via the RestartThing Generic Service, also the Timer is enabled and will fire Events. Changing the Update Rate - in which intervall the Events will be fired (by default every minute [60000 milliseconds]). Changing the User Context - in which the Events will be handled. The user will need visibility and permission on e.g. executing Services or depending Things, which are required to run the Service triggered by the Event.           Services   Timer Things inherit two Services by default from the Thing Template DisableTimer EnableTimer These will activate / de-activate the Timer and allow / disallow firing Events once the Update Rate has expired If a Timer is currently enabled or disabled can be seen in its properties  
View full tip
Events   Timers and Schedulers both come with a specific Event inherited from the Thing Template: Timer ScheduledEvent Both have a Data Shape allowing to capture the timestamp of when the Event was actually fired. Events in ThingWorx are triggered when a specific condition is met. In this context the condition is met and the Event is fired when a Timer has expired or a Scheduler's time is reached. Once an Event is triggered, Subscriptions will take care of executing custom Services to react to the Event. Subscriptions   Subscriptions listen to Events and can be used to react to certain Events with running custom Service scripts. To follow-up on Timers and Schedulers, a new Subscription must be created, listening to any related Event fired. Add a new Subscription to the Thing with       As the Subscription is usually listening to the Thing that it is configured on, the Source has to be left empty. When listening to other Entities' Subscriptions the corresponding Entity can be picked in the Source Entity picker. Ensure to check the Enabled checkbox to actually enable the Subscription and allow it for executing code in the Script area. The following Script will log into the ScriptLog once the Timer Event is fired     The following Script will log into the ScriptLog once the ScheduledEvent Event is fired  
View full tip
Exciting news! ThingWorx now has improved support for Docker containers to help you manage CI/CD, improve development efficiency in your organization and save costs. Check out these FAQs below and, as always, reach out to me if you have any additional questions.   Stay connected, Kaya   FAQs: ThingWorx Docker Containers   What are Docker Containers? From Docker.com: “a Docker container image is a lightweight, standalone, executable package of software that includes everything needed to run an application: code, runtime, system tools, system libraries and settings”. Learn more here.   What's the difference between Docker containers and VMs? Containers are an abstraction at the app layer that packages code and dependencies together, whereas Virtual Machines (VMs) are an abstraction of physical hardware turning one server into many servers. Here are some great discussions on it on Stack Overflow. Containers vs. VMs   How can I build ThingWorx Docker images? Check out the Building ThingWorx 8.3 Docker Images Guide or watch this video to instruct you on how to build and test Docker containers. (view in My Videos)   How does PTC support building ThingWorx Docker images? PTC provides the ability for customers and partners to build ThingWorx Docker images. A customer can download the Dockerfiles and scripts packaged as a zip folder from the PTC Software Downloads Portal under “ThingWorx Platform,” then “Release 8.3”  then“ThingWorx Dockerfiles.” (Please note that you must be logged in for the link to function properly.) PTC Software Downloads PortalThe zip folder contains the Dockerfiles, template jar, and scripts to fetch Tomcat, and ThingWorx WAR files using CLI. Java must be downloaded manually from the vendor's website. We also provide an instructional guide called “Build ThingWorx Docker Images” available on the Reference Documents page on the Support Portal.   How are ThingWorx Docker images different from the usual delivery media of WAR files? The WAR file delivery is typically accompanied by an installation guide that contains the manual steps for creating the VM or bare-metal environment. That guide includes instructions for the administrator to manually install the prerequisites, including Tomcat, Java, and ThingWorx platform settings files. To deploy and run the WAR file, the administrator follows the guide to create the runtime environment on an OS. In contrast, the Dockerfile build in this delivery automates the creation of a Docker image once supplied with the prerequisites.   Do you have any reference deployment and guidance? Yes, you can refer to our blog post to learn how to deploy and run ThingWorx Docker containers on your existing Kubernetes environment.   Is there any recommendation on which Container Orchestrator as a Service (CaaS) a customer should run ThingWorx Foundation Docker container images on? You can use Docker-Compose for testing, but it is generally not suggested for production deployment use cases. In a production environment, customers should use container orchestrators such as Kubernetes, OpenShift, Azure Kubernetes Service (AKS), or Amazon Elastic Container Service for Kubernetes (Amazon EKS), to deploy and manage ThingWorx Docker images.   What are the skill sets required? Familiarity with OS CLI and Docker tools is required to build building the ThingWorx Docker images. Familiarity with Docker-compose to run the resulting Docker containers is needed to test the resulting builds. We don’t recommend Docker-Compose for production use, but when using it for local testing and demo purposes, users can rapidly install ThingWorx and get it up and running in minutes. We expect PTC partners and customers who want to run ThingWorx containerized instances in their production environment to possess the required skill sets within their DevOps team.   How is ThingWorx licensing handled with the Docker images? By default, the container created from these Docker images starts up in a limited mode with no license supplied. You can configure your username and password for the PTC licensing portal to automatically load a license via environment variables passed into the container on startup. Additionally, you can mount a volume to the /ThingworxPlatform directory, which contains your license file, or to retrieve a license request. To keep your Host ID consistent, ensure that the /ThingworxStorage and /ThingworxPlatform directories are persisted and not removed with individual container restarts. More detailed instructions can be found in the build guide or in a Kubernetes blog post .   Is Docker free? What version of Docker does PTC support for ThingWorx? Docker is open-source and licensed under the Apache 2 license. Information on Docker licensing can be found here. The following Docker versions are required: Docker Community Edition (docker-ce) Version 18.05.0-ce is recommended. To install the Docker Community Edition on your system, follow the instructions for your operating system on the Docker website here. Docker Compose (docker-compose) Version 1.17.1 is recommended. To install the Docker Compose on your system, follow the instructions for your operating system on the Docker website here. What persistence providers are currently supported? PTC provides the ability to build ThingWorx Foundation containers for the following supported persistence providers: H2 Microsoft SQL Server PostgreSQL Additional persistence providers will be added to the Docker build delivery as the ThingWorx Foundation Platform releases support for those new databases in future releases.   What are some of the security best practices? For production use, customers are strongly advised to secure their Docker environments by following all the recommendations provided by Docker. Review and implement the best practices detailed at https://docs.docker.com/engine/security/security/.   Can we build Docker images for ThingWorx High Availability (HA) architecture? Yes. ThingWorx Dockerfiles are provided for both basic ThingWorx deployment architecture and HA ThingWorx deployment architecture.   How easy is the rehosting and upgrading of ThingWorx releases on Docker with existing data? In Kubernetes environment, data is kept in a separate volume and can be attached to different containers. When one container dies, the data can be attached to a different container and the container should start without issue. For more information, please refer to the upgrade section of the Building ThingWorx 8.3 Docker Images Guide.   Is it okay to use the Docker exec and access the bash shell to make config changes or should I always rebuild the image and re-deploy?­ Although using Docker exec to gain access to the container internals is useful for testing and troubleshooting issues, any changes made will not be saved after a container is stopped. To configure a container's environment, variables are passed in during the start process. This can be done with Docker start commands, using compose files with environment variables defined, or with helm charts. More detailed instructions can be found in the build guide or in this blog post .   What if there are issues? Should I call PTC Technical Support? We are providing the scripts and reference documents solely to empower our community to build ThingWorx Docker images. We believe that customers using Docker in their production processes would have expertise to manage running Docker containers themselves. If there are any issues or questions regarding the build scripts provided in the PTC official downloads portal, then customers can contact PTC Technical Support at 1-800-477-6435 or visit us online at: http://support.ptc.com. PTC does not provide support for orchestration troubleshooting.   What can you share about future roadmap plans? As we are enabling our customers and partners to build ThingWorx Foundation Platform Docker images, we plan to do the same for upcoming products such as ThingWorx Integration & Orchestration, ThingWorx Analytics, upcoming persistence providers such as InfluxDB, and many more. We also plan to provide additional reference architecture examples and use cases to help developers understand how to use Docker containers in their DevOps and production environments.   Where can I learn more about Docker containers and container orchestrators? See these resources below for additional information: https://training.docker.com/ https://kubernetes.io/docs/tutorials/online-training/overview/
View full tip
Get Started with ThingWorx for IoT Guide Part 2   Step 4: Create Thing   A Thing is used to digitally represent a specific component of your application in ThingWorx. In Java programming terms, a Thing is similar to an instance of a class. In this step, you will create a Thing that represents an individual house using the Thing Template we created in the previous step. Using a Thing Template allows you to increase development velocity by creating multiple Things without re-entering the same information each time. Start on the Browse, folder icon tab on the far left of ThingWorx Composer. Under the Modeling tab, hover over Things then click the + button. Type MyHouse in the Name field. NOTE: This name, with matching capitalization, is required for the data simulator which will be imported in a later step. 4. If Project is not already set, click the + in the Project text box and select the PTCDefaultProject. 5. In the Base Thing Template text box, click the + and select the recently created BuildingTemplate. 6. In the Implemented Shapes text box, click the + and select the recently created ThermostatShape. 7. Click Save.     Step 5: Store Data in Value Stream   Now that you have created the MyHouse Thing to model your application in ThingWorx, you need to create a storage entity to record changing property values. This guide shows ways to store data in ThingWorx Foundation. This exercise uses a Value Stream which is a quick and easy way to save time-series data.   Create Value Stream   Start on the Browse, folder icon tab on the far left of ThingWorx Composer. Under the Data Storage section of the left-hand navigation panel, hover over Value Streams and click the + button. Select the ValueStream template option, then click OK. Enter Foundation_Quickstart_ValueStream in the Name field. If Project is not already set, click the + in the Project text box and select the PTCDefaultProject.   Click Save.   Update Thing Template   Navigate to the BuildingTemplate Thing Template. TIP: You can use the Search box at the top if the tab is closed.       2. Confirm you are on the General Information tab.       3. Click Edit button if it is visible, then, in the Value Stream text entry box, click the + and select Foundation_Quickstart_ValueStream               4. Click Save     Step 6: Create Custom Service   The ThingWorx Foundation server provides the ability to create and execute custom Services written in Javascript. Expedite your development with sample code snippets, code-completion, and linting in the Services editor for Things, Thing Templates, and Thing Shapes. In this section, you will create a custom Service in the Electric Meter Thing Shape that will calculate the current hourly cost of electricity based on both the simulated live data, and the electricity rate saved in your model. You will create a JavaScript that multiplies the current meter reading by the cost per hour and stores it in a property that tracks the current cost. Click Thing Shapes under the Modeling tab on the left navigation pane; then click on MeterShape in the list. Click Services tab, then click + Add and select Local (Javascript). Type calculateCost into the Name field. Click Me/Entities to open the tab. Click Properties. NOTE: There are a number of properties including costPerKWh, currentCost and currentPower. These come from the Thing Shape you defined earlier in this tutorial. 6. Click the arrow next to the currentCost property. This will add the Javascript code to the script box for accessing the currentCost property. 7. Reproduce the code below by typing in the script box or clicking on the other required properties under the Me tab:           me.currentCost = me.costPerKWh * me.currentPower;           8. Click Done. 9. Click Save. NOTE: There is a new ThingWorx 9.3 feature that allows users to easily Execute tests for ‘Services’ right from where they are defined so users can quickly test solution code.    Click here to view Part 3 of this guide. 
View full tip
We are excited to announce ThingWorx 8.4 is now available for download!    Key functional highlights ThingWorx 8.4 covers the following areas of the product portfolio: ThingWorx Analytics and ThingWorx Foundation which includes Connection Server and Edge capabilities.   ThingWorx Foundation Next Generation Composer: File Repository Editor added for application file management New entity Config Table Editor to enable application configurability and customization Localization support fornew languages: Italian, Japanese, Korean, Spanish, Russian, Chinese/Taiwan, Chinese/Simplified Mashup Builder: Responsive Layout with new Layout Editor 13 new and updated widgets (beta) Theming Editor (beta) New Functions Editor New Personalized Workspace Platform: Added support for AzureSQL, a relational database-as-a-service (DBaaS) as the new persistence provider A PaaS database that is always running on the latest stable version of SQL Server Database Engine and  patched OS with 99.99% availability.   Added support for InfluxData, a leading time series storage platform as the new ThingWorx persistence provider Supports ingesting large amounts of IoT data and offers high availability with clustering setup New extension for Remote Access and Control Supports VNC, RDP desktop sharing for any remote device HTTP and SSH connectivity supported An optional microservice to offload the ThingWorx server by allowing query execution to occur in a separate process on the same or on a different physical machine. Installers for Postgres versions of ThingWorx running on Windows or RHEL AzureSQL InfluxDB Thing Presence feature introduced which indicates whether the connection of a thing is “normal” based on the expected behavior of the device. Remote Access Extension Query Microservice: Click and Go Installers for Windows and Linux (RHEL) Security: Major investments include updating 3rd party libraries, handling of data to address cross-site scripting (XSS)  issues and enhancements to the password policy, including a password blacklist. A significant number of security issues have been fixed in this release. It is recommended that customers upgrade as soon as possible to take advantage of these important improvements. Docker Support  Added Dockerfile as a distribution media for ThingWorx Foundation and Analytics Allows building Docker container image that unlocks the potential of Dev and Ops Note:  Legacy Composer has been removed and replaced with the New Composer.   Documentation: ThingWorx 8.4 Reference Documents ThingWorx Platform 8.4 Release Notes ThingWorx Platform Help Center ThingWorx Analytics Help Center ThingWorx Connection Services Help Center  
View full tip
Timers and Schedulers can also be created and configured programmatically via custom services. The following service, which can be created on any Thing, will create a new Timer using the following Inputs:         // create new Thing var params = { name: ThingName /* STRING */, description: undefined /* STRING */, thingTemplateName: "Timer" /* THINGTEMPLATENAME */, tags: undefined /* TAGS */ }; Resources["EntityServices"].CreateThing(params); // read initial configuration // result: INFOTABLE var configtable = Things[ThingName].GetConfigurationTable({tableName: "Settings"}); // update configuration with service parameters configtable.updateRate = updateRate configtable.runAsUser = user // set new configuration table var params = { configurationTable: configtable /* INFOTABLE */, persistent: true /* BOOLEAN */, tableName: "Settings" /* STRING */ }; Things[ThingName].SetConfigurationTable(params);   This code is an example which could also be used to create a new Scheduler. The configuration table for a Timer has the following attributes: updateRate enabled runAsUser The configuration table for a Scheduler has the following attributes: schedule enabled runAsUser  
View full tip
Fresh look at getting started with ThingWorx in a relevant context that outlines the DEVOPS needed to kick-start your programming.     For full-sized viewing, click on the YouTube link in the player controls. Visit the Online Success Guide to access our Expert Session videos at any time as well as additional information about ThingWorx training and services.
View full tip
Get Started with ThingWorx for IoT Guide Part 3   Step 7: Create Alerts and Subscriptions   An Event is a custom-defined message published by a Thing, usually when the value of a Property changes. A Subscription listens for a specific Event, then executes Javascript code. In this step, you will create an Alert which is quick way to define both an Event and the logic for when the Event is published.   Create Alert   Create an Alert that will be sent when the temperature property falls below 32 degrees. Click Thing Shapes under the Modeling tab in Composer, then open the ThermostatShape Thing Shape from the list.   Click Properties and Alerts tab.   Click the temperature property. Click the green Edit button if not already in edit mode, then click the + in the Alerts column.   Choose Below from the Alert Type drop down list. Type freezeWarning in the Name field.   Enter 32 in the Limit field. Keep all other default settings in place. NOTE: This will cause the Alert to be sent when the temperature property is at or below 32.        8. Click ✓ button above the new alert panel.       9. Click Save.     Create Subscription   Create a Subscription to this event that uses Javascript to record an entry in the error log and update a status message. Open the MyHouse Thing, then click Subscriptions tab.   Click Edit if not already in edit mode, then click + Add.   Type freezeWarningSubscription in the Name field. After clicking the Inputs tab, click the the Event drop down list, then choose Alert. In the Property field drop down, choose temperature.   Click the Subscription Info tab, then check the Enabled checkbox   Create Subscription Code   Follow the steps below to create code that sets the message property value and writes a Warning message to the ThingWorx log. Enter the following JavaScript in the Script text box to the right to set the message property.                       me.message = "Warning: Below Freezing";                       2. Click the Snippets tab. NOTE: Snippets provide many built-in code samples and functions you can use. 3. Click inside the Script text box and hit the Enter key to place the cursor on a new line. 4. Type warn into the snippets filter text box or scroll down to locate the warn Snippet. 5. Click All, then click the arrow next to warn, and Javascript code will be added to the script window. 6. Add an error message in between the quotation marks.                       logger.warn("The freezeWarning subscription was triggered");                       7. Click Done. 8. Click Save.   Step 8: Create Application UI ThingWorx you can create customized web applications that display and interact with data from multiple sources. These web applications are called Mashups and are created using the Mashup Builder. The Mashup Builder is where you create your web application by dragging and dropping Widgets such as grids, charts, maps, buttons onto a canvas. All of the user interface elements in your application are Widgets. We will build a web application with three Widgets: a map showing your house's location on an interactive map, a gauge displaying the current value of the watts property, and a graph showing the temperature property value trend over time. Build Mashup Start on the Browse, folder icon tab of ThingWorx Composer. Select Mashups in the left-hand navigation, then click + New to create a new Mashup.   For Mashup Type select Responsive.   Click OK. Enter widgetMashup in the Name text field, If Project is not already set, click the + in the Project text box and select the PTCDefaultProject, Click Save. Select the Design tab to display Mashup Builder.   Organize UI On the upper left side of the design workspace, in the Widget panel, be sure the Layout tab is selected, then click Add Bottom to split your UI into two halves.   Click in the bottom half to be sure it is selected before clicking Add Left Click anywhere inside the lower left container, then scroll down in the Layout panel to select Fixed Size Enter 200 in the Width text box that appears, then press Tab key of your computer to record your entry.   Click Save   Step 9: Add Widgets Click the Widgets tab on the top left of the Widget panel, then scroll down until you see the Gauge Widget Drag the Gauge widget onto the lower left area of the canvas on the right. This Widget will show the simulated watts in use.   Select the Gauge object on the canvas, and the bottom left side of the screen will show the Widget properties. Select Bindable from the Catagory dropdown and enter Watts for the Legend property value, and then press tab..   Click and drag the Google Map Widget onto the top area of the canvas. NOTE: The Google Map Widget has been provisioned on PTC CLoud hosted trial servers. If it is not available, download and install the Google Map Extension using the step-by-step guide for using Google Maps with ThingWorx . Click and drag the Line Chart Widget onto the lower right area of the canvas. Click Save
View full tip
Announcements