cancel
Showing results for 
Search instead for 
Did you mean: 
cancel
Showing results for 
Search instead for 
Did you mean: 

Community Tip - Have a PTC product question you need answered fast? Chances are someone has asked it before. Learn about the community search. X

IoT Tips

Sort by:
  Use ThingWorx Advisors to view trends and monitor Alerts. Step 2: Create and Configure Alert   Click the grid icon.   Select Configuration and Setup, then select the Alert tab. NOTE: If you are using the Demo Factory Simulator, you will see that several alerts have already been configured. To create a new alert, click the Alert tab, then click the + icon. Select the following properties in the Select Tag or Property box: Under Equipment Type, select Asset. Under Equipment, select 1-3_CNCMill. In Properties, click Temperature. Click OK. Set up the following in the Create New Alert pop-up: In the Alert Name text box, type HighTemp. In the Alert Type drop-down, choose Above. In the Value text box, type 34. In the Alert Description text box, type Temperature close to failure.   NOTE: An Alert will now be triggered whenever the temperature of Asset1 is more than 34.   Step 3: Monitor Alert   Click the grid icon. Select Alert Monitoring. NOTE: You can see the temperature alert message that you created earlier, and the amount of time that it’s been in that state. Select the HighTemp alert. Confirm that the Acknowledged field is recorded as false in the lower left-hand corner beneath the Details.   Select the HighTemp alert, then click the check mark icon to acknowledge the alert.   In the Acknowledge Alerts dialog, provide explanation. Click OK.   Note the updates to the Alert Monitoring page.   NOTE: Anyone viewing the Alerts will now be able to clearly see the green check mark, which indicates that the Alert has been acknowledged.   Step 4: Next Steps  Next Steps   Congratulations! You've successfully completed the Configure ThingWorx Advisors for Trending and Alerts guide. You have learned how to create and monitor trends and alerts based on assets connected with Kepware.   Additional Resources   If you have questions, issues, or need additional information, refer to:   Resource Link Community ThingWorx Manufacturing Community Support Kepware Technical Support Manufacturing Home ThingWorx Manufacturing    
View full tip
    Use ThingWorx Advisors to view trends and monitor Alerts.     GUIDE CONCEPT   The intent of this guide is to provide instructions to configure trends and alerts in the ThingWorx Advisors.   NOTE: This guide's content aligns with ThingWorx 9.3. The estimated time to complete all parts of this guide is 30 minutes.     YOU'LL LEARN HOW TO   In this guide, you will learn how to: Configure and view trends in machine performance Create and configure an alert Monitor an alert   Step 1: Configure and View Trends  To begin, you will learn how to open up ThingWorx Advisors.   In ThingWorx Foundation Composer, click Browse then Visualization > Master then click PTC.Factory.PlantStatus.Master.          2. Next click the View Mashup button.                 3. Click the Utility Selector grid in the upper left            4. Click Trending and Troubleshooting              5. Click the + icon.               NOTE : A New Trend pop-up will appear.        6. In the Trend Name text box, type Station A Temperature, then click OK.              7. In the Tags area, click the + icon to start plotting a tag             8. In the Equipment Type drop-down, choose KEPServerEX, in the Equipment drop-down,        choose your KEPServer or the simulation server.          9. In the Server Structure menu, click LineGroup1 and use the drop-down menu to select LineGroup1.1-3_CNCMill. In the Tags menu area, click Temperature then click OK, or choose a tag based on your KepServer configuration.   10. Review the trend data for Station A.     11.  Repeat these steps to apply additional property setting to Station A.   12. Check the Show Value Range box in the Tags area. Review the trend data for the properties selected.                      NOTE: The three selected tags will appear plotted in the Show Value Range table.     Click here to view Part 2 of the guide.  
View full tip
  Step 9: File Transfer Example   To handle file transfers, a virtual directory is created in the SteamSensor1 entity and in the [C SDK HOME DIR]/examples/FileTransferExample application directory. The source code used for this example is found in [C SDK HOME DIR]/examples/FileTransferExample/src/main.c.   Inside of the [C SDK HOME DIR]/examples/FileTransferExample folder, create the folder structure shown below:   /transfer/ /transfer/incoming/ /transfer/outgoing/   Inside of the /transfer/outgoing/ directory, create and open a file with the name outgoing.txt. Once the outgoing.txt document is open, add the following text, save, and close the file: Hello. This is a file coming from the client application. Navigate to the [C SDK HOME DIR]/examples/FileTransferExample/src/main.c code and update the lines below with the appropriate information for your IP, port, and the “admin_key” Application Key’s keyId value in the ThingWorx Composer:   /* Server Details */ #define TW_HOST "127.0.0.1" #define TW_PORT 80 #define TW_APP_KEY "ce22e9e4-2834-419c-9656-ef9f844c784c"   To support file transfers in your client application, you must use the   twFileManager_AddVirtualDir function in order to create the virtual directories in the entity with such a capability. It will also define the directories available for file operations. A virtual directory maps a unique name to an absolute path of a directory in the file system. All subdirectories of the specified directory are exposed to the server. You can define multiple virtual directories. The directories do not need to be contiguous. Staging Directory   As an optional, but recommended step, you should set the directory that the application should use for staging when performing file transfers. This can be seen in the line below and should be done before initializing the FileManager. The default directory of the FileManager is most likely owned by root and will require a change to either the location of the staging directory and the ownership of the staging directory, or running the application as a User with the correct permissions.   twcfg.file_xfer_staging_dir = "staging";   The example provided uses the TW_SHARE_DIRECTORY macro to create two virtual directories that will act as the root directories in the virtual file system of this application are added. The client is then started as follows with the necessary TW_ADD_FILE_TRANSFER_SHAPE function being called:   TW_ADD_FILE_TRANSFER_SHAPE(); TW_SHARE_DIRECTORY("in", "/transfer/incoming/"); TW_SHARE_DIRECTORY("out", "/transfer/outgoing/");   The creations of the payloads used to create the remote directories on the platform have been moved to a helper function below to make the design cleaner:   int setupSystemRepo(const char * remoteInPath, const char * remoteOutPath, const char * remoteFile);   After our remote directories and files have been setup, it is time to perform the file transfers. Normally, this would mean invoking the Copy service for a Subsystem, but two functions have been created to make this process easier:   int twFileManager_GetFile(const char * sourceRepo, const char * sourcePath, const char * sourceFile, const char * targetRepo, const char * targetPath, const char * targetFile, uint32_t timeout, char asynch, char ** tid) int twFileManager_SendFile(const char * sourceRepo, const char * sourcePath, const char * sourceFile, const char * targetRepo, const char * targetPath, const char * targetFile, uint32_t timeout, char asynch, char ** tid)   The table below displays an example of the first set of parameters:   Parameter Example Description sourceRepo SystemRepository The name of FileRepository or RemoteThing to transfer the file FROM. sourcePath outgoing The path specifying the location of the source file. sourceFile The name of the source file.   targetRepo SteamSensor1 The name of FileRepository or RemoteThing to transfer the file TO. targetPath incoming The path specifying the destination location of the file. targetFile incoming.txt The name of the file at the target. This name can differ from the sourceName. timeout 15,000 The amount of time (in seconds) to wait for a synchronous transfer to complete before cancelling the transfer. async false If false, the service call will block for timeout seconds or until the transfer completes. tid incoming0123 The unique TID associated with the file.   The C SDK also provides the ability to create a FileCallback function that the FileManager will call that function when any file transfer events occur. You can provide a wildcard filter so that only file transfer Events of files that match the filter call the callback function. In addition, callbacks can be set up as “one-shots” such that the callback is unregistered automatically after it is invoked the first time.   NOTE: An optional file transfer callback is registered in the code and provided. You will see the output from the function as files are sent and received.   After running this application, you will notice a new file in the transfer/incoming folder after refreshing. This is the file that we created in the ThingWorx Composer file system for the SystemRepository Entity and was able to copy from that location to our local project. We have also sent a file to the server’s SystemRepository. The BrowseFileSystem and GetFileListing services can be used to check for the folders and files created.   twFileManager_RegisterFileCallback(fileCallbackFunc, NULL, FALSE, NULL);     Step 10: Support Other Platforms   All Websocket errors indicate some general issue communicating with the ThingWorx platform. If you experience an issue connecting, refer to the table below for a list of websocket errors, their corresponding codes, and an explanation of the issue.   Code Message Troubleshooting 200 TW_UNKNOWN_WEBSOCKET_ERROR An unknown error occurred on the websocket. 201 TW_ERROR_INITIALIZING_WEBSOCKET An error occurred while initializing the websocket. Check your websocket configuration parameters for validity. 202 TW_TIMEOUT_INITIALIZING_WEBSOCKET A timeout occurred while initializing the websocket. Check the status of the connection to ThingWorx. 203 TW_WEBSOCKET_NOT_CONNECTED The websocket is not connected to ThingWorx. The requested operation cannot be performed. 204 TW_ERROR_PARSING_WEBSOCKET_DATA An error occurred while parsing websocket data. The parser could not break down the data from the websocket. 205 TW_ERROR_READING_FROM_WEBSOCKET An error occurred while reading data from the websocket. Retry the read operation. If necessary, resend the data. 206 TW_WEBSOCKET_FRAME_TOO_LARGE The SDK is attempting to send a websocket frame that is too large. The Maximum Frame Size is set when calling twAPI_Initialize and should always be set to the Message Chunk Size (twcfg.message_chunk_size). 207 TW_INVALID_WEBSOCKET_FRAME_TYPE The type of the frame coming in over the websocket is invalid. 208 TW_WEBSOCKET_MSG_TOO_LARGE The application is attempting to send a message that has been broken up in to chunks that are too large to fit in a frame. You should not see this error. 209 TW_ERROR_WRITING_TO_WEBSOCKET An error occurred while writing to the Web socket. 210 TW_INVALID_ACCEPT_KEY The Accept key sent earlier from ThingWorx is not valid.     Step 11: Next Steps   Congratulations! You've successfully completed the C SDK Tutorial, and learned how to utilize the resources provided in the Edge SDK to create your own application.   Learn More   We recommend the following resources to continue your learning experience:   Capability Link Build Design Your Data Model Build Implement Services, Events, and Subscriptions   Additional Resources   If you have questions, issues, or need additional information, refer to:   Resource Link Community Developer Community Forum Support C Edge SDK Help Center    
View full tip
  Step 6: Data Shapes   Data Shapes are an important part of creating/firing Events and also invoking Services   Define With Macros   In order to define a Data Shape using a macro, use TW_MAKE_DATASHAPE.   NOTE: The macros are all defined in the twMacros.h header file.   TW_MAKE_DATASHAPE("SteamSensorReadingShape", TW_DS_ENTRY("ActivationTime", TW_NO_DESCRIPTION ,TW_DATETIME), TW_DS_ENTRY("SensorName", TW_NO_DESCRIPTION ,TW_NUMBER), TW_DS_ENTRY("Temperature", TW_NO_DESCRIPTION ,TW_NUMBER), TW_DS_ENTRY("Pressure", TW_NO_DESCRIPTION ,TW_NUMBER), TW_DS_ENTRY("FaultStatus", TW_NO_DESCRIPTION ,TW_BOOLEAN), TW_DS_ENTRY("InletValve", TW_NO_DESCRIPTION ,TW_BOOLEAN), TW_DS_ENTRY("TemperatureLimit", TW_NO_DESCRIPTION ,TW_NUMBER), TW_DS_ENTRY("TotalFlow", TW_NO_DESCRIPTION ,TW_INTEGER) );   Define Without Macros   In order to define a Data Shape without using a macro, use the  twDataShape_CreateFromEntries  function. In the example below, we are creating a Data Shape called SteamSensorReadings that has two numbers as Field Definitions.   twDataShape * ds = twDataShape_Create(twDataShapeEntry_Create("a",NULL,TW_NUMBER)); twDataShape_AddEntry(ds, twDataShapeEntry_Create("b",NULL,TW_NUMBER)); /* Name the DataShape for the SteamSensorReadings service output */ twDataShape_SetName(ds, "SteamSensorReadings");     Step 7: Events and Services   Events and Services provide useful functionality. Events are a good way to make a Service be asynchronous. You can call a Service, let it return, then your Entity can subscribe to your Event and not keep the original Service function waiting. Events are also a good way to allow the platform to respond to data when it arrives on the edge device without it having to poll the edge device for updates.   Fire Events   To fire an Event you first need to register the Event and load it with the necessary fields for the Data Shape of that Event using the twApi_RegisterEvent function. Afterwards, you would send a request to the ThingWorx server with the collected values using the twApi_FireEvent function. An example is as follows:   twDataShape * ds = twDataShape_Create(twDataShapeEntry_Create("message", NULL,TW_STRING)); /* Event datashapes require a name */ twDataShape_SetName(ds, "SteamSensorFault"); /* Register the service */ twApi_RegisterEvent(TW_THING, thingName, "SteamSensorFault", "Steam sensor event", ds); …. struct { char FaultStatus; double Temperature; double TemperatureLimit; } properties; …. properties. TemperatureLimit = rand() + RAND_MAX/5.0; properties.Temperature = rand() + RAND_MAX/5.0; properties.FaultStatus = FALSE; if (properties.Temperature > properties.TemperatureLimit && properties.FaultStatus == FALSE) { twInfoTable * faultData = 0; char msg[140]; properties.FaultStatus = TRUE; sprintf(msg,"%s Temperature %2f exceeds threshold of %2f", thingName, properties.Temperature, properties.TemperatureLimit); faultData = twInfoTable_CreateFromString("message", msg, TRUE); twApi_FireEvent(TW_THING, thingName, "SteamSensorFault", faultData, -1, TRUE); twInfoTable_Delete(faultData); }   Invoke Services   In order to invoke a Service, you will use the twApi_InvokeService function. The full documentation for this function can be found in [C SDK HOME DIR]/src/api/twApi.h. Refer to the table below for additional information.   Parameter Type Description entityType Input The type of Entity that the service belongs to. Enumeration values can be found in twDefinitions.h. entityName Input The name of the Entity that the service belongs to. serviceName Input The name of the Service to execute. params Input A pointer to an Info Table containing the parameters to be passed into the Service. The calling function will retain ownership of this pointer and is responsible for cleaning up the memory after the call is complete. result Input/Output A pointer to a twInfoTable pointer. In a successful request, this parameter will end up with a valid pointer to a twInfoTable that is the result of the Service invocation. The caller is responsible for deleting the returned primitive using twInfoTable_Delete. It is possible for the returned pointer to be NULL if an error occurred or no data is returned. timeout Input The time (in milliseconds) to wait for a response from the server. A value of -1 uses the DEFAULT_MESSAGE_TIMEOUT as defined in twDefaultSettings.h. forceConnect Input A Boolean value. If TRUE and the API is in the disconnected state of the duty cycle, the API will force a reconnect to send the request.   See below for an example in which the Copy service from the FileTransferSubsystem is called:   twDataShape * ds = NULL; twInfoTable * it = NULL; twInfoTableRow * row = NULL; twInfoTable * transferInfo = NULL; int res = 0; const char * sourceRepo = "SimpleThing_1"; const char * sourcePath = "tw/hotfolder/"; const char * sourceFile = "source.txt"; const char * targetRepo = "SystemRepository"; const char * targetPath = "/"; const char * targetFile = "source.txt"; uint32_t timeout = 60; char asynch = TRUE; char * tid = 0; /* Create an infotable out of the parameters */ ds = twDataShape_Create(twDataShapeEntry_Create("sourceRepo", NULL, TW_STRING)); res = twDataShape_AddEntry(ds, twDataShapeEntry_Create("sourcePath", NULL, TW_STRING)); res |= twDataShape_AddEntry(ds, twDataShapeEntry_Create("sourceFile", NULL, TW_STRING)); res |= twDataShape_AddEntry(ds, twDataShapeEntry_Create("targetRepo", NULL, TW_STRING)); res |= twDataShape_AddEntry(ds, twDataShapeEntry_Create("targetPath", NULL, TW_STRING)); res |= twDataShape_AddEntry(ds, twDataShapeEntry_Create("targetFile", NULL, TW_STRING)); res |= twDataShape_AddEntry(ds, twDataShapeEntry_Create("async", NULL, TW_BOOLEAN)); res |= twDataShape_AddEntry(ds, twDataShapeEntry_Create("timeout", NULL, TW_INTEGER)); it = twInfoTable_Create(ds); row = twInfoTableRow_Create(twPrimitive_CreateFromString(sourceRepo, TRUE)); res = twInfoTableRow_AddEntry(row, twPrimitive_CreateFromString(sourcePath, TRUE)); res |= twInfoTableRow_AddEntry(row, twPrimitive_CreateFromString(sourceFile, TRUE)); res |= twInfoTableRow_AddEntry(row, twPrimitive_CreateFromString(targetRepo, TRUE)); res |= twInfoTableRow_AddEntry(row, twPrimitive_CreateFromString(targetPath, TRUE)); res |= twInfoTableRow_AddEntry(row, twPrimitive_CreateFromString(targetFile, TRUE)); res |= twInfoTableRow_AddEntry(row, twPrimitive_CreateFromBoolean(asynch)); res |= twInfoTableRow_AddEntry(row, twPrimitive_CreateFromInteger(timeout)); twInfoTable_AddRow(it,row); /* Make the service call */ res = twApi_InvokeService(TW_SUBSYSTEM, "FileTransferSubsystem", "Copy", it, &transferInfo, timeout ? (timeout * 2): -1, FALSE); twInfoTable_Delete(it); /* Grab the tid */ res = twInfoTable_GetString(transferInfo,"transferId",0, &tid);   Bind Event Handling You may want to track exactly when your edge Entities are successfully bound to or unbound from the server. The reason for this is that only bound items should be interacting with the ThingWorx Platform and the ThingWorx Platform will never send any requests targeted at an Entity that is not bound. A simple example that only logs the bound Thing can be seen below. After creating this function, it will need to be registered using the twApi_RegisterBindEventCallback function before the connection is made.   void BindEventHandler(char * entityName, char isBound, void * userdata) { if (isBound) TW_LOG(TW_FORCE,"BindEventHandler: Entity %s was Bound", entityName); else TW_LOG(TW_FORCE,"BindEventHandler: Entity %s was Unbound", entityName); } …. twApi_RegisterBindEventCallback(thingName, BindEventHandler, NULL);   OnAuthenticated Event Handling   You may also want to know exactly when your Edge device has successfully authenticated and made a connection to the ThingWorx platform. Like the bind Event handling, this function will need to be made and registered. To register this handler, use the   twApi_RegisterOnAuthenticated Callback function before the connection is made. This handler form can also be used to do a delay bind for all Things.   void AuthEventHandler(char * credType, char * credValue, void * userdata) { if (!credType || !credValue) return; TW_LOG(TW_FORCE,"AuthEventHandler: Authenticated using %s = %s. Userdata = 0x%x", credType, credValue, userdata); /* Could do a delayed bind here */ /* twApi_BindThing(thingName); */ } … twApi_RegisterOnAuthenticatedCallback(AuthEventHandler, NULL);     Step 8: Tasks   If you are using the built-in Tasker to drive data collection or other types of repetitive or periodic activities, create a function for the task. Task functions are registered with the Tasker and then called at the rate specified after they are registered. The Tasker is a very simple, cooperative multitasker, so these functions should not take long to return and most certainly must not go into an infinite loop.   The signature for a task function is found in [C SDK HOME DIR]/src/utils/twTasker.h. The function is passed a DATETIME value with the current time and a void pointer that is passed into the Tasker when the task is registered. After creating this function, it will need to be registered using the twApi_CreateTask function after the connection is created. Below shows an example of creating this function, registering this function, and how this function can be used.   #define DATA_COLLECTION_RATE_MSEC 2000 void dataCollectionTask(DATETIME now, void * params) { /* TW_LOG(TW_TRACE,"dataCollectionTask: Executing"); */ properties.TotalFlow = rand()/(RAND_MAX/10.0); properties.Pressure = 18 + rand()/(RAND_MAX/5.0); properties.Location.latitude = properties.Location.latitude + ((double)(rand() - RAND_MAX))/RAND_MAX/5; properties.Location.longitude = properties.Location.longitude + ((double)(rand() - RAND_MAX))/RAND_MAX/5; properties.Temperature = 400 + rand()/(RAND_MAX/40); /* Check for a fault. Only do something if we haven't already */ if (properties.Temperature > properties.TemperatureLimit && properties.FaultStatus == FALSE) { twInfoTable * faultData = 0; char msg[140]; properties.FaultStatus = TRUE; properties.InletValve = TRUE; sprintf(msg,"%s Temperature %2f exceeds threshold of %2f", thingName, properties.Temperature, properties.TemperatureLimit); faultData = twInfoTable_CreateFromString("message", msg, TRUE); twApi_FireEvent(TW_THING, thingName, "SteamSensorFault", faultData, -1, TRUE); twInfoTable_Delete(faultData); } /* Update the properties on the server */ sendPropertyUpdate(); } … twApi_CreateTask(DATA_COLLECTION_RATE_MSEC, dataCollectionTask); … while(1) { char in = 0; #ifndef ENABLE_TASKER DATETIME now = twGetSystemTime(TRUE); twApi_TaskerFunction(now, NULL); twMessageHandler_msgHandlerTask(now, NULL); if (twTimeGreaterThan(now, nextDataCollectionTime)) { dataCollectionTask(now, NULL); nextDataCollectionTime = twAddMilliseconds(now, DATA_COLLECTION_RATE_MSEC); } #else in = getch(); if (in == 'q') break; else printf("\n"); #endif twSleepMsec(5); }   Click here to view Part 4 of this guide
View full tip
  Step 5: Properties   In the Delivery Truck application, there are three Delivery Truck Things. Each Thing has a number of Properties based on its location, speed, and its deliveries carried out. In this design, when a delivery is made or the truck is no longer moving, the Property values are updated.   The deliveryTruck.c helper C file is based on the DeliveryTruck Entities in the Composer. After calling the construct function, there are a number of steps necessary to get going. For the SimpleThing application, there are a number of methods for creating Properties, Events, Services, and Data Shapes for ease of use.   Properties can be created in the client or just registered and utilized. In the  SimpleThingClient  application, Properties are created. In the DeliveryTruckClient application, Properties are bound to their ThingWorx Platform counterpart. Two types of structures are used by the C SDK to define Properties when it is seen fit to do so and can be found in [C SDK HOME DIR]/src/api/twProperties.h:   Name Structure Description Property Definitions twPropertyDef Describes the basic information for the Properties that will be available to ThingWorx and can be added to a client application. Property Values twProperty Associates the Property name with a value, timestamp, and quality.   NOTE: The C SDK provides a number of Macros located in [C SDK HOME DIR]/src/api/twMacros.h. This guide will use these Macros while providing input on the use of pure function calls.   The Macro example below can be found in the main source file for the   SimpleThingClient   application and the accompanying helper file simple_thing.c.   TW_PROPERTY("TempProperty", "Description for TempProperty", TW_NUMBER); TW_ADD_BOOLEAN_ASPECT("TempProperty", TW_ASPECT_ISREADONLY,TRUE); TW_ADD_BOOLEAN_ASPECT("TempProperty", TW_ASPECT_ISLOGGED,TRUE); NOTE: The list of aspect configurations can be seen in [C SDK HOME DIR]/src/api/twConstants.h. Property values can be set with defaults using the aspects setting. Setting a default value in the client will affect the Property in the ThingWorx platform after binding. It will not set a local value in the client application.   For the DeliveryTruckClient, we registered, read, and update Properties without using the Property definitions. Which method of using Properties is based on the application being built.   NOTE: Updating Properties in the ThingWorx Platform while the application is running, will update the values in the client application. To update the values in the platform to match, end the Property read section of your property handler function with a function to set the platform value.   The createTruckThing function for the deliveryTruck.c source code takes a truck name as a parameter and is used to register the Properties, functions, and handlers for each truck.   The updateTruckThing function for the deliveryTruck.c source code takes a truck name as a parameter and is used to either initialize a struct for DeliveryTruck Properties, or simulate a truck stop Event, update Properties, then fire an Event for the ThingWorx platform.   Connecting properties to be used on the platform is as easy as registering the property and optionally adding aspects. The following shows the properties that correlate to those in the DeliveryTruck entities in the Composer. To do this within the code, you would use the  TW_PROPERTY macro as shown in the deliveryTruck.c. This macro must be proceeded by either TW_DECLARE_SHAPE, TW_DECLARE_TEMPLATE or TW_MAKE_THING because these macros declare variables used by the TW_PROPERTY that follow them.   //TW_PROPERTY(propertyName,description,type) TW_PROPERTY(PROPERTY_NAME_DRIVER, NO_DESCRIPTION, TW_STRING); TW_PROPERTY(PROPERTY_NAME_DELIVERIES_LEFT, NO_DESCRIPTION, TW_NUMBER); TW_PROPERTY(PROPERTY_NAME_TOTAL_DELIVERIES, NO_DESCRIPTION, TW_NUMBER); TW_PROPERTY(PROPERTY_NAME_DELIVERIES_MADE, NO_DESCRIPTION, TW_NUMBER); TW_PROPERTY(PROPERTY_NAME_LOCATION, NO_DESCRIPTION, TW_LOCATION); TW_PROPERTY(PROPERTY_NAME_SPEED, NO_DESCRIPTION, "TW_NUMBER);   Read Properties   Reading Properties from a ThingWorx platform Thing or the returned Properties of a Service can be done using the TW_GET_PROPERTY macro. Examples of its use can be seen in all of the provided applications. An example can be seen below:   int flow = TW_GET_PROPERTY(thingName, "TotalFlow").number; int pressue = TW_GET_PROPERTY(thingName, "Pressure").number; twLocation location = TW_GET_PROPERTY(thingName, "Location").location; int temperature = TW_GET_PROPERTY(thingName, "Temperature").number;   Write Properties   Writing Properties to a ThingWorx platform Thing from a variable storing is value uses a similarly named method. Using the TW_SET_PROPERTY macro will be able to send values to the platform. Examples of its use can be seen in all of the provided applications. An example is shown below:   TW_SET_PROPERTY(thingName, "TotalFlow", TW_MAKE_NUMBER(rand() / (RAND_MAX / 10.0))); TW_SET_PROPERTY(thingName, "Pressure", TW_MAKE_NUMBER(18 + rand() / (RAND_MAX / 5.0))); TW_SET_PROPERTY(thingName, "Location", TW_MAKE_LOC(gpsroute[location_step].latitude,gpsroute[location_step].longitude,gpsroute[location_step].elevation));   This macro utilizes the twApi_PushSubscribedProperties function call to pushe all property updates to the server. This can be seen in the updateTruckThing function in deliveryTruck.c.   Property Change Listeners   Using the Observer pattern, you can take advantage of the Property change listener functionality. With this pattern, you create functions that will be notified when a value of a Property has been changed (whether on the server or locally by your program when the TW_SET_PROPERTY macro is called).   Add a Property Change Listener   In order to add a Property change listener, call the twExt_AddPropertyChangeListener function using the:   Name of the Thing (entityName) Property this listener should watch Function that will be called when the property has changed void simplePropertyObserver(const char * entityName, const char * thingName,twPrimitive* newValue){ printf("My Value has changed\n"); } void test_simplePropertyChangeListener() { { TW_MAKE_THING("observedThing",TW_THING_TEMPLATE_GENERIC); TW_PROPERTY("TotalFlow", TW_NO_DESCRIPTION, TW_NUMBER); } twExt_AddPropertyChangeListener("observedThing",TW_OBSERVE_ALL_PROPERTIES,simplePropertyObserver); TW_SET_PROPERTY("observedThing","TotalFlow",TW_MAKE_NUMBER(50)); }   NOTE: Setting the propertyName parameter to NULL or TW_OBSERVE_ALL_PROPERTIES, the function specified by the propertyChangeListenerFunction parameter will be used for ALL properties.   Remove a Property Change Listener   In order to release the memory for your application when done with utilizing listeners for the Property, call the twExt_RemovePropertyChangeListener function.   void simplePropertyObserver(const char * entityName, const char * thingName,twPrimitive* newValue){ printf("My Value has changed\n"); } twExt_RemovePropertyChangeListener(simplePropertyObserver);   Click here to view Part 3 of this guide  
View full tip
  Use the C SDK to build an app that connects to ThingWorx with persistent bi-directional communication.     GUIDE CONCEPT   This project will introduce more complex aspects of the ThingWorx C SDK and help you to get started with development.   Following the steps in this this guide, you will be ready to develop your own IoT application with the ThingWorx C SDK.   We will teach you how to use the C programming language to connect and build IoT applications to be used with the ThingWorx Platform.   YOU'LL LEARN HOW TO   Establish and manage a secure connection with a ThingWorx server, including SSL negotiation and connection maintenance Enable easy programmatic interaction with the Properties, Services, and Events that are exposed by Entities running on a ThingWorx server Create applications that can be directly used with your device running the C programming language Basic concepts of the C Edge SDK How to use the C Edge API to build a real-world application How to utilize resources provided in the Edge SDK to help create your own application    Note: The estimated time to complete ALL 4 parts of this guide is 60 minutes.      Step 1: Completed Examples   Download the completed files for this tutorial: ThingWorx C Edge SDK Sample Files.zip.   This tutorial will guide you through working with the C SDK on differing levels. Utilize this file to see a finished example and return to it as a reference if you become stuck creating your own fully fleshed out application.   Keep in mind, this download uses the exact names for Entities used in this tutorial. If you would like to import this example and also create Entities on your own, change the names of the Entities you create.     Step 2: Environment Setup   In order to compile C code, you need a C compiler and the ThingWorx C Edge SDK. It will be helpful to have CMake installed on your system. CMake is a build tool that will generate make or project files for many different platforms and IDEs.   Operating System Notes Windows You will need a 3rd party compiler such as MinGW GCC, Cygwin GCC or you can follow these Microsoft instructions to download and use the Microsoft Visual C++ Build Tool. Mac Download the Apple Developer Tools. Linux/Ubuntu A compiler is included by default.   NOTE: You can use CMake, version 2.6.1 or later to build projects or make files, which then are used to build the applications that you develop with the C SDK.   Before you can begin developing with the ThingWorx C SDK, you need to generate an Application Key and modify the source code file. You can use the Create an Application Key guide as a reference.   Modify Source File   Extract the files from the C SDK samples zip file. At the top level of the extracted files, you will see a folder called examples. This directory provides examples of how to utilize the C SDK. Open a terminal, go to your workspace, and create a new directory. You can also just switch to the unzipped directory in your system. After you've created this directory in your workspace, copy the downloaded files and folders into your new directory. You can start creating your connection code or open the main.c source file in the examples\SteamSensor\src directory for an example.   Operating System Code Linux/Ubuntu gedit main.c OR vi main.c Mac open –e main.c Windows start main.c        5. Modify the Server Details section at the top with the IP address for your ThingWorx Platform instance and the Application Key you would like to use.   Change the TW_HOST definition accordingly. Change the TW_PORT definition accordingly. Change the TW_APP_KEY definition to the keyId value saved from the last step.   /* Server Details */ #define TW_HOST "https://pp-XXXXXXXXX.devportal.ptc.i" #define TW_PORT 80 #define TW_APP_KEY "e1d78abf-cfd2-47a6-92b7-37ddc6dd34618" NOTE: Using the Application Key for the default Administrator is not recommended. If administrative access is absolutely necessary, create a User and place the user as a member of Admins.   Compile and Run Code   To test your connection, you will only need to update the main.c in the SteamSensor example folder. CMake can generate Visual Studio projects, make build files or even target IDEs such as Eclipse, or XCode. CMake generates a general description into a build for your specific toolchain or IDE.   Inside the specific example folder you would like to run, ie SteamSensor. Create a directory to build in, for this example call it bin. mkdir bin  cd bin      5. Run the CMake command listed below. This assumes CMake is already on your PATH. cmake ..      6. CMake has now produced a set of project files which should be compatible with your development environment.   Operating System Command Note Unix make A set of make files Windows msbuild tw-c-sdk.sln /t:build A visual studio solution   NOTE: CMake does its best to determine what version of Visual Studio you have but you may wish to specify which version to use if you have more than one installed on your computer. Below is an example of forcing CMake to use a specific version of Visual Studio: cmake -G "Visual Studio 15 2017" .. If your version of Visual Studio or other IDE is unknown, use cmake -G to see a list of supported IDEs.   You also have the alternative of opening the tw-c-sdk.sln from within Visual Studio and building in this IDE.   NOTE: By default, CMake will generate a build for the creation of a release binary. If you want to generate a debug build, use the command-> cmake -DBUILD_DEBUG=ON ..       7. Once your build completes you will find the build products in the CMake directory (see example below). From here, open the project in your IDE of choice.   NOTE: You should receive messages confirming successful binding, authentication, and connection after the main.c file edits have been made.   Operating System Files Description Unix ./bin/src/libtwCSdk_static.a  Static Library Unix ./bin/src/libtwCSdk.so  Shared Library Unix ./bin/examples/SteamSensor/SteamSensor   Sample Application Windows .\bin\src\<Debug/Release>\twCSdk_static.lib  Static Library Windows .\bin\src\<Debug/Release>\twCSdk.dll  Shared Library Windows .\bin\examples\<Debug/Release>\SteamSensor\SteamSensor.exe  Sample Application     Step 3: Run Sample Code   The C code in the sample download is configured to run and connect to the Entities provided in the ThingWorxEntitiesExport.xml file. Make note of the IP address of your ThingWorx Composer instance. The top level of the exported zip file will be referred to as [C SDK HOME DIR].   Navigate to the [C SDK HOME DIR]/examples/ExampleClient/src directory. Open the main.c source file.   Operating System Command Linux/Ubuntu gedit main.c OR vi main.c Mac open –e main.c Windows start main.c   Modify the Server Details section at the top with the IP address for your ThingWorx Platform instance and the Application Key you would like to use. Change the TW_HOST definition accordingly.   NOTE: By default, TW_APP_KEY has been set to the Application Key from the admin_key in the import step completed earlier. Using the Application Key for the default Administrator is not recommended. If administrative access is absolutely necessary, create a user and place the user as a member of the Admins security group.   /* Server Details */ #define TW_HOST "127.0.0.1" #define TW_APP_KEY "ce22e9e4-2834-419c-9656-e98f9f844c784c"   If you are working on a port other than 80, you will need to update the conditional statement within the main.c source file. Search for and edit the first line within the main function. Based on your settings, set the int16_t port to the ThingWorx platform port. Click Save and close the file. Create a directory to build in, for this example call it bin.   Operating System Command Linux/Ubuntu mkdir bin Mac mkdir bin Windows mkdir bin   Change to the newly created bin directory.   Operating System Command Linux/Ubuntu cd bin Mac cd bin Windows cd bin   Run the CMake command using your specific IDE of choice.    NOTE: Include the two periods at the end of the code as shown below. Use cmake -G to see a list of supported IDEs.   cmake ..   Once your build completes, you will find the build products in the bin directory, and you can open the project in your IDE of choice. NOTE: You should receive messages confirming successful binding, authentication, and connection after building and running the application    10. You should be able to see a Thing in your ThingWorx Composer called SimpleThing_1 with updated last Connection and isConnected properties. SimpleThing_1 is bound for the duration of the application run time                                                                                                                                                                                The below instructions will help to verify the connection.   Click Monitoring. Click Remote Things from the list to see the connection status.   You will now be able to see and select the Entity within the list.   Step 4: ExampleClient Connection   The C code provided in the main.c source file is preconfigured to initialize the ThingWorx C Edge SDK API with a connection to the ThingWorx platform and register handlers. In order to set up the connection, a number of parameters must be defined. This can be seen in the code below.   #define TW_HOST "127.0.0.1" #define TW_APP_KEY "ce22e9e4-2834-419c-9656-ef9f844c784c #if defined NO_TLS #define TW_PORT = 80; #else #define TW_PORT = 443; #endif The first step of connecting to the platform: Establish Physical Websocket, we call the   twApi_Initialize function with the information needed to point to the websocket of the ThingWorx Composer. This function:   Registers messaging handlers Allocates space for the API structures Creates a secure websocket   err = twApi_Initialize(hostname, port, TW_URI, appKey, NULL, MESSAGE_CHUNK_SIZE, MESSAGE_CHUNK_SIZE, TRUE); if (TW_OK != err) { TW_LOG(TW_ERROR, "Error initializing the API"); exit(err); }   If you are not using SSL/TLS, use the following line to test against a server with a self-signed certificate:   twApi_SetSelfSignedOk();   In order to disable HTTPS support and use HTTP only, call the twApi_DisableEncryption function. This is needed when using ports such as 80 or 8080. A call can be seen below:   twApi_DisableEncryption();   The following event handlers are all optional. The twApi_RegisterBindEventCallback function registers a function that will be called on the event of a Thing being bound or unbound to the ThingWorx platform. The twApi_RegisterOnAuthenticatedCallback function registered a function that will be called on the event the SDK has been authenticated by the ThingWorx Platform.  The twApi_RegisterSynchronizeStateEventCallback function registers a function that will be called after binding and used to notify your application about fields that have been bound to the Thingworx Platform.   twApi_RegisterOnAuthenticatedCallback(authEventHandler, TW_NO_USER_DATA); twApi_RegisterBindEventCallback(NULL, bindEventHandler, TW_NO_USER_DATA); twApi_RegisterSynchronizeStateEventCallback(NULL, synchronizeStateHandler, TW_NO_USER_DATA);   NOTE: Binding a Thing within the ThingWorx platform is not mandatory, but there are a number of advantages, including updating Properties while offline.   You can then start the client, which will establish the AlwaysOn protocol with the ThingWorx Composer. This protocol provides bi-directional communication between the ThingWorx Composer and the running client application. To start this connection, use the line below:   err = twApi_Connect(CONNECT_TIMEOUT, RETRY_COUNT); if(TW_OK != err){ exit(-1); }     Click here to view Part 2 of this guide
View full tip
  GUIDE CONCEPT   This guide introduces connecting an Allen-Bradley PLC to ThingWorx Kepware Server.   YOU'LL LEARN HOW TO   Create and run a simple ladder logic application on an Allen-Bradley PLC Connect the PLC to ThingWorx Kepware Server   NOTE: The estimated time to complete this guide is 30 minutes.      Step 1: Learning Path Overview   Assuming you are using this guide as part of the Rockwell Automation Learning Path, then you have now completed each of the following installations:        1. Connected Components Workbench       2. ThingWorx Kepware Server       3. ThingWorx Foundation (for Windows)   In this continued step, you'll now connect an Allen-Bradley PLC to Connected Components Workbench and then to ThingWorx Kepware Server.   In a later guide, we'll propogate that information further from ThingWorx Kepware Server into ThingWorx Foundation.   NOTE: Both Rockwell Automation's Connected Components Workbench and ThingWorx Kepware Server are time-limited trials. If significant time has passed while persuing this Learning Path, you may need to reinitialize them. Consult the Troubleshooting step of this guide for more information.       Step 2: Setup PLC   This guide uses an inexpensive Allen-Bradley Micro820 PLC as a demonstration.   ThingWorx Kepware Server offers drivers for hundreds of devices, making this step the only one that contains device-specific instructions.   Read and understand installation instructions before making any electrical connections to the PLC.   1. Connect the postive lead of a 24V power supply along with a 6" test lead to Terminal 1 of the output terminal block.   2. Connect the negative lead of the power supply to Terminal 2.     3. Confirm the test lead is secure from making contact with anything conductive; it will be  connected to +24V. Power on the supply and confirm the LEDs briefly light.       4. Carefully touch the test lead to the Input 1 terminal and confirm the indicator LED for Input 1 turns on.     5. Power off the supply before continuing to the next step.       Step 3: Create PLC Project   In this step, you will create a simple PLC application. This application will connect to a ThingWorx Mashup in subsequent guides in the Learning Path.    1. After opening Connected Components Workbench, click New... in the Project section.   2. Enter ThingWorxGuide in the Name field and click Create.   3. Browse to the PLC model you are using and click Select, then Add to Project.     4. Right-click Program, then left-click Add > New LD: Ladder Diagram     5. Double-click Prog1 to open the ladder window.     Ladder Logic   You will create a simple application that will turn on output 2 when there is a signal on input 2.    1.. Right-click in the box to the left of the rung, hover over Insert Ladder Elements, then click on Direct Coil   .     2. Click the I/O - Micro820 tab towards the right and select an output coil - this guide uses _IO_EM_DO_02. Then click OK                  3. Add an input contact by right-clicking in the box to the left of the rung, hover over Insert Ladder Elements, then click on Direct Contact.   4. Click the I/O - Micro820 tab and scroll down to select an input - this guide uses _IO_EM_DI_02. Then click OK.        5. The program window should now look like this:     Upload   Next, you will propagate the program to the PLC.   1. Secure the test lead then apply power to the PLC.   2. Connect an ethernet cable directly between the PLC and your Windows computer.   3. Click Device > Connect to connect to the PLC; a pop-up will appear saying the project does not match the program in the controller.     NOTE: When either your PLC or computer are restarted, they may be assigned a new IP address, requiring you to reconfigure the connection. Click the tab labled with your PLC, then click the pencil icon next to connection path, click Browse, expand the Ethernet driver, highlight the active controller, and click OK. Click Close and then Connect.       4. Click Download current project to the controller   5. Confirm overwriting any program in the controller by clicking Download.   6. After your project is downloaded, run it on the controller by clicking Yes.     7. Touch the test lead to the I-02 terminal, and your program will turn on the #2 output. You can confirm your project is working by both hearing the soft click from the PLC and seeing the output indicator turn on.       Step 4: Configure ThingWorx Kepware Server   Now that you have a simple project running on the PLC, you need to configure ThingWorx Kepware Server to monitor it.   1. Open ThingWorx Kepware Server, right-click on Connectivity, and click New Channel.   2. Select Allen-Bradley Micro800 Ethernet from the drop-down, then click Next.       3. Click Next to accept the defaults, and click Finish to create Channel2.   4. Click Click to add a device below Channel2, enter myPLC in the name field, and click Next.   5. Enter the IP address of your PLC, then click Next. The IP address of your PLC is shown in Connected Components Workbench in Device > Configure.       NOTE: The IP address of the PLC may change when it is power cycled and must be updated in ThingWorx Kepware Server to match   6. Click Next to accept default values for each pop-up, and click Finish to create the myPLC device.       7. Click the Click to add a static tag message.   8. Enter Coil2 in the Name field, _IO_EM_DO_02 in the Address field, change the Data Type drop-down to Boolean, and click OK.  The address must exactly match a variable name in the PLC.       9. Create a second tag by right-clicking on myPLC again and clicking New Tag.   10. Enter Coil3 in the Name field, _IO_EM_DO_03 in the Address field, select Boolean from the Data Type drop-down, and click OK.         Step 5: Troubleshooting   1. If the connection to the PLC stops working and there is a Thumbs Down icon next to your Properties, the ThingWorx Kepware Server trial edition drivers are not connected to your PLC. The trial edition stops running after 2 hours and must be stopped and restarted. Right-click on ThingWorx icon in system tray.     Click Stop Runtime service. Wait a minute for the process to stop, then click Start Runtime service.   2.  If Connected Components Workbench does not connect to PLC, check the IP address of the PLC using RS Linx Classic software that was installed as part of Connected Components  Workbench. RS Linx Classic is located Start > All Programs > Rockwell Software > RSLinx > RSLinx Classic Click AB_ETHIP-1, Ethernet and IP addresses of connected PLCs will be discovered   NOTE: A changed PLC IP Address (typically seen through Connected Components Workbench) will require an IP Address change in ThingWorx Kepware Server settings.       Step 6: Next Steps   Congratulations! You've successfully completed the Connect to an Allen-Bradley PLC tutorial. You've learned how to:   Create and upload a simple ladder logic application to a PLC Connect a PLC to ThingWorx Kepware Server   The next guide in the Using an Allen-Bradley PLC with ThingWorx learning path is Create an Application Key.   Learn More   Capability Resource Analyze Monitor an SMT Assembly Line     Additional Resources   For additional information on ThingWorx Kepware Server:   Resource Link Website Connecting & Managing Industrial Assets Documentation Kepware documentation Support Kepware Support site
View full tip
  Step 5: Launch the EMS   1. Navigate to the microserver directory. cd .. 2. Ensure that you have ownership to the executable wsems and executable privileges. To check ownership. Ls -la -rwxrwxr-x 1 pi pi 769058 Jun 9 17:46 wsems NOTE: The account that owns the wsems executable should be used to log into the Raspberry Pi.   3. Confirm that you have executable privileges by run the following command: sudo chmod 775 wsems 4. Run the EMS. sudo ./wsems 5. Validate that your EMS successfully connected.   Depending on your logger level, your wsems execution should indicate Websocket connected in the log and the following INFO message: [INFO ] 2016-10-11 14:22:54,770 Main: Succesfully connected. Saving .booted config file   Troubleshoot Connectivity Issues   If the websocket does not connect successfully, check the following:    Issue                                               Solution WEBSOCKET CLOSED - Warning seen immediately after Websocket gets connected. Ensure that the host IP address, port and appKey of the ThingWorx composer instance are accurately set. If in the config.json you have selected the option to validate certification, then make sure the path to the certificate file is correctly set. twWs_Connect - Error trying to connect. Ensure that the host IP address, port running the ThingWorx Composer is accurately set. Check if the certification parameter is set or not. By default the WS EMS validates certificates. To ensure that the validation is performed correctly without errors, ensure that the certificates configuration parameters are set accurately with the correct path to the certificate file. If you do not wish to validate the certificate, you may explicitly set the validate parameter in certificates parameter set to false. twTlsClient_Connect - Error intializing TLS connection. Invalid certificate. Check if the ws_encryption parameter is present in your config.json file. By default, WS EMS enables TLS connection to ThingWorx platform. Ensure that the certificate file mentioned in the config.json is valid and stored in the path specified in the config.json. For debugging purposes, you can set the ssl parameter to none in ws_encryption configuration parameter. [WARN ] ... Main - Unable to connect to server. Trying .booted config file. Ensure that the host is up and running at the IP address and port number mentioned in the config.json file. Ensure that ThingWorx is running on the host address at the correct port number. Ensure that all appropriate networking ports are open and available.     Step 6: Configure Lua Script Resource (LSR)   The Lua Script Resource (LSR) is used to implement Things on the Edge device. Using the Lua Script Resource, you can define for your Raspberry Pi: Data Shapes Properties Services Tasks NOTE: The steps in this guide install the LSR on the same server (Raspberry Pi) as the EMS but it could also be installed on another server.   Launch a new terminal session that will be used to configure and launch the LSR. Navigate to etc folder. cd microserver/etc Create the config.lua file. sudo nano config.lua Set the logger level. scripts.log_level = "INFO" Turn off encryption for connection to EMS. This should only be used for testing. scripts.script_resource_ssl = false scripts.script_resource_authenticate = false Create the Edge RemoteThing. scripts.PiThing = { file = "thing.lua", template = "PiTemplate", scanRate = 1000, taskRate = 30000 }   NOTE: This configuration tells the Lua Script Resource to create a Thing called PiThing whose template definition is in PiTemplate.lua file in the path etc/customs/templates/PiTemplate.lua. You will create the template file PiTemplate.lua in the next section.   Property    Description scanRate Controls how frequently (milliseconds) properties are evaluated and pushed to the server. In our example, the Pi will check every 1 second if the values have changed. If so, the values will be pushed to the server. taskRate Controls how frequently the tasks specified in the Thing's template should be executed. In our example, the task will run every 30 seconds.   7.  Set the IP and port address of the LSR host server. scripts.rap_host = "127.0.0.1" scripts.rap_port = 8080   Sample config.lua File   Here is an example of a complete config.lua that can be used to configure the Lua Script Resource.   scripts.log_level = "INFO" scripts.script_resource_ssl = false scripts.script_resource_authenticate = false scripts.PiThing = { file = "thing.lua", template = "PiTemplate", scanRate = 1000, taskRate = 30000 } scripts.rap_host = "127.0.0.1" scripts.rap_port = 8080     Step 7: Configure Template File (Properties)   The template file is located in the microserver/etc/custom/templates directory. The template file provides a base configuration for defining Properties, Services, tasks, etc. This section will focus on defining the template file and adding Properties.   Navigate from the installation directory to the templates folder at microserver/etc/custom/templates . cd microserver/etc/custom/templates Create the file PiTemplate.lua. sudo nano PiTemplate.lua NOTE: This is the same template filename used in config.lua in the previous section. 3. Define the template. The module statement is used to define the template containing the configuration for the software component of the edge device. module ("templates.PiTemplate", thingworx.template.extend)   Parameter                                   Description templates.PiTemplate refers to the name of the template file: PiTemplate.lua thingworx.template.extend identifies the file as a template and provides base Thingworx template implementation   4. Define the Properties. For this guide, we are going to use the Raspberry Pi’s system properties like CPU temperature, clock frequency and internal voltage as sensor readings for the Remote Thing. Add the properties for these in your PiTemplate.lua file. properties.cpu_temperature={baseType="NUMBER", pushType="ALWAYS", value=0} properties.cpu_freq={baseType="NUMBER", pushType="ALWAYS", value=0} properties.cpu_volt={baseType="NUMBER", pushType="ALWAYS", value=0} NOTE: This code defines the properties cpu_temperature, cpu_freq and cpu_volt with a baseType of NUMBER. Additionally, it sets each default value to null as well as sets the pushType to ALWAYS which means that the property is always pushed to the Thingworx Server from the Raspberry Pi. The pushType can be set to ALWAYS, ON, OFF, NEVER or VALUE.   Sample PiTemplate.lua File   Here is an example of a complete PiTemplate.lua that can be used to configure the Lua Script Resource. module ("templates.PiTemplate", thingworx.template.extend) properties.cpu_temperature={baseType="NUMBER", pushType="ALWAYS", value=0} properties.cpu_freq={baseType="NUMBER", pushType="ALWAYS", value=0} properties.cpu_volt={baseType="NUMBER", pushType="ALWAYS", value=0}     Click here to view Part 3 of this guide. 
View full tip
  Step 11: Users   Access to functions and information on the ThingWorx Foundation server is controlled by Users. The REST API can be used to create, list, and delete Users.   Get Usernames of all Users   The REST API exposes the ability to retrieve collections of Entities so that a UI can be dynamically updated with current data.   Required Parameters   AppKey created by your Foundation server Request   Construct the URL. Include the hostname and authentication credentials for your specific ThingWorx server as described below. The Usernames of all Users can be returned by making a GET request to this endpoint: 〈Server IP:port〉/Thingworx/Users Authenticate Request. All API requests to the ThingWorx server must be authenticated either with a username and password or with an appKey. For this example we will authenticate by passing the appKey as a URL query string parameter. The parameter appKey is recognized by the ThingWorx server as an authentication credential in requests, it can be passed either as a URL query string parameter .../CreateThing?appKey=64b87... , or as request header appKey: 64b87... Send request parameters. Other than authentication, no other parameters are used in this GET request. Response   It is possible for the content to be returned in four different formats by sending an Accept header with the request.   Desired Response Type  Accept Header Values JSON application/json XML text/xml HTML text/html (or omit Accept Header) CSV text/csv   HTTPie example:   http -v -j http://52.201.57.6/Thingworx/Users appKey==64b879ae-2455-4d8d-b840-5f5541a799ae Accept:text/csv       Step 12: Troubleshooting   You should expect to get back the status code of 200 - OK either with or without content. In the case of an error, you will receive an error message. You can use the following table to diagnose the issue.   Response Code Definition  401 - Unauthorized appKey is incorrect or missing 403 - Forbidden Content-Type request header is not set to application/json Sometimes returned instead of a 404 A Property with that name already exists on the platform 404 - Not Found Incorrect URL or API endpoint Thing or Property has not been created Incorrect ThingTemplate name Required parameter missing from request 405 - Invalid Request Incorrect request verb; for example a GET was used instead of PUT or POST 406 - Not Acceptable Invalid JSON in PUT or POST request Thing [ Thing name ] already exists: A Thing with that name already exists on the platform 500 - Internal Server Error Content-Type request header is not set for a service execution POST, required even without a POST body Content-Type request header is not set for DELETE request, required despite the fact that DELETE does not send any content 503 - Service Unavailable Thing [] is not running RestartThing endpoint must be called Thing [] is not enabled EnableThing endpoint must be called       Step 13: Authentication Tags   There are different ways to authorize requests.   AppKey in HTTP Request Header   We recommend you place the appKey in the HTTP request header rather than passing the appKey as a URL parameter. This prevents the appKey from being written into server log files that may be seen by someone who is not authorized to modify the ThingWorx server.   HTTPie example:   http -v -j http://iotboston.com:8887/Thingworx/Things/aTestThing/Properties/CurrentTemp appKey:d0a68eff-2cb4-4327-81ea-7e71e26 Full request headers:   GET /Thingworx/Things/AllenTestThingFour/Properties/CurrentTemp HTTP/1.1 Accept: application/json, */* Accept-Encoding: gzip, deflate Connection: keep-alive Content-Type: application/json Host: iotboston.com:8887 appKey: d0a68eff-2cb4-4327-81ea-7e71e26bb   AppKey In URL as Parameter   To send an appkey in a URL request string parameter, check the Allow Application Key as URL Parameter checkbox in the PlatformSubsystem Configuration. If the ThingWorx server is using HTTPS, the parameter will be encrypted in transit, however the appKey may be comprised because full request URLs are often written to server log files.   HTTPie example:   http -v -j http://iotboston.com:8887/Thingworx/Things/AllenTestThingFour/Properties/CurrentTemp appKey==d0a68eff-2cb4-4327-81ea-7e71e26bb645 Full request headers:   GET /Thingworx/Things/aTestThing/Properties/CurrentTemp?appKey=d0a68eff-2cb4-4327-81ea-7e71e26 HTTP/1.1 Accept: application/json, */* Accept-Encoding: gzip, deflate Connection: keep-alive Content-Type: application/json Host: iotboston.com:8887   HTTP Basic Auth   We do not recommend Basic Auth, because the username and password used are NOT encrypted and could be used to log into the ThingWorx platform. To demonstrate that username and password are not encrypted, copy the string in the Authorization line after Basic to Base64 Decode then click DECODE.   HTTPie example:   http -v -j http://iotboston.com:8887/Thingworx/Things/aTestThing/Properties/CurrentTemp -a Administrator:password1 Full request headers:   GET /Thingworx/Things/AllenTestThingFour/Properties/CurrentTemp HTTP/1.1 Accept: application/json, */* Accept-Encoding: gzip, deflate Authorization: Basic QWRtaW5pc3RyYXRvcjpwYXNzd29yZDE= Connection: keep-alive Content-Type: application/json Host: iotboston.com:8887     Step 14: Next Steps   Congratulations! You've successfully completed the Use REST API to Access ThingWorx guide. You learned how to use the REST API to:   Create new Things on a ThingWorx Foundation Server Add Properties to Things Access Property values Execute custom Services   The next guide in the Connect and Configure Industrial Devices and Systems learning path is Java SDK Tutorial.   Learn More   We recommend the following resources to continue your learning experience:      Capability Guide Build Data Model Introduction   Additional Resources   If you have questions, issues, or need additional information, refer to:   Resource    Link Community Developer Community Forum Support REST API Help Center    
View full tip
    Step 9: File Transfer    To handle file transfers, create a virtual directory in the FileTransferExample Entity and in the project directory. The source code used for this example is found in com.thingworx.sdk.examples.FileTransferExample.java.   Set Up File Transfer   Right-click the project. Click New. Scroll and select Folder. Enter transfer/incoming into the text box at the bottom. Click Finish. Repeat steps 1 and 2, but create a folder called transfer/outgoing. Right-click the transfer/outgoing folder. Click New. Scroll and select File. Create a file with the name outgoing.txt. Click Finish. Once the outgoing.txt document is open, add the following text, click Save, and close the file: Hello. This is a file coming from the client application. Navigate to the FileTransferExample.java code and update the lines below with the appropriate information for your IP, port, and the admin_key Application Key’skeyId value in Composer: config.setUri("ws://127.0.0.1:80/Thingworx/WS"); config.setAppKey("ce22e9e4-2834-419c-9656-ef9f844c784c"); NOTE: Step 7 is only used for a time constraint of this guide. Best practice is to never use an Application Key for the Administrator. Provide a User with the necessary privileges and add an Application Key to that User.   FileTransferExampleHelper Methods   To support file transfers in your client application, you must use a FileTransferVirtualThing to enable the functionality and define the directories available for file operations. A virtual directory maps a unique name to an absolute path of a directory in the file system. All subdirectories of the specified directory are exposed to the server. You can define multiple virtual directories. The directories do not need to be contiguous.   The example provided creates the FileTransferVirtualThing with two virtual directories that will act as the root directories in the virtual file system of this application are added. The client is then started as follows:   All of the creations of the payloads have been moved to a helper class (FileTransferExampleHelper.java) to make the design cleaner.   The below table provides insight into some of the helper methods created to separate roles for a cleaner solution.   Method Purpose createSystemRepositoryIncomingPath Create the payload for the call to create the “incoming” directory on the SystemRepository in the ThingWorx Platform. createSystemRepositoryOutgoingPath Create the payload for the call to create the “outgoing” directory on the SystemRepository in the ThingWorx Platform. createTransferIncomingParameters Create the payload for the call to copy a file into the incoming directory on the FileTransferExample Thing in the ThingWorx Platform and the provided client application. createTransferOutgoingParameters Create the payload for the call to copy a file from the outgoing directory in the provided client application to the SystemRepository on the ThingWorx Platform.     Service Parameters   Once the connection is made, the script will call the four services. Here, we instruct the server to move the files from one repository to another.   Parameter Example Description sourceRepo “SystemRepository” The name of a FileRepository or RemoteThingWithFileTransfer Thing to transfer the file from. sourcePath “/outgoing” The path specifying the location in the file repository of the source file. sourceFile “example.txt” The name of the source file. targetRepo FileTransferExample The name of a FileRepository or RemoteThingWithFileTransfer Thing to transfer the file to. targetPath “in” The path specifying the destination location of the file. targetFile “example.txt” The name of the file at the target location. This name can differ from the sourceName parameter. timeout 15000 The amount of time to wait for the synchronous transfer to complete (seconds) before cancelling the transfer. async false If false, the service call will block for the length specified by the “timeout” parameter or until it completes.     After running this application, you will notice a new file in the transfer/incoming folder after refreshing. This is the file that we created in the ThingWorx Composer file system for the SystemRepository Entity and was copied from that location to our local project. We have also sent a file to the server’s SystemRepository. The BrowseFileSystem and GetFileListing Services can be used to check for the folders and files created.       Step 10: Troubleshooting   All Websocket errors indicate some general issue communicating with the ThingWorx platform. If you experience an issue connecting, refer to the table below for a list of websocket errors, their corresponding codes, and an explanation of the issue.   Code Message Troubleshooting 200 TW_UNKNOWN_WEBSOCKET_ERROR An unknown error occurred on the websocket. 201 TW_ERROR_INITIALIZING_WEBSOCKET An error occurred while initializing the websocket. Check your websocket configuration parameters for validity. 202 TW_TIMEOUT_INITIALIZING_WEBSOCKET A timeout occurred while initializing the websocket. Check the status of the connection to ThingWorx. 203 TW_WEBSOCKET_NOT_CONNECTED The websocket is not connected to ThingWorx. The requested operation cannot be performed. 204 TW_ERROR_PARSING_WEBSOCKET_DATA An error occurred while parsing websocket data. The parser could not break down the data from the websocket. 205 TW_ERROR_READING_FROM_WEBSOCKET An error occurred while reading data from the websocket. Retry the read operation. If necessary, resend the data. 206 TW_WEBSOCKET_FRAME_TOO_LARGE The SDK is attempting to send a websocket frame that is too large. The Maximum Frame Size is set when calling twAPI_Initialize and should always be set to the Message Chunk Size (twcfg.message_chunk_size). 207 TW_INVALID_WEBSOCKET_FRAME_TYPE The type of the frame coming in over the websocket is invalid. 208 TW_WEBSOCKET_MSG_TOO_LARGE The application is attempting to send a message that has been broken up in to chunks that are too large to fit in a frame. You should not see this error. 209 TW_ERROR_WRITING_TO_WEBSOCKET An error occurred while writing to the Web socket. 210 TW_INVALID_ACCEPT_KEY The Accept key sent earlier from ThingWorx is not valid.       Step 11: Tunneling Example    To handle file transfers, a virtual directory is created in the TunnelExample Entity and in the project directory. The source code used for this example is in com.thingworx.sdk.examples.TunnelExample.java.   To enable tunneling, create the configurations like other steps, and then either invoke ClientConfigurator.tunnelsEnabled(true), or set the tunnelsEnabled directive in your config file.   Once it connects to the server, this client binds thingName to the matching RemoteThingWithTunnels defined on the ThingWorx Platform. Once bound, the Thing can receive tunnel requests from the Platform, and facilitate tunnels to local applications.     Step 12: Next Steps    Congratulations! You've successfully completed the Java SDK Tutorial, and learned how to utilize the resources provided in the Java SDK create your own application.   The next guide in the Connect and Configure Industrial Devices and Systems learning path is C SDK Tutorial.   Learn More   We recommend the following resources to continue your learning experience:    Capability Guide Build Design Your Data Model Build Implement Services, Events, and Subscriptions   Additional Resources   If you have questions, issues, or need additional information, refer to:   Resource Link Community Developer Community Forum Support Java Edge SDK Help Center    
View full tip
  Step 7: Delivery Truck Model    In the Delivery Truck application, there are three Delivery Truck Things. Each Thing has a number of Properties based on its location, speed, and its deliveries carried out. In this design, when a delivery is made or the truck is no longer moving, the property values are updated. The DeliveryTruckThing class extends the VirtualThing class and based on the DeliveryTruck Entities in the Composer. After extending VirtualThing, there are a number of steps necessary to get going. For the DeliveryTruckThing and SimpleThing classes, there are a number of methods for creating Properties, Events, Services, and Data Shapes for ease of use.   The constructor for the DeliveryTruckThing takes in the name of the Thing, the description of the Thing, and the ConnectedThingClient instance used to make the connection. It then sends these values to the VirtualThing constructor as shown below.   public DeliveryTruckThing(String name, String description, ConnectedThingClient client) { super(name, description, client); ...   We use the initializeFromAnnotations method to initialize all of the annotations that we will create in this class. This is done as follows and a necessary call for VirtualThings in the constructor:   initializeFromAnnotations();   Create Properties   You can create Properties in two ways. Using annotations is the recommended method, but there are times in which programmatically creating Properties is the best option. For example, constructing dynamic features or allowing inline functionality would call for the coding style of Property creation. The following shows the Properties that correlate to those in the DeliveryTruck Entities in the Composer. To do this within the code, you would use a PropertyDefinition instance as shown in the SimpleThing.java property1 creation.   With Annotation @SuppressWarnings("serial") @ThingworxPropertyDefinitions(properties = { @ThingworxPropertyDefinition(name="Driver", description="The name of the driver", baseType="STRING", aspects={"isReadOnly:false"}), @ThingworxPropertyDefinition(name="DeliveriesLeft", description="The number of deliveries left", baseType="NUMBER", aspects={"isReadOnly:false"}), @ThingworxPropertyDefinition(name="Speed", description="The speed of the truck", baseType="NUMBER", aspects={"isReadOnly:false"}), @ThingworxPropertyDefinition(name="Location", description="The location of the truck", baseType="LOCATION", aspects={"isReadOnly:false"}), @ThingworxPropertyDefinition(name="TotalDeliveries", description="The number of deliveries", baseType="NUMBER", aspects={"isReadOnly:false"}), @ThingworxPropertyDefinition(name="DeliveriesMade", description="The number of deliveries made", baseType="NUMBER", aspects={"isReadOnly:false"}), })   Without Annotation //Create the property definition with name, description, and baseType PropertyDefinition property1 = new PropertyDefinition(property, "Description for Property1", BaseTypes.BOOLEAN); //Create an aspect collection to hold all of the different aspects AspectCollection aspects = new AspectCollection(); //Add the dataChangeType aspect aspects.put(Aspects.ASPECT_DATACHANGETYPE, new StringPrimitive(DataChangeType.NEVER.name())); //Add the dataChangeThreshold aspect aspects.put(Aspects.ASPECT_DATACHANGETHRESHOLD, new NumberPrimitive(0.0)); //Add the cacheTime aspect aspects.put(Aspects.ASPECT_CACHETIME, new IntegerPrimitive(0)); //Add the isPersistent aspect aspects.put(Aspects.ASPECT_ISPERSISTENT, new BooleanPrimitive(false)); //Add the isReadOnly aspect aspects.put(Aspects.ASPECT_ISREADONLY, new BooleanPrimitive(false)); //Add the pushType aspect aspects.put("pushType", new StringPrimitive(DataChangeType.NEVER.name())); //Add the defaultValue aspect aspects.put(Aspects.ASPECT_DEFAULTVALUE, new BooleanPrimitive(true)); //Set the aspects of the property definition property1.setAspects(aspects); //Add the property definition to the Virtual Thing this.defineProperty(property1);   Property values can either be set with defaults using the aspects setting. Nevertheless, setting a default value will affect the Property in the ThingWorx platform after binding. It will not set a local value in the client application. In this example, we make a request to the ThingWorx Composer for the current values of the delivery truck properties using our getter methods:   //Get the current values from the ThingWorx Composer deliveriesMade = getDeliveriesMade(); deliveriesLeft = getDeliveriesLeft(); totalDeliveries = getTotalDeliveries(); driver = getDriver(); speed = getSpeed(); location = getLocation();   Create Event Definitions   As with Properties, Events can be created using annotations or code as shown in SimpleThing.java. Here we create the DeliveryStop event that is in the DeliveryTruck instances.   With Annotation @ThingworxEventDefinitions(events = { @ThingworxEventDefinition(name="DeliveryStop", description="The event of a delivery truck stopping to deliver a package.", dataShape="DeliveryTruckShape", isInvocable=true, isPropertyEvent=false) })   Without Annotation //Create the event definition with name and description EventDefinition event1 = new EventDefinition(event, "Description for Event1"); //Set the event data shape event1.setDataShapeName("SimpleDataShape"); //Set remote access event1.setLocalOnly(false); //Add the event definition to the Virtual Thing this.defineEvent(event1);   Create Remote Services   With remote Services, the implementation is handled by the Java application and can be called either within the application or remotely, by the Composer while a connection is established. The GetTruckReadings Service, a dummy Service used as an example of how to create a remote Service, populates an Info Table and returns that Info Table for whoever would like to use it. You can see how it is possible to define remote Services that can later be bound to Things in the Composer. A Service is defined using @ThingworxServiceDefinition annotation and its result is defined using @ThingworxServiceResult. These annotations take various parameters among including:   Name Description baseType Aspects In the second line, you can see the name of the result being set by the CommonPropertyNames field to keep development consistent with creating Things in the Composer.   With Annotation @ThingworxServiceDefinition(name="GetTruckReadings", description="Get Truck Readings") @ThingworxServiceResult(name=CommonPropertyNames.PROP_RESULT, description="Result", baseType="INFOTABLE", aspects={"dataShape:DeliveryTruckShape"})   Without Annotation //Create the service definition with name and description ServiceDefinition service1 = new ServiceDefinition(service, "Description for Service1"); //Create the input parameter to string parameter 'name' FieldDefinitionCollection fields = new FieldDefinitionCollection(); fields.addFieldDefinition(new FieldDefinition("name", BaseTypes.STRING)); service1.setParameters(fields); //Set remote access service1.setLocalOnly(false); //Set return type service1.setResultType(new FieldDefinition(CommonPropertyNames.PROP_RESULT, BaseTypes.STRING)); //Add the service definition to the Virtual Thing this.defineService(service1); //Service1 Definition public String Service1(String name) throws Exception { String result = "Hello " + name; return result; }     Create Data Shapes   Data Shapes must be created using code as seen in DeliveryTruckThing.java as shown below:   // Data Shape definition that is used by the delivery stop event // The event only has one field, the message FieldDefinitionCollection fields = new FieldDefinitionCollection(); fields.addFieldDefinition(new FieldDefinition(ACTIV_TIME_FIELD, BaseTypes.DATETIME)); fields.addFieldDefinition(new FieldDefinition(DRIVER_NAME_FIELD, BaseTypes.STRING)); fields.addFieldDefinition(new FieldDefinition(TRUCK_NAME_FIELD, BaseTypes.BOOLEAN)); fields.addFieldDefinition(new FieldDefinition(TOTAL_DELIVERIES_FIELD, BaseTypes.NUMBER)); fields.addFieldDefinition(new FieldDefinition(REMAIN_DELIVERIES_FIELD, BaseTypes.NUMBER)); fields.addFieldDefinition(new FieldDefinition(LOCATION_FIELD, BaseTypes.LOCATION)); defineDataShapeDefinition("DeliveryTruckShape", fields);   NOTE: It is possible to create a Data Shape, and then use it in a Service definition within your code as StringIndex property, StringMap Data Shape, and StringMapService Service in SimpleThing.java.     Scan Cycles   To complete the implementation of the VirtualThing class, we recommend you provide an override and implementation to the processScanRequest method. This method provides a universal method for all VirtualThing implementations. This method could be used or a new method could be created for this purpose. The processScanRequest method in VirtualThing.java does not have an implementation of its own. An implementation from DeliveryTruckThing.java can be seen below:   // The processScanRequest is called by the DeliveryTruckClient every scan cycle @Override public void processScanRequest() throws Exception { // Execute the code for this simulation every scan this.scanDevice(); this.updateSubscribedProperties(1000); this.updateSubscribedEvents(1000); }   Bound Properties in Cycle   The scanDevice method in DeliveryTruckThing.java performs a number of tasks from retrieving property values to firing events. To retrieve a property using binding, a request is made to the client using the name of the property. A good programming practice is to handle how these properties are accessed and set. Note that the update method for properties and events must be used after queueing an event or setting a Property value. In the example below, getter and setter methods are used for added control. The getProperty() call is used on the VirtualThing:   public Double getSpeed() { return (Double) getProperty("Speed").getValue().getValue(); } public void setSpeed() throws Exception { setProperty("Speed", this.speed); } public Location getLocation() { return (Location) getProperty("Location").getValue().getValue(); } public void setLocation() throws Exception { setProperty("Location", this.location); }     Step 8: Services and Events   Events and Services can be very useful. Events are a good way to make a Service be asynchronous. You’re able to call a Service, let it return and then your Entity can subscribe to your Event and not keep the original Service function waiting. Events are also a good way to allow the platform to respond to data when it arrives on the edge device without it having to poll the edge device for updates. The DeliveryTruck Entities in the Composer contains a remote Event. You can find a remote Service within the SimpleThing_1 entity.   Fire Event To fire an Event, create a ValueCollection instance, and load it with the necessary fields for the Data Shape of that Event. Then, send the client the request to fire the Event with the collected values, the Event, and information to find the Entity the Event belongs to as shown below in DeliveryTruckThing.java:   // Set the event information of the defined data shape for a truck stop event ValueCollection payload = new ValueCollection(); // Set values to the fields payload.put(LOCATION_FIELD, new LocationPrimitive(location)); payload.put(REMAIN_DELIVERIES_FIELD, new NumberPrimitive(deliveriesLeft)); payload.put(ACTIV_TIME_FIELD, new DatetimePrimitive(DateTime.now())); payload.put(TOTAL_DELIVERIES_FIELD, new NumberPrimitive(totalDeliveries)); payload.put(DRIVER_NAME_FIELD, new StringPrimitive(driver)); payload.put(TRUCK_NAME_FIELD, new StringPrimitive(super.getBindingName())); // This will trigger the 'DeliveryStop' of a remote thing // on the platform. super.queueEvent("DeliveryStop", new DateTime(), payload);   Execute Service   To execute a Service, you must create a ValueCollection instance, and load it with the necessary parameters of the Service. The ValueCollection is created only when Services and Events are not defined by annotations. Afterwards, you would send the client the request to execute the Service with the parameter values, the Service name, the timeout setting in milliseconds for the Service to finish executing, and information to find the Entity the Service belongs to as shown below in SimpleThingClient.java:   public String callService(String name) throws Exception{ ValueCollection payload = new ValueCollection(); payload.put("name", new StringPrimitive("Timothy")); InfoTable table = handleServiceRequest(service, payload); return table.getFirstRow().getStringValue("name"); }   TIP: The code for creating the Service and Event should be in the constructor of the extended VirtualThing (or a method called from the constructor). Also, the Service code examples will work as long as the actual Service is defined. You can see from the examples that the annotation method is much cleaner.     Click here view Part 5 of this guide.
View full tip
    Step 6: Power Grid Example   In the Power Grid application, there are three Generator Things and three Consumers. Each Thing has a number of Properties based on its location, wattage, and its power lines provided with power. In this design, when a generator goes offline, comes back online, or one of the other power grid aspects are updated/created/deleted, the Property values are updated. The GeneratorThing class extends the VirtualThing class and based on the Generator entities in the Composer. After extending VirtualThing, there are a number of steps necessary to get going. For the GeneratorThing and SimpleThing classes, there are a number of methods for creating Properties, Events, Services, and Data Shapes for ease of use.   The constructor for the GeneratorThing takes in the type of electricity generator, name of the Thing, the description of the Thing, and the ConnectedThingClient instance used to make the connection. It then sends these values to the VirtualThing constructor as shown below. public GeneratorThing(String type, String name, String description, ConnectedThingClient client) { super(name, description, client); ...   We use the initializeFromAnnotations method to initialize all of the annotations that we will create in this class. This is done as follows and a necessary call for VirtualThings in the constructor:   initializeFromAnnotations();   Create Properties   You can create Properties in two ways. Using annotations is the recommended method, but there are times in which programmatically creating properties is the best option. For example, constructing dynamic features or allowing inline functionality would call for the coding style of Property creation. The following shows the Properties that correlate to those in the DeliveryTruck Entities in the Composer. To do this within the code, you would use a PropertyDefinition instance as shown in the SimpleThing.java property1 creation.   With Annotation @ThingworxPropertyDefinition(name="GeneratorType", description="Type of generator", baseType="STRING", aspects={"isReadOnly:false"}),@ThingworxPropertyDefinition(name="Wattage", description="Wattage produced", baseType="NUMBER", aspects={"isReadOnly:false"}),@ThingworxPropertyDefinition(name="Amps", description="Amps", baseType="NUMBER", aspects={"isReadOnly:false"}),@ThingworxPropertyDefinition(name="Voltage", description="Voltage", baseType="NUMBER", aspects={"isReadOnly:false"}),@ThingworxPropertyDefinition(name="UpTime", description="Number of minutes since the generator connected online", baseType="NUMBER", aspects={"isReadOnly:false"}),@ThingworxPropertyDefinition(name="Status", description="Status of the generator", baseType="NUMBER", aspects={"isReadOnly:false"}),@ThingworxPropertyDefinition(name="Location", description="Location of the generator", baseType="LOCATION", aspects={"isReadOnly:false"}),@ThingworxPropertyDefinition(name="LastSync", description="The last time we performed a sync", baseType="DATETIME", aspects={"isReadOnly:false"}),@ThingworxPropertyDefinition(name="ConnectedSince", description="Time where we last performed a successful connection", baseType="DATETIME", aspects={"isReadOnly:false"}),@ThingworxPropertyDefinition(name="TransmissionLines", description="An infotable of power lines", baseType="INFOTABLE", aspects={"isReadOnly:false"}) Without Annotation //Create the property definition with name, description, and baseType PropertyDefinition property1 = new PropertyDefinition(property, "Description for Property1", BaseTypes.BOOLEAN); //Create an aspect collection to hold all of the different aspects AspectCollection aspects = new AspectCollection(); //Add the dataChangeType aspect aspects.put(Aspects.ASPECT_DATACHANGETYPE, new StringPrimitive(DataChangeType.NEVER.name())); //Add the dataChangeThreshold aspect aspects.put(Aspects.ASPECT_DATACHANGETHRESHOLD, new NumberPrimitive(0.0)); //Add the cacheTime aspect aspects.put(Aspects.ASPECT_CACHETIME, new IntegerPrimitive(0)); //Add the isPersistent aspect aspects.put(Aspects.ASPECT_ISPERSISTENT, new BooleanPrimitive(false)); //Add the isReadOnly aspect aspects.put(Aspects.ASPECT_ISREADONLY, new BooleanPrimitive(false)); //Add the pushType aspect aspects.put("pushType", new StringPrimitive(DataChangeType.NEVER.name())); //Add the defaultValue aspect aspects.put(Aspects.ASPECT_DEFAULTVALUE, new BooleanPrimitive(true)); //Set the aspects of the property definition property1.setAspects(aspects); //Add the property definition to the Virtual Thing this.defineProperty(property1); Property values can either be set with defaults using the aspects setting. Nevertheless, setting a default value will affect the Property in the ThingWorx platform after binding. It will not set a local value in the client application. In this example, we make a request to the ThingWorx Composer for the current values of the generator properties using our getter methods: //Get the current values from the ThingWorx Composer wattage = getGeneratorWattage(); voltage = getGeneratorVoltage(); location = getLocation();   Create Event Definitions   As with Properties, Events can be created using annotations or code as shown in SimpleThing.java. Here we create the GeneratorOffline event that is in the Generator instances.   With Annotation   @ThingworxEventDefinitions(events = { @ThingworxEventDefinition(name="GeneratorOffline", description="The event of a generator going offline", dataShape="GeneratorShape", isInvocable=true, isPropertyEvent=false) })   Without Annotation   //Create the event definition with name and description EventDefinition event1 = new EventDefinition(event, "Description for Event1"); //Set the event data shape event1.setDataShapeName("SimpleDataShape"); //Set remote access event1.setLocalOnly(false); //Add the event definition to the Virtual Thing this.defineEvent(event1);   Create Remote Services   With remote Services, the implementation is handled by the Java application and can be called either within the application or remotely, by the Composer while a connection is established. The GetTruckReadings Service, a dummy Service used as an example of how to create a remote Service, populates an Info Table and returns that Info Table for whoever would like to use it. You can see how it is possible to define remote Services that can later be bound to Things in the Composer. A Service is defined using @ThingworxServiceDefinition annotation and its result is defined using @ThingworxServiceResult. These annotations take various parameters among including:   Name Description baseType Aspects In the second line, you can see the name of the result being set by the CommonPropertyNames field to keep development consistent with creating Things in the Composer. With Annotation @ThingworxServiceDefinition(name="OhmsLawCalculator", description="Get the watts/power (W) based on input voltage (V) and current (I)") @ThingworxServiceResult(name=CommonPropertyNames.PROP_RESULT, description="Result", baseType="NUMBER")   Without Annotation //Create the service definition with name and description ServiceDefinition service1 = new ServiceDefinition(service, "Description for Service1"); //Create the input parameter to string parameter 'name' FieldDefinitionCollection fields = new FieldDefinitionCollection(); fields.addFieldDefinition(new FieldDefinition("name", BaseTypes.STRING)); service1.setParameters(fields); //Set remote access service1.setLocalOnly(false); //Set return type service1.setResultType(new FieldDefinition(CommonPropertyNames.PROP_RESULT, BaseTypes.STRING)); //Add the service definition to the Virtual Thing this.defineService(service1); //Service1 Definition public String Service1(String name) throws Exception { String result = "Hello " + name; return result; }   Create Data Shapes   Data Shapes must be created using code as seen in GeneratorThing.java as shown below:   // Data Shape definition that is used by the generating going offline event   FieldDefinitionCollection fields = new FieldDefinitionCollection();fields.addFieldDefinition(new FieldDefinition(TYPE_FIELD, BaseTypes.STRING));fields.addFieldDefinition(new FieldDefinition(WATTAGE_FIELD, BaseTypes.STRING));fields.addFieldDefinition(new FieldDefinition(AMPS_FIELD, BaseTypes.NUMBER));fields.addFieldDefinition(new FieldDefinition(VOLTAGE_FIELD, BaseTypes.NUMBER));fields.addFieldDefinition(new FieldDefinition(UP_TIME_FIELD, BaseTypes.NUMBER));fields.addFieldDefinition(new FieldDefinition(STATUS_FIELD, BaseTypes.NUMBER));fields.addFieldDefinition(new FieldDefinition(LOCATION_FIELD, BaseTypes.LOCATION));fields.addFieldDefinition(new FieldDefinition(LAST_SYNC_FIELD, BaseTypes.DATETIME));fields.addFieldDefinition(new FieldDefinition(CONNECTED_SINCE_FIELD, BaseTypes.DATETIME));fields.addFieldDefinition(new FieldDefinition(POWER_LINES_FIELD, BaseTypes.INFOTABLE));defineDataShapeDefinition("GeneratorShape", fields); NOTE: It is possible to create a Data Shape, and then use it in a Service definition within your code as StringIndex property, StringMap Data Shape, and StringMapService Service in SimpleThing.java.     Scan Cycles   To complete the implementation of the VirtualThing class, we recommend you provide an override and implementation to the processScanRequest method. This method provides a universal method for all VirtualThing implementations. This method could be used or a new method could be created for this purpose. The processScanRequest method in VirtualThing.java does not have an implementation of its own. An implementation from DeliveryTruckThing.java can be seen below:   // The processScanRequest is called by the PowerGrid class every scan cycle @Override public void processScanRequest() throws Exception { // Execute the code for this simulation every scan this.scanDevice(); this.updateSubscribedProperties(1000); this.updateSubscribedEvents(1000); }   Bound Properties in Cycle   The scanDevice method in GeneratorThing.java performs a number of tasks from retrieving Property values to firing Events. To retrieve a Property using binding, a request is made to the client using the name of the Property. A good programming practice is to handle how these Properties are accessed and set. Note that the update method for Properties and Events must be used after queueing an Event or setting a Property value. In the example below (used within the Delivery Truck Example), getter and setter methods are used for added control. The getProperty() call is used on the VirtualThing: public Double getSpeed() { return (Double) getProperty("Speed").getValue().getValue(); } public void setSpeed() throws Exception { setProperty("Speed", this.speed); } public Location getLocation() { return (Location) getProperty("Location").getValue().getValue(); } public void setLocation() throws Exception { setProperty("Location", this.location); }     Click here to view Part 4 of this guide.
View full tip
    Step 3: Test Connectivity    Before you can begin developing with the ThingWorx Java SDK, you will need to generate an Application Key and add it to the source code provided.   Generate Application Key On the Home screen of Composer click + New the top left.     In the dropdown list, click Application Key.   Give your Application Key a name (i.e., MyAppKey) and set the Project (ie, PTCDefaultProject). Assign the application key to a User.   Click Save. After saving, a Key ID is generated and appears above the Expiration Date. This is the secret key that you will use to make secure connections. If you have not updated the Expiration Date field, the default will be one day. This is an example of the Application Key ID that you will use for a successfull connection.   NOTE: Using the Application Key for the default Administrator is not recommended. If administrative access is absolutely necessary, create a User and place the user as a member of Admins.   Modify Source File   At the top level, locate the SimpleClient Java source file in a package under the src folder. Open the SimpleClient.java source file and update the URI with the IP address of your ThingWorx instance. For example: config.setUri("ws://127.0.0.1:80/Thingworx/WS");   In the SimpleClient.java source file, update the Application Key with the Application Key you stored from the last section. For example: config.setSecurityClaims(new SamplePasswordCallback(cmd.getOptionValue("b3d06be7-c9e1-4a9c-b967-28cd4c49fa80"))); //SET YOUR APPLICATION KEY HERE     Compile and Run Code   Right-click the SimpleClient.java file. Scroll to Run As then select Java Application.   The output in the Eclipse console will confirm connection and authentication to the ThingWorx platform.     Step 4: Run Sample Applications   The Java code provided in the download is pre-configured to run and connect to the Entities in the ThingWorxEntitiesExport.xml file. Keep track of the IP address of the ThingWorx Composer you are using. Many of the utilized libraries are based on the use of Java 1.8. Use other versions at your own risk.   Within your Eclipse ThingWorx Development project, navigate to the com.thingworx.sdk.examples package and open ExampleClient.java.   The URI structure is as follows: ws://host_name:port_number/Thingworx/WS. Update the host_name and port_number to the host and port of your ThingWorx server. Navigate to the following line and update the IP and port if necessary: config.setUri("ws:// 127.0.0.1:80/Thingworx/WS"); TIP: To enable secure https connection, change “ws” to “wss” and port number to 443. (default port for https is 443). Navigate to the following line in ExampleClient.java and update the value of appKey to the keyId in the “admin_key” Application Key in the ThingWorx Composer. If this connect fails, attempt to use the "admin_key" Application Key in the ThingWorx Composer. Using the default admin's key is not recommended. For future development, create users and add them to be a member of the group of Administrators: config.setSecurityClaims(new SamplePasswordCallback(cmd.getOptionValue("b3d06be7-c9e1-4a9c-b967-28cd4c49fa80"))); //SET YOUR APPLICATION KEY HERE Right-click ExampleClient.java, scroll to Run As, and select Java Application. You should be able to see a new Thing in your Composer called SimpleThing_2.   To check the connected Entities, go to the Monitoring screen.   Click Monitoring. Click Remote Things from the list to see the connection status.   You will now be able to see and select the Entity within the list. NOTE: SimpleThing_1 and SimpleThing_2 will also have an update to the lastConnection property. While SimpleThing_1 is unbound, SimpleThing_2 is bound for the duration of the application run time.     Step 5: Example Client Connection   The Java code provided in the ExampleClient.java file initiates a number of actions from establishing a connection to defining Services and Properties.   Configuration   In the first step of connecting to the platform (Establish Physical Websocket), we create a ClientConfigurator instance to hold the location (URI) needed to point to the websocket of the ThingWorx Composer. It is also used to:   Configure the ThingWorx URI of the server Set the Application Key used for authentication Set the connection reconnection interval Ignore ssl errors ClientConfigurator config = new ClientConfigurator(); config.setUri("ws://127.0.0.1:80/Thingworx/WS");   Authentication   In the second step of connecting to the platform (Authenticate), we provide this ClientConfigurator instance an Application Key that belongs to the default_user that was imported to the ThingWorx Composer. The Application Key must match the keyId value for the User you would want to have the specific control and permissions.   **WARNING: It is not best practice to utilize the Administrator’s Application Keys in Edge development. For the reason that Application Keys in java source code are vulnerable to de-compilation and storing them in a configuration file is dangerous, the best practice is to create new Users, and give them any permission deemed necessary.   config.setSecurityClaims(new SamplePasswordCallback(cmd.getOptionValue("b3d06be7-c9e1-4a9c-b967-28cd4c49fa80"))); //SET YOUR APPLICATION KEY HERE   NOTE: If you are not using SSL/TLS, use this code to test against a server using a self-signed certificate: config.ignoreSSLErrors(true);   Create Client Communication   To create a client with the above configuration, create an instance of ExampleClient and pass the configurator created in the step above. ExampleClient is a class that extends ConnectedThingClient. The ConnectedThingClient facilitates communication to the ThingWorx server as well as manages any contained VirtualThing. ExampleClient.java is an example of this and creates the instance on the line: ExampleClient client = new ExampleClient(config); Create and Bind Thing Before starting the client, it is best to bind all VirtualThings that will be bound in order to decrease the necessary request messages. Binding Things before starting the client creates one bind request message to go to the ThingWorx server with all of the Things included. Starting the client then binding Things creates a bind request for each Thing that is being bound. // Create a new VirtualThing. The name parameter should correspond with the // name of a RemoteThing on the Platform. In this example, the SimpleThing_1 is used. VirtualThing thing = new VirtualThing(ThingName, "A basic virtual thing", client); // Bind the VirtualThing to the client. This will tell the Platform that // the RemoteThing 'SimpleThing_1' is now connected and that it is ready to // receive requests. client.bindThing(thing);   Start Connection   You can now start the client, which will establish the AlwaysOn protocol with the ThingWorx Composer. This protocol provides bi-directional communication between the ThingWorx Composer and the running client application.   // Start the client. The client will connect to the server and authenticate // using the ApplicationKey specified above. client.start();       Click here to view Part 3 of this guide.    
View full tip
  Step 8: Call Custom Service   In order to execute a Service of a specific Thing with the REST API, you can use the POST verb.   Required Parameters:   AppKey created by your ThingWorx server Name of the Thing that implements a custom Service Name of the custom Service Names of inputs, if any, required by the Service Request   Construct the URL. To call a custom Service of an existing Thing, make an HTTP POST to this endpoint: <server_ip:port>/Thingworx/Things/<name of Thing>/Services/<name of Service> Substitute <name of Thing> with the actual name of a Thing that exists on the ThingWorx server, and <name of Service> with an existing Service. Send request parameters The names of the inputs along with their values are sent in the body of the POST as a JSON object. For example, the JSON object below will send a parameter named 'firstNumber' with a value of 35 and a parameter named secondNumber with a value of 711. { "firstNumber": "35", "secondNumber": "711" } NOTE: The full request must include a header with the appKey for your specific ThingWorx server.   Response   A successful call to a Service will return a JSON object in the body of the response containing both a DataShape object and an array named rows. Inside the array, an object named result will have the value returned by the custom Service. Here is an example response:   { "dataShape": { "fieldDefinitions": { "result": { "aspects": {}, "baseType": "NUMBER", "description": "", "name": "result", "ordinal": 0 } } }, "rows": [ { "result": 746.0 } ] } WARNING for other HTTP clients: Most HTTP clients do not set a Content-Type header by default, without this header set the server will return an error message. The POST request to the Service endpoint has a JSON body so the header must be set to match the format of the request body.   Step 9: Import and Export Entities   Collections of Entities that perform a function can be grouped then shared by exporting from a server. These entity collections are called Extensions and can be uploaded using the REST API. You can create custom Extensions or download Extensions created by other developers. You can use the REST API to automate the process of uploading an Extension to a ThingWorx server.   Required Parameters   AppKey created by your Foundation server Path to properly formatted zip file containing extension Entities Request   Construct the URL. Upload an Extension by making an HTTP POST to the endpoint: <Server IP:port〉Thingworx/ExtensionPackageUploader Send request parameters. The zip file that contains the extension entities is uploaded as a multi-part POST. The name of the file parameter is upload. Use a library to properly format the multi-part POST request You must also send this header: X-XSRF-TOKEN:TWX-XSRF-TOKEN-VALUE Authenticate the Request. All API requests to the ThingWorx server must be authenticated either with a username and password or with an appKey. For this example we will authenticate by passing the appKey as a URL query string parameter. The parameter appKey is recognized by the ThingWorx server as an authentication credential in requests, it can be passed either as a URL query string parameter .../CreateThing?appKey=64b87... , or as request header appKey: 64b87...   Response   A successful call to upload an Extension will return a description of the Entities that were successfully uploaded in the body of the response.   HTTPie example: http -f POST iotboston.com:8887/Thingworx/ExtensionPackageUploader upload@/home/ec2-user/extension.zip X-XSRF-TOKEN:TWX-XSRF-TOKEN-VALUE appKey:d0a68eff-2cb4-4327-81ea-7e71e26bb645 cURL example: curl -v --header X-XSRF-TOKEN:TWX-XSRF-TOKEN-VALUE --header appKey:d0a68eff-2cb4-4327-81ea-7e71e26bb645 -F upload=@extension.zip iotboston.com:8887/Thingworx/ExtensionPackageUploader?purpose=import&validate=false     Download Things By Name   The REST API can be used to export a file representation of Things on a ThingWorx Foundation server. The downloaded file can be imported to another ThingWorx server making the Thing available for use.   Required Parameters   AppKey created by your Foundation server Name of the Thing Request   Construct the URL. Retrieve the components of a Thing by making an HTTP GET to the endpoint. Substitute <name of Thing> with the actual name of a Thing that exists on the ThingWorx server that wil be downloaded. <Server IP:port>/Thingworx/Exporter/Things/<name of Thing> Send request parameters. No parameters are sent. Authenticate the Request. All API requests to the ThingWorx server must be authenticated either with a username and password or with an appKey. For this example we will authenticate by passing the appKey as a URL query string parameter. The parameter appKey is recognized by the ThingWorx server as an authentication credential in requests, it can be passed either as a URL query string parameter .../CreateThing?appKey=64b87... , or as request header appKey: 64b87...   Response   It is possible for the content to be returned in two different formats by sending an Accept header with the request.   Desired Response Type  Accept Header Values JSON application/json XML text/xml HTML text/html (or omit Accept Header) CSV text/csv   A successful call to download a Thing will return a file in the body of the response suitable for importing into a ThingWorx Foundation server.   HTTPie example:   http -v GET iotboston.com:8081/Thingworx/Exporter/Things/PiThing appKey==d0a68eff-2cb4-4327-81ea-7e71e26bb645 Accept:text/xml     Download Things By Tag   The REST API can be used to export a file representation of Things on a ThingWorx Foundation server. This file can be imported to another ThingWorx server making the Thing available for use.   Required Parameters   AppKey created by your Foundation server Name of the Tag Request   Construct the URL. Retrieve the components of a Thing by making an HTTP GET to the endpoint <Server IP:port〉/Thingworx/Exporter/Things Send request parameters. The Tag name is sent as a request parameter named: searchTags Authenticate the Request. All API requests to the ThingWorx server must be authenticated either with a username and password or with an appKey. For this example we will authenticate by passing the appKey as a URL query string parameter. The parameter appKey is recognized by the ThingWorx server as an authentication credential in requests, it can be passed either as a URL query string parameter .../CreateThing?appKey=64b87... , or as request header appKey: 64b87...   Response   It is possible for the content to be returned in two different formats by sending an Accept header with the request.   Desired Response Type  Accept Header Values JSON application/json XML text/xml HTML text/html (or omit Accept Header) CSV text/csv   A successful call to download a Thing will return a file in the body of the response suitable for importing into a ThingWorx Foundation server   HTTPie example:   http -v GET iotboston.com:8081/Thingworx/Exporter/Things searchTags==Applications:Raspberry_light appKey==d0a68eff-2cb4-4327-81ea-7e71e26bb645 Accept:text/xml     Step 10: Authentication Tags   A Tag is composed of two parts: a Vocabulary, and a specific vocabulary term. A Tag is shown as Vocabulary:VocabularyTerm. Almost every ThingWorx entity can be tagged. Tags can be used to create a relationship between many different ThingWorx Entities.   Create New Tag   You can use the REST API to create a new dynamic Tag vocabulary.   Required Parameters   AppKey created by your Foundation server Name of Tag Vocabulary   Request   Construct the URL. Create a new Tag Vocabulary by making an HTTP PUT to this endpoint: 〈Server IP:port〉/Thingworx/ModelTags Send Request Parameters. The name of the new DataShape and the name of the base DataShape that the new DataShape extends are sent in the body of the POST as a JSON object. For example, the JSON object below will create a new DataShape named SomeTestDataShape using the system template GenericThing. { "name": "SecondTest", "isDynamic": "true" } Authenticate Request. All API requests to the ThingWorx server must be authenticated either with a username and password or with an appKey. For this example we will authenticate by passing the appKey as a URL query string parameter. The parameter appKey is recognized by the ThingWorx server as an authentication credential in requests, it can be passed either as a URL query string parameter .../CreateThing?appKey=64b87... , or as request header appKey: 64b87...   Response   A successful call to the ModelTag Service does not return any content in the body of the response, only an HTTP 200 is returned.   HTTPie example:   http -v -j PUT http://52.201.57.6/Thingworx/ModelTags name=SecondTest isDynamic=true appKey==64b879ae-2455-4d8d-b840-5f5541a799ae     Warning for other HTTP clients: Most HTTP clients do not set a Content-Type header by default, without this header set the server will return an error message. The PUT request to the ModelTags endpoint has a JSON body so the header must be set to match the format of the request body. The Content-Type header does not appear in the sample HTTPie call because HTTPie sets the Accept and Content-type request headers to application/json by default. Below is an example cURL call that explicitly sets the Content-Type header to application/json.   curl -v -H "Content-Type: application/json" -X PUT -d '{"name": "SecondTest", "isDynamic":"true"}' http://52.201.57.6/Thingworx/ModelTags?appKey=d0a68eff-2cb4-4327-81ea-7e71e26bb645   Add Tag to Thing   You can use the REST API to add a Tag to a Thing. There must be a Thing and a Dynamic Tag Vocabulary already created on your Foundation Server before you can add a Tag.   Required Parameters   AppKey created by your Foundation server Name of the Thing to be tagged Name of Dynamic Tag Vocabulary Name of for Tag to be assigned to Thing Request   Construct the URL. Substitute 〈name of Thing〉 with the actual name of a Thing that exists on the ThingWorx server that will have the Tag added. Add a new Tag to an existing Thing by making an HTTP POST to this endpoint: 〈Server IP:port〉/Thingworx/Things/〈name of Thing〉/Services/AddTags Send request parameters. The name of the new field to be added and type of the field are sent in the body of the POST as a JSON object. For example, the JSON object below will create a new field named SomeNumber using the ThingWorx base type NUMBER. Some other commonly used types are STRING, INTEGER, and BOOLEAN. Include a header in the full request with the appKey for your specific ThingWorx server. { "tags" : "SecondlightTest:RaspberryTest", }   Response   A successful call to the AddTags Service does not return any content in the body of the response. Only an HTTP 200 is returned.   HTTPie example:   http -v -j http://52.201.57.6/Thingworx/Things/SomeTestThing/Services/AddTags appKey==64b879ae-2455-4d8d-b840-5f5541a799ae tags=SecondTest:RaspberryTest curl -v -H "Content-Type: application/json" -X POST -d '{"tags": "SecondlightTest:RaspberryTest"}' http://52.201.57.6/Thingworx/Things/PiThing/Services/AddTags?appKey=d0a68eff-2cb4-4327-81ea-7e71e26bb645 Warning for other HTTP clients: Most HTTP clients do not set a Content-Type header by default, without this header set the server will return an error message. The POST request to the AddPropertyDefinition endpoint has a JSON body so the header must be set to match the format of the request body. The Content-Type header does not appear in the sample HTTPie call because HTTPie sets the Accept and Content-type request headers to application/json by default. Below is an example cURL call that explicitly sets the Content-Type header to application/json.   curl -v -H "Content-Type: application/json" -X POST -d '{"tags": "SecondlightTest:RaspberryTest"}' http://52.201.57.6/Thingworx/Things/PiThing/Services/AddTags?appKey=d0a68eff-2cb4-4327-81ea-7e71e26bb645      Click here to view Part 4 of this guide.  
View full tip
  Use our developer toolkit to connect Java-enabled devices and build an application.     GUIDE CONCEPT This project will introduce complex aspects of the ThingWorx Java SDK and help you to get started with development.   Following the steps in this guide, you will develop your own IoT application with the ThingWorx Java SDK.   We will teach you how to use the Java programming language to connect and build IoT applications to be used with the ThingWorx Platform.   NOTE: This guide's content aligns with ThingWorx 9.3. The estimated time to complete all parts of this guide is 60 minutes.     YOU'LL LEARN HOW TO   Establish and manage a secure connection with a ThingWorx server, including SSL negotiation and connection maintenance Enable easy programmatic interaction with the Properties, Services, and Events that are exposed by Entities running on a ThingWorx server Create applications that can be directly used with your device running the Java programming language Basic concepts of the Java Edge SDK How to use the Java Edge API to build a real-world application How to utilize resources provided in the Edge SDK to help create your own application   Step 1: Completed Example   Download the Java_SDK_Extra_Samples.zip attached to this article and extract the contents.   In this tutorial we walk you through a real-world scenario for a power grid network. The Java_SDK_Extra_Files.zip file provided to you contains the following files and Entities as a completed version of the scenario we will cover. Please keep in mind, the Java SDK can also be utilized for Android development and general Java development.   Name Description PowerGrid Source code for an extensive example of a power grid network Delivery Truck Source code for the delivery truck application ExampleClient Source code for examples on how to do different tasks FileTransfer Source code for a file transfer application Tunneling Source code for a tunneling application SimpleThing Source code for simple connections and examples SteamSensor Source code for a steam sensor that provides configuration during runtime   Once you complete your Java environment setup and import the JavaExampleEntities.xml file into ThingWorx Composer, you will be able to utilize these Entities:   Feature Entity Type Description  Generator1  Thing  Used with the power grid edge example  Generator2  Thing  Used with the power grid edge example  Generator3  Thing  Used with the power grid edge example  Consumer1  Thing  Used with the power grid edge example  Consumer2  Thing  Used with the power grid edge example  Consumer3  Thing  Used with the power grid edge example DeliveryTruck_1 Thing Used with the delivery truck edge example DeliveryTruck_2 Thing Used with the delivery truck edge example DeliveryTruck_3 Thing Used with the delivery truck edge example FileTransferExample Thing Used with the file transfer edge example TunnelExample Thing Used with the tunnel edge example SimpleThing_1 Thing Used as a simple edge example for coding and connectivity SimpleDataShape Data Shape Used as a simple edge Data Shape example for coding and connectivity DeliveryTruckShape Data Shape Used as a Data Shape with the delivery truck edge example EdgeExample Model Tag Used as a Model Tag for tagging all entities; enables quicker searches DeliveryTable Data Table Used as a Data Table with the delivery truck edge example Default_user User User created to be used with the SDK examples PTC Organization An Organization that helps with security in edge examples Admin_key Application Key An Application Key used for the Admin Default_key Application Key An Application Key used for the Default User; this is the recommended key to use   Step 2: Environment Setup   You can use the Java SDK with any IDE of your choice. The steps below demonstrate how to use the Eclipse IDE as an example.   If you have not already done so, install a Java Development Kit (JDK) from Corretto or OpenJDK in order to compile and run Java code and download the ThingWorx Java SDK. The download will include the JARs necessary to run the SDK.   The Eclipse Java IDE is a centralized location to store the code, resources, and files utilized by this guide. Download and install the latest Eclipse Java IDE from the Eclipse website.   Create Java Project   When the Eclipse Welcome window appears, click Create a new Java Project. In the New Java Project setup wizard, enter ThingWorx Development as the project name. Java 1.8 is the supported and recommended JDK.   Click Finish.    Set Up User Library   Right click the newly created ThingWorx Development project in the Package Explorer. Expand the Build Path selection and select Add Libraries.  Click User Library. Click Next.  Click User Libraries. Click New, enter ThingWorx Java SDK as the library name. Click OK.   Set Up Javadoc   With the ThingWorx Java SDK selected, click the Add External JARs button.       In the pop-up window, navigate to the location in which you unzipped the ThingWorx Java Edge SDK. Navigate to the lib folder, select all of the JARs, then click Open. Within the ThingWorx Java SDK library, expand the thingworx-common-xxxx.jar folder and select Javadoc location. Click Edit. Select the Javadoc in archive and External file radio buttons, then click Browse. In the pop-up window, navigate to the location in which you unzipped the ThingWorx Java Edge SDK. Navigate to the lib folder, highlight the thingworx-java-sdk JavaDoc JAR File, then click Open. Click OK. Repeat steps 1-8 for the thingworx-communications-client JAR’s Javadoc location field shown in step 10. Confirm that your setup looks like this:   Click OK. Select the checkbox for the ThingWorx Java SDK library, then click Finish.   Import Sample Files   Right click the ThingWorx Development project and click Import.   In the Import wizard, type File System into the filter. Click Next.     In the pop-up window, navigate to the location in which you unzipped the ThingWorx Java Edge SDK. Navigate inside the samples folder and select the src folder.     Click OK. Select the checkbox for the src folder, then click Browse.     Type ThingWorx Development/src into the text box.   Click OK. Click Finish.     Expand the ThingWorx Development project.       Click here to view Part 2 of this guide.
View full tip
  Step 5: Add Property to Thing   Property values are associated with a specific Thing, and are used to store data that changes over time. Required Parameters   AppKey created by your ThingWorx server Name of the Thing to which the Property will be added Name for the new Property and data type of the Property's value   Request   Construct the URL. A new Property can be added to an existing Thing by making an HTTP POST to this endpoint. Substitute <name of Thing> with the actual name of a Thing that exists on the ThingWorx server that will have the Property added. <server_ip:port>/Thingworx/Things/<name of Thing>/Services/AddPropertyDefinition       2. Send request parameters. The name of the new Property to be added and type of the Property are sent in the body of the POST as a JSON object. For example, the JSON object below will create a new Property named SomeNumber using the ThingWorx base type NUMBER. Some other commonly used types are STRING, INTEGER, and BOOLEAN. { "name" : "SomeNumber", "type" : "NUMBER" }   NOTE: The full request must include a header with the appKey for your specific ThingWorx server.   Response   A successful call to the AddPropertyDefinitionservice does not return any content in the body of the response. Only an HTTP 200 is returned.   HTTPie example:   http -v -j http://52.201.57.6/Thingworx/Things/SomeTestThing/Services/AddPropertyDefinition appKey==64b879ae-2455-4d8d-b840-5f5541a799ae name=SomeNumber type=NUMBER   WARNING for other HTTP clients: Most HTTP clients do not set a Content-Type header by default, without this header set the server will return an error message. The POST request to the AddPropertyDefinition endpoint has a JSON body so the header must be set to match the format of the request body.   The Content-Type header does not appear in the sample HTTPie call because HTTPie sets the Accept and Content-type request headers to application/json by default. Below is an example cURL call that explicitly sets the Content-Type header to application/json.   curl -v -H "Content-Type: application/json" -X POST -d '{"name": "SomeNumber","type": "NUMBER"}' http://52.201.57.6/Thingworx/Things/SomeTestThing/Services/AddPropertyDefinition?appKey=d0a68eff-2cb4-4327-81ea-7e71e26b     Validate   View new Property on Server. The Property you just added is now available in the ThingWorx Composer. Before anything else can be done with your new Property through the REST API, the Thing must be restarted. To confirm your Property was added to your Thing, open Composer and click Things, select the name of the Thing you just created, then click Properties and Alerts. You will see the new Property listed. You may need to refresh to see the changes.             2. Execute RestartThing Service. Restart your Thing with the added Property by making a HTTP POST to the endpoint below. Substitute <name of Thing> with the actual name of the Thing you created. No body is required in the POST, however, the Content-Type header of a POST that executes a Service must always be set to application/json or text/xml even if the service does not take any parameters and no content is being sent. No body is returned upon success, only an HTTP 200 response code. <server_ip:port>/Thingworx/Things/<name of Thing>/Services/RestartThing   HTTPie example:   http -v -j POST http://52.201.57.6/Thingworx/Things/SomeTestThing/Services/RestartThing appKey==64b879ae-2455-4d8d-b840-5f5541a799ae      Step 6: Set Property Value   You can set the value of a specific Property with the REST API using the PUT verb. Required Parameters:   AppKey created by your Foundation server A Name of valid Thing and name of Property New Property value   Request   Construct the URL. A Property value can be set by making an HTTP PUT call to this endpoint: <server_ip:port>/Thingworx/Things/<name of Thing>/Properties/<name of Property> Substitute <name of Thing> with the actual name of a Thing that exists on the ThingWorx server and <name of Property> with the name of a Property that has been added to the Thing.       2. Send request parameters.   The name of the Property to be set is duplicated in the body of the PUT and is sent along with the value as a JSON object. The example below will set the Property SomeNumber to 34.4 { "SomeNumber" : 34.4 } NOTE: The full request must include authentication credentials for your specific ThingWorx server.   Response   A successful call to set a Property does not return any content in the body of the response. Only an HTTP 200 is returned.   HTTPie example   http -v -j PUT http://52.201.57.6/Thingworx/Things/SomeTestThing/Properties/SomeNumber appKey==64b879ae-2455-4d8d-b840-5f5541a799ae SomeNumber=34.4   WARNING for other HTTP clients: By default HTTPie sets the Accept and Content-type request headers to application/json. A PUT request to the Properties endpoint has a JSON body so the Content-Type header must be set to match the format of the request body.   Most HTTP clients do not set the correct header by default and it must be set explicitly. Below is an example cURL call that sets the Content-Type header to application/json   curl -v -H "Content-Type: application/json" -X PUT -d '{"SomeNumber":12.34}' http://52.201.57.6/Thingworx/Things/SomeTestThing/Properties/SomeNumber?appKey=d0a68eff-2cb4-4327-81ea-7e71e26b     Validate   To confirm your Property was changed for your Thing, go to Composer and click Things. Select the name of the Thing you just created, then click Properties and Alerts tab. Click on the circular arrow Refresh to see the updated Property value.       Step 7: Get Latest Property Value   You can retrieve Property values of a specific Thing with the REST API using the GET verb.   Required Parameters:   AppKey created by your ThingWorx server Name of Thing and name of Property   Request   Construct the URL. To get the current value for a property, make a GET request to this endpoint: <server_ip:port>/Thingworx/Things/<name of Thing>/Properties/<name of property> Substitute <name of thing> with the actual name of a Thing that exists on the ThingWorx server and <name of Property> with the name of a Property that has been added to the Thing.   NOTE: The full request will also need to include the hostname and authentication credentials for your specific ThingWorx server.         2. Send request parameters. Other than authentication, no other parameters are used in  this GET request.   Response   The content can be returned in four different formats by sending an Accept header with the request.   Desired Response Type Accept Header Values JSON application/json XML text/xml HTML text/html (or omit Accept Header) CSV text/csv   HTTPie example:   http -v -j http://52.201.57.6/Thingworx/Things/SomeTestThing/Properties/SomeNumber appKey==64b879ae-2455-4d8d-b840-5f5541a799ae     Click here to view Part 3 of this guide.
View full tip
    Step 4: Use Collection Widget   At this point, you have created the following Entities:   A Thing with data stored in an Info Table Property (columns defined by a Data Shape)   A base Mashup (containing Gauge, LED Display, and Text Field Widgets) that displays an individual row of data from the table   Now, you need to use the Collection Widget to display this Mashup for every row of data in the table.   On the ThingWorx Composer Browse tab, click Visualization > Mashups, + New              2. Keep the default of Responsive with no Templates chosen, and click OK.        3. In the Name field, enter cwht_collection_mashup              4. If Project is not already set, search for and select PTCDefaultProject.        5, Click Save.        6. Click Design               7.  On the top-left Layout tab, ensure that the default of Positioning > Responsive is selected.  You want the "base" Mashup to generally be Static, while the "collection" Mashup should be Responsive to allow it to grow to an appropriate size.         8. From the top-left Widgets tab, drag-and-drop a Collection Widget onto the central Canvas area.       Access Mashup Data Service   Click the + icon at the top-right to open the Add Data pop-up menu.               2. In the Entity Filter field, search for and select cwht_thing.         3. In the Services Filter field, enter getproperties.         4. Click the right arrow beside GetProperties to add the GetProperties Service to the right-side of the pop-up menu.         5. Click the Execute on Load checkbox             6. Click Done to close the pop-up menu. The GetProperties Service of the cwht_thing is now shown on the right under the Data tab.         7. On the top-right, expand GetProperties.           8. Drag-and-drop GetProperties > infotable_property onto the Collection Widget            9. On the Select Binding Target pop-up, click Data     Configure Properties   In the Collection Widget's Filter Properties field in the bottom-left, enter mashup. This will limit the displayed Properties of the Collection Widget (in the bottom-left section) to only those containing the word "mashup".            2.  For the Mashup Property, search for and select cwht_base_mashup.  Choosing "cwht_base_mashup" lets the Collection Widget know which base Mashup to repeat in every Cell               3. In the MashupHeight field, enter 250 and hit the Tab keyboard key to apply the change. This Property changes the height of each Cell of the Collection Widget. Ensure the height is large enough to fit all of the Widgets.          4. In the MashupWidth field, enter 500 and hit the Tab keyboard key.  This Property changes the width of each Cell of the Collection Widget. Ensure the is large enough to fit all of the Widgets.            5. In the Filter Properties field, enter uidfield.          6. In the UIDField drop-down, select first_number.  The UIDField sets the unique identifier for the Collection Widget.            7. In the Filter Properties field, enter sort.          8. In the SortField drop-down, select first_number.  SortField determines which sub-section of the Infotable to use for sorting purposes.          9. Check the SortAscending checkbox            10. n the Filter Properties field, enter mashupprop           11. Click Add, copy-and-paste the following JSON into the MashupPropertyBinding Property, replacing the existing curly braces {}, then click Done.   The point of this JSON is to relate the columns of the Infotable Property to the Mashup Parameters that we previously defined in the base Mashup. { "first_number" : "first_number", "second_number" : "second_number", "third_number" : "third_number" }                12. Click Save, then View Mashup.     Notice that the base Mashup we previously created has been replicated multiple times, corresponding to each row of the Info Table Property.   As an extension exercise, go back into cwht_thing and add another row of data. Refresh the Collection Widget Mashup to see another instantiation of the base Mashup automatically added to display that new row.   A Mashup utilizing the Collection Widget dynamically expands to accommodate both the user and the available data.   Step 5: Next Steps   Congratulations! You've successfully completed the Organize Your UI guide, and learned how to: Create a Datashape to define columns of a table Create a Thing with an Info Table Property Create a base Mashup to display data Utilize a Collection Widget to display data from multiple rows of a table Learn More   We recommend the following resources to continue your learning experience: Capability Guide Build Application Development Tips & Tricks Experience ThingWorx Application Development Reference   Additional Resources   If you have questions, issues, or need additional information, refer to:   Resource  Link Community Developer Community Forum Support Collection Widget Help Center  
View full tip
  Step 3: Create a Base Mashup   Now that you have some data, you need to create and configure a Mashup to display the data.   Using Mashup Parameters, the Collection Widget will replicate the base Mashup multiple times, correlating to each row of data in the Info Table Property.   On the ThingWorx Composer Browse tab, click Visualization > Mashups, + New                2. Keep the default ofResponsive(without selecting any Templates), and click OK          3. In the Name field, enter cwht_base_mashup.      4. If Project is not already set, search for and select PTCDefaultProject.      5. Click Save.     Add Widgets to Design   At the top, click Design. TIP: You can click the left arrow on the divider between the Browse left-navigation and the Mashup Builder to minimize the navigation and provide more room for the Mashup Builder itself.                  2.  On the Layout tab at the top-left, select Positioning > Static. You generally want the base Mashup to be "Static" so that you know the size of the cells which  the Collection Widget will replicate.                3. From the top-left Widgets tab, drag-and-drop a Gauge Widget onto the central Canvas area.             4. Drag-and-drop an LED Display Widget onto the central Canvas area.               5. Drag-and-drop a Text Field Widget onto the central Canvas area       Reduce the Mashup Size   At the top-left on the Explorer tab, select the Container.                2. In the central Canvas area, click-and-drag the far-right side of the container to reduce its horizontal size               3. Click-and-drag the bottom of the container to reduce its vertical size     Create Mashup Parameters   On the top-left Explorer tab, select the Mashup itself. A drop-down menu indicator will appear in the top-left of the Mashup.                 2. Click the top-left drop-down menu to reveal the Mashup options               3. Select Configure Mashup Parameters to open the Configure Mashup pop-up menu                4. Click Add Parameter three times              5. For the Name fields, enter first_number, second_number, and third_number.         6. Change the Base Type to NUMBER for all three Parameters           7. Click Done to close the Configure Mashup pop-up menu   Bind Mashup Parameters to Widgets   Click the Mashup's drop-down menu in the top-left to expose the options again. There are now additional options for first_number, second_number, and third_number.              2. Drag-and-drop first_number onto the Gauge Widget               3. Select Data on the Select Binding Target pop-up menu of the Gauge Widget.         4. Drag-and-drop second_number onto the LED Display Widget. You may have to first reselect the Mashup itself to reveal the Mashup's drop-down menu to access the second_number Mashup Parameter. Remember that you can easily select the Mashup itself through the Explorer tab.                                    5. Select Data on the Select Binding Target pop-up menu of the LED Display Widget.         6. Drag-and-drop third_number onto the Text Field Widget.         7. Select Text on the Select Binding Target pop-up menu of the Text Field Widget.         8. At the top, click Save. You can expand the Connections window at the bottom and select the Mashup itself to confirm that all three Mashup Parameters have been correctly bound to each Widget.          9. Click the Right Arrow on the far-left of the Mashup Builder to re-expand the Browse navigation menu.         Click here to view Part 3 of this Guide.
View full tip
  Use the Collection Widget to organize visual elements of your application.   GUIDE CONCEPT   This project will introduce the Collection Widget.   Following the steps in this guide, you will learn to display different values from a single dataset in real-time.   We will teach you how to utilize the Collection Widget to generate a series of repeated Mashups for every row of data in a table.     YOU'LL LEARN HOW TO   Create a Datashape to define columns of a table Create a Thing with an Infotable Property Create a base Mashup to display data Utilize a Collection Widget to display data from multiple rows of a table   NOTE: This guide's content aligns with ThingWorx 9.3. The estimated time to complete ALL 3 parts of this guide is 60 minutes.      Step 1: Create a Datashape    Create a Datashape   The Collection Widget uses a Service to dynamically define visual content.   The data must be in a tabular format (for example: Data Table, Info Table, or external Database-connection) in order for the Collection Widget to access it.   In this part of the lesson, we'll create a Data Shape to define the columns of the table.   In a subsequent step, we'll create an Info Table Property within a Thing in order to store the information.   In the ThingWorx Composer Browse tab, click Modeling > Data Shapes, + New              2.  In the Name field, enter cwht_datashape.                      3. If Project is not already set, search for and select PTCDefaultProject.         4. At the top, click Field Definitions          First Definition:          1. Click + Add to open the New Field Definition slide-out.          2. In the Name field, enter first_number.          3. Change the Base Type to NUMBER.          4. Check the Is Primary Key box. All Datashapes must have a single Primary Key, and the first Field is as acceptable as any other for our purposes here.                5. At the top-right, click the "Check with a +" button for Done and Add.   Second Definition:   In the Name field, enter second_number.       2. Change the Base Type to NUMBER.               3. At the top-right, click the "Check with a +" button for Done and Add.     Third Definition:   In the Name field, enter third_number.         2. Change the Base Type to NUMBER.               3. At the top-right, click the "Check" button for Done         4. At the top, click Save.                   Step 2: Create a Thing   Create a Thing   In the previous step, we created a Data Shape to define the Info Table Property columns.   Now, we will create a Thing, add an Info Table Property, format the Info Table Property with the Data Shape, and set some default values.   On the ThingWorx Composer Browse tab, click Modeling > Things, + New.           2. In the Name field, enter cwht_thing.         3. If Project is not already set, search for and select PTCDefaultProject.         4. Select GenericThing in the Base Thing Template field       Add InfoTable Property         1. At the top, click Properties and Alerts.        2. Click the + Add button to open the New Property slide-out.        3. In the Name field, enter infotable_property.        4. Change the Base Type to INFOTABLE.        5. In the Data Shape field, select cwht_datashape.        6. Check the Persistent checkbox.       First Default   Check the Has Default Value checkbox. A cwht_datashape icon will appear underneath.            2. Under Has Default Value, click the cwht_datashape button to open the pop-up menu which  sets the default values               3. Click the + Add icon.         4. Enter values in each number field, such as 1, 2, and 3.              5. At the bottom-right, click the green Add button.     Second Default   Click the + Add icon.         2. Enter values in each number field, such as 10, 20, and 30            3. At the bottom-right, click the green Add button       Third Default   Click the + Add icon.       2. Enter values in each number field, such as 100, 200, and 300            3. At the bottom-right, click the greenAddbutton           4.  At the bottom-right, click Save to close the pop-up menu               5. At the top-right, click the "Check" button for Done.       6. At the top, click Save          Click here to view Part 2 of this guide.
View full tip
  Leverage the REST API to create Things, modify Properties, execute Services and more.   GUIDE CONCEPT   This project will introduce you to the REST API utilized by the ThingWorx platform.   Following the steps in this guide, you will be able to connect to the ThingWorx platform and make REST calls to call Services, update Properties, and perform a number of actions for your IoT applications.   We will teach you how to use the ThingWorx REST API to create a more robust application. With the REST API you can leverage the full power of the ThingWorx Foundation server with simple HTTP requests. The REST API can easily be explored using a command line tool such as curl, a browser plugin like Postman, or any preferred programming language.   YOU'LL LEARN HOW TO   Create new Things on a ThingWorx Foundation Server Add Properties to Things Access Property values Execute custom Services   NOTE: The estimated time to complete ALL 4  parts of this guide is 30 minutes.      Step 1: REST API Design   Almost every Entity and Service of ThingWorx can be accessed through the REST API. This step will review some points that are common to all ThingWorx REST API calls.   REST API Syntax   The endpoint URLs used by the REST API follow the consistent pattern shown in the diagram below.   The following table describes the individual pieces of the URL for the REST API calls.   Term Description Optional/Required? http method GET, PUT, DELETE, POST required scheme http, https required host server IP address where ThingWorx is running required port port on which the Web Server is listening for requests (default is 80) optional entity collection One of the built-in entity collection types proprietary to ThingWorx required entity name that identifies a specific characteristic required characteristic collection Names such as Property Definition, Properties VTQ, ThingName, and Service Definition optional characteristic name of the Service or Property on which to execute optional accept header format of HTTP content being requested; must be application/json or text/xml or text/html optional content type header format of HTTP content being provided; must be application/json, text/csv or text/html required content   optional query parameters   optional   Requests   The ThingWorx REST API uses HTTP request verbs in ways common to many REST APIs:   GET to retrieve information POST for both creating a new entity and executing a service DELETE to remove a Thing or Property PUT to change the value of an existing entity When a REST API request requires parameters to be sent, the Content-Type header must be set to match the format of the request body.   Discovering and using Services requires using a dedicated URL. To list available Services and see their definitions, issue a GET to   ``` <server_ip:port>/Thingworx/Things/<name of thing>/ServiceDefinitions ``` In order to execute a listed Service issue a POST to   ``` <server_ip:port>/Thingworx/Things/<name of thing>/Services/<service name> ```   NOTE: The Content-Type header of a POST that executes a Service must always be set to application/json or text/xmleven if the service does not take any parameters and no content is being sent.   Responses   The following tables describe the valid Accept and Content-Type header values when making a REST API calls.   Accept Headers   If the request sends either an invalid Accept header, or no Accept header is supplied, the default response will be in text/html format.   Value Syntax JSON application/json XML text/xml HTML text/html (or omit Accept header) CSV text/csv   Content Type Headers   A Content-Type header indicating the format of data sent to ThingWorx, is required. Some POST requests require a content type header even when no data is being sent.   Value Syntax JSON application/json XML text/xml     Step 2: REST Client   In order to make calls to any REST API you need a client software. A web browser can be used to make some GET calls, but you must install extensions to modify headers or to make POST or PUT calls.   Client software options include:   cURL is a venerable command line tool and library that is a Swiss Army Knife of dealing with web requests. And like an old Swiss Army Knife you can make it work but you might wind up hurting yourself.   Httpie is a modern command line tool with easy to use, intuitive options. Server responses are shown in color with easy to read formatting. The examples will be given as HTTPie commands.   NOTE: The following steps in this guide use Httpie as the client software.     Step 3: Create Application Key   In this Quickstart, you will use ThingWorx Composer to generate an Application Key. A device must be authenticated to send data to, or recieve data from ThingWorx. One of the most common authentication methods used with ThingWorx is by using a security token called an Application Key or appKey. These tokens are associated with a particular user and have the same permissions as that user.   Create an Application Key   On the Home screen of Composer click + New. In the dropdown list, click Applications Key.   Give your Application Key a name (ie, MyAppKey). Set the User Name Reference to a User you created. Update the Expiration Date field, otherwise it will default to 1 day. Click Save.   A Key ID has been generated and can be used to make secure connections.   BEST PRACTICE: We recommend you create separate keys for every connected device, User or system. This allows better security in case of situations where you may need to revoke access from one of them.     Step 4: Create New Thing   A Thing is a basic building block used to model applications in the ThingWorx Foundation Server. All Things are based on a Thing Template, either a built-in system template or a custom Template that was previously created. With the REST API, you can create, modify, list, and delete Things. After a Thing has been created by using an API call, it must be enabled and restarted with additional API calls before it can be used.   Required Parameters   AppKey created by your ThingWorx server A name for the new Thing The name of a valid ThingTemplate that will be used to create the new Thing Request   An HTTP POST request to ThingWorx is assembled from 3 components: a URL A POST body Authentication credentials A request to ThingWorx can be made only after these 3 components are properly configured.         1.  Construct the URL.   Create a new Thing by making an HTTP POST to the endpoint.   <server_ip:port>/Thingworx/Resources/EntityServices/Services/CreateThing NOTE: The server_ip is the ip address of your ThingWorx Core server.        2. Required POST body parameters.   Send the name of the Thing and the name of the ThingTemplate that will define the new thing in the body of the POST as a JSON object. For example, the JSON object below will create a new Thing named SomeTestThing using the system template GenericThing. { "name": "SomeTestThing", "thingTemplateName": "GenericThing" }   TIP: When creating Things that will be used with the REST API, use the GenericThing ThingTemplate or a ThingTemplate based GenericThing. A RemoteThing should only be used with devices that make an AlwaysOn™ connection to a ThingWorx server using the Edge MicroServer or one of the AlwaysOn™ SDKs.        3. Authenticate the Request.   All API requests to the ThingWorx server must be authenticated either with a username and password or with an appKey. For this example we will authenticate by passing the appKey as a URL query string parameter. The parameter appKey is recognized by the ThingWorx server as an authentication credential in requests, it can be passed either as a URL query string parameter. .../CreateThing?appKey=64b87... , or as request header appKey: 64b87... Refer to Step 13: Authentication Tags for an overview of different authentication methods. Response   A successful call to the CreateThing service does not return any content in the body of the response, only an HTTP 200 is returned.   Examples HTTPie example:   http -v http://52.201.57.6/Thingworx/Resources/EntityServices/Services/CreateThing appKey==64b879ae-2455-4d8d-b840-5f5541a799ae name=SomeTestThing thingTemplateName=GenericThing   The Content-Type header does not appear in the sample HTTPie call because HTTPie sets the Accept and Content-type request headers to application/json by default.   WARNING for other HTTP clients: Most HTTP clients do not set a Content-Type header by default, without this header set the server will return an error message. The POST request to the CreateThing endpoint has a JSON body so the header must be set to match the format of the request body.   cURL example   curl -v -H "Content-Type: application/json" -X POST -d '{"name": "SomeTestThing","thingTemplateName": "GenericThing"}' http://52.201.57.6/Thingworx/Resources/EntityServices/Services/CreateThing?appKey=d0a68eff-2cb4-4327-81ea-7e71e26bb645 Note: cURL explicitly sets the Content-Type header to application/json.     Validate   The Thing you just created is now available in the ThingWorx Composer, however before anything else can be done with your new Thing through the REST API it must be enabled and started. Follow these steps to validate that the new Thing has been created and enabled.   From the home page of Composer, click Things, select the name of the Thing you just created, then click General Information.   NOTE: You will see the Active checkbox is not checked indicating this Thing is not Enabled.       2. Execute EnableThing Service.   To enable your newly created Thing, make an HTTP POST to the endpoint below. Substitute <name of Thing> with the actual name of the Thing you created. No body is required in the POST, however, the Content-Type header of a POST that executes a Service must always be set to application/json or text/xml even if the service does not take any parameters and no content is being sent. No body is returned upon success, only an HTTP 200 response code. <server_ip:port>/Thingworx/Things/<name of Thing>/Services/EnableThing HTTPie example   http -v -j POST http://52.201.57.6/Thingworx/Things/SomeTestThing/Services/EnableThing appKey==64b879ae-2455-4d8d-b840-5f5541a799ae         3.  Confirm new Thing is Enabled.   To update the General Information section of your new Thing and confirm the Active checkbox is now checked, refresh the page with the browser or close and re-open your Thing.         4. Restart your Thing.   After a Thing is created and whenever any changes are made to its structure, the Thing has to be restarted. Start you new Thing by making a HTTP POST to the endpoint below. Substitute <name of Thing> with the actual name of the Thing you created. No body is required in the POST, however, the Content-Type header of a POST that executes a Service must always be set to application/json or text/xml even if the service does not take any parameters and no content is being sent. No body is returned upon success, only an HTTP 200 response code. <server_ip:port>/Thingworx/Things/<name of Thing>/Services/RestartThing HTTPie example:   http -v -j POST http://52.201.57.6/Thingworx/Things/SomeTestThing/Services/RestartThing appKey==64b879ae-2455-4d8d-b840-5f5541a799ae     Click here to view Part 2 of this guide
View full tip
    Modernize your Mashups with CSS to enhance the presentation of your application.   GUIDE CONCEPT   This project will introduce using CSS to create a customized, consistent look and feel for your IoT application.   Following the steps in this guide, you will create a custom CSS class definitions and bind these classes to Mashup features.   We will teach you how to present a professional-looking user interface and ensure consistency of style treatments within your application by implementing Cascading Style Sheets (CSS) in Mashups.     You'll learn how to   Create custom CSS classes using the integrated CSS editor Bind CSS classes to a Mashup and to individual Widgets Use Media queries to dynamically apply styling     Step 1: Custom CSS Benefits   You now have more flexibility to customize your application’s UI and improve the user experience using industry-standard web techniques. You can implement CSS in ThingWorx to control the visualization of your Mashup.   Feature                   Benefit Text Treatments Optimize text with shadow, color, font, and border Responsive UI Customize layout based on user actions and the data being displayed Media Queries Accommodate many screen sizes with flexboxes and other standard containers Animations Implement standard CSS key frames Customizations Modify application appearance without changing source Mashup Linting Expedite development with code auto-completion and design-time syntax warnings       Step 2: Access Sample Files   We created sample entities you can use to complete the steps in this guide. Download the attached Mashups_CustomCssTutorialMashup.xml From the Home page of Composer, click the Import/Export icon, then choose Import   Keep the default options and click Browse. Locate and select the CustomCssTutorialMashup.xml file you downloaded and extracted, click Open then Import.   Click Close after the Import successful message is displayed. Click the Browse tab in the left navigation panel, then click Mashups.                     6. Select the CustomCssTutorialMashup.                 7. Click View Mashup to view the Mashup.     NOTE: This is a simple Mashup designed to demonstrate how the UI changes when CSS is applied.       Step 3: Create CSS Rule Block   In this step, you will use the built-in editor to create a custom CSS class that will be used in the next step to modify the appearance of three buttons grouped by the Fieldset Widget.   Open the CustomCssTutorialMashup in Edit and Design view.     Click Custom CSS.     Copy the CSS class below and paste it into the Custom CSS editor: .myMashupClass .widget-fieldset .widget-ptcsbutton { box-shadow: 5px 5px 5px #888888; } NOTE: This class will create a shadow around all of the buttons that are in a Fieldset container  only after it is bound to a Mashup,   4. Click Save.     Tips   Press Ctrl -> Space to use the Auto-complete feature and see code snippets, which can expedite your development time.     The Linting feature will warn you if there are errors in your code, so you can fix them at design time.       Step 4: Apply Custom Class to Mashup   In this step we will demonstrate how to modify the look and feel of a Mashup without changing the Mashup itself. The myMashupClass we just created chains two selectors: the widget-fieldset and the widget-button. Only Widgets that are in both selector categories will be modified.   Click Design and select the Explorer tab, then select the top-level Mashup.     In the property panel in the lower left, locate the CustomClass property and type myMashupClass as the value. Press Tab to save the value change.     WARNING: You must press Tab after every property change in order for the new value to be saved.   4. Click Save then View Mashup to see that the buttons in the Field Set have shadow borders.       Step 5: Apply Custom Class to Widget   In addition to the Mashup level, you can apply style treatments directly to a Widget in your Mashup. In ThingWorx, the following Widgets have a CustomClass property you can modify:     For this example, we will make the text on one of the buttons all caps.   In the CustomCssTutorialMashup, click Custom CSS. Add the following css code: .myButtonClass .widget-ptcsbutton { text-transform: uppercase; }     Return to the Design view, and In the Explorer tab, click the button-3.     In the Property panel, enter myMashupClass to the CustomClass field, then press tab     Save then View Mashup the Mashup to see that the button text is now all caps.       Step 6: Bind Custom Class   The UI of a Mashup can be dynamically updated at runtime by binding the value of the CustomClass property to a dynamic data source such as: Services Mashup parameters Widgets (expression widgets for example)   In this portion of the guide, we will demonstrate modifying a Mashup in response to user actions:   Return to the Design view for the CustomCssTutorialMashup. In the Mashup Builder, click the Functions tab in the lower right, then expand Event Routers and expand eventsrouter-6     Click Output property and drag it onto the bottom button of the group of three buttons.     Select the CustomClass property from the pop-up to bind it to Button-4   In Mashup Builder click Custom CSS tab. Add the following css code: .myBoundButtonClass1 .widget-ptcsbutton { text-transform: lowercase; } .myBoundButtonClass2 .widget-ptcsbutton { text-transform: uppercase; }           7. Click Save and then View Mashup.           8. Click on each of the Apply buttons to see the results of a CSS class applied to in response to user actions.     Step 7: Use Media Queries   You can use Media queries to apply styling based on the characteristics of the device being used to access the application. For this example, we will use a CSS Class to hide three elements when the browser’s width is less than 600 pixels wide.   1. Open the CustomCssTutorialMashup in Edit and Design view, then click Custom CSS.     2. Copy the CSS class below and use the Custom CSS editor to add it to the top of the existing  CSS, then click Save. @media screen and (max-width: 1000px) { #root_ptcslabel-10-bounding-box { visibility: hidden; } #root_ptcstextfield-7-bounding-box{ visibility: hidden; } #root_ptcstextfield-12-bounding-box { visibility: hidden; } }   NOTE: The ID selector in your CSS must add root_ to the beginning, and -bounding-box to the end of the element’s ID shown in Mashup Builder.   3. Click View Mashup, then click and drag the edge of the browser window to reduce the width below 600 pixels.     NOTE: The three Widgets selected in the media class added in the last step will disappear as soon as the browser is less than 600 pixels wide.       Click here to view Part 2 of this guide.
View full tip
Announcements