cancel
Showing results for 
Search instead for 
Did you mean: 
cancel
Showing results for 
Search instead for 
Did you mean: 

Community Tip - Visit the PTCooler (the community lounge) to get to know your fellow community members and check out some of Dale's Friday Humor posts! X

IoT Tips

Sort by:
  Step 7: Set-up and Run Demo   The ThingWorx Azure IoT Connector download includes a Java application that simulates a device connecting to your Azure IoT Hub. A ThingTemplate is also included and can be imported into ThingWorx.   Import Demo Templates   In ThingWorx Composer, click Import/Export menu, then click From File and browse to ../demo/edgedevice- demo/platform/entities/CPUDemo_AllEntities.xml   Click Import then click Close when the import successful message is displayed. Create a new Thing using the imported template azureDemo1, enter a name for your Thing and click Save. NOTE: You will enter this name in the demo config file in the next step. Configure Demo Application   In the ../demo/edge-device-demo/conf subdirectory, open the edge-device.conf file with a text editor. Edit the deviceId to be the name of the Thing you created in step 3. Edit the iotHubHostName to use the name of your hub plus the domain: azure-devices.net. For example, sample-iot-hub.azuredevices.net. Edit the registryPolicyKey property to use the Primary Key for the registryReadWrite policy in the Azure IoT Hub. Below is an example configuration: azure-edge-device { deviceId = "alstestedgething" iotHubHostname = "alsiot.azure-devices.net" registryPolicyName = "registryReadWrite" registryPolicyKey = "pzXAi2nonYWsr3R7KVX9WuzV/1234567NZVTuScl/Kg=" }   Run Demo Script   Open a shell or Command Prompt, set the EDGE_DEVICE_DEMO_OPTS environment variable to refer to the file you just edited: Linux - export EDGE_DEVICE_DEMO_OPTS="-Dconfig.file=../conf/edge-device.conf" Windows - set EDGE_DEVICE_DEMO_OPTS="-Dconfig.file=../conf/edge-device.conf" Launch the demo from the ../demo/edge-device-demo/bin subdirectory, using the edge-device-demo command. Return to the ThingWorx Composer and open the Properties page of the Azure Thing that you created previously. Click the refresh button to see the properties change every five seconds. Open the azure-iot-demo Mashup and view the Load Average and CPU gauges, and the increases in the values of the Cycle and Uptime fields. NOTE: If the edgedevice-demo is running on Windows, the Load Average does not register.   Step 8: Next Steps   Congratulations! You've successfully completed the Connect Azure IoT Hub to ThingWorx Quickstart. By following the steps in this lesson, you imported a device created in Azure into ThingWorx and saw how data from an Azure device could be used in a ThingWorx Mashup.   Learn More   We recommend the following resources to continue your learning experience:   If you're following the Azure MXChip Development Kit learning path, the next guide is Create a Thing Shape.    Capability     Guide Connect Choose a Connectivity Method Build Design Your Data Model Experience Create Your Application UI   Additional Resources   If you have questions, issues, or need additional information, refer to:  Resource       Link Community Developer Community Forum Support Getting Started with ThingWorx        
View full tip
  Use the ThingWorx Azure IoT Hub Connector with simulated appliances.   Guide Concept   This project will introduce how to integrate ThingWorx with Azure IoT Hub. The combination of these two platforms extends the ThingWorx utilities to Azure IoT Hub edge devices and allows integration with Azure Blob Storage accounts.   Following the steps in this guide, you will install the ThingWorx Azure IoT Hub Connector and run a simulated Azure device.   We will teach you how to build powerful and scalable IoT applications by integrating ThingWorx and Azure IoT Hub.   You'll learn how to   Install, configure, and run the ThingWorx Azure IoT Hub Connector Import devices that exist in Azure into ThingWorx Connect a simulated Azure device to ThingWorx Foundation server   NOTE: This guide's content aligns with ThingWorx 9.3. The estimated time to complete this guide is 60 minutes       Step 1: Overview Diagram   The ThingWorx Azure IoT Hub Connector maintains a network connection to both an Azure IoT and a ThingWorx Foundation instance:        The ThingWorx Azure IoT Hub Connector enables remote devices that connect to the Azure IoT Hub, to connect to the ThingWorx Foundation server. The Azure IoT Connector handles message routing for the devices that communicate through the Azure IoT system. It also handles message routing from the ThingWorx Foundation server to devices via the Azure IoT Hub.   The ThingWorx Azure IoT Connector is a separate, stand-alone application that must be run on a server that can connect to both the ThingWorx server and the Azure IoT service.     Step 2: Configure Azure IoT Hub   In order to use the ThingWorx Azure IoT Connector, you must first configure an IoT Hub and a storage account in Microsoft Azure. You can provision a free tier account for these resources. In this step, we will create the Azure resources and gather the configuration information that enable you to connect to ThingWorx with the required credentials.   Log into Azure Portal   If you do not already have an Azure account you can create a free account that will work with this guide.   Create Azure IoT Hub   Follow the Microsoft documentation to create an Azure IoT Hub, accepting any defaults.   TIP: The name your IoT Hub must be globally unique and include only lowercase letters and numbers.   1. Create message routes to direct DeviceLifecycleEvents and TwinChangeEvents events to the built-in events endpoint. For a tutorial, refer to Tutorial: Use the Azure CLI and Azure portal to configure IoT Hub message routing 2. Register at least one Azure IoT Device or Azure IoT Edge Device to your Azure IoT Hub. For a tutorial, refer to Register an IoT Edge device in IoT Hub     Create Storage Account   Follow the Microsoft documentation to create an Azure Storage account.   NOTE: Select Blob storage as the account type and the Hot Access Tier.       Step 3: Import Extensions   The ThingWorx Azure IoT Hub Connector distribution bundle comes packaged with all the software you will need to connect ThingWorx and Azure. Download the Azure IoT Hub Connector from PTC Support Extract the application bundle to a directory on the system where it will run. (where v.v.v represents the release number) On Linux, this guide uses the base directory, /opt. The subdirectories and files should reside in the directory, /opt/ThingWorx-Azure-IoTHub-Connector-4.2.0. On Windows, extract the bundle so that the subdirectories and files reside in C:\ThingWorx-Azure-IoT-Hub-Connector-4.2.0 In the lower-left side of Composer, click Import/Export, then Import.  In the Import From File pop-up, under Import Option select Extension from the drop-down, then click Browse. Navigate to the /extensions directory and click on ConnectionServicesExtension-2.2.4.zip file.   Click Import in the Import From File pop-up, then click Close after file is successfully imported. Repeat the above steps for the azure-iot-hub-adapter-extension-4.2.0.4.zip file. Follow the steps to Create an Application Key and note the value, it will be used in the the next step.     Step 4: Install Azure Connector   Configure Connection Server   The Connection Server component of ThingWorx Azure IoT Connector must be configured with information specific to both your Azure IoT Hub and your ThingWorx Foundation server.   Copy the file azure-iot-sample.conf in the connector > conf directory and save the file with the name azure-iot.conf Edit the configuration file to replace the ten placeholder values for the parameters listed below with values copied from your Azure control panel. consumerPolicyName - Whether you have a new or existing hub, you need to provide the name of the consumer policy and its related Primary or Secondary key. The policy to select is typically the built-in, pre-defined policy called service. Navigate to All Resources > your hub > Settings > Shared access policies > service. If you added a custom service policy to your hub with the permission service connect select that policy.   consumerPolicyKey - Once you find the policy name, stay in the Shared access policies screen, and click the name. Copy the content of the Primary key. This key supplies the credentials to access services that are specified in the related policy. registryPolicyName - Specify a policy name that is related to the registryPolicyKey. This policy is typically a built in, predefined policy called registryReadWrite, but it is possible to use a custom policy if you add it to your hub. The shared access policy requires the registry read and registry write permissions. registryPolicyKey - The key that supplies credentials to access services in the policy specified in registryPolicyName. hubName - A name that defines the Azure IoT Hub related to this ThingWorx Connector. This Azure IoT Hub manages your things and their related messages. Hubs can be scaled via hub units at different price tiers per unit. Hubs are related to a resource group, which is related to a subscription Id and a cloud Location. TIP: To find the name associated with your Azure IoT Hub that the ThingWorx Connector will use to communicate with it, navigate to All Resources > your hub > Settings > Properties > NAME eventHubName - The Event Hub-compatible name that is used by SDKs and integrations that expect to read from Event Hubs. An Event Hub is an internal component of an Azure IoT Hub that handles device-to-cloud events for related things. In many cases, the IoT Hub name and Event Hubcompatible name are the same, so this property defaults to the Azure IoT Hub name (hubName). Navigate to All Resources > your hub > Settings > Built-in endpoints > Events > Event Hub-compatible name to find this name.   eventHubNamespace - To find the endpoint that is used by SDKs and integrations that expect to read from Event Hubs, navigate to All resources > your hub > Settings > Built-in endpoints > Events > Event Hub-compatible endpoint, and copy the host name, without the rest of the address (".servicebus.windows.net"). The ThingWorx Azure IoT Connector uses this endpoint to read messages from your hub. consumerGroup - To find a consumer group name to enable the Connector to pull data from the Azure IoT Hub, navigate to All Resources > your hub > Messaging > Endpoints > Built-in endpoints > Events > Consumer groups. To use the $Default consumer group, set this property to null. hubHostname - To find the host name for your hub, navigate to All Resources > your hub > Overview > Hostname. The host name is defined by the hubName plus a domain name that is chosen by Azure, typically azuredevices.net.   blob-storage.account-name - The blob-storage section specifies the settings for an Azure blob storage account. The storage provides containers that are used for device export of an Azure IoT Hub to ThingWorx via the Connector and can also be created by the Connector if you create AzureStorageContainerFileRepository things in ThingWorx. If you do not have one, create a Storage Account in the Azure portal. To find the name of an existing account, navigate to Settings > Access Keys > Storage account name.   blob-storage.account-key - The key to associate with the name of the blob storage account. To find the key for an existing account, navigate to Settings > Access Keys > Primary or secondary key Enter your ThingWorx Foundation server host, port, and appKey  in the transport.websockets section. transport.websockets { app-key = "6d70dfca-fe88-4d8c-83aa-686449b52cb2" platforms = "ws://45.23.12.112:80/Thingworx/WS" }   NOTE: If you are using an SSL connection to your ThingWorx Foundation server use wss in place of ws in the platform parameter. If the URL for the ThingWorx Foundation server does not include a port, use 80 for http connections and 443 for https.       Step 5: Launch IoT Hub Connector   Open a shell or a command prompt window. On a Windows machine, open the command prompt as Administrator. The AZURE_IOT_OPTS environment variable must be set before starting the Azure IoT Hub Connector. Below are sample commands using the default installation directory. On Windows: set AZURE_IOT_OPTS=-Dconfig.file=C:\ThingWorx-Azure-IoT-Connector-<version>\azure-iot-<version>-application\conf\azure-iot.conf -Dlogback.configurationFile=C:\ThingWorx-Azure-IoT-Connector-<version>\azure-iot-<version>-application\conf\logback.xml On Linux: export AZURE_IOT_OPTS="-Dconfig.file=/var/opt/ThingWorx-Azure-IoT-Connector-<version>/azure-iot-<version>-application/conf/azure-iot.conf -Dlogback.configurationFile=/var/opt/ThingWorx-Azure-IoT-Connector-<version>/azure-iot-<version>-application/conf/logback.xml" NOTE: You must run the export command each time you open a shell or command prompt window. Change directories to the bin subdirectory of the Azure IoT Hub Connector installation. Start the Azure IoT Hub Connector with the appropriate command for your operating system. On Windows: azure-iot.bat On Linux: /azureiot NOTE: On Windows you may have to shorten the installation directory name or move the bin directory closer to the root directory of your system to prevent exceeding the Windows limit on the classpath length.   The Connection Server should start with no errors or stack traces displayed. If the program ends, check the following: Java version is 1.8.0, update 92 or greater and is Java(TM) not OpenJDK. Open azure-iot.conf and confirm ThingWorx Foundation is set to the correct URL and port. Confirm the platform scheme is ws if http is used to access ThingWorx. Confirm all Azure credentials are correct for your Azure account. In ThingWorx Foundation click the Monitoring tab then click Connection Servers. You should see a server named azure-iot-cxserver-{server-uuid}, where {server-uuid} is a unique identifier that is assigned automatically to the server.       Step 6: Import Device from Azure   With the ThingWorx Azure IoT Connector, you can import into ThingWorx any existing devices that are currently provisioned to the Azure IoT Hub.   Add Device Azure IoT Hub   If you have not provisioned any devices to your Azure IoT Hub you can learn more about Azure IoT Hub device identity before following the steps below to create a test device.   In your Azure Portal, click All Resources, then select the name of your IoT Hub. Under Explorers click IoT devices, then click + Add. Enter a name for your device, then click Save. When the device name appears in the list it is ready to use.   Import Device into ThingWorx   We will manually execute a service in ThingWorx that will import Azure IoT Hub devices into ThingWorx.   In ThingWorx Composer, navigate to the ConnectionServicesHub Thing. Click Services tab and scroll to the ImportAzureIotDevices service and click the execute Arrow. NOTE: The * in the pattern field will act as a wildcard and import all devices, you can enter a string to match that will only import a subset of all available devices. Click Execute to import the devices then click Done. Click Things in the left column to see the Things that were created.   Click here to view Part 2 of this guide.
View full tip
    Step 6: Map Data   Now that the event is created, we need to map the Properties of EdgeThing to the fields required to invoke an Analysis Job.   We'll start with the Inputs.   Select the previously-created Event, and click Map Data....   Click Inputs Mapping.   In Source Type, select Thing. In Source, search for and select EdgeThing.   On the left, scroll down and select s1_fb1. Note that you do NOT want the s1_fb1 that is part of the InfoTable Property, because the Info Table Property only stores recorded data, not live data. On the right, select _s1_fb1, the first frequency band required for the Model to make a prediction.   Click the Map button in the center.   Repeat this mapping process for for s1_fb2 through s1_fb5.   Map causalTechnique to causalTechnique in the same manner. This is a String Property in EdgeThing with a Default Value of "FULL_RANGE". Map goalField to goalField in the same manner. This is a String Property in EdgeThing with a Default Value of "low_grease".   Map Results   Now that the Inputs are mapped, we also want to map the Results.   Click Results Mapping on the left.   Map _low_grease to Result_low_grease. Map _low_grease_mo to Result_low_grease_mo.   Click Close to close the mapping pop-up.   Enable Event   Now that we've done the mapping from Foundation to Analytics, let's Enable the Analysis Event so that it can automatically generate and process Analysis Jobs. Select the mapped Analysis Event. Select Enable.   Now that you have enabled the Analysis Event, the new data will be submitted to Analytics Manager whenever EdgeThing's s1_fb1 Property changes.   An Analysis Job will automatically run, with a predictive score sent back and stored in EdgeThing's Result_low_grease (Boolean) and Result_low_grease_mo (Number) Properties.     Step 7: Check Jobs   In this step, we'll confirm that the automatic analysis of information coming from remote devices is operational.   On the ThingWorx Composer Analytics tab, click Analytics Manager > Analysis Jobs.   Uncheck Filter Completed Jobs.   Select a Job and click View.... Click Results.   NOTE: You will see true or false, corresponding to either a low grease or no low grease condition. Using this technology, you could create a paid customer service, where you offered to monitor remote engines, in return for automatically shutting them down before they experience catastrophic engine failure.   For that example implementation, you would utilize the EdgeThing.Result_low_grease BOOLEAN Property to trigger other actions.   For instance, you could create an Alert Event which would be triggered on a true reading.   You could then have a Subscription which paid attention to that Alert Event, and performed an action, such as sending an automatic shutdown command to the engine when it was experiencing a likely low grease event.   NOTE: We recommend that you return to the ThingWorx Composer Analytics > Analytics Manager > Analysis Events tab and Disable the Event prior to continuing. Since the simulator generates an Event every ~1 seconds, this can create a large number of Events, which can fill up your log.       Step 8: Next Steps   Congratulations. You've completed the Manage an Engine Analytical Model guide. In this guide you learned how to:   Define an Analysis Provider that uses the built-in Analytics Server Connector Publish a Model from Analytics Builder to Manager Create an Analysis Event which takes data from ThingWorx Foundation and decides whether or not a failure is likely   The next guide in the Vehicle Predictive Pre-Failure Detection with ThingWorx Platform learning path is Engine Failure-Prediction GUI.   Learn More   We recommend the following resources to continue your learning experience:    Capability     Guide Build Implement Services, Events, and Subscriptions Guide   Additional Resources   If you have questions, issues, or need additional information, refer to:    Resource              Link Community Developer Community Forum Support Analytics Manager Help Center      
View full tip
    Use Analytics Manager to automatically perform engine analytical calculations.   Guide Concept   This guide will use ThingWorx Analytics Manager to compare external-data from an Edge MicroServer (EMS) "Engine Simulator" to a previously-built analytical model.   Following the steps in this guide, you will learn how to deploy the model which you created in the earlier Builder guide.   We will teach you how to utilize this deployed model to investigate whether or not live data indicates a potential engine failure.   You'll learn how to   Deploy and execute computational models Define and trigger Analysis Events Map incoming data to the Model Map analytic outputs to applications   NOTE: This guide's content aligns with ThingWorx 9.3. The estimated time to complete this guide is 60 minutes       Step 1: Scenario   In this guide, we're continuing the same MotorCo scenario, where an engine can fail catastrophically in a low-grease condition.   In previous guides, you've gathered and exported engine vibration-data from an Edge MicroServer (EMS) and used it to build an engine analytics model.   The goal of this guide is to now operationalize that previously-created model to analyze individual, external readings to see if the "low grease" condition is currently happening.     Analytical model creation can be extremely helpful for the automotive segment in particular. For instance, each car that comes off the factory line could have an EMS constantly sending data from which an analytical model could automatically detect engine trouble.   This could enable your company to offer an engine monitoring subscription service to your customers.   This guide will show you how to put an analytic model of your engine into service to actively monitor performance.       Step 2: Configure Provider   In ThingWorx terminology, an Analysis Provider is a mathematical analysis engine.   Analytics Manager can use a variety of Providers, such as Excel, Mathcad, or even Analytics Server pre-built ones.   In this guide, we use the built-in AnalyticsServerConnector, a Provider that has been specifically created to work seamlessly in Manager and to use Builder Models.   From the ThingWorx Composer Analytics tab, click Analytics Manager > Analysis Providers > New....   In the Provider Name field, type Vibration_Provider. In the Connector field, search for and select TW.AnalysisServices.AnalyticsServer.AnalyticsServerConnector.   Leave the rest of the options at default and click Save.     Step 3: Publish Analysis Model   Once you have configured an Analysis Provider, you can publish Models from Analytics Builder to Analytics Manager. On the ThingWorx Composer Analytics tab, click Analytics Builder > Models.   Select vibration_model_s1_only and click Publish.   On the Publish Model? pop-up, click Yes. A new browser tab will open with the Analytics Manager's Analysis Models menu. Close that new browser tab, and instead click Analysis Models in the ThingWorx Composer Analytics navigation. This is the same interface as the auto-opened tab which you closed.   Click the model to select it. At the top, click Enable. Note the pop-up indicating that the Enable was successful.       Step 4: Modify EdgeThing   In previous guides in this Vehicle Predictive Pre-Failure Detection Learning Path, you have created various Entities, including Things such as EdgeThing.   In order to automate the process of pushing data from EdgeThing to Analytics Manager, we need to add a few more Properties to EdgeThing.   These Properties are simple STRING variables, and we'll also set Default Values for them to configure parameters of Analytics Manager.   The first is causalTechnique, which tells Analytics Manager which criteria to use when measuring the impact of a feature on a range of goal values.   The second is goalField, which is simply the data field for which Analytics Manager should try to identify the correlation. In this case, it'll be our primary issue, i.e. low_grease.   It is not mandatory that these suggested Property names match, but they are the names used within ThingWorx Analytics. You could use any Property name you wanted, as you'll be mapping from a particular Property to the functionality within Analytics in a later step.   Return to EdgeThing > Properties and Alerts.   Click + Add.   In the Name field, type causalTechnique. Check Has Default Value. In the text field under "Has Default Value", type FULL_RANGE. Note that you MUST type FULL_RANGE, including capitalization, as that is a command within Analytics Server.   Click the "Check with a +" icon for Done and Add. In the Name field, type goalField. Check Has Default Value. In the text field under "Has Default Value", type low_grease. Note that you MUST type low_grease, including being all lower-case, as that is the exact name of the Analytics Server goal.   Click the "Check" icon for Done. Click Save.   Results Storage   We also need a place in which to store the results that Analytics Manager returns. We'll utilize a few additional Properties for that as well.   On the EdgeThing > Properties and Alerts tab, click + Add. In the Name field, type Result_low_grease. Check the Base Type to BOOLEAN. Check Persistent.   Click the "Check with a +" icon for Done and Add. In the Name field, type Result_low_grease_mo. Change the Base Type to NUMBER. Check Persistent.   Click the "Check" icon for Done. Click Save.       Step 5: Create Event   Events are automatic analysis jobs which are submitted based on a pre-defined condition. In this step, we'll configure an Analysis Event, which will execute automatically whenever there is a data-change in our simulated engine.   On the ThingWorx Composer Analytics tab, click Analytics Manager > Analysis Events.   Click New.... If not already selected, change Source Type (Required) to Thing.   In Source, search for and select EdgeThing. In Event, select DataChange. In Property, select s1_fb1. If there are multiple s1_fb1 Properties, select the first one, as the second one is the s1_fb1 entry in the Info Table Property. In Provider Name, select Vibration_Provider. In Model Name, select the published Model.   Click Save.       Click here to view Part 2 of this guide.  
View full tip
  Connect to an existing database and design a connected data model.   GUIDE CONCEPT   There are times you already have your database designed and only need to integrate the ThingWorx environment.   These concepts and steps will allow you to focus on development of your application while still allowing the ability to utilize the power of ThingWorx!   We will teach you how to create a data model around your database design and connect to that database.     YOU'LL LEARN HOW TO   How to connect an external database and created services to be used with it How to design and implement a new data model based on an external resource Using data models with database services   Note: The estimated time to complete this guide is 30 minutes.      Step 1: Examples and Strategy   If you’d like to skip ahead, download and unzip the completed example of the Aerospace and Defense learning path attached to this guide:  AerospaceEntitiesGuide1.zip.   By now, you likely know how to create a data model from scratch. You have likely already created services that work with Info Tables. What you might not have completed, is combining both a new data model, handling data in services, and connecting it all to an external database.   Our organization, PTC Defense Department, has existed for years and has an existing database setup. Developers in our organization refuse to remodel the database, so we must model the ThingWorx data model to our database schema. With ThingWorx, this is not a difficult task, but there are numerous decisions and options that we will explore in this guide.     Step 2: Database Connections   ThingWorx is based on the Java programming language and can make connections to any database that supports a Java-based connection. Dropping the JAR file for the database JDBC driver to the lib folder of Tomcat is all that is needed for connection to the ThingWorx Platform. Follow the below steps to get started creating the connection.   To establish the connection and begin working with an external database, you will need to create a Database Thing and configure the connection string and credentials. Let us start with our database connection. If you have not done so already, download the Aerospace and Defense database scripts: DatabaseApplication.zip. Use the README.txt file to create the database schema. It is based on Microsoft SQL Server, but you can configure the scripts to your database preferences.   NOTE: You will not need to connect to a database to utilize this guide as a learning utility. For your services to work, you will need to connect to a database.   1. In ThingWorx Composer, click the + New at the top-left of the screen.     2. Select Thing in the dropdown.     3. Name the Thing `DatabaseController.Facilities` and select Database as the Base Thing Template.     4.Click Save and go to the Configurations tab.   In this tab, you will enter the class name of your driver, the connection string for that database connection, and the credentials to access the database.   Keep in mind, the JDBC Driver Class Name, JDBC Connection String, and the connection Validation String values are all database type specific. For example, to connect to a SQL Server database, the below configuration can be used.   Title Description  Example   JDBC Driver Class Name  The specific class name of the driver being used for the connection.  net.sourceforge.jtds.jdbc.Driver (SQL Server) or oracle.jdbc.driver.OracleDriver (Oracle)  JDBC Connection String  The connection string to locate the database by host/port/database name.  jdbc:jtds:sqlserver://server:port/databaseName (SQL Server) or jdbc:oracle:thin:@hostname:port:databaseName (Oracle)  connectionValidationString  A simple query that should always work in a database.  SELECT GetDate() (SQL Server) or SELECT SYSDATE FROM DUAL (Oracle)   5. After entering credentials, click Save.     6. Go the Properties and Alerts tab.   The connected Property should be checked. This property informs us of the current connection to the database. The lastConnection Datetime Property should show a current timestamp. This property informs us of the last time there was a valid connection to the database. This is an easy way to confirm the connection to the database.   If you do not have a connection, work on your configurations in the Configurations tab and validate the credentials being used. If you are still having troubles, see the examples section below or use the next section for help to try a query of the database.   Help and Troubleshooting   For help finding the correct configuration for you, check out these JDBC Configuration Examples or try out this Connection String Reference for help with your connection string.   You have just established your first database connection! Now jump to the next section and let us begin to build a data model to match the database schema.   Step 3: Query Data from External Database   Now that you're connected to the database, you can begin querying the database for information and the flow of data. The queries and data shown below are based on the table scripts provided in the download.   Examples of how the ThingWorx entity should look can be seen in the SQLServerDatabaseController and OracleDatabaseController entities.   Running a Query   As you may have noticed by working in ThingWorx and developing applications, an InfoTable is often used to work with large sets of data. An InfoTable is also how data is returned from a database query. If you're expecting only 1 value in the result set, the data will be held in the first index of the InfoTable. If you're expecting rows of data coming back, expect there to be rows of information inside of the InfoTable.   Follow the steps below to set up a helper service to perform queries for the database. While other services might generate the query to be used, this helper service will be a shared execution service.   In the DatabaseController entity, go to the Services tab. Create a new service of type SQL (Query) called RunDatabaseQuery.           3. Set the Output as InfoTable, but do not set the DataShape for the InfoTable.       4. Add the following parameter: Name Base Type Required query String True       5. Add the following code to the new service:   <<query>>       6. Click Save and Continue. Your service signature should look like the below example.       You now have a service that can run queries to the database. This is also a simple method to test/troubleshoot the database connection or a quick query.   Run your service with a simple query. You might notice that no matter the fields in the result set, the InfoTable will match it based on field type and field name.   There are two ways you can go from here. You can either query the database using services that call this service, or you can create more SQL command services that query the database directly. Let's go over each method next, starting with a service to call our helper.   In the Services tab of the DatabaseController entity, create a new service of type JavaScript. Name the service JavaScriptQuery_PersonsTable. Set the Output as InfoTable, but do not set the DataShape for the InfoTable. Add the following code to your new service: try { var query = "SELECT * FROM Persons"; logger.debug("DatabaseController.JavaScriptQuery_PersonsTable(): Query - " + query); var result = me.RunDatabaseQuery({query:query}); } catch(error) { logger.error("DatabaseController.JavaScriptQuery_PersonsTable(): Error - " + error.message); }       5. Click Save and Continue.   Any parameter, especially those that were entered by users, that is being passed into an SQL Statement using the Database Connectors should be fully validated and sanitized before executing the statement! Failure to do so could result in the service becoming an SQL Injection vector.   This is a simple way to query the database since much of your development inside of ThingWorx was already based in JavaScript.   Now, let's utilize the second method to create a query directly to the database. You can use open and close brackets to create parameters for your query. You can also use <> as a method to mark a value that will need to be replaced. As you build your query, use [[Parameter Name]] for parameters/variables substitution and <> for string substitution.   In the Services tab of the DatabaseController entity, create a new service of type JavaScript. Name the service SQLQuery_GetPersonByEmail. Ensure the Output is InfoTable. Add the following code to your new service: SELECT * FROM Persons WHERE person_email = [[email]];       5. Add the following parameter:   Name Base Type Required email String True         6. Click Save and Continue.   An example of using the string replacement is as follows: DELETE FROM <> WHERE (FieldName = '[[MatchName]]'); DELETE FROM << TableName >> WHERE ( FieldName = [[MatchNumber]]);       Click here to view Part 2 of this guide.
View full tip
    Step 8: Tasks   If you are using the built-in Tasker to drive data collection or other types of repetitive or periodic activities, create a function for the task. Task functions are registered with the Tasker and then called at the rate specified after they are registered. The Tasker is a very simple, cooperative multitasker, so these functions should not take long to return and most certainly must not go into an infinite loop.   The signature for a task function is found in [C SDK HOME DIR]/src/utils/twTasker.h. The function is passed a DATETIME value with the current time and a void pointer that is passed into the Tasker when the task is registered. After creating this function, it will need to be registered using the twApi_CreateTask function after the connection is created. Below shows an example of creating this function, registering this function, and how this function can be used.   #define DATA_COLLECTION_RATE_MSEC 2000 void dataCollectionTask(DATETIME now, void * params) { /* TW_LOG(TW_TRACE,"dataCollectionTask: Executing"); */ properties.TotalFlow = rand()/(RAND_MAX/10.0); properties.Pressure = 18 + rand()/(RAND_MAX/5.0); properties.Location.latitude = properties.Location.latitude + ((double)(rand() - RAND_MAX))/RAND_MAX/5; properties.Location.longitude = properties.Location.longitude + ((double)(rand() - RAND_MAX))/RAND_MAX/5; properties.Temperature = 400 + rand()/(RAND_MAX/40); /* Check for a fault. Only do something if we haven't already */ if (properties.Temperature > properties.TemperatureLimit && properties.FaultStatus == FALSE) { twInfoTable * faultData = 0; char msg[140]; properties.FaultStatus = TRUE; properties.InletValve = TRUE; sprintf(msg,"%s Temperature %2f exceeds threshold of %2f", thingName, properties.Temperature, properties.TemperatureLimit); faultData = twInfoTable_CreateFromString("message", msg, TRUE); twApi_FireEvent(TW_THING, thingName, "SteamSensorFault", faultData, -1, TRUE); twInfoTable_Delete(faultData); } /* Update the properties on the server */ sendPropertyUpdate(); } … twApi_CreateTask(DATA_COLLECTION_RATE_MSEC, dataCollectionTask); … while(1) { char in = 0; #ifndef ENABLE_TASKER DATETIME now = twGetSystemTime(TRUE); twApi_TaskerFunction(now, NULL); twMessageHandler_msgHandlerTask(now, NULL); if (twTimeGreaterThan(now, nextDataCollectionTime)) { dataCollectionTask(now, NULL); nextDataCollectionTime = twAddMilliseconds(now, DATA_COLLECTION_RATE_MSEC); } #else in = getch(); if (in == 'q') break; else printf("\n"); #endif twSleepMsec(5); }      Step 9: File Transfer Example    To handle file transfers, a virtual directory is created in the SteamSensor1 entity and in the [C SDK HOME DIR]/examples/FileTransferExample application directory. The source code used for this example is found in [C SDK HOME DIR]/examples/FileTransferExample/src/main.c.   Inside of the [C SDK HOME DIR]/examples/FileTransferExample folder, create the folder structure shown below: /transfer/ /transfer/incoming/ /transfer/outgoing/ Inside of the /transfer/outgoing/ directory, create and open a file with the name outgoing.txt. Once the outgoing.txt document is open, add the following text, save, and close the file: Hello. This is a file coming from the client application. Navigate to the [C SDK HOME DIR]/examples/FileTransferExample/src/main.c code and update the lines below with the appropriate information for your IP, port, and the “admin_key” Application Key’s keyId value in the ThingWorx Composer: /* Server Details */ #define TW_HOST "127.0.0.1" #define TW_PORT 80 #define TW_APP_KEY "ce22e9e4-2834-419c-9656-ef9f844c784c" To support file transfers in your client application, you must use the twFileManager_AddVirtualDir function in order to create the virtual directories in the entity with such a capability. It will also define the directories available for file operations. A virtual directory maps a unique name to an absolute path of a directory in the file system. All subdirectories of the specified directory are exposed to the server. You can define multiple virtual directories. The directories do not need to be contiguous.   Staging Directory   As an optional, but recommended step, you should set the directory that the application should use for staging when performing file transfers. This can be seen in the line below and should be done before initializing the FileManager. The default directory of the FileManager is most likely owned by root and will require a change to either the location of the staging directory and the ownership of the staging directory, or running the application as a User with the correct permissions.   twcfg.file_xfer_staging_dir = "staging"; The example provided uses the TW_SHARE_DIRECTORY macro to create two virtual directories that will act as the root directories in the virtual file system of this application are added. The client is then started as follows with the necessary TW_ADD_FILE_TRANSFER_SHAPE function being called: TW_ADD_FILE_TRANSFER_SHAPE(); TW_SHARE_DIRECTORY("in", "/transfer/incoming/"); TW_SHARE_DIRECTORY("out", "/transfer/outgoing/"); The creations of the payloads used to create the remote directories on the platform have been moved to a helper function below to make the design cleaner: int setupSystemRepo(const char * remoteInPath, const char * remoteOutPath, const char * remoteFile); After our remote directories and files have been setup, it is time to perform the file transfers. Normally, this would mean invoking the Copy service for a Subsystem, but two functions have been created to make this process easier: int twFileManager_GetFile(const char * sourceRepo, const char * sourcePath, const char * sourceFile, const char * targetRepo, const char * targetPath, const char * targetFile, uint32_t timeout, char asynch, char ** tid) int twFileManager_SendFile(const char * sourceRepo, const char * sourcePath, const char * sourceFile, const char * targetRepo, const char * targetPath, const char * targetFile, uint32_t timeout, char asynch, char ** tid) The table below displays an example of the first set of parameters:    Parameter     Example                             Description sourceRepo SystemRepository The name of FileRepository or RemoteThing to transfer the file FROM. sourcePath outgoing The path specifying the location of the source file. sourceFile The name of the source file.   targetRepo SteamSensor1 The name of FileRepository or RemoteThing to transfer the file TO. targetPath incoming The path specifying the destination location of the file. targetFile incoming.txt The name of the file at the target. This name can differ from the sourceName. timeout 15,000 The amount of time (in seconds) to wait for a synchronous transfer to complete before cancelling the transfer. async false If false, the service call will block for timeout seconds or until the transfer completes. tid incoming0123 The unique TID associated with the file.   The C SDK also provides the ability to create a FileCallback function that the FileManager will call that function when any file transfer events occur. You can provide a wildcard filter so that only file transfer Events of files that match the filter call the callback function. In addition, callbacks can be set up as “one-shots” such that the callback is unregistered automatically after it is invoked the first time.   NOTE: An optional file transfer callback is registered in the code and provided. You will see the output from the function as files are sent and received.   After running this application, you will notice a new file in the transfer/incoming folder after refreshing. This is the file that we created in the ThingWorx Composer file system for the SystemRepository Entity and was able to copy from that location to our local project. We have also sent a file to the server’s SystemRepository. The BrowseFileSystem and GetFileListing services can be used to check for the folders and files created.   twFileManager_RegisterFileCallback(fileCallbackFunc, NULL, FALSE, NULL);     Step 10: Support Other Platforms   All Websocket errors indicate some general issue communicating with the ThingWorx platform. If you experience an issue connecting, refer to the table below for a list of websocket errors, their corresponding codes, and an explanation of the issue.    Code     Message                                                                      Troubleshooting 200 TW_UNKNOWN_WEBSOCKET_ERROR An unknown error occurred on the websocket. 201 TW_ERROR_INITIALIZING_WEBSOCKET An error occurred while initializing the websocket. Check your websocket configuration parameters for validity. 202 TW_TIMEOUT_INITIALIZING_WEBSOCKET A timeout occurred while initializing the websocket. Check the status of the connection to ThingWorx. 203 TW_WEBSOCKET_NOT_CONNECTED The websocket is not connected to ThingWorx. The requested operation cannot be performed. 204 TW_ERROR_PARSING_WEBSOCKET_DATA An error occurred while parsing websocket data. The parser could not break down the data from the websocket. 205 TW_ERROR_READING_FROM_WEBSOCKET An error occurred while reading data from the websocket. Retry the read operation. If necessary, resend the data. 206 TW_WEBSOCKET_FRAME_TOO_LARGE The SDK is attempting to send a websocket frame that is too large. The Maximum Frame Size is set when calling twAPI_Initialize and should always be set to the Message Chunk Size (twcfg.message_chunk_size). 207 TW_INVALID_WEBSOCKET_FRAME_TYPE The type of the frame coming in over the websocket is invalid. 208 TW_WEBSOCKET_MSG_TOO_LARGE The application is attempting to send a message that has been broken up in to chunks that are too large to fit in a frame. You should not see this error. 209 TW_ERROR_WRITING_TO_WEBSOCKET An error occurred while writing to the Web socket. 210 TW_INVALID_ACCEPT_KEY The Accept key sent earlier from ThingWorx is not valid.     Step 11: Next Steps   Congratulations! You've successfully completed the Low Level Device Connect Guide, and learned how to utilize the resources provided in the Edge SDK to create your own application.   The next guide in the Utilizing ThingWorx to Secure Your Aerospace and Defense Systems learning path is Tracking Activities and Statistics.    Learn More   We recommend the following resources to continue your learning experience:    Capability      Guide Build Design Your Data Model Build Implement Services, Events, and Subscriptions   Additional Resources   If you have questions, issues, or need additional information, refer to:    Resource       Link Community Developer Community Forum Support C Edge SDK Help Center      
View full tip
  Step 6: Create OPC UA Tag in ThingWorx   We will now create a Device in Kepware with a Tag whose value will be shown in ThingWorx.   Right-click on Channel1 that was just created, then click Next to accept the default name Device1       Click Next six times to accept the default settings, Then click the Select import items button.     Expand the remote OPC UA server URL, then expand OpcPlc and Telemetry.     Click SlowUint1 to select it, then click Add items >>. Click OK, Next, Finish. Return to ThingWorx Composer. Under Browse > Modeling > Industrial Connections, open IndConn_Server. Expand Channel1 > Device1 > OpcPlc, then click Telemetry.     Click the check-box next to SlowUint1. Click Bind to New Entity.     Select RemoteThing, then click OK. Enter azure-opcua-plc in the Name field, then click Save.     Click Properties and Alerts, then Click Refresh to see the property value changing every 10 seconds.     Step 7: Next Steps   Congratulations! You've successfully completed the Connect to an Azure OPC UA Server guide, and learned how to:   Create an OPC UA Server in Azure Configure Kepware as on OPC UA Client Connect Kepware to ThingWorx Foundation Monitor OPC UA data in ThingWorx Composer   Learn More   We recommend the following resources to continue your learning experience: Capability Guide Experience Create Your Application UI   Additional Resources   If you have questions, issues, or need additional information, refer to:   Resource Link Community Developer Community Forum Support Getting Started with ThingWorx Documentation Kepware documentation Support Kepware Support site
View full tip
    Step 5: Properties   In the Delivery Truck application, there are three Delivery Truck Things. Each Thing has a number of Properties based on its location, speed, and its deliveries carried out. In this design, when a delivery is made or the truck is no longer moving, the Property values are updated. The deliveryTruck.c helper C file is based on the DeliveryTruck Entities in the Composer. After calling the construct function, there are a number of steps necessary to get going. For the SimpleThing application, there are a number of methods for creating Properties, Events, Services, and Data Shapes for ease of use.   Properties can be created in the client or just registered and utilized. In the SimpleThingClient application, Properties are created. In the DeliveryTruckClient application, Properties are bound to their ThingWorx Platform counterpart. Two types of structures are used by the C SDK to define Properties when it is seen fit to do so and can be found in [C SDK HOME DIR]/src/api/twProperties.h:    Name                   Structure            Description Property Definitions twPropertyDef Describes the basic information for the Properties that will be available to ThingWorx and can be added to a client application. Property Values twProperty Associates the Property name with a value, timestamp, and quality.   NOTE: The C SDK provides a number of Macros located in [C SDK HOME DIR]/src/api/twMacros.h. This guide will use these Macros while providing input on the use of pure function calls.   The Macro example below can be found in the main source file for the SimpleThingClient application and the accompanying helper file simple_thing.c.   TW_PROPERTY("TempProperty", "Description for TempProperty", TW_NUMBER); TW_ADD_BOOLEAN_ASPECT("TempProperty", TW_ASPECT_ISREADONLY,TRUE); TW_ADD_BOOLEAN_ASPECT("TempProperty", TW_ASPECT_ISLOGGED,TRUE);   NOTE: The list of aspect configurations can be seen in [C SDK HOME DIR]/src/api/twConstants.h. Property values can be set with defaults using the aspects setting. Setting a default value in the client will affect the Property in the ThingWorx platform after binding. It will not set a local value in the client application.   For the DeliveryTruckClient, we registered, read, and update Properties without using the Property definitions. Which method of using Properties is based on the application being built.   NOTE: Updating Properties in the ThingWorx Platform while the application is running, will update the values in the client application. To update the values in the platform to match, end the Property read section of your property handler function with a function to set the platform value.   The createTruckThing function for the deliveryTruck.c source code takes a truck name as a parameter and is used to register the Properties, functions, and handlers for each truck.   The updateTruckThing function for the deliveryTruck.c source code takes a truck name as a parameter and is used to either initialize a struct for DeliveryTruck Properties, or simulate a truck stop Event, update Properties, then fire an Event for the ThingWorx platform.   Connecting properties to be used on the platform is as easy as registering the property and optionally adding aspects. The following shows the properties that correlate to those in the DeliveryTruck entities in the Composer. To do this within the code, you would use the TW_PROPERTY macro as shown in the deliveryTruck.c. This macro must be proceeded by either TW_DECLARE_SHAPE, TW_DECLARE_TEMPLATE or TW_MAKE_THING because these macros declare variables used by the TW_PROPERTY that follow them.   //TW_PROPERTY(propertyName,description,type) TW_PROPERTY(PROPERTY_NAME_DRIVER, NO_DESCRIPTION, TW_STRING); TW_PROPERTY(PROPERTY_NAME_DELIVERIES_LEFT, NO_DESCRIPTION, TW_NUMBER); TW_PROPERTY(PROPERTY_NAME_TOTAL_DELIVERIES, NO_DESCRIPTION, TW_NUMBER); TW_PROPERTY(PROPERTY_NAME_DELIVERIES_MADE, NO_DESCRIPTION, TW_NUMBER); TW_PROPERTY(PROPERTY_NAME_LOCATION, NO_DESCRIPTION, TW_LOCATION); TW_PROPERTY(PROPERTY_NAME_SPEED, NO_DESCRIPTION, "TW_NUMBER);   Read Properties   Reading Properties from a ThingWorx platform Thing or the returned Properties of a Service can be done using the TW_GET_PROPERTY macro. Examples of its use can be seen in all of the provided applications. An example can be seen below:   int flow = TW_GET_PROPERTY(thingName, "TotalFlow").number; int pressue = TW_GET_PROPERTY(thingName, "Pressure").number; twLocation location = TW_GET_PROPERTY(thingName, "Location").location; int temperature = TW_GET_PROPERTY(thingName, "Temperature").number;   Write Properties   Writing Properties to a ThingWorx platform Thing from a variable storing is value uses a similarly named method. Using the TW_SET_PROPERTY macro will be able to send values to the platform. Examples of its use can be seen in all of the provided applications. An example is shown below:   TW_SET_PROPERTY(thingName, "TotalFlow", TW_MAKE_NUMBER(rand() / (RAND_MAX / 10.0))); TW_SET_PROPERTY(thingName, "Pressure", TW_MAKE_NUMBER(18 + rand() / (RAND_MAX / 5.0))); TW_SET_PROPERTY(thingName, "Location", TW_MAKE_LOC(gpsroute[location_step].latitude,gpsroute[location_step].longitude,gpsroute[location_step].elevation));   This macro utilizes the twApi_PushSubscribedProperties function call to push all property updates to the server. This can be seen in the updateTruckThing function in deliveryTruck.c.   Property Change Listeners   Using the Observer pattern, you can take advantage of the Property change listener functionality. With this pattern, you create functions that will be notified when a value of a Property has been changed (whether on the server or locally by your program when the TW_SET_PROPERTY macro is called).   Add a Property Change Listener   In order to add a Property change listener, call the twExt_AddPropertyChangeListener function using the:   Name of the Thing (entityName) Property this listener should watch Function that will be called when the property has changed   void simplePropertyObserver(const char * entityName, const char * thingName,twPrimitive* newValue){ printf("My Value has changed\n"); } void test_simplePropertyChangeListener() { { TW_MAKE_THING("observedThing",TW_THING_TEMPLATE_GENERIC); TW_PROPERTY("TotalFlow", TW_NO_DESCRIPTION, TW_NUMBER); } twExt_AddPropertyChangeListener("observedThing",TW_OBSERVE_ALL_PROPERTIES,simplePropertyObserver); TW_SET_PROPERTY("observedThing","TotalFlow",TW_MAKE_NUMBER(50)); } NOTE: Setting the propertyName parameter to NULL or TW_OBSERVE_ALL_PROPERTIES, the function specified by the propertyChangeListenerFunction parameter will be used for ALL properties.   Remove a Property Change Listener   In order to release the memory for your application when done with utilizing listeners for the Property, call the twExt_RemovePropertyChangeListener function.   void simplePropertyObserver(const char * entityName, const char * thingName,twPrimitive* newValue){ printf("My Value has changed\n"); } twExt_RemovePropertyChangeListener(simplePropertyObserver);       Step 6: Data Shapes   Data Shapes are an important part of creating/firing Events and also invoking Services.   Define With Macros   In order to define a Data Shape using a macro, use TW_MAKE_DATASHAPE.   NOTE: The macros are all defined in the twMacros.h header file.   TW_MAKE_DATASHAPE("SteamSensorReadingShape", TW_DS_ENTRY("ActivationTime", TW_NO_DESCRIPTION ,TW_DATETIME), TW_DS_ENTRY("SensorName", TW_NO_DESCRIPTION ,TW_NUMBER), TW_DS_ENTRY("Temperature", TW_NO_DESCRIPTION ,TW_NUMBER), TW_DS_ENTRY("Pressure", TW_NO_DESCRIPTION ,TW_NUMBER), TW_DS_ENTRY("FaultStatus", TW_NO_DESCRIPTION ,TW_BOOLEAN), TW_DS_ENTRY("InletValve", TW_NO_DESCRIPTION ,TW_BOOLEAN), TW_DS_ENTRY("TemperatureLimit", TW_NO_DESCRIPTION ,TW_NUMBER), TW_DS_ENTRY("TotalFlow", TW_NO_DESCRIPTION ,TW_INTEGER) );   Define Without Macros   In order to define a Data Shape without using a macro, use the twDataShape_CreateFromEntries function. In the example below, we are creating a Data Shape called SteamSensorReadings that has two numbers as Field Definitions.   twDataShape * ds = twDataShape_Create(twDataShapeEntry_Create("a",NULL,TW_NUMBER)); twDataShape_AddEntry(ds, twDataShapeEntry_Create("b",NULL,TW_NUMBER)); /* Name the DataShape for the SteamSensorReadings service output */ twDataShape_SetName(ds, "SteamSensorReadings");     Step 7: Events and Services   Events and Services provide useful functionality. Events are a good way to make a Service be asynchronous. You can call a Service, let it return, then your Entity can subscribe to your Event and not keep the original Service function waiting. Events are also a good way to allow the platform to respond to data when it arrives on the edge device without it having to poll the edge device for updates.   Fire Events   To fire an Event you first need to register the Event and load it with the necessary fields for the Data Shape of that Event using the twApi_RegisterEvent function. Afterwards, you would send a request to the ThingWorx server with the collected values using the twApi_FireEvent function. An example is as follows:   twDataShape * ds = twDataShape_Create(twDataShapeEntry_Create("message", NULL,TW_STRING)); /* Event datashapes require a name */ twDataShape_SetName(ds, "SteamSensorFault"); /* Register the service */ twApi_RegisterEvent(TW_THING, thingName, "SteamSensorFault", "Steam sensor event", ds); …. struct { char FaultStatus; double Temperature; double TemperatureLimit; } properties; …. properties. TemperatureLimit = rand() + RAND_MAX/5.0; properties.Temperature = rand() + RAND_MAX/5.0; properties.FaultStatus = FALSE; if (properties.Temperature > properties.TemperatureLimit && properties.FaultStatus == FALSE) { twInfoTable * faultData = 0; char msg[140]; properties.FaultStatus = TRUE; sprintf(msg,"%s Temperature %2f exceeds threshold of %2f", thingName, properties.Temperature, properties.TemperatureLimit); faultData = twInfoTable_CreateFromString("message", msg, TRUE); twApi_FireEvent(TW_THING, thingName, "SteamSensorFault", faultData, -1, TRUE); twInfoTable_Delete(faultData); }   Invoke Services   In order to invoke a Service, you will use the twApi_InvokeService function. The full documentation for this function can be found in [C SDK HOME DIR]/src/api/twApi.h. Refer to the table below for additional information.    Parameter         Type                  Description entityType Input The type of Entity that the service belongs to. Enumeration values can be found in twDefinitions.h. entityName Input The name of the Entity that the service belongs to. serviceName Input The name of the Service to execute. params Input A pointer to an Info Table containing the parameters to be passed into the Service. The calling function will retain ownership of this pointer and is responsible for cleaning up the memory after the call is complete. result Input/Output A pointer to a twInfoTable pointer. In a successful request, this parameter will end up with a valid pointer to a twInfoTable that is the result of the Service invocation. The caller is responsible for deleting the returned primitive using twInfoTable_Delete. It is possible for the returned pointer to be NULL if an error occurred or no data is returned. timeout Input The time (in milliseconds) to wait for a response from the server. A value of -1 uses the DEFAULT_MESSAGE_TIMEOUT as defined in twDefaultSettings.h. forceConnect Input A Boolean value. If TRUE and the API is in the disconnected state of the duty cycle, the API will force a reconnect to send the request.   See below for an example in which the Copy service from the FileTransferSubsystem is called:   twDataShape * ds = NULL; twInfoTable * it = NULL; twInfoTableRow * row = NULL; twInfoTable * transferInfo = NULL; int res = 0; const char * sourceRepo = "SimpleThing_1"; const char * sourcePath = "tw/hotfolder/"; const char * sourceFile = "source.txt"; const char * targetRepo = "SystemRepository"; const char * targetPath = "/"; const char * targetFile = "source.txt"; uint32_t timeout = 60; char asynch = TRUE; char * tid = 0; /* Create an infotable out of the parameters */ ds = twDataShape_Create(twDataShapeEntry_Create("sourceRepo", NULL, TW_STRING)); res = twDataShape_AddEntry(ds, twDataShapeEntry_Create("sourcePath", NULL, TW_STRING)); res |= twDataShape_AddEntry(ds, twDataShapeEntry_Create("sourceFile", NULL, TW_STRING)); res |= twDataShape_AddEntry(ds, twDataShapeEntry_Create("targetRepo", NULL, TW_STRING)); res |= twDataShape_AddEntry(ds, twDataShapeEntry_Create("targetPath", NULL, TW_STRING)); res |= twDataShape_AddEntry(ds, twDataShapeEntry_Create("targetFile", NULL, TW_STRING)); res |= twDataShape_AddEntry(ds, twDataShapeEntry_Create("async", NULL, TW_BOOLEAN)); res |= twDataShape_AddEntry(ds, twDataShapeEntry_Create("timeout", NULL, TW_INTEGER)); it = twInfoTable_Create(ds); row = twInfoTableRow_Create(twPrimitive_CreateFromString(sourceRepo, TRUE)); res = twInfoTableRow_AddEntry(row, twPrimitive_CreateFromString(sourcePath, TRUE)); res |= twInfoTableRow_AddEntry(row, twPrimitive_CreateFromString(sourceFile, TRUE)); res |= twInfoTableRow_AddEntry(row, twPrimitive_CreateFromString(targetRepo, TRUE)); res |= twInfoTableRow_AddEntry(row, twPrimitive_CreateFromString(targetPath, TRUE)); res |= twInfoTableRow_AddEntry(row, twPrimitive_CreateFromString(targetFile, TRUE)); res |= twInfoTableRow_AddEntry(row, twPrimitive_CreateFromBoolean(asynch)); res |= twInfoTableRow_AddEntry(row, twPrimitive_CreateFromInteger(timeout)); twInfoTable_AddRow(it,row); /* Make the service call */ res = twApi_InvokeService(TW_SUBSYSTEM, "FileTransferSubsystem", "Copy", it, &transferInfo, timeout ? (timeout * 2): -1, FALSE); twInfoTable_Delete(it); /* Grab the tid */ res = twInfoTable_GetString(transferInfo,"transferId",0, &tid);   Bind Event Handling   You may want to track exactly when your edge Entities are successfully bound to or unbound from the server. The reason for this is that only bound items should be interacting with the ThingWorx Platform and the ThingWorx Platform will never send any requests targeted at an Entity that is not bound. A simple example that only logs the bound Thing can be seen below. After creating this function, it will need to be registered using the twApi_RegisterBindEventCallback function before the connection is made.   void BindEventHandler(char * entityName, char isBound, void * userdata) { if (isBound) TW_LOG(TW_FORCE,"BindEventHandler: Entity %s was Bound", entityName); else TW_LOG(TW_FORCE,"BindEventHandler: Entity %s was Unbound", entityName); } …. twApi_RegisterBindEventCallback(thingName, BindEventHandler, NULL);   OnAuthenticated Event Handling   You may also want to know exactly when your Edge device has successfully authenticated and made a connection to the ThingWorx platform. Like the bind Event handling, this function will need to be made and registered. To register this handler, use the twApi_RegisterOnAuthenticatedCallback function before the connection is made. This handler form can also be used to do a delay bind for all Things.   void AuthEventHandler(char * credType, char * credValue, void * userdata) { if (!credType || !credValue) return; TW_LOG(TW_FORCE,"AuthEventHandler: Authenticated using %s = %s. Userdata = 0x%x", credType, credValue, userdata); /* Could do a delayed bind here */ /* twApi_BindThing(thingName); */ } … twApi_RegisterOnAuthenticatedCallback(AuthEventHandler, NULL);     Click here to view Part 3 of this guide.
View full tip
  Utilize the C SDK to build an app that creates a secure connection to ThingWorx with low level device access.   Guide Concept   This project will cover using the ThingWorx C SDK to develop applications for the purpose of secure and low level development.   Following the steps in this this guide, you will be ready to develop your own IoT application with the ThingWorx C SDK.   We will teach you how to use the C programming language to connect and build IoT applications to be used with the ThingWorx Platform.       You'll learn how to   Establish and manage a secure connection with a ThingWorx server, including SSL negotiation and connection maintenance. Enable easy programmatic interaction with the Properties, Services, and Events that are exposed by Entities running on a ThingWorx server. Basic concepts of the C Edge SDK How to create an application that can communicate with other devices   NOTE: This guide's content aligns with ThingWorx 9.3. The estimated time to complete ALL parts of this guide is 60 minutes       Step 1: Completed Examples   Download the completed files attached to this tutorial: C_SDK.zip.   This tutorial will guide you through working with the C SDK on differing levels. Utilize this file to see a finished example and return to it as a reference if you become stuck creating your own fully flushed out application. With the C SDK, you can connect to whatever device you have at a level most programming languages wouldn't be able to. Now think of your secure system, your fighter jet, or even you communication devices. All these systems and levels need to have a way to secure transfer data and the C SDK is how we do it.   Keep in mind, this download uses the exact names for entities used in this tutorial. If you would like to import this example and also create entities on your own, change the names of the entities you create.     Step 2: Environment Setup   In order to compile C code, download the attached C compiler: C-SDK-2-2-12-1052.zip.    Operating System          Notes Windows You will need a 3rd party compiler such as MinGW GCC, Cygwin GCC or you can follow these Microsoft instructions to download and use the Microsoft Visual C++ Build Tool. Mac Download the Apple Developer Tools. Linux/Ubuntu A compiler is included by default.   NOTE: You can use CMake, version 2.6.1 or later to build projects or make files, which then are used to build the applications that you develop with the C SDK. Before you can begin developing with the ThingWorx C SDK, you need to generate an Application Key and modify the source code file. You can use the Create an Application Key as a reference.   Modify Source File   Extract the files from the C SDK samples zip file. At the top level of the extracted files, you will see a folder called examples, which provides examples of how to utilize the C SDK. Open a terminal, go to your workspace, and create a new project. After you've created this project in your workspace, import the entire C SDK downloaded from the PTC Support site for ease of use (mainly the src folder and the CMakeList.txt file). You can start creating your connection code or open the main.c source file in the examples\SteamSensor\src directory for an example.    Operating System        Code Linux/Ubuntu gedit main.c OR vi main.c Mac open –e main.c Windows start main.c   5. Modify the Server Details section at the top with the IP address for your ThingWorx Platform instance and the application key you would like to use. Change the TW_HOST definition accordingly. Change the TW_PORT definition accordingly. Change the TW_APP_KEY definition to the keyId value saved from the last step. /* Server Details */ #define TW_HOST "https://pp-XXXXXXXXX.devportal.ptc.i" #define TW_PORT 80 #define TW_APP_KEY "e1d78abf-cfd2-47a6-92b7-37dc6dd34618" NOTE: Using the Application Key for the default Administrator is not recommended. If administrative access is absolutely necessary, create a user and place the user as a member of Admins.   Compile and Run Code   To test your connection, you will only need to update the main.c in the SteamSensor example folder.   CMake can generate visual studio projects, make build files or even target IDEs such as Eclipse, or XCode. CMake generates a general description into a build for your specific toolchain or IDE.   If you have not downloaded and installed CMake, do it now at the CMake website. NOTE: CMake comes as a command line and a GUI application. The steps in this guide use the command line version only. Inside the specific example folder you would like to run, ie SteamSensor. Create a directory to build in, for this example call it cmake. mkdir cmake cd cmake 4. Run the CMake command listed below. This assumes CMake is already on your PATH. cmake -G "Visual Studio 15 2012" .. 5. CMake has now produced a set of project files which should be compatible with your development environment.  Operating System    Command                                        Notes Unix command-> make A set of make files Windows **msbuild tw-c-sdk.sln /t:build** A visual studio solution NOTE: CMake does its best to determine what version of Visual Studio you have but you may wish to specify which version to use if you have more than one installed on your computer. Below is an example of forcing CMake to use a specific version of Visual Studio: cmake -G "Visual Studio 15 2017" .. If your version of Visual Studio or other IDE is unknown, use cmake -G to see a list of supported IDEs.   You also have the alternative of opening the tw-c-sdk.sln from within Visual Studio and building in this IDE.   NOTE: By default, CMake will generate a build for the creation of a release binary. If you want to generate a debug build, use the command-> cmake -DBUILD_DEBUG=ON.   6. Once your build completes you will find the build products in the cmake directory. From here, open the project in your IDE of choice. NOTE: You should receive messages confirming successful binding, authentication, and connection after the main.c file edits have been made.       Step 3: Run Sample Code   The C code in the sample download is configured to run and connect to the Entities provided in the ThingWorxEntitiesExport.xml file. Make note of the IP address of your ThingWorx Composer instance. The top level of the exported zip file will be referred to as [C SDK HOME DIR]. Navigate to the [C SDK HOME DIR]/examples/ExampleClient/src directory. Open the main.c source file.  Operating System      Command Linux/Ubuntu gedit main.c OR vi main.c Mac open –e main.c Windows start main.c   3. Modify the Server Details section at the top with the IP address for your ThingWorx Platform instance and the Application Key you would like to use. Change the TW_HOST definition accordingly. NOTE: By default, TW_APP_KEY has been set to the Application Key from the admin_key in the import step completed earlier. Using the Application Key for the default Administrator is not recommended. If administrative access is absolutely necessary, create a user and place the user as a member of the Admins security group. /* Server Details */ #define TW_HOST "127.0.0.1" #define TW_APP_KEY "ce22e9e4-2834-419c-9656-e98f9f844c784c"   4. If you are working on a port other than 80, you will need to update the conditional statement within the main.c source file. Search for and edit the first line within the main function. Based on your settings, set the int16_t port to the ThingWorx platform port. 5. Click Save and close the file. 6. Create a directory to build in, for this example call it bin.  Operating System            Command Linux/Ubuntu mkdir bin Mac mkdir bin Windows mkdir bin   7. Change to the newly created bin directory.  Operating System              Command Linux/Ubuntu cd bin Mac cd bin Windows cd bin   8. Run the CMake command using your specific IDE of choice. NOTE: Include the two periods at the end of the code as shown below. Use cmake -G to see a list of supported IDEs. cmake ..   9. Once your build completes, you will find the build products in the bin directory, and you can open the project in your IDE of choice. NOTE: You should receive messages confirming successful binding, authentication, and connection after building and running the application. 10. You should be able to see a Thing in your ThingWorx Composer called SimpleThing_1 with updated lastConnection and isConnected properties. SimpleThing_1 is bound for the duration of the application run time.   The below instructions will help to verify the connection.   Click Monitoring. Click Remote Things from the list to see the connection status. You will now be able to see and select the Entity within the list.       Step 4: ExampleClient Connection   The C code provided in the main.c source file is preconfigured to initialize the ThingWorx C Edge SDK API with a connection to the ThingWorx platform and register handlers. In order to set up the connection, a number of parameters must be defined. This can be seen in the code below.   #define TW_HOST "127.0.0.1" #define TW_APP_KEY "ce22e9e4-2834-419c-9656-ef9f844c784c #if defined NO_TLS #define TW_PORT = 80; #else #define TW_PORT = 443; #endif   The first step of connecting to the platform: Establish Physical Websocket, we call the twApi_Initialize function with the information needed to point to the websocket of the ThingWorx Composer. This function:   Registers messaging handlers Allocates space for the API structures Creates a secure websocket err = twApi_Initialize(hostname, port, TW_URI, appKey, NULL, MESSAGE_CHUNK_SIZE, MESSAGE_CHUNK_SIZE, TRUE); if (TW_OK != err) { TW_LOG(TW_ERROR, "Error initializing the API"); exit(err); }   If you are not using SSL/TLS, use the following line to test against a server with a self-signed certificate: twApi_SetSelfSignedOk();   In order to disable HTTPS support and use HTTP only, call the twApi_DisableEncryption function. This is needed when using ports such as 80 or 8080. A call can be seen below:   twApi_DisableEncryption();   The following event handlers are all optional. The twApi_RegisterBindEventCallback function registers a function that will be called on the event of a Thing being bound or unbound to the ThingWorx platform. The twApi_RegisterOnAuthenticatedCallback function registered a function that will be called on the event the SDK has been authenticated by the ThingWorx Platform. The twApi_RegisterSynchronizeStateEventCallback function registers a function that will be called after binding and used to notify your application about fields that have been bound to the Thingworx Platform.   twApi_RegisterOnAuthenticatedCallback(authEventHandler, TW_NO_USER_DATA); twApi_RegisterBindEventCallback(NULL, bindEventHandler, TW_NO_USER_DATA); twApi_RegisterSynchronizeStateEventCallback(NULL, synchronizeStateHandler, TW_NO_USER_DATA);   NOTE: Binding a Thing within the ThingWorx platform is not mandatory, but there are a number of advantages, including updating Properties while offline.    You can then start the client, which will establish the AlwaysOn protocol with the ThingWorx Composer. This protocol provides bi-directional communication between the ThingWorx Composer and the running client application. To start this connection, use the line below:   err = twApi_Connect(CONNECT_TIMEOUT, RETRY_COUNT); if(TW_OK != err){ exit(-1); }   Click here to view Part 2 of this guide.      
View full tip
  Step 3: Creating Machine Processes   Having data and properties without moving parts would be useless. We already setup services on how to perform an inspection in the last guide. This time around, let's form processes to create our products and generate any alerts whenever we've finished production. We won't show too much into our recipe (it's a family secret), but we will highlight some concepts to help with making our machine process smoother. We won't go into creating an SMT line. For a complete guide on how to create such an application you can view our Monitor an SMT Assembly Line guide.   Events and Subscriptions   Let's create events for the cook time being done and a subscriptions on how to handle these scenarios.   Open the Fizos.BrautsMachine.ThingTemplate template and go to the Events tab. Click the + Add button and create the below alerts. Name Data Shape Description CookCompleted AlertEvent This alert is fired when the machine has completed a batch of our product TemperatureReached AlertEvent This alert is fired when the machine has reached the desired temperature.   3. Save these changes and replicate them with the Fizos.SausageMachine.ThingTemplate template. We now have alerts for the machines (alerts on properties and custom alerts). We can create subscriptions on the individual machines that will later inherit these alerts. One way to have a standard amongst these machines is to create a service in the template that will be called from subscriptions.   Let's create the simple services from now, and later, we will call these services from subscriptions. We will also use Schedules initiate the overall process. This can be a daily process, a timed process, or a process based on alerts and subscriptions. To keep this guide simple, we'll make this a process that runs every 3 hours. Create the below services in each of the Fizos.BrautsMachine.ThingTemplate and Fizos.SausageMachine.ThingTemplate templates:     Name InputReturn Type Override Async Description StartCookingProcess N/A Nothing Yes Yes Start overall product cooking process.Triggedby schedule. StartCookingIngredients N/A Nothing Yes Yes Start cooking the ingredients for the product.Triggedby subscription.   Add the following code for the StartCookingProcess service: // Mix our family secret recipe // Add in meats // Add heat me.TemperatureReached({ aackTimestamp: new Date(), alertType: "Completed", ackBy: "CookUser", ack: true, name: "TemperatureAlert", sourceProperty: "Service", description: "Optimal cooking temperature reached", message: "The desired cooking temperature has been reached. Begin next process.", priority: 1 }); // Perform top secret cooking techniques   2. Add the following code for the StartCookingIngredients service: // Temperature has already been reached if(true) { // IF COOK COMPLETED me.CookCompleted({ ackTimestamp: new Date(), alertType: "Information", ackBy: "CookUser", ack: true, name: "CookingAlert", sourceProperty: "Service", description: "Cooking process has completed", message: "The cooking time has completed. Move to next machine.", priority: 1 }); } else { //ELSE IF COOKING FAILED OR HALTED me.CookCompleted({ ackTimestamp: new Date(), alertType: "Exception", ackBy: "CookUser", ack: true, name: "CookingAlert", sourceProperty: "Service", description: "Cooking process has failed", message: "The cooking process has stopped. See logs for failure cause.", priority: 1 }); }   Let's keep in mind, these services will be triggered by by a schedule or a subscription to an alert. There will be no manual processed performed here. We also allowed for these services to be overridden, in order to allow more customization for machines that might need to be treated differently. These services are also not on the main machine templates, which allows us to create templates for machines that might have a different role in the process, ie, packaging or freeze drying.       Step 4: Automating Processes   Let's create the schedule that will start the cooking process. In the ThingWorx Composer, click the + New in the top left of the screen.   Select Schedules in the dropdown.   3. Name the new Schedule Fizos.MachineCooking.Schedule and set the Project (ie, PTCDefaultProject). 4. For the Run As User field, select the Fizos.Machine.User that was provided in the download. 5. Click Save and your entity should match the below configuration.     6. For the Schedule field, set it to 0 0 0/3 * * ?. This will run the process every 3 hours. 7. Switch to the Subscriptions tab and add a new subscription. 8. Name this new subscription StartCooking and select ScheduledEvent as the event input.   9. Add the following code to the source section:   var index = 0; var brauts = Resources["SearchFunctions"].SearchThingsByTemplate({ thingTemplate: "Fizos.BrautsMachine.ThingTemplate" }); var sausage = Resources["SearchFunctions"].SearchThingsByTemplate({ thingTemplate: "Fizos.SausageMachine.ThingTemplate" }); for(index = 0; index < brauts.rows.length; index++) { brauts.StartCookingProcess(); } for(index = 0; index < brauts.rows.length; index++) { sausage.StartCookingProcess(); } // This will begin the process to start each machines cooking process. // The process itself will then be ran by alerts, subscriptions, and services   So far the process will go as the following: A scheduler will search for all Things that inherit from the Fizos.BrautsMachine.ThingTemplate and Fizos.SausageMachine.ThingTemplate templates. Each list of these entities will have it's StartCookingProcess service called. When a temperature value is reached inside of the StartCookingProcess service, the TemperatureReached alert will be triggered. A subscription waiting for this event at the Thing level (which we create in the next section), will call the StartCookingIngredients service. This StartCookingIngredients service will finish the cooking part of the process and trigger a CookCompleted alert with a status update. A subscription waiting for this event at the Thing level (which we create in the next section), can call for another machine to take over the process.   We now have our moving parts. Let's create some examples to see how it can unfold.       Step 5: Handling Cooking Machines   We have many of our main features compeleted. Now we need to handle situations where our machine status needs to be a part of how we handle the cooking process. While much of this work can be handled in a remote process using one of our SDKs or extensions, our events and subscriptions can be a great method to do this also.   Creating Cooking Entities   In the ThingWorx Composer, click the + New in the top left of the screen.   Select Thing in the dropdown.   Set the Project (ie, PTCDefaultProject) and in the name field, enter Fizos.BrautsMachine.M02X35. In the Base Thing Template field, enter Fizos.BrautsMachine.ThingTemplate. Click Save.   6. In the ThingWorx Composer, click the + New in the top left of the screen.     7. Select Thing in the dropdown.     8. In the name field, enter Fizos.SausageMachine.KGYX20. 9. In the Base Thing Template field, enter Fizos.SausageMachine.ThingTemplate. 10, Click Save.     Creating Cooking Subscriptions   These steps will need to be in both of the entities we just created.   Switch to the Subscriptions tab and add a new subscription. Name this new subscription TemperatureReady and select TemperatureReached as the event input.   3. Add the following code to the source section: //The temperature is high enough. Start cooking me.StartCookingIngredients();   You now have a system (when enabled) will run every three hours. It will start our secret cooking process (that can be added in the service or created remotely).   To make things more fun. Add some logging or fun code to see how this works step by step.   To make things more realistic to a real world scenario, add subscriptions for our property alerts on the status or state properties.       Step 6: Next Steps   Congratulations! You've successfully completed the Factory Line Automation guide. In this guide, you learned how to:   Create automated machine processes Use services, alerts, and subscriptions to handle processes without human interaction Integrating complex logic with straight forward step by step systems   The next guide in the Complex and Automatic Food and Beverage Systems learning path is Automated Distribution and Logistics.    Learn More   We recommend the following resources to continue your learning experience:    Capability     Guide Build ThingWorx Solutions in Food Industry Build Design Your Data Model Build Implement Services, Events, and Subscriptions   Additional Resources   If you have questions, issues, or need additional information, refer to:    Resource       Link Community Developer Community Forum  
View full tip
  Learn how to create factory line solutions the can help take you to the next level     Guide Concept   This project will introduce more complex aspects of the ThingWorx application and solution building.   Following the steps in this guide, you will develop your own IoT application or get a jump start in how to utilize ThingWorx for your needs.   We will teach you how to create a focused rules engine or service level logic to be used with the ThingWorx Platform.     You'll learn how to   Create automated machine processes Use Services, Alerts, and Subscriptions to handle processes without human interaction Integrating complex logic with straight forward step by step systems   NOTE: This guide's content aligns with ThingWorx 9.3. The estimated time to complete ALL parts of this guide is 60 minutes     Step 1: Examples and Strategy   Download the attached FoodIndustry.zip and extract/import the contents. This is to be used as you work through this learning path. For the completed example, download, extract, and import FoodIndustryComplete.zip. These downloads provide three Users and a Security Group. Please watch your count for Users or the import could fail. If you're at your User count limit, delete Users before attempting to import these downloads. Unzip the download and import the Entities included.   In this tutorial we continue with our real-world scenario for the Fizos food company. We should already have our factory data in data tables and will expand on how we can make the factory line smarter. The best processed are built on great timing, quality materials, a great design, and a method to keep track of everything that is happening. We won't have control of materials here, but we can formulate a simple, but great design. Our design will be based on Alerts, Subscriptions, and Schedules.   One of the same questions we will need to ask ourselves that we did in the last guide pertaining to products, is whether to create an entity per machine used in the factory OR create data entries in a data table and process everything through services. Since we would like to have more detailed and up to date information about our machines, I will create a data model that is tied back to our factories.   We will need to start by creating our templates for overall machines, templates for specialized machines, and then entities for the particular machines we have in our factories.       Click here to view Part 2 of this guide.
View full tip
  Step 6: Create Event Router   What do you do when a user can perform multiple events in which data is generated, and want those outputs to go through the same exact process? An Events Router Function is your solution. The Events Router Function allows for multiple data sources to be funneled to one location. Let's create a simple example in our MyFunctionsMashup Mashup. In this Mashup, we'll add two Text Field Widgets and a Label Widget. The two Text Field Widgets will take user input and then an Events Router will send the output to the Label. Let's start!   Open the MyFunctionsMashup Mashup to the Design tab. Click on the Widgets tab. Type in the Filter text box for Text Field.   Drag and drop TWO (2) Text Field Widgets to the Mashup Canvas. Type in the Filter text box for Label.   Drag and drop ONE (1) Label Widget to the Mashup Canvas. We now have all the Widgets we need for this example. Let's get started on the Events Router Function. Click the + button in the Functions panel. Select Events Router in the dropdown.   Set the Name to routeUserInput.   Click Next. Set the Inputs field to 2.   Click Done. We have our Events Router setup. Now, we'll bind our new items together. Click the Bind (arrows) button on the routeUserInput Events Router.   Click the down arrow next to Input1. Select Add Source.   In the Widgets tab, scroll to the bottom and select Text Property of the first of the two recent Text Fields we created (it should be third to last).   Click Next. Click the down arrow next to Input2. Select Add Source.   In the Widgets tab, scroll to the bottom and select Text Property of the second of the two recent Text Fields we created (it should be second to last).   Click Next. Click the down arrow next to Output. Select Add Target.   In the Widgets tab, scroll to the bottom and select LabelText Property of the recent Label we created (it should be last).   Click Next. Click Done. Click Save for the Mashup. You have just created an Events Router that will update a Label based on the typed input from two Text Fields. View your Mashup and play around with the bottom two text boxes. For a completed example, download and unzip, then import the attached FunctionsGuide_Entities.zip.     Step 7: Next Steps   Congratulations! You've successfully completed the Explore UI Functions guide, and learned best practices for building a complex Mashup that navigations, multiple data inputs, confirmations, and all working together effectively for an enhanced user experience.   Learn More   We recommend the following resources to continue your learning experience:    Capability    Guide Experience Object-Oriented UI Design Tips   Additional Resources   If you have questions, issues, or need additional information, refer to:    Resource       Link Community Developer Community Forum Support Mashup Builder Support Help Center
View full tip
  Step 3: Create Validation and Status   With our MyFunctionsMashup Mashup open, let's add a Validation. A Validation is similar to an Expression, except you have the added capability of triggering Events based on a True or False outcome of your validation. We will use the Validation to check and confirm the Text Field we created only has the values we added in our Functions. Let's also add two Status Message Functions that will show whether or not a user has added any text outside of what we want.   Open the MyFunctionsMashup Mashup to the Design tab. Click the green + button in the Functions area.    In the New Function modal, select Validator.   Set the Name to isDataClean.   Click Next.  Click Add Parameter. Set the Name to text and ensure the Base Type is STRING.   Add the following code to the Expression are: if(text === "NO") { result = true; } else if(text === "YES") { result = true; } else { let array = text.split("YES").join(""); array = array.split(",").join(""); let count = array.trim().length; if(count) { result = false; } else { result = true; } }   9. Click Done.   We have our Validator in place, now we need our two Status Message Functions. Why two? You can setup one Status Message to perform the task, but for this case, we're keeping things simple.   Click the + button in the Functions area. Select Status Message in the dropdown.    Set the Name to GoodInputProvided.   Click Next. Ensure Message Type is Info. In the Message field, enter Text is all good!.   Click Done. Let's create another Status Message Function. Set the Name to BadnputProvided.   Click Next. Change Message Type to Error. In the Message field, enter Text is BAD!.   Click Done.   We now have two Status Message Functions and a Validator to help with checking our text data. Let's connect everything together. This time, let's use the Bind button.   Expand the Validator section in the Functions tab. Click the Bind (arrows) button on the isDataClean Validator. This window will help us configure connections a bit easier.    Click the down arrow by the True Event. Click Add Trigger Service.   Click Functions. Check the checkbox by GoodInputProvided.   Click Next. Click the down arrow by the False Event. Click Add Trigger Service.   Click Functions. Check the checkbox by BadInputProvided.   Click Next. You should currently have the following setup:    Let's add in our connections to the Text Field and when we'll run this Validation.    Click the down arrow by the text Property.   Click Add Source. With the Widgets tab selected, scroll down and select the Text Property of our Text Field.   Click Next. Click the down arrow by Evaluate Service. Select Add Event Trigger.   With the Widgets tab selected, scroll down and select the Clicked Property of our Button.   Click Next. You should currently have the following setup:   Click Done. Click Save and view your updated Mashup.   Your Validator is complete. You now have a way to tell when a user has inputed their own text into the text box. To try things out, add some crazy characters, hit the button, and see what happens. You might notice that you have your Expressions running at the same time as your Validator. Switch up the bindings to get it to run the way you want it to.     Step 4: Create Confirmation Modal   With our MyFunctionsMashup Mashup open, let's add a Confirmation Function. A Confirmation Function provides a quick modal that will give users a method to confirm actions or events before they take place. If you've ever almost deleted a production database (don't judge me!), then you know how handy a confirmation screen can be. Let's add a button that will trigger a confirmation as to whether we would like to run the Validator we created in the last section.   Open the MyFunctionsMashup Mashup to the Design tab. Click the + button in the Functions panel. Select Confirmation in the dropdown.   Set the Name to confirmDataValidation. Click Next.   Set the Title Text to Confirm Data Validation?. Set the Message Text to Would you like to perform a data validation?.   Set the Cancel Button Label to No Thanks!. Scroll down and set the Action Button Label to Yes Sir!.   Click Done. Click the Widgets tab in the top left. Filter for and select a Button Widget.   Drag and drop a Button Widget onto the Canvas.   With the new Button selected, click the down arrow that appears on the Button. Drag and drop the Clicked Event of the Button to the OpenConfirmation Service of our Confirmation Function.     We now have our Confirmation Function and a Button that will open the Confirmation when clicked. Let's add the final step by connecting the Confirmation to our Validation Function.   Click the Bind (arrows) button for our isDataClean Validator.   Click the down arrow by the Evaluate Service. Select Add Event Trigger.   Click the Functions tab. Select the ActionClick Event of our Confirmation Function.   Click Next. Click Done. Click Save for our Mashup.   We now have a way to independently validate that the text in our text box does not contain random values added by the user. View the Mashup and test things out by clicking on the second button and adding some crazy characters to our text box.       Step 5: Create Navigation   Thus far, we have been sticking to one Mashup. Let's venture out a bit by showing a different Mashup. Inside of our MyFunctionsMashup Mashup, we will add a Navigation Function. This will allow us to go to or just show a different UI based on some kind of user input or event. For our example, when a user clicks No Thanks! in our Confirmation Function, let's send them to a different Mashup.   Follow the steps to create a Navigation Function, a destination Mashup, and tie the two together.    Create Destination Mashup Navigate to Browse > Visualization > Mashups.   Click + New. Keep the defaults and click OK. In the Name field, type MyNavigationDestination.   Click Save. Click the Design tab at the top to open the Mashup canvas. Click the Widgets tab.   Filter and search for the word Label. Drag and drop a Label Widget to the Mashup canvas. If you like, enlarge the Label sizing.    In the Label Widget Properties section, scroll down to the LabelType Property.       Click the dropdown and select Large Header.   In the LabelText Property field, type MY DESTINATION UI SCREEN. Click Save. You have now created a simple UI that we will go to when we click our navigation button. Next, we'll tie together our navigation button and our freshly created Mashup.   Create Navigation Function Reopen the MyFunctionsMashup Mashup to the Design tab. Click the + button in the Functions panel. Select Navigation in the dropdown.   Set the Name to travelToDestination.   Click Next. Set the Target Window Type to ModalPopup. Set the Pop-up Title to New Popup Here.   Set the Pop-up Width to 400. Set the Pop-up Height to 400.   Click the + button at Target Mashup. Type MyNavigationDestination into the search bar. Select the MyNavigationDestination Mashup when it appears.   Click Done. Select the Bind (arrows) button for our new travelToDestination Navigation Function.   Click the down arrow next to Navigate Service. Click Add Event Trigger.   Click the Functions tab. Select the CancelClick Event of our confirmDataValidation Confirmation Function.   Click Done. Click Save for the Mashup.   We now have a modal that will appear after we click the No Thanks! button in our Confirmation Function. View the Mashup and try out what you've done by clicking the bottom button, then clicking No Thanks!     Click here to view Part 3 of this guide.  
View full tip
  Discover how ThingWorx Functions can be implemented in a compelling Mashup design.   Guide Concept   This project will introduce how to create complex user interfaces that are built by using simple Mashup functions.   Following the steps in this guide, you will build a web application with multiple layers. We will teach you how to create a professional user interface that effectively conveys information to users.     You'll learn how to   Navigate to other UIs Create expressions and validations Create event routers and data handling Create confirmation modals/pop-ups Create status messages   NOTE: This guide's content aligns with ThingWorx 9.3. The estimated time to complete ALL parts of this guide is 60 minutes     Step 1: What Are Functions   In the Mashup Builder, we utilize Functions to create added capabilities in our Mashups. Whether we are navigating to another Mashup or triggering events based on some action. Functions are your best friends when creating more advanced Mashups.   Function  Description   Auto Refresh  Refreshes data automatically for widgets in a mashup.  Confirmation  Displays a confirmation dialog box.  Events Router  Routes multiple input sources to one output of the same type.  Expression  Evaluates JavaScript expressions.  Logout  Ends the current user session and redirects to a mashup or a Web page.  Navigation  Navigates from one mashup to another.  Status Message  Displays information, error, or warning messages in a mashup.  Validator  Validates data from input parameters by using JavaScript expressions.   In the next sections, we will cover some of these Functions and showcase how to add them to your Mashups.     Step 2: Create an Expression   Let's start things off by creating a simple Expression Function. This Expression will show or hide a label based on whether a checkbox is checked or not. This simple expression can be expanded to your use case.   It is VERY important to note that in an Expression Function (and also found in Services and Validation Functions) the output of the Function will be the result variable. Let's create our Mashup, then go over what is involved in an Expression.   In the ThingWorx Composer, click the + New at the top of the screen.   Select Mashup in the dropdown.   Select the Responsive layout then hit OK.   Set the Name to  MyFunctionsMashup. For the Project, click the + button and select PTCDefaultProject.    Under Project, click the blue Set as project context option. This will stop us from having to set the Project on every Thing we create. It should now match the following.    Click Save. Click on the Design tab at the top.   This Mashup will be where we create the Majority of our Functions and capabilities. Let's start adding to our Mashup.   Click the Layout tab. Scroll down and set the Orientation to Horizontal.   Click on the Widgets tab. Type in the Filter text box for Checkbox.   Drag and drop a Checkbox Widget to the Mashup Canvas. This Checkbox will dictate whether what we show for the coming Labels and Textbox. Type in the Filter text box for Button. This Button will dictate the event that triggers our Functions. Drag and drop a Button Widget to the Mashup Canvas.   Type in the Filter text box for Label. Drag and drop TWO (2) Label Widgets to the Mashup Canvas. We will only show one Label at a time and I'll show you how.   Type in the Filter text box for Text Field. Drag and drop a Text Field Widget to the Mashup Canvas.     We have the Widgets we need to show our Expression example. Let's start with connecting the Widgets to Functions.   Click the + button in the Functions section in the bottom right.    In the New Function popup, select Expression. Set the Name of the new Expression to isCheckboxChecked.   Click Next. In the new screen, click Add Parameter. Set the Name to this new parameter as checked. Set the Base Type as BOOLEAN.   Switch the Data Change Type to ALWAYS. Switch Output Base Type to BOOLEAN.   Add the following code to the Expression area.  if(checked) { result = true; } else { result = false; }   11. Click Done.   You've now created your first expression. This expression is an example of how easy it can be done. Let's add three three additional Expressions to have some fun.   Repeat steps 1-11 in the last section for TWO (2) new Expressions. Name these Expressions setFirstLabelVisbility and setSecondLabelVisbility. You should now have three total. Repeat steps 1-8 in the last section for ONE (1) new Expression. Name this Expression setTextFieldText. We should have a Parameter called checked. Click Add Parameter again to add a Parameter named input. This fourth Expression should match the following thus far:     Switch Output Base Type to STRING. Add the following code to the Expression area:  if(checked) {     if(input && input.indexOf("YES") >= 0) {     result = input + ", YES";     } else {         result = "YES";     } } else {     result = "NO";     }   6. Click Done.   This expression will see whether or not the Checkbox is checked, then output a string of YES or a simple NO. Let's setup our connections between Widgets and Expressions.   Ensure Expressions are visible and match the following.   Click on the Checkbox in the Mashup Canvas. Click the dropdown that appears.   Drag and drop the State Property to the checked Parameter of all FOUR (4) of the Expressions.   Your bindings should match the following after you're done with setting all four.   Expand the setFirstLabelVisibility Expression (if not already expanded).   Drag the Output to the first Label and select Visible   Expand the setSecondLabelVisibility Expression (if not already expanded).   Drag the Output to the second Label and select Visible.   Our labels are configured. Now let's setup our Text Field Widget.    Expand the setTextFieldText Expression (if not already expanded). Drag the Output to the Text Field and select Text.   Select the Button Widget in the Mashup Canvas.  Click the dropdown for the Button Widget. Drag and drop the Clicked Event to all FOUR (4) of the Expressions.   Your Button Widget should look like the following:   Select the Text Field Widget in the Mashup Canvas Click the dropdown for the Text Field Widget. Drag and drop the Text Property to the input Parameter of the setTextFieldText Expression. Click Save. Click View Mashup. Play around and see all the work you've done. You may notice that both Label Widgets show or hide at the same time. To split when they will show or hide, update the code for one of the Label visibility Expressions to the following:    if(checked) {     result = false; } else {     result = true;     }   Click here to view Part 2 of this guide.
View full tip
    Step 3: Create A Tree Grid   With our MyFunctionsMashup Mashup open, let's add a Validation. A Validation is similar to an Expression, except you have the added capability of triggering Events based on a True or False outcome of your validation. We will use the Validation to check and confirm the Text Field we created only has the values we added in our Functions. Let's also add two Status Message Functions that will show whether or not a user has added any text outside of what we want.   Open the MyFunctionsMashup Mashup to the Design tab. Click the green + button in the Functions area.    In the New Function modal, select Validator.     Set the Name to isDataClean.     Click Next.  Click Add Parameter. Set the Name to text and ensure the Base Type is STRING.     Add the following code to the Expression are: if(text === "NO") { result = true; } else if(text === "YES") { result = true; } else { let array = text.split("YES").join(""); array = array.split(",").join(""); let count = array.trim().length; if(count) { result = false; } else { result = true; } }   9. Click Done.   We have our Validator in place, now we need our two Status Message Functions. Why two? You can setup one Status Message to perform the task, but for this case, we're keeping things simple.   Click the + button in the Functions area. Select Status Message in the dropdown.    Set the Name to GoodInputProvided.   Click Next. Ensure Message Type is Info. In the Message field, enter Text is all good!.   Click Done. Let's create another Status Message Function. Set the Name to BadnputProvided.   Click Next. Change Message Type to Error. In the Message field, enter Text is BAD!.   Click Done.   We now have two Status Message Functions and a Validator to help with checking our text data. Let's connect everything together. This time, let's use the Bind button.   Expand the Validator section in the Functions tab. Click the Bind (arrows) button on the isDataClean Validator. This window will help us configure connections a bit easier.    Click the down arrow by the True Event. Click Add Trigger Service.   Click Functions. Check the checkbox by GoodInputProvided.   Click Next. Click the down arrow by the False Event. Click Add Trigger Service.   Click Functions. Check the checkbox by BadInputProvided.   Click Next. You should currently have the following setup:    Let's add in our connections to the Text Field and when we'll run this Validation.    Click the down arrow by the text Property.   Click Add Source. With the Widgets tab selected, scroll down and select the Text Property of our Text Field.   Click Next. Click the down arrow by Evaluate Service. Select Add Event Trigger.   With the Widgets tab selected, scroll down and select the Clicked Property of our Button.   Click Next. You should currently have the following setup:   Click Done. Click Save and view your updated Mashup.   Your Validator is complete. You now have a way to tell when a user has inputed their own text into the text box. To try things out, add some crazy characters, hit the button, and see what happens. You might notice that you have your Expressions running at the same time as your Validator. Switch up the bindings to get it to run the way you want it to.     Step 4: Next Steps   Congratulations! You've successfully completed the Explore UI Functions guide, and learned best practices for building a complex Mashup that navigations, multiple data inputs, confirmations, and all working together effectively for an enhanced user experience.   Learn More   We recommend the following resources to continue your learning experience:    Capability     Guide Experience Object-Oriented UI Design Tips   Additional Resources   If you have questions, issues, or need additional information, refer to:    Resource       Link Community Developer Community Forum Support Mashup Builder Support Help Center
View full tip
  Discover how ThingWorx advance tree grids and grids can be implemented in a compelling Mashup design.   Guide Concept   This project will introduce how to create complex user interfaces that are built by using Mashup grids and JavaScript services.   Following the steps in this guide, you will build a web application with advanced data displays. We will teach you how to create a professional user interface that effectively conveys information to users.   You'll learn how to   Create dynamic tree grids to display hierarchy. Create dynamic grids to display growing data number of data points.   NOTE: This guide's content aligns with ThingWorx 9.3. The estimated time to complete this guide is 30 minutes       Step 1: What Are Dynamic Grids   In the Mashup Builder, we utilize Functions to create added capabilities in our Mashups. Whether we are navigating to another Mashup or triggering events based on some action. Functions are your best friends when creating more advanced Mashups.   Function  Description   Auto Refresh  Refreshes data automatically for widgets in a mashup.  Confirmation  Displays a confirmation dialog box.  Events Router  Routes multiple input sources to one output of the same type.  Expression  Evaluates JavaScript expressions.  Logout  Ends the current user session and redirects to a mashup or a Web page.  Navigation  Navigates from one mashup to another.  Status Message  Displays information, error, or warning messages in a mashup.  Validator  Validates data from input parameters by using JavaScript expressions.   In the next sections, we will cover some of these Functions and showcase how to add them to your Mashups.     Step 2: Create A Dynamic Grid   Let's start things off by creating a simple Expression Function. This Expression will show or hide a label based on whether a checkbox is checked or not. This simple expression can be expanded to your use case.   It is VERY important to note that in an Expression Function (and also found in Services and Validation Functions) the output of the Function will be the result variable. Let's create our Mashup, then go over what is involved in an Expression.   In the ThingWorx Composer, click the + New at the top of the screen.   Select Mashup in the dropdown.   Select the Responsive layout then hit OK.   Set the Name to  MyFunctionsMashup. For the Project, click the + button and select PTCDefaultProject.    Under Project, click the blue Set as project context option. This will stop us from having to set the Project on every Thing we create. It should now match the following.    Click Save. Click on the Design tab at the top. This Mashup will be where we create the Majority of our Functions and capabilities. Let's start adding to our Mashup.   Click the Layout tab. Scroll down and set the Orientation to Horizontal.   Click on the Widgets tab. Type in the Filter text box for Checkbox.   Drag and drop a Checkbox Widget to the Mashup Canvas. This Checkbox will dictate whether what we show for the coming Labels and Textbox. Type in the Filter text box for Button. This Button will dictate the event that triggers our Functions. Drag and drop a Button Widget to the Mashup Canvas.   Type in the Filter text box for Label. Drag and drop TWO (2) Label Widgets to the Mashup Canvas. We will only show one Label at a time and I'll show you how.   Type in the Filter text box for Text Field. Drag and drop a Text Field Widget to the Mashup Canvas.       We have the Widgets we need to show our Expression example. Let's start with connecting the Widgets to Functions.   Click the + button in the Functions section in the bottom right.    In the New Function popup, select Expression. Set the Name of the new Expression to isCheckboxChecked.   Click Next. In the new screen, click Add Parameter. Set the Name to this new parameter as checked. Set the Base Type as BOOLEAN.   Switch the Data Change Type to ALWAYS. Switch Output Base Type to BOOLEAN.   Add the following code to the Expression area.  if(checked) { result = true; } else { result = false; }   11. Click Done.   You've now created your first expression. This expression is an example of how easy it can be done. Let's add three three additional Expressions to have some fun.   Repeat steps 1-11 in the last section for TWO (2) new Expressions. Name these Expressions setFirstLabelVisbility and setSecondLabelVisbility. You should now have three total. Repeat steps 1-8 in the last section for ONE (1) new Expression. Name this Expression setTextFieldText. We should have a Parameter called checked. Click Add Parameter again to add a Parameter named input. This fourth Expression should match the following thus far:     Switch Output Base Type to STRING. Add the following code to the Expression area:  if(checked) {     if(input && input.indexOf("YES") >= 0) {     result = input + ", YES";     } else {         result = "YES";     } } else {     result = "NO";     } 6. Click Done.   This expression will see whether or not the Checkbox is checked, then output a string of YES or a simple NO. Let's setup our connections between Widgets and Expressions.   Ensure Expressions are visible and match the following.   Click on the Checkbox in the Mashup Canvas. Click the dropdown that appears.   Drag and drop the State Property to the checked Parameter of all FOUR (4) of the Expressions.   Your bindings should match the following after you're done with setting all four.   Expand the setFirstLabelVisibility Expression (if not already expanded).   Drag the Output to the first Label and select Visible.   Expand the setSecondLabelVisibility Expression (if not already expanded).   Drag the Output to the second Label and select Visible.   Our labels are configured. Now let's setup our Text Field Widget.    Expand the setTextFieldText Expression (if not already expanded). Drag the Output to the Text Field and select Text.   Select the Button Widget in the Mashup Canvas.  Click the dropdown for the Button Widget. Drag and drop the Clicked Event to all FOUR (4) of the Expressions.   Your Button Widget should look like the following:   Select the Text Field Widget in the Mashup Canvas Click the dropdown for the Text Field Widget. Drag and drop the Text Property to the input Parameter of the setTextFieldText Expression. Click Save. Click View Mashup. Play around and see all the work you've done.   You maybe notice that both Label Widgets show or hide at the same time. To split when they will show or hide, update the code for one of the Label visibility Expressions to the following:    if(checked) {     result = false; } else {     result = true;     }   Click here to view Part 2 of this guide.  
View full tip
  Create users, security groups, and provide a method to authenticate with LDAP.   Guide Concept   LDAP allows for a layer of security within your company or organization to be utilized for authentication or user management.   These concepts and steps will allow you to focus on development of your application while still allowing the ability to utilize the power of ThingWorx!   We will teach you how to enable LDAP authentication in ThingWorx and configuring ThingWorx to connect to a LDAP server.   You'll learn how to   How to enable LDAP Authentication on ThingWorx Configuring ThingWorx to connect to an LDAP server Importing users from LDAP   NOTE: This guide's content aligns with ThingWorx 9.3. The estimated time to complete this guide is 60 minutes     Step 1: Completed Example   Download the completed files for this tutorial: ApacheDSExample.xml. This guide will cover authentication with an ApacheDS LDAP server.   In this tutorial, we walk through security concepts within ThingWorx. Utilize this file to see a finished example and return to it as a reference if you become stuck creating your own fully flushed out application.   Keep in mind, this download uses the exact names for entities used in this tutorial. If you would like to import this example and also create entities on your own, change the names of the entities you create.       Step 2: Understanding Directory Services   ThingWorx provides built-in LDAP Directory Support for clear-text connections (port 389). In order to enable LDAP Authentication, a Directory Service Entity must be imported and configured. The sample download provided is setup for Apache DS. An Active Directory example and a OpenLDAP example are attached, but will not be covered here. Other LDAP providers will need a similar file.   Users can exist in any Directory Services location as all Directory Services will be tried in order of priority when a user logs in. For the default setting, LDAP Directory Service will have priority over the ThingWorx one once enabled. To modify this configuration on the provided example, follow the below steps (if you have not done so already, import the XML file that was provided into The ThingWorx Composer):   From the ThingWorx Composer, go to the SECURITY section and click Directory Service. Open the Directory Service Entity you imported, ApacheDS. Enable LDAP in the General Properties section by checkicking the Enabled checkbox.   4. (Optional) Set the priority for the authentication if you have multiple Directory Service entities configured: Use the Priority property to assign an order of authentication to log in. The lower the number the higher the priority (1 is the highest priority). 5. Click Save to save ApacheDS and enable LDAP authentication. ThingWorx will contact the LDAP server to check for the given username when a user then tries to authenticate. If the user is not found or if the authentication on the LDAP server fails then the ThingWorx Directory Service will be tried.     Step 3: Configure ThingWorx and ApacheDS   This section will create an LDAP server, create the connection, and configure LDAP utilizing ApacheDS and Apache Directory Studio. In order to fully run this example, you will need to initially create this server OR deploy this server to a ThingWorx accessible location.   If you do not have an LDAP server already setup, utilize the below instructions to get started. If you already have a LDAP server setup, skip to the Configure ThingWorx For LDAP Connection section to configure the connection in ThingWorx.   Create New LDAP Server and Connection:   Open Apache Directory Studio. Right-click in the LDAP Servers section and select New -> New Server.   Select your version of ApacheDS in the menu and click Finish.   Right-click the newly created LDAP server and select Open Configuration.   Update the Port for the LDAP server to 389 and uncheck the LDAPS server.   Click Partitions at the bottom of the configuration and click Add.   Set the new Partition ID to ThingWorx. Set the Suffix value of the Partition to ou=people, dc=thingworx.   Save and close the configurations. Right-click the LDAP server and select Run. Once the State of the LDAP server has changed to Started, right-click the LDAP server and select Create Connection.   Utilize the ApacheDS adding entries guide to create users for your new LDAP server then follow the below instruction to create the ThingWorx connection. Configure ThingWorx For LDAP Connection: The sample XML files provided are configured with the most common attribute for the platform. From the ThingWorx Composer, go to the SECURITY section and click Directory Service. Open the Directory Service Entity you imported, ApacheDS. Generally, only one Entity listed unless multiple authentication realms have been configured. Click Congifurations to bring up Directory Service configuration details. Update the configuration parameters for the LDAP server: server: The hostname of the LDAP server userIdAttribute: LDAP attribute that is used to uniquely identify the user logging in. This property should be set to the name of the attribute containing the user's username. port: Connection port for the LDAP server. LDAP standard port is 389. If the LDAP server's connection port is 636, it is very likely that the server is expecting LDAPS, which ThingWorx does not currently support. adminBindDN: The full distinguished name for the user that the ThingWorx server will use for browsing the LDAP directory tree. The user that is defined here must have Read permissions on the directory tree. Generic Format: uid=admin, ou=Users, dc=company, dc=com userBaseDN: Distinguished name for the parent organizational unit (OU) containing any user that will need to log in. *Generic Format*: ou=ThingWorxUsers, ou=Users, dc=company, dc=com adminPassword: The password for the user configured in adminBindDN above   Click Save to update the ApacheDS Directory Service.       Step 4: Import Users Into ThingWorx   Handling Password Configurations: User must have a corresponding ThingWorx user created on the server before a user can log into ThingWorx via LDAP. These users must be created manually before they can log into the ThingWorx server All User entities created on ThingWorx matching LDAP users must have a password set, otherwise LDAP will not be able to log in. This password should NOT be the user's LDAP password The password used within ThingWorx should be secure/randomly generated. If LDAP authentication fails, ThingWorx will fall back on the password set for this user. The code provided below generates a random password for the users it creates Custom Service for User and Password Generation: A custom service can be created on a Service-Providing Thing instance that creates a specific user and assign it a home mashup: A Service-Providing Thing is an entity that uses the *GenericThing** ThingTemplate. It does not store properties. Instead, it provides useful Services that retrieve and compile data from many Thing instances for use in Mashups and/or other services. To create a Service-Providing Thing: Create a new Thing, and name it LDAPServiceHelper. Set the Thing Template to GenericThing. Click Services and create a new Service called CreateLDAPUser. Set the Inputs to be the following: Username (STRING, required) HomeMashup (MASHUPNAME, optional) Use the following for the source code: // ThingWorx will fall back on ThingWorx Directory Service (Local authentication) // if LDAP authentication fails, which means the password that we have to set for // the new user could also be used to log the user in. // Using a random string will make it highly unlikely that a user / attacker can // use the ThingWorx password to log in. var randompass = Math.random().toString(36).slice(-10); var params1 = { name: Username, password: randompass, description: "Generated LDAP User" }; Resources["EntityServices"].CreateUser(params1); // By default non-admin users will be directed to SQUEAL. // If there is a specific mashup that the user should see instead, // the following code will configure it based on the HomeMashup optional parameter. // The mashup passed to this service must exist. if (HomeMashup !== null) { var params2 = { name: HomeMashup }; Users[Username].SetHomeMashup(params2); } 6. Click Done. 7. Click Save.   Execute the newly created Service for each user in the LDAP system. Once all users have been imported (or at least the ones who need immediate access) the Directory Service must be enabled for ThingWorx to begin authenticating users via LDAP.       Step 5: Next Steps   Congratulations! You've successfully completed the Enabling LDAP Authentication in ThingWorx tutorial, and learned how to:   How to enable LDAP Authentication on ThingWorx Configuring ThingWorx to connect to an LDAP server Importing users from LDAP Auto assigning to user groups based on LDAP membership Learn More We recommend the following resources to continue your learning experience:    Capability   Guide Secure Create An Authentication Extension Secure Configure Permissions   Additional Resources If you have questions, issues, or need additional information, refer to:    Resource         Link Community Developer Community Forum Support Extension Development Guide  
View full tip
    Step 8: Learn More About Widgets   For more details on how to use and customize Widgets highlighted in this guide, refer to:    Widget            Link to How-To Layout Customizable and Responsive UI Gauge Display Property Values with a Gauge Style Define Your UI Style Navigation Customizable and Responsive UI Google Map Display Geolocation Data in Your UI     Step 9: Next Steps   Congratulations! You've successfully completed the Design an Effective UI guide, and learned best practices for building a complex Mashup that includes maps, menus, and detail sections all working together effectively for an enhanced user experience.   Learn More   We recommend the following resources to continue your learning experience:     Capability    Guide Experience Object-Oriented UI Design Tips   Additional Resources   If you have questions, issues, or need additional information, refer to:     Resource      Link Community Developer Community Forum Support Mashup Builder Support Help Center
View full tip
    Step 5: Collection Widget   A Collection widget is used to display information from a collection of Things. Similar to a Grid Widget, the Collection widget gives you complete control over how data is displayed by binding data to an embedded static Mashup.   In the first part of this step we will create a static Mashup with Parameters bound to its widgets. Next, we will configure a Collection widget to use the static Mashup we create. In the next step we will customize the Collection styling.   Create Static Mashup   Click the Browse tab on the far left of Composer, in the Visualizations section, click Mashups . Click + New to create a Mashup. Select Static Mashup, then click OK.   Name your Mashup TractorListFormat If Project is not already set, click the + in the Project text box and select the PTCDefaultProject. Click Save. Click the Design tab If Project is not already set, click the + in the Project text box and select the PTCDefaultProject. In the Layout tab, under Container > Positioning, Click Static, then scroll to Container Size, and click Fixed Size NOTE: A Static Mashup maintains fixed widget sizes and spacing, as opposed to a Responsive Mashup that will dynamically change widget sizes and spacing to use the available window area. Click the Width property and set it to 200 and the Height property to 60   In the lower left panel, click the Style tab and click the X to remove the default Style. Click the + icon, then select DefaultImageBorderStyle to remove all styling. NOTE: The default Mashup styling is removed so it will not override the sidebar and parent Mashup styling. Scroll to the Width property and set it to 200 and the Height property to 60 Click the Widgets tab and type label in the filter text box. Drag and drop two Label Widgets onto the upper left of your static Mashup.   Add Parameters to Mashup Select the Explorer tab then select the top level Mashup Click Configure Mashup Parameters from the drop-down menu in the upper left of the Mashup canvas.   Click the Add Parameter button. Type firstLine in the Name field and select a Base Type of STRING. Click Add Parameter again and name this parameter secondLine also with a Base Type STRING.   Click Done to return to Mashup Builder.   Bind Parameters to Widgets   Click the drop-down in the upper left of the Mashup canvas, then select Configure Bindings Click firstLine from the Properties list on the left. Clicking the drop-down arrow and click Add Source to display the Mashup entities that can be bound to the Mashup parameter named firstLine.   Select the checkbox next to the top LabelText property.   Click Done to return to the Configure Bindings pop-up. Click secondLine, then Binding Targets, and select the checkbox next to the bottom Label Text property, then click Done Click Done to close Configure Bindings pop-up and return to Mashup builder. NOTE: The Mashup parameters and bindings are displayed in the Connections panel at the bottom. Click Save before continuing to the next step.   Bind Data to Collection   Return to the main Mashup then drag and drop a Collection widget onto the top area of the left side bar. In the Collection Properties panel, set the View property to Table Scroll to the Mashup property, click the wand icon and browse to the name of the static Mashup created above. Drag the All Data source from the data panel on the right onto the Collection widget, then click Data in the Select Binding Target pop-up.   Set UIDField property and SortField to SerialNumber.   Drag the All Data source from the data panel on the right onto the Collection widget, then click Data in the Select Binding Target pop-up.   In the Collection Properties panel, scroll to MashupPropertyBinding and click *Add Enter the text below, then click Done: { "SerialNumber": "firstLine", "ModelNumber": "secondLine" } NOTE: This JSON property binds the SerialNumber and ModelNumber properties in the data source to the the firstLine and secondLine parameters in the embedded mashup   9. Save the Mashup and click View Mashup.   10. Test the Mashup and you will see the navigation panel on the left is showing data and is linked to the Google Map widget in the center.       Step 6: Customize Collection   The Collection uses default styling and no images. In this part of the exercise, we will replace the blue bar that indicates the selected row with a custom icon and modify the default styles so that the left panel's background color is shown.   Right-click on each of the images below to download and save them for use in the next step.     We will upload these images to create new Media entities and apply them to the Repeater widget.   Select the Browse folder icon on the far left of Composer, in the Visualization section click Media Click the + New to create a new Media entity and enter a name for the un-selected tractor image. Click Change in the Image section, then browse to the saved image. Click Open, then Save. Repeat these steps to create a Media entity for a selected tractor Open the static TractorListFormat mashup that controls the Collection widget formating Click and drag an Image widget onto the mashup In the lower left panel, in the SourceURL property, click the wand icon to select the unselected tractor image. Change both the Width and Height properties to 50 pressing Tab after each entry to record them.   Click the Explorer tab in the top left, click the top-most Mashup entity, then click the Style Properties tab Cick the X in the Style property and select DefaultImageBorderStyle to remove all styling, then click Save Click the More drop-down at the top of Composer and click Duplicate   Enter TractorListSelectFormat for the name and click Save then click the Design tab Click on the tractor image, then, the lower left, click the wand icon in the SourceURL property and select the selected tractor image and Click Save   Open your original Mashup and click on the Collection widget in the Mashuo Builder canvas. Scroll to the SelectedMashupName Property and click the + to select TractorListSelecteFormat.   Click Save for the Mashup, then View Mashup to see your Mashup with customized icons.   The default black text on green is a little hard to read. The steps below will change the text colors to make the data more readable. Open the TractorListSelectFormat Mashup then click on the top Label widget to change the color of the text. Click the Style Properties tab and expand Base and Label In color property select yellow and select Bold in the font-weight property before clicking Save. Select the other Label widget and assign a light grey color for the color then save the embedded Mashup. Reload the runtime view of the Mashup to see the results.     Step 7: Detail Panel   The right sidebar has a simple Image of a tractor along with product-specific information shown in Gauges and Value Displays.   The right sidebar contains two tabs in a Tabs - Responsive widget. The tabs are used to selectively hide and display groups of functions and data. The orange button labeled "View Vehicle Specs" is a Navigation widget that opens a pop-up window with other detailed product information. The colored range indications on the right Gauge were created by configuring the gauges ValueFormatter property to use State Formatting.   Add Tab Widget   Open the original, main Mashup and enter tab in the Widget panel search field. Drag and drop a Tabs widget onto the Right Sidebar.   Scroll to the Tab1Name property and enter Tractor Details. NOTE: This guide only covers configuring one of the two tabs added to the Mashup. Using the skills you've practiced thus far, feel free to add additional information to the tabs on your Mashup. Uncheck the RoundedCorners property. Click the Layout tab and click the radio button under Container > Orientation > Vertical   Add ValueDisplay Widgets   Type value in the Widget search box then click and drag a Value Display Widget onto Tab 1. In the Property panel, scroll to the Label property and enter Serial Number In the Data panel, expand Selected Row(s) then drag the SerialNumber property onto the Value Display widget and click Data when the Select Binding Target pop-up is displayed.   Drag another Value Display Widget onto the tab widget below to the first one and enter Name for the Label property. Drag name from the Selected Row(s) onto the second Value Display and then click Data. NOTE: Be sure to select data sources under Selected Row(s) so that data displayed will correspond to the tractor selected from either the map or the left side menu. Save the Mashup then click View Mashup to see all three panels working together to show data.   Add Gauges   Enter gauge in the Widget search box then click and drag a Gauge Widget onto Tab 1. In the Properties panel, enter 3000 for the MaxValue property and RPM in the Legend property. In the Data panel, expand Selected Row(s) then drag CurrentRPM onto the Gauge widget and click Data when the Select Binding Target pop-up is displayed. Drag another Gauge widget onto the canvas next to the first one and enter MPH for the Legend property. Drag CurrentSpeed from the Selected Row(s) onto the second Gauge, then click Data.   Click here to view Part 3 of this guide.
View full tip
  Discover how ThingWorx Widgets can be implemented in a compelling Mashup design.   Guide Concept   This project will introduce how to create complex user interfaces that are built by combining simple Widgets and basic styling.   Following the steps in this guide, you will build a web application showing both geographic and table based information.   We will teach you how to create a professional user interface that effectively conveys information to users.     You'll learn how to   Organize UI elements in a Mashup layout Use the Repeater widget effectively Use Styles to customize UI elements within a Mashup   NOTE: This guide's content aligns with ThingWorx 9.3. The estimated time to complete ALL parts of this guide is 60 minutes     Step 1: Top Level Layout   A Mashup like this does take some time to assemble, but is built by layering simple Widgets. In this guide, we will break down how this Mashup was created to give you a behind-the-scenes look and provide tips to use when developing your IoT application.     This professional-looking Mashup was created using only these Widgets:   Layout with both left and right sidebars and a footer Tabs - Responsive Repeater Navigation Image Property Display Gauge Google Map   The first Widget placed on this Mashup canvas was a Layout widget with both a Left and a Right Sidebar defined. The center portion of the layout has only one GoogleMap widget. The tractor icons displayed on the map were created by uploading a .png to create a Media entity then specifying the image as a custom MarkerStyle in the GoogleMap widget. In the following steps you will duplicate this Mashup.         Step 2: Import Data   In this step we will download and them import both a Thing Template and the sample data that are used throughout the exercise.   Download and save ConnectedTractors.xml which contains the Thing Template and example Things. In the lower left of Composer, click Import/Export, then Import.     In the Import From File pop-up, keep the defaults and click Browse.     Navigate to the ConnectedTractors.xml file you previously downloaded. Select the Entities file, then click Open. Click Import in the bottom right of the pop up, then click Close after file is successfully imported.     Step 3: Map Mashup   Follow the steps in this part of the lesson to create a Mashup with an organized, structured layout.   Create Mashup   Navigate to Browse > Visualization > Mashups.   Click + New.   Keep the defaults and click OK.   In the Name field, type TractorDemoMashup. If Project is not already set, click the + in the Project text box and select the PTCDefaultProject.   Click Save Click the Design tab in the Mashup Information panel Click the Layout tab, then click Add Left . Scroll down to Container Size, click Fixed Size then enter200 in the Width text box and press Tab to record your entry.   Click on the right side of your Mashup to select the larger container. Click Add Right before again scrolling down to Container Size, click Fixed Size then enter200 in the Width text box and press Tab to record your entry.        NOTE: The next step uses the Google Map Widget which may need to be downloaded and imported from IQNOX.com. A Step-by-step guide for using Google Maps with ThingWorx is available.   12. Click the Widgets tab on the top left of the Widget panel, then enter map in the search box of the Widget panel. 13. Click and drag the Google Map Widget onto the center area of the canvas. 14. Click Save   15. In the Data panel on the right click the + to add a data source for the Mashup. 16. Enter the name of the Template used to create the Things that will be shown on the Mashup. Click on the Template ConnectedTractor to use the sample data 17. Click the arrow to the right of GetImplementingThingsWithData, then click the Execute on Load check box before clicking Done.     Setup Map Data   In the Data panel on the right, if neccesary, expand the GetImplementingThingsWithData data source and then drag the All Data row onto the map widget.   Click Data in the Select Binding Target pop-up to connect the data source to the Data property of the Google Maps widget. In the Properties panel in the lower left, scroll to the LocationField property then select TractorLatLng   NOTE: The imported sample data provided for this lesson has a property named TractorLatLng that contains location information. Fields in the bound data with a type Location will be available in the drop down. 4. Click Save at the top of your Mashup. Click View Mashup to see the live map. NOTE: The map uses the standard markers, click on one of the markers to see that the marker changes to indicate that it is selected.     Customize Map Markers   In this part of the lesson we will show how to use a custom image for the map markers. Right-click on each of the images below to download and save them to use in the next step.       We will upload these images to create new Media entities and apply them to the Google Map widget. Click Browse > Visualization > Media.   Click + New. In the Name field, type TractorSelected.   If Project is not already set, click the + in the Project text box and select the PTCDefaultProject. Under Image, click Change. Navigate to and select the TractorSelected.png file you just downloaded. On the navigation pop-up, click Open to close the pop-up and confirm the image selection. At the top of Foundation, click Save.    Repeat steps 1 through 8 for TracktorUnselected. Open your Mashup and click on the Google Map widget. Click on Style Properties tab in the lower left and scroll to the MarkerStyle Property and click on the Default map marker image, then click edit.   Click Style Information in the left panel, then clear the default image by clicking the X next to Image.   Click the + to select a new image then scroll to the Media entity you just created. In this case, the TractorUnselected media. Click Save. NOTE: The Google Map widget is packaged with default style entities. By editing these styles we will change the markers for all Mashups running on this ThingWorx server. In later steps we show how to create one time use Styles instead of modifying the default Styles.   14. Repeat steps 1 through 8 to create and assign the TractorSelected image for the SelectedMarkerStyle Property. 15. Click Save for the Mashup, then View Mashup to see the custom map icons.       Step 4: Navigation Panel   The left sidebar defines the green background color in its style and contains just one Collection widget with custom embedded Mashups specified for both the Selected and the Unselected items. The logo at the bottom is an image defined in the Footer style.   The Collection widget works by duplicating an embedded panel Mashup that controls the display of data from each entity in collection of entities.   Add Footer   Select the left side container of your Mashup, then click the Layout tab Click Add Bottom and scroll down to Container Size, click Fixed Size then enter 60 in the Height text box and press Tab to record your entry.   Click Save.   Style Sidebar   Next, we are going to add a custom background color and image to the sidebar footer.   Click the Explorer tab in the widget panel then select the top container for the left sidebar.   Click the Style Properties tab in the lower left properties panel, then click to expand Base and flexcontainer. In the background tex box, enter #39736C for a dark green color, then press Tab.   Click the top left container, then, in the Style Properties tab, click to expand Base and flexcontainer. Click X in background property   Click the lower left container, and also click X to remove the background property.   Right-click on the image below to download and save it for use when we add a footer in the next step.   Create a Media entity as we did for the map markers by clicking the Browse folder icon, then click Media in the Visualization section. Click the + New to create a new Media entity. Enter twxpwr in the Name field for the footer image. If Project is not already set, click the + in the Project text box and select the PTCDefaultProject. Click Change in the Image section, then browse to the image you saved. Click Open, then Save.   Click in the lower-left footer container on your mashup, then click the Properties tab. Scroll to see the SourceURL property in the properties panel, then click the + to open the media selection window. Scroll to browse for the Media you just created.   Click the footer Media and then slick Save in Mashup Builder before continuing to the next step.     Click here to view Part 2 of this guide.
View full tip
    Step 3: Monitor SPC Properties   Once the properties have been configured, you are ready to progress on to SPC monitoring.   This is done by viewing the PTC.SPC.Monitoring_MU Mashup.   NOTE: Once a property has been configured for SPC monitoring, 2-5 minutes must pass before the accelerator has collected enough streaming values to perform SPC calculations. During this time, you may see an item that has 2 OOC rules violated; “Collecting Enough Data to Begin Monitoring” and “… to Compute Capability”.     Within Property SPC Status, click an item from the grid that has 0 in the OOC column. See that the Out of Control Rules area is blank, since there are no currently-violated SCP rules for that selected property. Both CP and CPK are above 1.0, showing that the process is capable. All the points in the charts are blue, as they do not violate any OOC rules. Within Property SPC Status, click an item from the grid that has a nonzero number in the OOC column.   See that the Out of Control Rules area has one or more rules listed that are currently being violated. Here, the rule being violated is Range Out of Control. One or more of the charts may have point(s) that are red. Here, you can see one of the points in the R chart is red, as it is above the Upper Control Limit. In the bottom-left, click Refresh Now.   Note that the datetime value of the date picker in the lower-left indicates the period to which the Mashup has updated. It is possible that Properties that were previously not in violation are now violating OOC rules; the opposite is also possible. Note that not all points that violate an OOC rule will display in red. Here, you can see that the rule 8 Consecutive Points Above Center Line is violated, but the corresponding points in the X-Bar Chart are not red. View the SPC status at a time from the recent past. In the lower-left, click date picker. Choose a datetime of 2-3 minutes in the past. You will see that the date picker reflects the datetime value you selected. All the Widgets in the Mashup are updated to reflect their status at that point in time. Enter continuous monitoring mode. Select any of the eight (8) items from the Property SPC Status area. To the left of the Refresh Now button, click the toggle. This will enable the Mashup to auto-refresh every 30 seconds. In the upper-right corner of the Property SPC Status area, click the gray arrow to expand the monitoring display.   Every 30 seconds, the monitoring display will update to show the most recent status for the item you selected.       Step 4: Next Steps   Congratulations! You’ve successfully completed the Deploy Statistical Process Control guide, and learned how to:   Configure multiple properties for SPC monitoring Identify abnormalities in streaming property values   Learn More   We recommend the following resources to continue your learning experience:    Site              Link Wikipedia Western Electric Rules Wikipedia Process Capability   Additional Resources If you have questions, issues, or need additional information, refer to:    Resource       Link Community Developer Community Forum Support ThingWorx Help Center  
View full tip
Announcements