cancel
Showing results for 
Search instead for 
Did you mean: 
cancel
Showing results for 
Search instead for 
Did you mean: 

Community Tip - Stay updated on what is happening on the PTC Community by subscribing to PTC Community Announcements. X

IoT Tips

Sort by:
Remote Monitoring of Assets Benchmark   As @ttielebein introduced previously, one of the missions of the IOT Enterprise Deployment Center (EDC) is to publish benchmarks that showcase the ThingWorx Platform deployed to solve real-world IOT business problems.    Our goal is that these benchmarks can be used as a reference or baseline for architects working on their own implementations... showing not only a successful at-scale implementation, but also what happens when that same implementation is pushed to ...or even past... it's limits.   Please find the first installment attached - a reference benchmark demonstrating ThingWorx deployed to monitor 15,000 assets with a high-volume of data properties per asset.  Over 250 hours of simulations were conducted as part of producing this benchmark.   The IOT EDC team will be monitoring this post (as well as our other posts in the IOT Tech Tips forum) to answer any questions we can about the approaches taken in designing, deploying and simulating this implementation.    As the team will publish more benchmarks like this will be published in the future, we also greatly value any feedback you have that can help us to improve the content for future documents.
View full tip
Load Testing through C SDK Remote Device Simulation in ThingWorx   As discussed in the EDC's previous article, load or stress testing a ThingWorx application is very important to the application development process and comes highly recommended by PTC best practices. This article will show how to do stress testing using the ThingWorx C SDK at the Edge side. Attached to this article is a download containing a generic C SDK application and accompanying simulator software written in python. This article will discuss how to unpack everything and move it to the right location on a Linux machine (Ubuntu 16.04 was used in this tutorial and sudo privileges will be necessary). To make this a true test of the Edge software, modify the C SDK code provided or substitute in any custom code used in the Edge devices which connect to the actual application.   It is assumed that ThingWorx is already installed and configured correctly. Anaconda will be downloaded and installed as a part of this tutorial. Note that the simulator only logs at the "error" level on the SDK side, and the data log has been disabled entirely to save resources. For any questions on this tutorial, reach out to the author Desheng Xu from the EDC team (@DeShengXu).   Background: Within ThingWorx, most things represent remote devices located at the Edge. These are pieces of physical equipment which are out in the field and which connect and transmit information to the ThingWorx Platform. Each remote device can have many properties, which can be bound to local properties. In the image below, the example property "Pressure" is bound to the local property "Pressure". The last column indicates whether the property value should be stored in a time series database when the value changes. Only "Pressure" and "TotalFlow" are stored in this way.  A good stress test will have many properties receiving updates simultaneously, so for this test, more properties will be added. An example shown here has 5 integers, 3 numbers, 2 strings, and 1 sin signal property.   Installation: Download Python 3 if it isn't already installed Download Anaconda version 5.2 Sometimes managing multiple Python environments is hard on Linux, especially in Ubuntu and when using an Azure VM. Anaconda is a very convenient way to manage it. Some commands which may help to download Anaconda are provided here, but this is not a comprehensive tutorial for Anaconda installation and configuration. Download Anaconda curl -O https://repo.anaconda.com/archive/Anaconda3-5.2.0-Linux-x86_64.sh  Install Anaconda (this may take 10+ minutes, depending on the hardware and network specifications) bash Anaconda3-5.2.0-Linux-x86_64.sh​ To activate the Anaconda installation, load the new PATH environment variable which was added by the Anaconda installer into the current shell session with the following command: source ~/.bashrc​ Create an environment for stress testing. Let's name this environment as "stress" conda create -n stress python=3.7​ Activate "stress" environment every time you need to use simulator.py source activate stress​  Install the required Python modules Certain modules are needed in the Python environment in order to run the simulator.py  file: psutil, requests. Use the following commands to install these (if using Anaconda as installed above): conda install -n stress -c anaconda psutil conda install -n stress -c anaconda requests​ Unpack the download attached here called csim.zip Unzip csim.zip  and move it into the /opt  folder (if another folder is used, remember to change the page in the simulator.json  file later) Assign your current user full access to this folder (this command assumes the current user is called ubuntu ) : sudo chown -R ubuntu:ubuntu /opt/csim   Move the C SDK source folder to the lib  folder Use the following command:  sudo mv /opt/csim/csdkbuild/libtwCSdk.so.2.2.4 /usr/lib​ You may have to also grant a+x permissions to all files in this folder Update the configuration file for the simulator Open /opt/csim/simulator.json  (or whatever path is used instead) Edit this file to meet your environment needs, based on the information below Familiarize yourself with the simulator.py file and its options Use the following command to get option information: python simulator.py --help​   Set-Up Test Scenario: Plan your test Each simulator instance will have 8 remote properties by default (as shown in the picture in the Background section). More properties can be added for stress test purposes in the simulator.json  file. For the simulator to run 1k writes per second to a time series database, use the following configuration information (note that for this test, a machine with 4 cores and 16G of memory was used. Greater hardware specifications may be required for a larger test): Forget about the default 8 properties, which have random update patterns and result in difficult results to check later. Instead, create "canary properties" for each thing (where canary refers to the nature of a thing to notify others of danger, in the same way canaries were used in mine shafts) Add 25 properties for each thing: 10 integer properties 5 number properties 5 string properties 5 sin properties (signals) Set the scan rate to 5000 ms, making it so that each of these 25 properties will update every 5 seconds. To get a writes per second rate of 1k, we therefore need 200 devices in total, which is specified by the start and end number lines of the configuration file The simulator.json  file should look like this: Canary_Int: 10 Canary_Num: 5 Canary_Str: 5 Canary_Sin: 5 Start_Number: 1 End_Number: 200​ Run the simulator Enter the /opt/csim  folder, and execute the following command: python simulator.py ./simulator.json -i​ You should be able to see a screen like this: Go to ThingWorx to check if there is a dummy thing (under Remote Things in the Monitoring section): This indicates that the simulator is running correctly and connected to ThingWorx Create a Value Stream and point it at the target database Create a new thing and call it "SimulatorDummyThing" Once this is created successfully and saved, a message should pop up to say that the device was successfully connected Bind the remote properties to the new thing Click the "Properties and Alerts" tab Click "Manage Bindings" Click "Add all properties" Click "Done" and then "Save" The properties should begin updating immediately (every 5 seconds), so click "Refresh" to check Create a Thing Template from this thing Click the "More" drop-down and select "Create ThingTemplate" Give the template a name (ensure it matches what is defined in the simulator.json  file) and save it Go back and delete the dummy thing created in Step 4, as now we no longer need it Clean up the simulator Use the following command: python simulator.py ./simulator.json -k​ Output will look like this: Create 200 things in ThingWorx for the stress test Verify the information in the simulator.json  file (especially the start and end numbers) is correct Use the following command to create all things: python simulator.py ./simulator.json -c​ The output will look like this: Verify the things have also been created in ThingWorx: Now you are ready for the stress test   Run Stress Test: Use the following command to start your test: python simulator.py ./simulator.json -l​ or python simulator.py ./simulator.json --launch The output in the simulator will look like this: Monitor the Value Stream writing status in the Monitoring section of ThingWorx:   Stop and Clean Up: Use the following command to stop running all instances: python simulator.py ./simulator -k​ If you want to clean up all created dummy things, then use this command: python simulator.py ./simulator -d​ To re-initiate the test at a later date, just repeat the steps in the "Run Stress Test" section above, or re-configure the test by reviewing the steps in the "Set-Up Test Scenario" section   That concludes the tutorial on how to use the C SDK in a stress or load test of a ThingWorx application. Be sure to modify the created Thing Template (created in step 6 of the "Set-Up Test Scenario" section) with any business logic required, for instance events and alerts, to ensure a proper test of the application. 
View full tip
Load Testing through Remote Device Simulation   Designing an enterprise-ready application requires extensive testing and quality assurance. This includes all sorts of tests, of course, from examining the user interface for flaws to verifying there is correct logic in all background services. However, no area of testing is more important than scalability. Load testing is how to test the application to ensure it still functions as desired when remote things are connected and streaming information to the Platform.   Load testing is considered a critical component of the change management process. It is mentioned numerous times throughout PTC best practice documentation. This tutorial will step you through designing a load test using Kepware as a simulator. Kepware is free to download and use in short demos, making it the perfect tool for this type of test.   Start by acquiring the latest version of Kepware from the download site. Click “Download Free Demo” if a license was not included in your PTC product package. The installation of Kepware is simple, and for details, see the Kepware Installation Guide. The tutorial shown here uses Kepware version 6.7 and ThingWorx version 8.4.4. Given that we are testing a ThingWorx application, this tutorial assumes ThingWorx is already installed and configured correctly.   Once Kepware is installed, follow these steps: (This tutorial was developed by Desheng Xu and edited by Victoria Tielebein. Exact specifications of the equipment used in both large scale and local tests are given in step VI, which discusses the size of the simulation)   Understand how to configure Kepware as a simulator Go to the Help menu within Kepware, and click on “Driver Help” Select “Simulator” in the pop-up window, and click “OK” Expand “Address Descriptions” and then “Simulation Functions” Select “Ramp Function” to review details about the function needed for this tutorial, as well as information about function syntax Close the window once this information has been reviewed Create a new project in Kepware Click “File” > “New” In case you are connected to runtime, Kepware will allow you to choose to edit this project offline Add a channel in Kepware Channels represent threads which Kepware will use to contact ThingWorx Under “Connectivity”, click “Click to add a channel.” From the drop-down list, select “Simulator” Use all the default settings, selecting “Next” all the way down to “Finish” Next, add one device to the channel Highlight the new channel and click “Click to add a device” (which will appear in the center of the screen) Once again, use the default settings, selecting “Next” all the way down to “Finish” Add a tag to this device Within Kepware, tags represent properties which bind to remote things on the Platform and update with new information over time. Each device will need several tags to simulate remote property updates. The easiest way to add many tags for testing is to create one, and then copy and paste it. Highlight the device created in the previous step and click “Click to add static tag”, which appears in the center of the screen For “name” type “tag1” For Address, enter the Ramp function: RAMP(1000,1,2000000,1) The first parameter is the update rate given in milliseconds The next two parameters are the range of values which can be sent The last parameter is the increment or step Together this means that every 1 second, this tag will send a new value that is 1 higher than the previous value to the Platform, starting at 1 and ending at 2 million Ensure the Data Type is given as “DWord” or any type which will be read as a “Number” (and NOT an “Integer”) on the Platform Change the Scan Rate to 250 Then click “OK” Add more devices to the test The most basic set-up is now done: if this project connected to the Platform, one remote thing with one remote property could be used to simulate property updates. That is not very useful for load testing, however. We need many more things than this, and many more properties. The number of tags on each device should match the expected number of remote properties in the application itself. The number of devices in each channel should be large enough that when more channels are created, the number of total devices is close to the target for the application. For example, to simulate 10,000 things, each with 25 remote properties, we need 25 tags per device, 200 devices per channel, and 50 channels. This would require a lot of memory to run and should not be attempted on a local machine. A full test of 40 channels each with 10 devices was performed as shown in the screenshots here. This simulates 10,000 writes per second to the Platform total, or about 400 remote device connections. This test used the following hardware specifications: Kepware machine running Windows 2016 64-bit, 2 cores, 8G ThingWorx Platform machine running Ubuntu 16.04, 4 cores, 16G PostgreSQL 9.6 machine running Ubuntu 16.04, 4 cores, 16G Influx 1.6.3 machine running Ubuntu 16.04, 4 cores, 16G A local test was also run on Windows 10 (64-bit), using the H2 database, with Kepware and ThingWorx running side by side on the machine, 4 cores, 16G. This test made use of only 2 channels, with 10 devices each. For local tests to see how the simulation works, this is fine, but a more robust set-up like the above will be needed in a true load test. If there is not enough memory on the machine hosting Kepware, errors like this will appear in the Kepware logs: One or more value change updates lost due to insufficient space in the connection buffer. Once you decide on the number of tags and devices needed, follow the steps below to add them.  To add more tags, copy and paste the existing tag (ctrl+c  and ctrl+v  work in Kepware for convenience) until there as many tags as desired To add more devices, highlight the device in Kepware and copy and paste it as well (click on the channel before pasting) Then, copy and paste the entire channel until the number of channels, devices, and tags totals the desired load (be sure to click on “Connectivity” before hitting paste this time)  Configure the ThingWorx connection Right click on Project in the left-hand navigation bar and in the pop-up window that appears, highlight ThingWorx Change the “Enable” field to “Yes” to activate the other fields Fill in the details for “Host”, “Port”, “Application Key”, and “Thing name” Note that the application key will need to be created in ThingWorx and then the value copied in here The certificate and encryption settings may also need to be adjusted to match your environment For local set-ups, it is likely that self-signed and all certificates will need to be accepted, so both of those fields will likely need to be set to “Yes” (Encryption may need to be disabled as well). In production systems, this should not be the case  Save the project It doesn’t matter too much if this project is saved as encrypted or not, so either enter a password to encrypt the save or select “No encryption” Connect to ThingWorx Click “Runtime” > “Connect…” A pop-up will appear asking if you want to load this project, click “Yes” The connection status should then appear in the bottom portion of the window where the logs are displayed Configure in ThingWorx Login to the ThingWorx Platform Under “Industrial Connections” a thing should appear which is named as indicated in the Kepware configuration step above Click to open this thing and save it Also create a new thing, a value stream for ingesting data from Kepware Create remote things in ThingWorx Import the provided entity into ThingWorx (should appear as a downloadable attachment to this post) Open the KepwareUtil thing and go to the services tab Run the AutoKepwareCreate service to generate remote things on the Platform Give the name of the stream created above so each thing has a place to store property information The IgnoreTemplate flag should be set to false. This allows for the service to create a thing template first, which is then passed to the remote devices. The only reason this would be set to true is if the devices need to be deleted and recreated, but the template does not (then set the flag to true). To delete the devices, use the AutoKepwareDelete service also provided on the KepwareUtil thing Note that the AutoKepwareCreate service is asynchronous, so once it is executed, close the window and check the script logs to see when it completes. The logs will look like: KepwareUtil AutoKepwareCreate task finished!!! Check status of remote things Once the things are created, they should automatically connect to the Platform Run the TotalDeviceByTemplateWithTemplate service to see if the things are connected The template given here could be the one created by the AutoKepwareCreate service, or just give it RemoteThings if this is a small local set-up without many remote things on it The number of devices will equal the number of devices per channel times the total number of channels, which in the test shown here, is 400 isConnected will be checked if all of the devices are connected without issue If some of them are not connected, verify in the logs if there are any errors and resolve those before moving on View Ingestion Rate Once the devices are created, their tags should show as numbers (NOT integers), and they should already be updating with new values every second To view the ingestion rate, run the KepwareUtil service AutoKepwareRateSummary Give the thing template name that is created by the AutoKepwareCreate service, which will look like the name of the Kepware thing itself with a “T-“ in the front The start time should be close to the current time, and the periodInMinutes should be large enough to include some of the test (periodInMinutes is used to calculate the end time within the service) Note in the results here that the Average Write Per Second is only 9975 wps, which is close but not exactly what we would expect. This means that there are properties not updating correctly, which requires us to look at the logs and restart some things. If nothing shows up here, despite the Total Connected Things showing correctly, then look at the type of the tags on one of the remote devices. The type must be NUMBER for the query within this service to work, and not INTEGER. If the type of the tags is incorrect, then the type of the tags within Kepware was probably given as something which is not interpreted as a number in ThingWorx. Ensure DWord is used for the tags in Kepware Within the script log, look for any devices which show errors as seen in the image below and restart them to get their properties updating correctly Once the ingestion rate equals what is expected (in the case of the test here, 10,000 wps), use the AutoKepwareIngestionStat service on the KepwareUtil thing to see details about each remote device The TimeGapAvg in this service represents the gap between two ingestions in milliseconds, showing any lag that may be present between Kepware and ThingWorx The TimeGapSTD shows the standard deviation of the time gap between two ingestions on any given thing, also indicating lag (the lower this number, the better) The StartTime and EndTime show the first and last timestamp observed in the ThingWorx database during the given duration The totalCount shows the total number of ingested records during the sampling cycle The StartValue and EndValue fields show the first and last value ingested into the tag during the given duration If the ingestion rate is working as expected, and the ramp function is actually sending an update on time (in this case, once each second), then the difference between the EndValue and StartValue should always be equal to the totalCount plus 1. If this doesn’t match up, then there may be data loss or something else wrong with the property updates, which will show as a checked box in the valueException column. It is not enough to ensure that the ingestion rate is correct, as sometimes the rate may fluctuate only by 1 or 2 wps and appear perfect, even while some data is lost. That is why it is important to ensure that there are no valueException boxes showing as checked in the test of the application. If none of these are marked as having failed, then the test was successful and this ingestion rate is acceptable for the application   This tutorial is a very basic way to simulate many remote devices ingesting data into the Platform. For this to be a true test of the application, the remote things created in this test will need to be given business logic tasks as well. The AutoKepwareCreate service can be modified to give any template (and not just RemoteThing) to the thing template which is created and subsequently passed into the demo devices. Likewise, the template itself can be created, and then manually modified to look like the actual remote device template in the application, before the rest of the things are created (using the IgnoreTemplate flag in the creation and deletion services, as discussed above).   Ensure that events are triggered as expected and that subscriptions to property updates are in place on the thing template before creating the demo things. Make use of the subsystem monitor to ensure that the event, value stream, and stream queues do not grow so large that the Platform cannot keep up with the requests (for details about tuning the stream and value stream processing subsystems, see PTC’s best practice documentation). Also be sure to load some of the mashups to see how they perform while the ingestion test is happening. This will test whether or not the ingestion rate and business logic of the application can function side by side without errors, data loss, or performance issues.
View full tip
The RabbitMQ Management plugin provides a web-based interface into the inner workings of the messaging bus behind ThingWorx Flow. It is installed by the Flow installers but is an HTTP service by default and is a totally different web server than the NGINX used to front-end ThingWorx Flow. This will describe how to integrate it into the NGINX on your ThingWorx Flow server. This is necessitated by some recent browser behavior changes that make it very hard to get to the http port once you've used an https service on the same machine from the same browser.   First - let's find the user name and password for the RabbitMQ Management plugin. On a Linux server, the file /etc/rabbitmq/definitions.json will hold the name and password for the plugin's UI:         "users": [{                 "name": "flowuser",                 "password": "1780edc6b8628ace2ace72465cdc7b048c88",                 "tags": "administrator"         }],   On a Windows server, the definitions.json file can be found under [flow install location]\modules\RabbitMQ.   Of course, access to these directories should be limited.   Second - let's integrate the plugin into NGINX The best way to integrate the plugin into Flow is to let NGINX reverse proxy to the other http server running the UI for the plugin, which is exactly what happens for Thingworx itself. That way, only NGINX has to be configured for https and no other ports need to be opened to allow access to the plugin.   You need to find the file vhost-flow.conf on your system. On Linux, this will be /etc/nginx/conf.d/vhost-flow.conf. On Windows, it will be at C:\Program Files\nginx-[version]\conf\conf.d\vhost-flow.conf by default. Add the following fragment after the last location xxx {…} segment in the file:       # deal with the rabbitMQ admin tool     location ~* /rabbitmq/api/(.*?)/(.*) {         proxy_pass http://127.0.0.1:15672/api/$1/%2F/$2?$query_string;         proxy_buffering                    off;         proxy_set_header Host              $http_host;         proxy_set_header X-Real-IP         $remote_addr;         proxy_set_header X-Forwarded-For   $proxy_add_x_forwarded_for;         proxy_set_header X-Forwarded-Proto $scheme;     }       location /rabbitmq {         rewrite ^/rabbitmq$ /rabbitmq/ permanent;      }       location ~* /rabbitmq/(.*) {         rewrite ^/rabbitmq/(.*)$ /$1 break;         proxy_pass http://127.0.0.1:15672;         proxy_buffering                    off;         proxy_set_header Host              $http_host;         proxy_set_header X-Real-IP         $remote_addr;         proxy_set_header X-Forwarded-For   $proxy_add_x_forwarded_for;         proxy_set_header X-Forwarded-Proto $scheme;     }   This makes the request for /rabbitmq get pushed over to the web server at port 15672 on the Flow server.   Test the updated config file with (nginx may not exist in your normal path): nginx -t   Restart the NGINX service: Linux (one of these will work depending upon your Linux version): systemctl restart nginx service nginx restart Windows: Net stop ThingWorxOrchestrationNginx Net start ThingWorxOrchestrationNginx -or- use the Services app to restart the service   Thanks to https://groups.google.com/forum/#!topic/rabbitmq-users/l_IxtiXeZC8 for the needed config changes.   You can now use https://yourserver/rabbitmq to get to the login page for the management plugin. Login with the user and password from the definitions.json file on your system and you can now monitor the behavior of your RabbitMQ environment.
View full tip
Having trouble remembering how to get into Flow? How about make /Flow the URL?   Since the Flow environment uses NGINX to front-end the various components that make up Flow, there is a very sophisticated set of rewrites and proxy_pass directives in the NGINX configuration. All you have to do is add another 'location' fragment to the vhost-flow.conf file that will push /Flow over to /Thingworx/Composer/apps/flow:       location /Flow {       rewrite ^/Flow$ $proxy_scheme://$server_host/Thingworx/Composer/apps/flow permanent;     }   On Linux, the file should be at /etc/nginx/conf.d/vhost-flow.conf   On Windows, the file should be at c:\Program Files\nginx-[version]\conf\conf.d\vhost-flow.conf   Test the updated config file with (nginx may not exist in your normal path): nginx -t   Restart the NGINX service: Linux (one of these will work depending upon your Linux version): systemctl restart nginx service nginx restart Windows: Net stop ThingWorxOrchestrationNginx Net start ThingWorxOrchestrationNginx -or- use the Services app to restart the service   From this point forward https://yourserver/Flow will take you to ThingWorx Flow's home page.
View full tip
Smoothing Large Data Sets Purpose In this post, learn how to smooth large data sources down into what can be rendered and processed more easily on Mashups. Note that the Time Series Chart  widget is limited to load 8,000 points (hard-coded). This is because rendering more points than this is almost never necessary or beneficial, given that the human eye can only discern so many points and the average monitor can only render so many pixels. Reducing large data sources through smoothing is a recommended best practice for ThingWorx, and for data analysis in general.   To show how this is done, there are sample entities provided which can be downloaded and imported into ThingWorx. These demonstrate the capacity of ThingWorx to reduce tens of thousands of data points based on a "smooth factor" live on Mashups, without much added load time required. The tutorial below steps through setting these entities up, including the code used to generate the dummy data.   Smoothing the Data on Mashups Create a Value Stream for storing the historical data. Create a Data Shape for use in the queries. The fields should be: TestProperty - NUMBER timestamp - DATETIME Create a Thing (TestChartCapacityThing) for simulating property updates and therefore Value Stream updates. There is one property: TestProperty - NUMBER - not persistent - logged The custom query service on this Thing (QueryNamedPropertyHistory) will have the logic for smoothing the data. Essentially, many points are averaged into one point, reducing the overall size, before the data is returned to the mashup. Unfortunately, there is no service built-in to do this (nothing OOTB service). The code is here (input parameters are to - DATETIME; from - DATETIME; SmoothFactor - INTEGER): // This is just for passing the property name into the query var infotable = Resources["InfoTableFunctions"].CreateInfoTable({infotableName: "NamedProperties"}); infotable.AddField({name: "name", baseType: "STRING"}); infotable.AddRow({name: "TestProperty"}); var queryResults = me.QueryNamedPropertyHistory({ maxItems: 9999999, endDate: to, propertyNames: infotable, startDate: from }); // This will be filled in below, based on the smoothing calculation var result = Resources["InfoTableFunctions"].CreateInfoTable({infotableName: "SmoothedQueryResults"}); result.AddField({name: "TestProperty", baseType: "NUMBER"}); result.AddField({name: "timestamp", baseType: "DATETIME"}); // If there is no smooth factor, then just return everything if(SmoothFactor === 0 || SmoothFactor === undefined || SmoothFactor === "") result = queryResults; else { // Increment by smooth factor for(var i = 0; i < queryResults.rows.length; i += SmoothFactor) { var sum = 0; var count = 0; // Increment by one to average all points in this interval for(var j = i; j < (i+SmoothFactor); j++) { if(j < queryResults.rows.length) if(j === i) { // First time set sum equal to first property value sum = queryResults.getRow(j).TestProperty; count++; } else { // All other times, add property values to first value sum += queryResults.getRow(j).TestProperty; count++; } } var average = sum / count; // Use count because the last interval may not equal smooth factor result.AddRow({TestProperty: average, timestamp: queryResults.getRow(i).timestamp}); } } Create a Timer for updating the property values on the Thing. The Timer should subscribe to itself, containing this code (ensure it is enabled as well): var now = new Date(); if(now.getMilliseconds() % 3 === 0) // Randomly reset the number to simulate outliers Things["TestChartCapacityThing"].TestProperty = Math.random()*100; else if(Things["TestChartCapacityThing"].TestProperty > 100) Things["TestChartCapacityThing"].TestProperty -= Math.random()*10; else Things["TestChartCapacityThing"].TestProperty += Math.random()*10; Don't forget to set the runAsUser in the Timer configuration. To generate many properties, set the updateRate to a small value, like 10 milliseconds. Disable the Timer after many thousands of properties are logged in the Value Stream. Create a Mashup for displaying the property data and capacity of the query to smooth the data. The Mashup should run the service created in step 4 on load. The service input comes from widgets on the mashup: Bindings: Place a Time Series Chart widget in the bottom of the Mashup layout. Bind the data from the query to the chart. View the Mashup. Note the difference in the data... All points in one minute: And a smooth factor of 10 in one minute: Note that the outliers still appear, and the peaks are much easier to see. With fewer points, trends become easier to spot and data is easier to understand. For monitoring the specific nature of the outliers, utilize alerts and other types of displays. Alternative forms of data reduction could involve using the mean of each interval (given by the smoothing factor) or the min or max, as needed for the specific use case. Display multiple types of these options for an even more detailed view. Remember, though, the more data needs to be processed, the slower the Mashup will load. As usual, ensure all mashups are load tested and that the number of end users per Mashup is considered during application design.
View full tip
Thingworx Analytics is offered through the User interface called Analytics Builder with some pre-configured functionality. However, should you want to create your own jobs and mashups, all features from Analytics Builder and some more are available through the Thingworx Services.  Running most functionality requires that you provide some data to run the Analytics Services. This is where the datasetRef parameter is required.        Data uploaded through Analytics Builder Any dataset uploaded through builder will require have a datasetUri as shown in the image above and format will be parquet (all small letters) datasetUri can be obtained from the list of datasets in builder Passing data as an in-body Dataset If data isn't uploaded through Analytics Builder, data can be supplied as an Infotable in the data parameter of the datasetRef. Metadata will also need to be supplied if a new dataset is being created (create Job of the AnalyticsServer_DataThing) If this data is being supplied for a scoring job, as long as the column names match up to what the model is expecting, TWX Analytics will inference them appropriately. The filter parameter is for parquet datasets already uploaded into TWXA and will take an ANSI SQL statement format to add conditions to reduce number of rows. Exclusions is an single column infotable list of the columns you wish to remove from the job you are trying to submit Example: If you want Profiles to only run on 5 out of 10 columns, you would give a list of 5 columns that you don't want to include in this exclusions infotable. Data may also be supplied as a csv file in the file repo in some cases, in which case you would give the dataseturi parameter the location of the file on the TWX File repo (of the format thingworx://UseCaseFileRepo/tempdata.csv) and the format which would be csv
View full tip
Developing Great IoT Solutions Brought to you once again by your EDC team, find attached here a brand-new, comprehensive overview of ThingWorx best practices! This guide was crafted by combining all available feedback, from support cases to PTC Community threads, and tapping all internal resources. Let this guide serve to bridge the knowledge gaps ThingWorx developers most commonly see.    The Developing Great IoT Solutions (DGIS) Guide is a great way to inform both business and technically minded folks about the capabilities of the ThingWorx Platform. Learn how to design good solutions from a high-level, an overview designed specifically with the business audience in mind. Or, learn how to implement good IoT designs through a series of technical examples. Start from very little knowledge of the Platform and end up understanding data structures and aggregation, how to use the collection widget, and how to build a fully functional rules engine for sending and acknowledging alerts in ThingWorx.   For the more advanced among us, check out the Appendix. Find here a handy list of do's and don'ts surrounding ThingWorx best practice in development, with links to KCS, Help Center, and Community content.   Reinforce your understanding of the capabilities of the ThingWorx Platform with this guide, today!   A big thanks to all who were involved on this project! Happy developing!
View full tip
OpenDJ is a directory server which is also the base for WindchillDS. It can be used for centralized user management and ThingWorx can be configured to login with users from this Directory Service.   Before we start Pre-requisiste Docker on Ubuntu JKS keystore with a valid certificate JKS keystore is stored in /docker/certificates - on the machine that runs the Docker environments Certificate is generated with a Subject Alternative Name (SAN) extension for hostname, fully qualified hostname and IP address of the opendj (Docker) server Change the blue phrases to the correct passwords, machine names, etc. when following the instructions If possible, use a more secure password than "Password123456"... the one I use is really bad   Related Links https://hub.docker.com/r/openidentityplatform/opendj/ https://backstage.forgerock.com/docs/opendj/2.6/admin-guide/#chap-change-certs https://backstage.forgerock.com/knowledge/kb/article/a43576900   Configuration Generate the PKCS12 certificate Assume this is our working directory on the Docker machine (with the JKS certificate in it)   cd /docker/certificates   Create .pin file containing the keystore password   echo "Password123456" > keystore.pin   Convert existing JKS keystore into a new PKCS12 keystore   keytool -importkeystore -srcalias muc-twx-docker -destalias server-cert -srckeystore muc-twx-docker.jks -srcstoretype JKS -srcstorepass `cat keystore.pin` -destkeystore keystore -deststoretype PKCS12 -deststorepass `cat keystore.pin` -destkeypass `cat keystore.pin`   Export keystore and Import into truststore   keytool -export -alias server-cert -keystore keystore -storepass `cat keystore.pin` -file server-cert.crt keytool -import -alias server-cert -keystore truststore -storepass `cat keystore.pin` -file server-cert.crt     Docker Image & Container Download and run   sudo docker pull openidentityplatform/opendj sudo docker run -d --name opendj --restart=always -p 389:1389 -p 636:1636 -p 4444:4444 -e BASE_DN=o=opendj -e ROOT_USER_DN=cn=Manager -e ROOT_PASSWORD=Password123456 -e SECRET_VOLUME=/var/secrets/opendj -v /docker/certificates:/var/secrets/opendj:ro openidentityplatform/opendj   After building the container, it MUST be restarted immediately in order for recognizing the new certificates   sudo docker restart opendj   Verify that the certificate is the correct one, execute on the machine that runs the Docker environments: openssl s_client -connect localhost:636 -showcerts   Load the .ldif Use e.g. JXplorer and connect   Select the opendj node LDIF > Import File (my demo breakingbad.ldif is attached to this post) Skip any warnings and messages and continue to import the file   ThingWorx Tomcat If ThingWorx runs in Docker as well, a pre-defined keystore could be copied during image creation. Otherwise connect to the container via commandline: sudo docker exec -it <ThingworxImageName> /bin/sh Tomcat configuration cd /usr/local/openjdk-8/jre/lib/security openssl s_client -connect 10.164.132.9:636 -showcerts Copy the certifcate between BEGIN CERTIFACTE and END CERTIFICATE of above output into opendj.pem, e.g. echo "<cert_goes_here>" > opendj.pem Import the certificate keytool -keystore cacerts -import -alias opendj -file opendj.pem -storepass changeit   ThingWorx Composer As the IP address is used (the hostname is not mapped in Docker container) the certificate must have a SAN containing the IP address     Only works with the TWLDAPExample Directory Service not the ADDS1, because ADDS1 uses hard coded Active Directory queries and structures and therefore does not work with OpenDJ. User ID (cn) must be pre-created in ThingWorx, so the user can login. There is no automatic user creation by the Directory Service. Make sure the Thing is Enabled under General Information   Appendix LDAP Structure for breakingbad.ldif cn=Manager / Password123456 All users with password Password123456    
View full tip
Setting Up the Azure Load Balancer with a ThingWorx High Availability Deployment Purpose In this post, one of PTC’s most experienced ThingWorx deployment architects, Desheng Xu, explains the steps to configure Azure Load Balancer with ThingWorx when deployed in a High Availability architectural model.   This approach has been used successfully on customer implementations for several ThingWorx 7.x and 8.x versions. However, with some of the improvements planned for ThingWorx High Availability architecture in the next major release, this best practice will likely change (so keep an eye out for updates to come).   Azure Load Balancer The overview article What is Azure Load Balancer? from Microsoft will give you a high-level understanding of load balancers in general, as well as the capabilities and limitations of Azure Load Balancer itself. For our purposes, we will leverage Azure Load Balancer's capability to manage incoming internet traffic to ThingWorx Platform virtual machine (VM) instances. This configuration is known as a Public Load Balancer.   Important Note: Different load balancers operate at different “layers” of the OSI Model. Azure Load Balancer operates at Layer 4 (Transport Layer) – it is indifferent to the specific TCP Payload. As a result, you must either configure both the front-end and back-end to work on SSL, or configure both of them to work on non-SSL communications. “SSL Termination” or “TLS Offload” is not supported by Azure Load Balancer.   Azure offers multiple different load balancing solutions. If you need some guidance on choosing the right one for you, I highly recommending reviewing the Microsoft DevBlog post Azure Load Balancing Solutions: A guide to help you choose the correct option.   High-Level Diagram: ThingWorx High Availability with Azure Load Balancer To keep this article focused, we will not go into the setup of ThingWorx in a High Availability architecture. It will be assumed that ThingWorx is working correctly and the ZooKeeper cluster is managing failover for the Platform instances as expected. For more details on setting up this configuration, the best place to start would be the High Availability Administrator’s Guide.   Planning In this installation, let's assume we have following plan (you will likely need to change these values for your own implementation): Azure Load Balancer will have a public facing domain name: edc.ptc.io Azure Load Balancer will have a public IP: 41.35.22.33 ThingWorx Platform VM instance 1 has a local computer name, like: vm1 ThingWorx Platform VM instance 2 has a local computer name, like: vm2   ThingWorx Preparation By default, the ThingWorx Platform provides a healthcheck end point at /Thingworx/Admin/HA/LeaderCheck , which can only be accessed with a credential configured in platform-settings.json : "HASettings": { "LoadBalancerBase64EncodedCredentials":"QWRtaW5pc3RyYXRvcjphZG1pbg==" } However, Azure Load Balancer does not permit this Health Check with a credential with current versions of ThingWorx. As a workaround, you can create a pings.jsp (using the attached JSP example code) in the Tomcat folder $CATALINA_HOME/webapps/docs . This workaround will no longer be needed in ThingWorx 8.5 and newer releases.   There are two lines that likely need to be modified to meet your situation: The hostname in final String probeURL (line 10) must match your end point domain name. It's edc.ptc.io in our example, don’t forget to replace this with your real hostname! You also need to add a line in your local hosts file and point this domain name to 127.0.0.1 . For example: 127.0.0.1 edc.ptc.io The credential in final String base64EncodedCredential (line 14) must match the credential configured in platform-settings.json. Additionally: Don't forget to make the JSP file accessible and executable by the user who starts Tomcat service for ThingWorx. These changes must be applied to both ThingWorx Platform VM instances. Tomcat needs to be configured to support SSL on a specific port. In this example, SSL will be enabled on port 8443. Please make sure similar configuration is included in $CATALINA_HOME/conf/server.xml <Connector protocol="org.apache.coyote.http11.Http11NioProtocol" port="8443" maxThreads="200" scheme="https" secure="true" SSLEnabled="true" keystoreFile="/opt/yourcertificate.pfx" keystorePass="dontguess" clientAuth="false" sslProtocol="TLS" keystoreType="PKCS12"/> The values in keystoreFile and keyStorePass will need to be changed for your implementation. While pkcs12 format is used in above example, you can use a different certificate formats, as long as it is supported by Tomcat (example: jks format). All other parameters, like maxThreads , are just examples - you should adjust them to meet your requirements.   How to Verify Before configuring the load balancer, verify that health check workaround is working as expected on both ThingWorx Platform instances. You can use following command to verify: curl -I https://edc.ptc.io:8443/docs/pings.jsp The expected result from active node should look like: HTTP/1.1 200 There will be three or more lines in output, depending on your instance configuration but you should be able to see the keyword: HTTP/1.1 200.   Expected result from passive node should look like: HTTP/1.1 503   Load Balancer Configuration Step 1: Select SKU Search for “load balancer” in the Azure market and select Load Balancer from Microsoft Verify the correct vendor before you create a Load Balancer. Step 2: Create load balancer To create a proper load balancer, make sure to read Microsoft’s What is Azure Load Balancer? overview to understand the differences between “basic” and “standard” SKU offerings. If your IT policy only requires SSL communication to the outside but doesn't require a SSL communication in a health probe, then the “basic” SKU should be adequate (not considering zone redundancy). You have to decide following parameters: Region Type (public or Internal) SKU (basic or standard) IP address Public IP address name Availability zone PTC cannot provide specific recommendations for these parameters – you will need to choose them based on your specific business needs, or consult Microsoft for available offerings in your region.   Step 3: Start to configure Once a load balancer is successfully created by Azure, You should be able to see:   Step 4: Confirm frontend IP Click frontend IP configuration at left side and you should be able to see public IP address configuration. Please make sure to register this IP with your domain name ( edc.ptc.io in our example) in your Domain Name Server (DNS). If you unfamiliar with DNS configuration, you should consult with the administrator of your DNS server. If you are using Azure DNS, this Quickstart article on creating Azure DNS Zones and records may help.   Step 5: Configure Backend pools Click Backend pools and click “Add” to add a backend pool definition. Select a name for your Backend pool (using ThingworxBackend in our example). Next step is to choose Virtual network.   Once you select Virtual network, then you can choose which VM (or VMs) you want to put behind this load balancer. The VM should be the ThingWorx VM instance.   In a high availability architecture, you will typically need to choose two instances to put behind this load balancer.   Please Note: The “Virtual machine status” column in this table only shows VM status, but not ThingWorx status. ThingWorx running status will be determined by the health probe configured in the next step.     Step 6: Configure Health Probe Health Probe will be used to determine the ThingWorx Platform’s running status. When a ThingWorx Platform instance is running as the leader, then it will give HTTP status code 200 during a health probe. The Azure Load Balancer will rely on this status code to determine if the platform is running properly.   When a ThingWorx platform VM is not responding, offline, or not the leader in a High Availability setup, then this health probe will provide response with a different HTTP status code other than 200.   For the health probe, select HTTPS for the protocol. In our example port 8443 is used, though another port can be selected if necessary. Then, provide the “/docs/pings.jsp” we created earlier as the probe’s path. You may need to change this path value if you put this file in a different location.   Step 7: Configure Load balancing rules. Select “Load balancing rules” from left side and click “Add”   Select TCP as protocol, in our example we are using 443 as front-end port and 8443 as back-end port. You can choose other port numbers if necessary.   Reminder: Azure Load Balancer is a layer 4 (Transport Layer) router – it cannot differentiate between HTTP or HTTPS requests. It will simply forward requests from front-end to back-end, based on port-forwarding rules defined.   Session persistence is not critical for current versions of ThingWorx as only one active node is currently permitted in a High Availability architecture. In the future, selecting Client IP may be required to support active-active architectures.   Step 8: Verify health probe Once you complete this configuration, you can go to the $CATALINA_HOME/logs folder and monitor latest local_access log. You should see similar entries as pictured below - HTTP 200 responses should be observed from the ThingWorx leader node, and HTTP 503 responses should be observed from the ThingWorx passive node. In the example below, 168.63.129.16 is the internal IP Address of the load balancer in the current region.   Step 9: Network Security Group rules to access Azure Load Balancer On its own, Azure Load Balancer does not have a network access policy – it simply forwards all requests to the back-end pool. Therefore, the appropriate Network Security Group associated with the backend resources within the resource group should have a policy to allow access to the destination port of the backend ThingWorx Foundation server (shown as 8443 here, for example). The following image displays an inbound security rule that will accept traffic from any source, and direct it to port 443 of the IP Address for the Azure Load Balancer.   Enjoy!! With the above settings, you should be able to access ThingWorx via: https://edc.ptc.io/Thingworx (replacing edc.ptc.io with the hostname you have selected).   Q&A Can I configure the health probe running on a port other than the traffic port (8443) in this case? Yes – if desired you can use a different port for the health probe configuration.   Can I use different protocol other than HTTPS for health probe? Yes – you can use different protocol in the health probe configuration, but you will need to develop your own functional equivalent to the pings.jsp example in this article for the protocol you choose.   Can I configure ZooKeeper to support the health probe? No – the purpose of the health probe is to inform the Load Balancer which node is providing service (the leader), not to select a leader. In a High Availability architecture, ZooKeeper determines which VM is the leader and talking with the database. This approach will change in future releases where multiple ThingWorx instances are actively processing requests.   How well does Azure Load Balancer scale? This question is best answered by Microsoft – as a starting point, we recommend reading the DevBlog post: Azure Load Balancing Solutions: A guide to help you choose the correct option.   How do I access logs for Azure Load Balancer? This question is best answered by Microsoft – as a starting point, we recommend reviewing the Microsoft article Azure Monitor logs for public Basic Load Balancer.   Do I need to configure specifically for Websocket and/or AlwaysOn communication? No – Azure Load Balancer is a Layer 4 (Transport Protocol) router - it only handles TCP traffic forwarding.   Can I leverage this load balancer to access all VMs behind it via ssh? Yes – you could configure Inbound NAT rules for this. If you require specific help in configuring this, the question is best answered by Microsoft. As a starting point, we recommend reviewing the Microsoft tutorial Configure port forwarding in Azure Load Balancer using the portal.   Can I view current health probe status on a portal? No – Unfortunately there is no current approach to do this with Azure Load Balancer.
View full tip
  The IoT Enterprise Deployment Center’s goal is to create and share knowledge around the best practices for architecting, designing, and deploying successful, enterprise-scale Thingworx IoT Solutions.    To accomplish this goal, the EDC team takes a “real world” approach, using simulated IoT assets and users to benchmark the capabilities of different Thingworx deployment configurations. First, each implementation is pushed to its limit in an effort to establish real-world baselines, metrics which can be used to help customers determine which architecture choices will work for their custom needs. Then, each implementation is pushed beyond its limits, providing useful insight into where and why things fail, and illuminating potential implementation changes which could push the boundaries further.   Through the simulations testing to come, the EDC will be publishing the resulting benchmarks for all to see! These benchmarks will include details on implementation goals and performance metrics for different stages of deployment. Additionally, best-practice articles which illustrate how to deploy the different architectural components (those referenced within the benchmarks) will also be posted, highlighting the optimal approach to integrating everything into the Thingworx platform.   Stay tuned to see more about just how versatile the ThingWorx Platform can be! We look forward to discussing these findings as they are published right here on the PTC Community. 
View full tip
Reminder (and for some, announcement!) that the new ThingWorx 8 sizing guide is available here  https://www.ptc.com/en/support/refdoc/ThingWorx_Platform/8.0/ThingWorx_Platform_8_x_Sizing_Guide
View full tip
Since the marketplace extension is no longer supported and the drivers may be outdated, you may build your own jdbc package/extension: Download the Extension Metadata file Here Download the appropriate JDBC driver Build the extension structure by creating the directory lib/common Place the JAR file in this directory location: lib/common/<JDBC driver jar file> Modify the name attribute of the ExtensionPackage entity in the metadata.xml file as needed Point the file attribute of the FileResource entity to the name of the JDBC JAR file The metadata also contains a ThingTemplate the name is set to MySqlServer, but can be modified as needed Select the lib folder and metadata.xml file and send to a zip archive Tip: The name of the zip archive should match the name given in the name attribute of the ExtensionPackage entity in the metadata.xml file Import the newly created extension as usual To the JDBC extension, simply create a new thing and assign it the new ThingTemplate that was imported with the JDBC extension Configuration Field Explanation: JDBC Driver Class Name ​Depends on the driver being used Refer to documentation JDBC Connection String ​Defines the information needed to establish a connection with the database Connection string examples can be found in the ThingWorx Help Center ConnectionValidationString ​A simple query that will work regardless of table names to be executed to verify return values from the database   Alternatively, you may download the jdbc connector creator from the marketplace here https://marketplace.thingworx.com/Items/jdbc-connector-extension Then you may just view the mashup and use it to package your jdbc jar into an extension (which can be later imported into ThingWorx).  
View full tip
This is a lessons learned write up that I proposed to present at Liveworx but it didn't make the cut, but I did want to share it with all the developer folks. Please note that this is before we added Influx and Micro Services, which help improve the landscape. Oh and it's long 🙂 ------------------------------------------ This is written as of Thingworx 8.2   Different ways to scale Data and Processing with Thingworx Two main issues are targeted Data Storage Platform processing Data Storage in Thingworx Background Issues around storage is that due to the limited indexing in the Persistence Provider with then the actual values according to the datashape being in a JSON Blob So when you look in the Persistence Provider you’ll see Source sourceType Location entityID Datetime Tags ValueJSONBlob   The first six carry an index, the JSON Blob which holds the values according to the datashape is not, that can read something like {value1:firstvalue,value2:secondvalue,value3:[ …. ]} etc. This means that any queries beyond the standard keys – date/time, entityID (name of Stream or DataTable), source, sourcetype, tags, location become very inefficient because it will query the records and then apply the datashape query server side. Potentially this can cause you to pull way more records over from Persistence Provider to Platform than intended. Ie: a Query on Temperature in my data, that should return 25 records for a given month, will perhaps first return 250K records and then filter own to 25. The second issue with storage is that all Streams are stored in one table in the Persistence Provider using entityID as an additional key to figure out which stream the record is for. This means that your record count per table goes up much faster than you’d expect. Ie: If I have defined 5 ValueStreams for 5 different asset types, ultimately all that data is still in one table in the Persistence Provder. So if each has 250K records, a query against the valuestream will then in actuality be a query against 1.25 million records. I think both of these issues are well known and documented? By now and Dev is working on it. Solution approaches So if you are expecting to store a lot of records what can you do? Archive The easiest solution is to keep a limited set and archive off the rest of the data, preferably into a client’s datalake that is not part of the persistence provider, remember archiving from one stream to another stream is not a solution! Unless … you use Multiple Persistence Providers Multiple Persistence Providers Thingworx does support multiple persistence providers for storing data. So you can spin up extra schemas (potentially even in the same DataBase Server) to be the store for additional Persistence Providers which then are mapped to a specific Stream/ValueStream/DataTable/Blog/Wiki. You still have to deal with the query challenge, but you now have less records per data store to query through. Direct queries in the Persistence Provider If you have full access to your persistence provider (NOTE: PTC Cloud Services does NOT provide this right now). You can create an additional JDBC connection to the Persistence Provider and query the stream directly, this allows you to query on the indexed records with in addition a text search through the JSON Blob all server side. With this approach a query that took several minutes at times Platform side using QueryStreamEntries took only a few seconds. Biggest savings was the fact that you didn’t have to transfer so many records back to the Platform server. Additional Schemas You can create your own schema (either within the persistence provider DB – again not supported by PTC Cloud Services) in a Database Server of your choice and connect to it with JDBC/REST. (NOTE: I believe PTC Cloud Service may/might offer a standalone server with actual root access) This does mean you have to create your own Getter/Setter services to retrieve and store information, plus you’ll need some event to store (like DataChange). This approach right now is probably a common if not best practice recommendation if historical information is required for the solution and the record count looks to go over 1 million records and can’t just be queried based on timestamp. Thingworx Event Processing Background Thingworx will consistently deal with many Things that have many Properties, and often times there will be Alerts/Rules that need to run based on value changes. When you are using straight up Alerts based on a limit value, this isn’t such a challenge, but what if you need to add some latch/lock/debounce logic or need to check against historical values or check multiple conditions? How can you design something that can handle evaluating these complex rules, holds some historical or derived values and avoid race conditions and be responsive? Potential Problems Race conditions Multiple Events may need to update the same Permanent or Temporary store for the determination of a condition. Duplicates If you don’t have some ‘central’ tracker, you may possibly trigger the same rule multiple times. Slow response You are potentially triggering thousands or more events at the same time, depending on how you’ve set up your logic, your response could become so slow that the next event will be firing before finish and you’ll overload the system. System queue overrun If your events trigger faster than you can handle the events, you will slowly build up and finally overrun the event queue. System Thread count overrun Based on the number of cores in your system, you can overrun the number of threads that can be handled. Connection Pool overrun Each read/write to a stream/datatable but also Property Persist is a usage of the connection pool to your persistence provider. If you fire a lot at once, you can stack up requests and cause deadlocks System out of memory Potentially in handling the events you are depending on in memory information, if that is something that grows over time, you could hit an ‘Out of Memory’ issue. Solution Approaches Batch processing Especially with Agents/Sources that write a set of property updates, you potentially trigger multiple threads that all may need the same source information or update the same target information. If you are able to process this as a batch, you can take all values in account and only process this as a single event and have just a single read from source or single write to target. This will be difficult to achieve when using something like Kepserver, unless it is transferring as something non-standard like MQTT. But if you can have the data come in as a single REST POST this approach becomes possible. In Memory vs. Table/Stream Storage To speed up response time, you can put necessary information into Memory vs. in a DataTable or Stream. For example, if you need the most current received record together with some historical values, you could: Use a Stream but carry the current value because the stream updates async. (ie adding the current value to the stream doesn’t guarantee that when you read from the stream it has already been committed) Use a DataTable because they are synchronous but it can make the execution slow, especially if you are reaching 100K records or more Use an InfoTable or JSON Property, now this information is in memory and runs the fastest and is synchronous. Note that in some speed testing JSON object was faster than InfoTable and way faster than DataTable. One challenge is that you would have to do a full overwrite if you need to persist this information. Doing a full write does open up the danger of a race condition, if this information is being updated by multiple threads at the same time. If it is ok to keep the information in memory than an InfoTable is nice because you can just add/delete rows in memory. I sadly haven’t figured out yet how to directly do this to a JSON object property :(. It is important to consider disaster recovery scenarios if you are only using this in memory Centralized Processing vs. Distributed Processing Think about how you can possibly execute some logic within the context of the Entity itself (logic within the ThingShape/ThingTemplate) vs. having it fire into a centralized Service (sync or async) on a separate Entity. Scheduler or Timer As much as Schedulers and Timers are often the culprit of too many threads at the same time, a well setup piece of logic that is triggered by a Scheduler or Timer can be the solution to avoid race conditions If you are working with multiple timers, you may want to consider multiple schedulers which will trigger at a specific time, which means you can eliminate concurrence (several timers firing at the same time) Think about staggering execution if necessary, by using the hated, looked down upon … but oft necessary … pause() function !!!! Synchronous vs. Asynchronous Asynchronous execution can give great savings on the processing speed of a thread, since it will kick off the asynch parts and continue on. The terrible draw back, you can’t tell when it is finished nor what the resulting output is. As you mix and match synch/asynch vs processing speed, you may need to consider other ways to pick up when an asynch process finishes, some Property elsewhere that will trigger into a DataChange for example. Interesting examples Batch Process With one client there was a batch process that would post several hundred results at once that all had to be evaluated. The evaluation also relied on historical information. So with some logic these properties were processed as a batch, related to each other and also compared to information held in memory besides historically storing the information that came in. This utilized several in memory objects and ultimately also an eval() statement to have the greatest flexibility and performance. Mix and Match With another client, they had a requirement to have logic to do latch/lock and escalation. This means that some information needs to be persisted, however because all the several hundred properties per asset are coming in through Kepware once a second, it also had to be very fast. The approach here was to have the DataChange place information into an in memory infotable that then was picked up by a separate latch/lock/escalation timer to move it over to the persistent side. This allowed for the instantaneous processing of DataChange and Alerts, but also a more persistent processing of latch/lock/escalation logic. In Conclusion Remember that PTC created its software for specific purposes. I don’t think there ever will be a perfect magical platform that will do everything we need and want. Thingworx started out on a specific path which was very high speed data ingest and event platform with agnostic all around connectivity, that provided a very nice holistic modeling approach and a simple way to build UI/UX. Our use cases will sometimes go right past everything and at times to the final frontier aka the bleeding edge and few are a carbon copy of another. This means we need to be innovative and creative. Hopefully all of you can use the expert knowledge you have about our products to create those, but then also be proactive and please share with everyone else!  
View full tip
We are excited to announce ThingWorx 8.4 is now available for download!    Key functional highlights ThingWorx 8.4 covers the following areas of the product portfolio: ThingWorx Analytics and ThingWorx Foundation which includes Connection Server and Edge capabilities.   ThingWorx Foundation Next Generation Composer: File Repository Editor added for application file management New entity Config Table Editor to enable application configurability and customization Localization support fornew languages: Italian, Japanese, Korean, Spanish, Russian, Chinese/Taiwan, Chinese/Simplified Mashup Builder: Responsive Layout with new Layout Editor 13 new and updated widgets (beta) Theming Editor (beta) New Functions Editor New Personalized Workspace Platform: Added support for AzureSQL, a relational database-as-a-service (DBaaS) as the new persistence provider A PaaS database that is always running on the latest stable version of SQL Server Database Engine and  patched OS with 99.99% availability.   Added support for InfluxData, a leading time series storage platform as the new ThingWorx persistence provider Supports ingesting large amounts of IoT data and offers high availability with clustering setup New extension for Remote Access and Control Supports VNC, RDP desktop sharing for any remote device HTTP and SSH connectivity supported An optional microservice to offload the ThingWorx server by allowing query execution to occur in a separate process on the same or on a different physical machine. Installers for Postgres versions of ThingWorx running on Windows or RHEL AzureSQL InfluxDB Thing Presence feature introduced which indicates whether the connection of a thing is “normal” based on the expected behavior of the device. Remote Access Extension Query Microservice: Click and Go Installers for Windows and Linux (RHEL) Security: Major investments include updating 3rd party libraries, handling of data to address cross-site scripting (XSS)  issues and enhancements to the password policy, including a password blacklist. A significant number of security issues have been fixed in this release. It is recommended that customers upgrade as soon as possible to take advantage of these important improvements. Docker Support  Added Dockerfile as a distribution media for ThingWorx Foundation and Analytics Allows building Docker container image that unlocks the potential of Dev and Ops Note:  Legacy Composer has been removed and replaced with the New Composer.   Documentation: ThingWorx 8.4 Reference Documents ThingWorx Platform 8.4 Release Notes ThingWorx Platform Help Center ThingWorx Analytics Help Center ThingWorx Connection Services Help Center  
View full tip
In this post, I will use an instance of InfluxDB and Chronograf. See this post for installing both using Docker. InfluxDB - Time Series Databases   InfluxDB is a time series database. It allows users to work with and organize time series data. The advantage of such a database system is that it comes with built-in functionality to easily aggregate and operate on data based on time intervals. Other types of databases can do this as well - but time series databases are heavily optimized for this kind of data structures which will show in storage space and performance.   Data is stored in the database with its timestamp, its value and one or more tags.   Time Temperature Humidity Location 2019-01-24T00:00:00 23 42 Home 2019-01-24T00:01:00 22 43 Home 2019-01-24T00:02:00 21 44 Home 2019-01-24T00:03:00 23 45 Home 2019-01-24T00:04:00 24 42 Home 2019-01-24T00:05:00 25 43 Home 2019-01-24T00:06:00 23 44 Home   Values can be aggregated by intervalls, i.e. "give me the temperatur values within the last hour and take the average for 5 minutes". This would result in (60 / 5) = 12 results with a value that represents the average temperature within this 5 minute interval.   Example: Temperature Data averaged by 4 minutes   Time Temperature 2019-01-24T00:00:00 (23 + 22 + 21+ 23) / 4 = 22,25 2019-01-24T00:04:00 (24 + 25 + 23) / 3 = 24   To find out more about InfluxDB see also https://www.influxdata.com/time-series-database/ and https://www.influxdata.com/time-series-platform/   InfluxDB in ThingWorx   The new ThingWorx 8.4 release comes with an option to setup InfluxDB as additional Persistence Provider. Meta Data like Entity Definitons will still be stored in PostgreSQL. Streams, Value Streams and Data Tables however can be stored in InfluxDB.   The InfluxDB Persistence Provider setup is delivered with the PostgreSQL installation package for ThingWorx. Currently ThingWorx does not allow any aggregation of data with its built-in InfluxDB capabilities.   Prepare InfluxDB   InfluxDB will need a user and a database. Connect via Chronograf - the graphical UI to administer InfluxDB and create a new user via   InfluxDB Admin > Users Default username = twadmin Default password = password Permissions = ALL   Create a new database via   InfluxDB Admin > Databases Default database name = thingworx   Configure ThingWorx   Create a new Persistence Provider for InfluxDB in ThingWorx - but don't mark it as active yet!     Switch to the Configuration and change the username / password, database and hostname to match your installation.     Save the configuration, switch back to the General tab and mark the InfluxDB Persistence Provider as Active.   Save again and a "successful" message will be shown. If the save action failed, the connection settings are not correct - check for the correct ports and for any typos.   Creating Entities & Testing   Streams, Value Streams and Data Tables can now be created using the new InfluxDB Persistence Provider.   To test with a Value Stream   Create a new Thing with some NUMBER properties, e.g. 'a', 'b' and 'c' as properties - ensure they are marked as logged as well Name = InfluxValueStreamThing Create a new ValueStream based and change its Persistance Provider to the InfluxDB created above Name = InfluxValueStream Save both Entities Setting values for the properties will now automatically create the entries in InfluxDB - including the Entity name "InfluxValueStreamThing" Running the QueryPropertyHistory service on the Thing will return the results as an InfoTable In Chronograf this will display like this:   ThingWorx 8.4 will be released end of January 2019. Be sure to check out and test the new Persistence Provider features!
View full tip
Installing an Open Source Time Series Platform For testing InfluxDB and its graphical user interface, Chronograf I'm using Docker images for easy deployment. For this post I assume you have worked with Docker before.   In this setup, InfluxDB and Chronograf will share an internal docker network to exchange data.   InfluxDB can be accessed e.g. by ThingWorx via its exposed port 8086. Chronograf can be accessed to administrative purposes via its port 8888. The following commands can be used to create a InfluxDB environment.   Pull images   sudo docker pull influxdb:latest sudo docker pull chronograf:latest   Create a virtual network   sudo docker network create influxdb   Start the containers   sudo docker run -d --name=influxdb -p 8086:8086 --net=influxdb --restart=always influxdb sudo docker run -d --name=chronograf -p 8888:8888 --net=influxdb --restart=always chronograf --influxdb-url=http://influxdb:8086     InfluxDB should now be reachable and will also restart automatically when Docker (or the Operating System) are restarted.
View full tip
This post adds to my previous post: Deploying H2 Docker versions quickly   In addition to configuring the basic Docker Images and Containers, it's also possible to deploy them with a TLS / SSL certificate and access the instances via HTTPS protocol.   For this a valid certificate is required inside a .jks keystore. I'm using a self-signed certificate, but commercial ones are even better! The certificate must be in the name of the machine which runs Docker and which is accessed by the users via browser. In my case this is "mne-docker". The password for the keystore and the private key must be the same - this is a Tomcat limitation. In my case it's super secret and "Password123456".   I have the following directory structure on my Operating System   /home/ts/docker/ certificates mne-docker.jks twx.8.2.x.h2 Dockerfile settings platform-settings.json <license_file> storage Thingworx.war   The Recipe File   In the Recipe File I make sure that I create a new Connector on port 8443, removing the old one on port 8080. I do this by just replacing via the sed command - also introducing options for content compression. I'm only replacing the first line of the xml node as it holds all the information I need to change.   Changes to the original version I posted are in green   FROM tomcat:latest MAINTAINER mneumann@ptc.com LABEL version = "8.2.0" LABEL database = "H2" RUN mkdir -p /cert RUN mkdir -p /ThingworxPlatform RUN mkdir -p /ThingworxStorage RUN mkdir -p /ThingworxBackupStorage ENV LANG=C.UTF-8 ENV JAVA_OPTS="-server -d64 -Djava.awt.headless=true -Djava.net.preferIPv4Stack=true -Dfile.encoding=UTF-8 -Duser.timezone=GMT -XX:+UseNUMA -XX:+UseG1GC -Djava.library.path=/usr/local/tomcat/webapps/Thingworx/WEB-INF/extensions RUN sed -i 's/<Connector port="8080" protocol="HTTP\/1.1"/<Connector port="8443" protocol="org.apache.coyote.http11.Http11NioProtocol" maxThreads="150" SSLEnabled="true" scheme="https" secure="true" clientAuth="false" sslProtocol="TLS" enableLookups="false" keystoreFile="\/cert\/mne-docker.jks" keystorePass="Password123456" ciphers="TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA, TLS_DHE_RSA_WITH_AES_128_CBC_SHA, TLS_DHE_RSA_WITH_AES_128_CBC_SHA256, TLS_DHE_RSA_WITH_AES_128_GCM_SHA256, TLS_DHE_RSA_WITH_AES_256_CBC_SHA, TLS_DHE_RSA_WITH_AES_256_CBC_SHA256, TLS_DHE_RSA_WITH_AES_256_GCM_SHA384, TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA, TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA, TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256, TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256, TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA, TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384, TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384, TLS_RSA_WITH_AES_256_CBC_SHA, TLS_RSA_WITH_AES_128_CBC_SHA" compression="on" compressableMimeType="text\/html,text\/xml,text\/plain,text\/css,text\/javascript,application\/javascript,application\/json"/g' /usr/local/tomcat/conf/server.xml COPY Thingworx.war /usr/local/tomcat/webapps VOLUME ["/ThingworxPlatform", "/ThingworxStorage", "/cert"] EXPOSE 8443   Note that I also map the /cert directory to the outside, so all of my Containers can access the same certificate. I will access it read-only.   Deploying     sudo docker build -t twx.8.2.x.h2 . sudo docker run -d --name=twx.8.2.x.h2 -p 88:8443 -v /home/ts/docker/twx.8.2.x.h2/storage:/ThingworxStorage -v /home/ts/docker/twx.8.2.x.h2/settings:/ThingworxPlatform -v /home/ts/docker/certificates:/cert:ro twx.8.2.x.h2   Mapping to the 8443 port ensures to only allow HTTPS connections. The :ro in the directory mapping ensures read-only access.   What next   Go ahead! Only secure stuff is kind of secure 😉 For more information on how to import the certificate into a the Windows Certificate Manager so browsers recognize it, see also the Trusting the Root CA chapter in Trust & Encryption - Hands On
View full tip
This post is part of the series Forced Root Cause Monitoring via Mashups and Modal Popups To not feel lost or out of context, it's recommended to read the main post first. Testing the Mashups Open the rcp_MashupMain in a new browser window For this test I find it easier to have the rcp_AlertThing and the Mashup in two windows side-by-side to each other The Mashup should be completely empty right now Nothing in the historic table (Grid) The Selected Reason is blank The Checkbox is false In the rcp_AlertThing switch the trigger to false The following will now happen The new value will be automatically pushed to Mashup The checkbox will switch to true The validator now throws the TRUE Event, as the condition is met and the trigger is indeed true The TRUE Event will invoke the Navigation Widget's Navigate service and the modal popup will be opened The user now only has the option to select one of the three states offered by the Radio Button selector, everything else will be greyed out After choosing any option, the SelectionChanged Event will be fired and trigger setting the selectedState as well as closing the popup The PopupClosed Event in our MashupMain will then be fired and populate the selectedState parameter into the textbox (just for display) and will also call the SetProperties service on our Thing, updating the selectedReason with the selectedState parameter value Once the property is set and persisted into the ValueStream via the SetProperties' ServiceInvokeCompleted Event, we clear the trigger (back to false) and update the Grid with the new data In the AlertThing, refresh the properties to actually see the trigger false and the selectedReason to whatever the user selected Note: When there is a trigger state and the trigger is set to true the popup will always be shown, even if the user refreshes the UI or the browser window. This is to avoid cheating the system by not entering a root cause for the current issue. As the popup is purely depending on the trigger flag, only clearing the flag can unblock this state. The current logic does not consider to close the popup when the flag is cleared - this could however be implemented using the Validator's FALSE Event and adding additional logic
View full tip
This post is part of the series Forced Root Cause Monitoring via Mashups and Modal Popups To not feel lost or out of context, it's recommended to read the main post first. Create the Main Mashup Create a new Mashup called "rcp_MashupMain" as Page and Responsive Save and switch to the Design tab Design Add a Layout with two Columns In the right Column add another Layout (vertical) with a Header and one Row Add a Grid to the Row Add a Panel to the Header Add a Panel into the Panel (we will use a Panel-In-Panel technique for a better design experience) Set "Width" to 200 Set "Height" to 50 Set "Horizontal Anchor" to "Center" Set "Vertical Anchor" to "Middle" Delete its current "Style" and add a new custom style - all values to default (this will create a transparent border around the panel) Add a Label to the inner Panel Set "Text" to "Historic data of what went wrong" Set "Alignment" to "Center Aligned" Set "Width" to 200 Set "Top" to 14 Add a Panel to the left Column Add a Navigation Widget to the Panel This will call the Popup Window when its Navigate service is invoked (by a Validator) Set "MashupName" to "rcp_MashupPopup" Set "TargetWindow" to "Modal Popup" Set "ShowCloseButton" to false Set "ModalPopupOpacity" to 0.8 (to make the background darker and give more visual focus to the popup) Set "FixedPopupWidth" to 500 Set "FixedPopupHeight" to 300 Set "PopupScrolling" to "Off" Set "Visible" to false, so it will not be shown to the user during runtime Add a Textbox to the Panel This will show the numeric value corresponding to the State selected in the modal popup This will just be used for displaying with no other functionality - so that we can verify the actual values chosen Set "Read Only" to true Set "Label" to "Selected Reason (numeric value)" Add a Checkbox to the Panel This will be used an input for the Validator to determine if an error state is present or not Set "Prompt" to "Set this box to 'true' to trigger the popup. Set the value via the Thing to simulate a service. Once the value is set, the trigger is set to 'false' as the popup has been dealt with. A new historic entry will be created." Set "Disabled" to true Set "Width" to 250 Add a Validator to the Panel This will determine if the checkbox (based on the trigger / error state) is true or false. If the checkbox switches to true then the validator will call the Navigate service on the Navigation Widget. Otherwise it will do nothing. Click on Configure Validator Add Parameter Name: "Input" Base Type: BOOLEAN Click Done Set "Expression" to "Input" (the Parameter we just created) Set "AutoEvaluate" to true Save the Mashup Data In the Data panel on the right hand side, click on Add entity Choose the "rcp_AlertThing" and select the following services GetProperties (execute when Mashup is loaded) SetProperties QueryPropertyHistory (execute when Mashup is loaded) clearTrigger Click Done and the services will appear in the Data panel Connections After configuring the UI elements and the Data Sources we now have to connect them to implement the logic we decided on earlier GetProperties service Drag and drop the trigger property to the Checkbox and bind it to State Set the Automatically update values when able to true SetProperties service From the Navigation Widget drag and drop the selectedState property and bind it to the SetProperties service selectedReason property From the Navigation Widget drag and drop the PopupClosed event and bind it to the SetProperties service From the SetProperties service drag and drop the ServiceInvokeCompleted event and bind it to the clearTrigger service From the SetProperties service drag and drop the ServiceInvokeCompleted event and bind it to the QueryPropertyHistory service QueryPropertyHistory service Drag and drop the Returned Data's All Data to the Grid and bind it to Data On the Grid click on Configure Grid Columns Switch the position of the timestamp and selectedReason fields with their drag and drop handles For the selectedReason Set the "Column Title" to "Reason for Outage" Switch to the Column Renderer & State Formatting tab Change the format from "0.00" to "0" (as we're only using Integer values anyway) Choose the State-based Formatting Set "Dependent Field" to "selectedReason" Set "State Definition" to "rcp_AlertStateDefinition" Click Done clearTrigger service There's nothing more to configure for this service As the properties will automatically be pushed via the GetProperties service, there's no special action required after the service invoke for the clearTrigger service has been completed Validator Widget Drag and drop the Validator's TRUE event to the Navigation Widget and bind it to the Navigate service Drag and drop the Checkbox State to the Validator and bind it to the Input parameter Navigation Widget Drag and drop the Navigation Widget's selectedState to the Textbox and bind it to the Text property Save the Mashup
View full tip
This post is part of the series Forced Root Cause Monitoring via Mashups and Modal Popups To not feel lost or out of context, it's recommended to read the main post first. Create a Popup Mashup Create a new Mashup called "rcp_MashupPopup" as Page and Static Save and switch to the Design tab Design Edit the Mashup Properties Set "Width" to 500 Set "Height" to 300 Add a new Label Set "Text" to "Something went wrong - what happend?" Set "Alignment" to "Center Aligned" Set "Width" to 230 Set "Top" to 55 Set "Left" to 130 Add a new Radio Button Set "Button States" to "rcp_AlertStateDefinition" Set "Top" to 145 Set "Left" to 25 Set "Width" to 450 Set "Height" to 100 In the Workspace tab, select the "Mashup" Click on Configure Mashup Parameters Add Parameter Name: "selectedState" BaseType: NUMBER Click Done Save the Mashup Connections Select the Radio Button Drag and drop its Selected Value property to the Mashup and bind it to the selectedState Mashup Parameter Drag and drop its SelectionChanged event to the Mashup and bind it to the CloseIfPopup service Save the Mashup
View full tip
Announcements